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Acronyms and Abbreviations 23 

RTN Cropland N runoff RR RTN per unit N fertilizer additions 

R0 Background N runoff pH Soil pH value 

SOM Soil organic matter Clay Soil clay content 

TN Soil total nitrogen Temp Mean air temperature 

Nrate Nitrogen (N) fertilizer application 

rate per unit sowing area 

W Sum of precipitation and irrigation 

within observation period 

xk Environmental variables CE Correction coefficient  

    

 24 



Abstract 25 

Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are 26 

essential for designing efficient, sustainable N management strategies for future. 27 

Despite the recognition that excess N runoff poses a risk of aquatic eutrophication, 28 

large-scale, spatially detailed N runoff trends and their drivers remain poorly 29 

understood in China. Based on data comprising 535 site-years from 100 sites across 30 

China’s croplands, we developed a data-driven upscaling model and a new simplified 31 

attribution approach to detect and attribute N runoff trends during the period of 1990-32 

2012. Our results show that N runoff has increased by 46% for rice paddy fields and 33 

31% for upland areas since 1990. However, we acknowledge that the upscaling model 34 

is subject to large uncertainties (20% and 40% as coefficient of variation of N runoff, 35 

respectively). At national scale, increased fertilizer application was identified as the 36 

most likely driver of the N runoff trend, while decreased irrigation levels offset to some 37 

extent the impact of fertilization increases. In southern China, the increasing trend of 38 

upland N runoff can be attributed to the growth in N runoff rates. Our results suggested 39 

that increased SOM led to the N runoff rate growth for uplands, but led to a decline for 40 

rice paddy fields. In combination, these results imply that improving management 41 

approaches for both N fertilizer use and irrigation is urgently required for mitigating 42 

agricultural N runoff in China. 43 

Keywords: Nitrogen runoff; temporal trend; spatial pattern; attribution analysis; 44 

Bayesian inference 45 



Capsule 46 

Cropland N runoff in China increased by 30% over the past two decades mainly due to 47 

increased fertilization and decreased irrigation. 48 

 49 

Highlights 50 

 A data-driven upscaling model can effectively and reliably detect N runoff trends 51 

 N runoff has increased by 46% for rice paddy fields and 31% for uplands since 52 

1990 53 

 SOM change results in inverse trend of N runoff rates between upland and rice 54 

fields 55 

 56 



1. Introduction 57 

Meeting food security targets while simultaneously reducing reactive nitrogen losses 58 

has drawn attention from both scientists and the public (Chen et al., 2014; Mueller et 59 

al., 2012; Tilman et al., 2011; Zhang et al., 2015). Large amounts of anthropogenic 60 

nitrogen (N) inputs have resulted in excess N being lost in runoff from croplands to 61 

water bodies and the atmosphere worldwide (Cui et al., 2014; Leip et al., 2011; 62 

Seitzinger et al., 2010). As one of the consequences, increased occurrences of aquatic 63 

eutrophication and ecosystem degradation were observed, particularly in China and 64 

South Asia (Paerl et al., 2014). Reliable detection and attribution of cropland N runoff 65 

are crucial for policy makers and farmers to develop site-specific N management 66 

strategies (Cherry et al., 2008). Although cropland N runoff is substantial in China (e.g., 67 

2.1±0.2 or 0.8 Tg N yr1 estimated by Gu et al., (2015) and Wang et al., (2014), 68 

respectively), large-scale, spatially detailed N runoff trends and its attribution remain 69 

poorly understood.  70 

 71 

Cropland N runoff, defined as a generation process of N loss via surface runoff, depends 72 

on environmental conditions and agricultural management practices (Zhang et al., 73 

2016). This complexity makes large-scale N runoff difficult to estimate using empirical 74 

models. Plot-scale N runoff flux data from croplands are also difficult to scale up into 75 

spatially detailed maps because of spatio-temporally varying results (Shen et al., 2012). 76 

Currently, an export coefficient approach has been widely used to estimate cropland N 77 



runoff (Hao, 2006; Liu et al., 2010; Velthof et al., 2009; Wang et al., 2014). For example, 78 

the first National Pollution Census Program of China (NPCP) provided a collection of 79 

N runoff flux coefficients for different geographical regions in China, determined by 80 

fitting cross-sectional site data to an export-coefficient model (Wang et al., 2014). 81 

Nevertheless, substantial evidence gathered from field observations indicates that linear 82 

and homogeneous models are rarely capable of capturing the spatial variability of N 83 

runoff at regional scale (Schaefer and Alber, 2007; Sobota et al., 2009; Hou et al., 2016). 84 

This highlights the difficulty of accurately predicting its future evolution as well as 85 

quantifying the impacts on aquatic ecosystems. 86 

 87 

While it is still challenging to attribute contributions of each individual driving factor 88 

(e.g., climate condition, agricultural management practices) to the cropland N runoff 89 

trend assessment, statistical correlation or regression analyses have been widely applied 90 

(Korsaeth and Eltun, 2000; Stalnacke et al., 2015) over past decades. However, this 91 

approach has two potential limitations. Firstly, statistical analyses of historical RTN 92 

generally characterizes the related major drivers, thus includes the signals not only from 93 

the temporal trends, but also from inter-annual or decadal variability. Secondly, the use 94 

of statistical analysis generally assumes that the effects of drivers on N runoff are linear 95 

and independent of each other (Piao et al., 2015). However, a growing number of 96 

studies based on both data from field experiments and theoretical analyses indicated 97 

non-linear responses of N runoff to changes in driving factors as a consequence of 98 



complex interactions (Hou et al., 2016). Although these limitations in attribution 99 

analysis could be overcome through the application of process-based models (Hao, 100 

2006; Abbaspour et al., 2015, Liu et al. 2016), core limitations of such simulation 101 

models are the large uncertainties arising from model structure and parameter choice 102 

(Schulz et al., 1999). One way to separate the contribution of natural and anthropogenic 103 

controls is to use the Kaya Identity concept developed in economics (Raupach et al., 104 

2007), which is adopted when studying climate change and hydrological science 105 

(Streimikiene and Balezentis, 2016; Wang et al., 2015b). 106 

 107 

To quantify and attribute cropland N runoff trends during past decades, we analyzed the 108 

data in this study is based on a upscaling model following a new simple attribution 109 

approach. Synthesized field measurements were used for model calibration and cross-110 

validation based on the Bayesian Recursive Regression Tree algorithm version 2.0 111 

(BRRT v2, Zhou et al., 2015), utilizing high-resolution gridded datasets including 112 

climate conditions, soil attributes, and agricultural management practices. First, we 113 

assessed inter-annual dynamics of cropland N runoff derived from the data-driven 114 

upscaling model to detect trends for the period from 1990 to 2012. Second, we 115 

compared the proportional change rate of each driver to upscaling results of RTN, which 116 

allowed us to diagnose the contributions of different drivers. Finally, we discussed how 117 

each driver modulates the temporal trend of RTN and the implications for site-specific 118 

N management. 119 



 120 

2. Data and methodology 121 

2.1 Dataset 122 

Based on the National Pollution Census Program of China (NPCP) and datasets 123 

published by the scientific community, in situ measurements of N runoff and associated 124 

variables in each plot were collated from 100 experimental sites for both rice paddy and 125 

upland fields (i.e., as a flooded parcel of arable land used for growing rice and non-rice 126 

crops, respectively). Water samples were collected in the drainage outlet for each 127 

rainfall event in most of the measurements, where the runoff volume was consecutively 128 

measured within the observation period. N concentrations in water samples were 129 

analyzed using ultraviolet spectrophotometric methods, following the Standard 130 

Methods for the Examination of Water and Wastewater approach for China (SEPA, 131 

2002). Precipitation within the observation period and soil properties (0-20 cm depth) 132 

at the beginning of the experiment were synchronously monitored. Missing values of 133 

soil properties or climatic factors at a few sites were supplemented with data from the 134 

China Soil Scientific Database (http://vdb3.soil.csdb.cn/) based on the corresponding 135 

soil type of the county or from the 0.1-degree China Meteorological Forcing Dataset 136 

(CMFD) v0106 (http://data.cma.cn/) depending on its geographic coordinates. 137 

Information on agricultural management practices including N fertilizer application 138 

rate, irrigation amount, fertilizer types, and crop types were recorded, including the 139 

timing of the application. The dataset comprised 535 site-years data (293 for upland 140 



and 242 for rice paddy fields) (Fig. 1a and Supplementary Data S1), and can be 141 

considered representative of most major cropping areas except northwestern China (Fig. 142 

1).  143 

 144 

Figure 1. Location of experimental sites on cropland N runoff in China. Sixty-two 145 

experimental sites for upland are illustrated as black solid circles, whereas thirty-eight 146 

sites for paddy field are indicated as red solid circles. The ranges of each individual 147 

variable is illustrated as a light red bar for observational datasets and a dark red bar for 148 

croplands for the whole of China in panel b. The variables are Nrate (kg N ha1), clay 149 

content (Clay, %), water input (W, mm), soil pH, soil organic matter (SOM, g kg1), 150 

soil TN (g kg1) and air temperature (Temp, C).  151 

 152 

2.2 Data-driven upscaling model 153 

We developed an upscaling model which accounts for the effects of environmental 154 

conditions and agricultural management (Eq. 1). Specifically, N fertilizer application 155 

rate (Nrate) and environmental conditions (xk) are directly included as independent 156 



variables, whereas fertilizer application and crop types are considered as correction 157 

terms in the model: 158 

RTNl = RRl(xk)Nrate+ R0
l(xk)+, l=1,2,…,L, xkl                (1a) 159 

where  160 

RRl = RRl
*(xk)  CEi(RR)  CEj(RR),                              (1b) 161 

R0
l = Rl

0,*(xk)  CEj(R0),                                        (1c) 162 

RRl
*(xk) = f(xk)Nrate+g(xk), Rl

0,*(xk) = h(xk),                      (1d) 163 

and i and j represent the index of fertilizer types and crop types, respectively; l and L 164 

are the index and number of piecewise functions. xk is climatic condition or soil attribute. 165 

Observations (Fig. S1) of air temperature, water input and soil clay content can be used 166 

as proxies to reflect the variations of soil temperature and water content within the 167 

observation period, respectively. RR* and R0,* are the reference values when urea is 168 

applied and where wheat or rice are cultivated on experimental sites. Both are then 169 

adjusted to reflect different fertilizer and crop types to develop a specific RR and R0 for 170 

a given scenario. The details of correction coefficients (CEs) can be found in Table S1. 171 

It should be noted that fertilizer types considered include urea, compound fertilizers, 172 

manure and/or crop residues, and ammonium bicarbonate. In addition, crop types 173 

distinguish between rice, wheat, maize, soybean, cotton, and other corps. 174 

 175 

The Bayesian Recursive Regression Tree version 2 (Zhou et al., 2015), was 176 

subsequently used with observational data to determine optimal L, f(xk), g(xk), and h(xk). 177 

The detailed methodological approach of the BRRT v2 is described by Zhou et al. (2015) 178 



and Text S2 in the Suppl. Mat.. The resulting calibrated model was applied to simulate 179 

spatial patterns of N runoff over Chinese croplands from 1990 to 2012 at a spatial 180 

resolution of 1 km. The details on input data used in this model, including Nrate by 181 

fertilizer and crop types, water input, clay content, air temperature, soil pH, soil organic 182 

matter (SOM), and soil N, are described in Table S2 and Fig. S2. Due to the lack of 183 

detailed information on the spatio-temporal changes in fertilization methods, timing, 184 

and cultivation practices in China, this information was not included in the data-driven 185 

upscaling model simulation presented here. 186 

 187 

2.3 Structural decomposition analysis 188 

We further applied a simplified attribution approach, ‘Runoff Identity’ (analogous to 189 

the Kaya Identity in economics), to assess the contribution of water input changes (W, 190 

the sum of precipitation and irrigation amounts), the fertilizer-to-water ratio (the ratio 191 

of fertilizer used to water input) and N runoff rate (i.e., the ratio of annual N runoff flux 192 

to fertilizer addition) to the relative rate of change of RTN in China. The Runoff Identity 193 

combines the variables of regional averaged water inputs and fertilizer addition in a 194 

causal relationship to cropland N runoff (RTN). RTN is therefore regarded as the 195 

integration of the three variables: 196 

rate TN
TN

rate

N R
R W w f e

W N
       
  

                             (2) 197 

We then defined the proportional change rate of a quantity X(t) as r(X)=X1dX/dt (with 198 

units [time]-1). Because ((dRTN/dt)/RTN) = ((dRTN/dt)/(wfe))= ((dw/dt)/w) + ((df/dt)/f) + 199 



((de/dt)/e) , the Runoff Identity for proportional change rate can be rewritten as 200 

( ) ( ) ( ) ( )TNr R r w r f r e                                     (3) 201 

Using time-series data of w, f and e, we applied this approach to quantify the role of 202 

each driver in relation to changes of the RTN trend. The theoretical proportional change 203 

rate, which was a sum of factors w, f and e, closely approximates the rate of RTN that 204 

actually occurred. We calculate their rates of change over the whole period from 1990 205 

to 2012 using a linear regression method, and normalized them by corresponding mean 206 

values, respectively. The relative contribution of each factor is the ratio of its 207 

proportional change rate to the proportional change rate of RTN during the same period. 208 

 209 

3. Results 210 

3.1 Model performance 211 

The data-driven upscaling model (Table S3) was evaluated by reviewing the coefficient 212 

of determination (R2) and coefficient of variation (CV, calculated as the ratio of root-213 

mean-squared error to mean value), which were 0.85 and 39% for rice paddy fields 214 

(n=242, Fig. 2a), and 0.85 and 50% for upland grain crops (n=293, Fig. 2b), respectively. 215 

The evaluation results suggest that most of the variance of RTN could be explained by 216 

the model with acceptable bias. Model performance for RTN per unit N fertilizer 217 

additions (RR) (R2 = 0.71 and n=75 for rice paddy fields, Fig. 2c; R2 = 0.40 and n = 218 

146 for uplands, Fig. 2d) further indicate that our model is able to capture the sensitivity 219 

of RTN to N inputs. Regionally, there are no evident differences in model performance 220 



of RTN across the 7 regions (Fig. 2), but RR simulated by our model shows differences 221 

compared to observations in East China in particular. Additionally, a few simulated RR 222 

were different from the observations (Fig. 2), mainly due to the lack of spatially detailed 223 

data on specific fertilization methods, cultivation practices, or rainfall intensity in our 224 

models (Liu et al., 2016; Miyazato et al., 2010; Wang et al., 2015a; Xu et al., 2013). 225 

 226 

Figure 2. Calibration of RTN, RR for paddy fields (panels a and c) and upland 227 

(panels b and d). The slope, R2, and coefficient of variation (CV) are indicated in the 228 

insets at the bottom right of each panel. Dots are colored in Fig. 2 to indicate model 229 

performances in different regions in China. 230 

 231 



3.2 N runoff trends and their spatial patterns 232 

Figures 3a and 3b show the annual N runoff or runoff rate from China’s rice paddy and 233 

upland soils from 1990 to 2012, respectively. In 1990, RTN was 1.69  0.80 Tg N yr1 234 

in China ( is the standard deviation of N runoff due to the uncertainties of input data 235 

and model parameters), splitting into 0.46  0.08 Tg N yr1 for paddy field and 1.23  236 

0.51 Tg N yr1 for upland (Fig. 3). More details of uncertainty estimation approach 237 

using Monte Carlo ensemble simulations can be found in Text S3. RTN had increased 238 

by 2012 by 46  11% for rice paddy fields and 31  14% for uplands ( is the standard 239 

deviation of N runoff changes occurring over a 23-year period; Fig. 3a and 3b). 240 

 241 



Figure 3. Temporal trend of cropland N runoff during 1990-2012. (a) paddy field; 242 

(b) upland; (c) spatial pattern of N runoff trend for paddy field; (d) the same as for c but 243 

for upland; (e) frequency distribution of the significance level (P-value) of N runoff 244 

trend for paddy field; (f) the same as for e but for upland. The P -value of N runoff 245 

trends for each pixel is estimated based on T test. The gray shaded areas in panels (a) 246 

and (b) reflect standard deviations based on uncertainty assessments (see Text S2). 247 

 248 

Spatial patterns of the N runoff trends across China for the period from 1990 to 2012 249 

were for the land area of China by applying the upscaling model are displayed in Figs. 250 

3c and 3d. Both simulation results for rice paddy fields and uplands consistently showed 251 

that N runoff trend increased in most regions of China (P < 0.01 according to the Mann–252 

Kendall test), while the magnitude of the RTN trend varied for different croplands in 253 

China. For rice paddy soils, regions with the largest RTN trend are generally found in 254 

southern China and parts of northeastern China (i.e., Amour-Ussuri-Songhua River 255 

Plain, defined in Fig. S3), where the trend of RTN is generally larger than 0.4 kg N ha1 256 

yr2. However, regions that experienced a decreasing trend (14% of croplands) were 257 

located in the lower reaches of the Yangtze River Basin, Ningxia Plain, and part of the 258 

Sichuan Basin (Fig. S3), where the trend of RTN is 0.12 kg N ha1 yr2. For uplands, 259 

the highest values of the RTN trend (>0.4 kg N ha1 yr2) are found in northeast China, 260 

the Guanzhong Plain, and parts of the North China Plain and Sichuan Basin. In contrast, 261 

regions with a decreasing RTN trend (16% of croplands) include the Shandong Peninsula, 262 



upper reaches of the Huaihe River Basin, and northwest China (0.14 kg N ha1 yr2). 263 

The RTN trend is statistically insignificant (P>0.05) in less than 40% of croplands, 264 

mainly in the Yangtze River Basin, Shandong Peninsula and Shanxi province (Fig. 3e 265 

and 3f). 266 

 267 

3.3 Attribution of N runoff trends at national scale 268 

For rice paddy fields (Fig. 4a), the relative rate of change of RTN at national scale was 269 

1.2 % yr1 over the last 23 years, which was primarily driven by a growing fertilizer-270 

to-water ratio, but partly offset by the decline of water input (28%). For upland, the 271 

trend of RTN also showed an increase (1.9% yr1; Fig. 4b) during the period 1990-2012, 272 

with the largest attributable contribution of fertilizer-to-water ratio and a positive 273 

proportional change rate of 2.4 % yr1 which was partially offset by the decreased water 274 

input (0.5 % yr1). Fig. 4 also illustrates the trend of each identity for rice paddy fields 275 

and uplands during different periods. The relative RTN change rate for rice paddy field 276 

was 2.4 % yr1 prior to the year 2000, but gradually reduced to 1.4 % yr1 during the 277 

period of 1990-2005 and then less than 1.2 % yr1 during 1990-2012, primarily due to 278 

the decreased growth rate of fertilizer-to-water ratio (3.0 to 1.5% yr1). However, the 279 

trend of RTN for uplands increased from 0.15 % yr1 before 2000 to 0.19 % yr1 during 280 

the whole period. This could primarily be explained by the fact that the decrease of 281 

growing fertilizer-to-water ratio (from 2.9 to 2.4 % yr1) was totally offset by the change 282 

in the N runoff rate (from 0.9 to 0.01 % yr1). 283 



 284 

 285 

Figure 4. Proportional change rate of cropland N runoff and its drivers. (a) Paddy 286 

field; (b) upland. Contributions of the N runoff identity factors during the years 1990-287 

2000, 1990-2005 and 1990-2012, including the water input of precipitation and 288 

irrigation (w), N runoff rate (e) and fertilizer-to-water ratio (f). 289 

 290 

3.4 Spatial patterns of N runoff trend attributed to different drivers 291 

As demonstrated in Fig. 5, the contributions from three main driving factors to the trend 292 

of RTN were highly spatially heterogeneous across different provinces. For rice paddy 293 

fields, fertilizer-to-water ratio was the dominant factor for RTN trends in most regions 294 

in China, whereas N runoff rate and water input could be attributed to drive the trends 295 

in N runoff in eastern coastal regions, and Weihe River Basin (inset plot of Fig. 5a). 296 

More specifically, fertilizer-to-water ratio factor alone increased N runoff at a rate of 297 

1.14  1.05 % yr1 in most rice-cropping areas in southeastern China (Fig. 5a) while N 298 

runoff rate had a positive effect on the RTN trend in most regions in southern China at 299 

an average of change rate of 1.32 ± 0.98% yr1. However, N runoff rate had a more 300 



substantial negative effect on the RTN trend in the other regions and the average trend 301 

of RTN attributed to N runoff rate is 1.12 ± 1.07 % yr1. In contrast to those two driving 302 

factors, the relative contribution of water input to the RTN trend was minor, but remained 303 

consistently negative for rice paddy fields across the whole country (<0.14 % yr-1), 304 

except for Taiwan (1.06 % yr-1), Shaanxi (0.99 % yr-1), and Ningxia provinces (0.31 % 305 

yr-1). 306 

 307 

Figure 5. Trends in N runoff and its drivers during the period 1990-2012 at 308 

provincial scale. (a) Paddy fields; (b) upland. The dominant driving factors for the RTN 309 



trend in each province are shown in the insets above the maps. The grey area shows the 310 

spatial pattern of upland or paddy fields in China. 311 

 312 

Fertilizer-to-water ratio contributed more to the RTN trend for uplands than for rice 313 

paddy fields in the North China Plain and northeast Plain only. A positive effect of 314 

fertilizer-to-water ratio on the RTN trend was largely offset by N runoff rate changes 315 

across southern China and western China, where the trends of RTN attributed to N runoff 316 

rate averaged at 4.36  1.67 % yr1 and 3.08  2.40 % yr1, respectively. On the other 317 

hand, the model estimates indicate that N runoff rate changes may result in RTN 318 

increases in southern China (except for Hainan and Taiwan), which were one-fold 319 

higher than the negative effect found across most of northern China. Although there 320 

was no apparent difference in spatial patterns as to water input trends between upland 321 

and paddy field (Fig. 5), the relative contribution of water input to the RTN trend for 322 

upland was less than that for paddy field. In contrast to other regions, water input in 323 

Shaanxi, Taiwan and Hainan provinces has significantly increase (P < 0.01). The 324 

increase in trend of RTN due to water input change in Shanxi was larger than due to N 325 

runoff rate and fertilizer-to-water ratio for both crop types. The observations in Taiwan 326 

and Qinghai show that water input change played an important role in RTN increase, 327 

albeit less than the other two driving factors, accounting for 1.2 % yr1 and 1.1 % yr1 328 

of the trend of RTN. In summary, the effects of agricultural management practices, 329 

including fertilization and irrigation schemes, outweigh the influence of current climate 330 



change on model-derived RTN trend increase for both paddy field and upland.  331 

 332 

4. Discussion 333 

Our findings generally agree well with most prior works, with a few exceptions. For 334 

example, Gu et al. (2015) applied an integrated N budget model to constrain the 335 

magnitude and trend of N runoff from China’s croplands, with an estimate of RTN of 336 

2.10.2 Tg yr1 with a relative change rate of 1.8 % yr1 during the period 1990-2010. 337 

In our study, we explicitly incorporated the non-linear and spatially varied responses of 338 

an RTN model at multiple N input levels and reached very similar estimates of total N 339 

runoff (1.70.2 Tg yr1) and trend (1.7 % yr1) while explicitly accounting for spatial 340 

variability during the same period (Fig. S4). In addition, Ti and Yan (2013) indicated 341 

that the fertilizer-induced N runoff in the Huanghe River Basin, the Yangtze River Basin, 342 

and the Paerl River Basin was 1.06 Tg yr1 in 2010 with a relative change rate of 1.4 % 343 

yr1 during the period from 1990-2010, which is also comparable to our results (0.72 344 

Tg yr1 in 2010 and 1.7 % yr1). In general, using a new data-driven upscaling model, 345 

our estimates derived from a large network of cropland N runoff observations, provide 346 

novel insights into the spatially detailed N runoff trend for China’s croplands. 347 

 348 

By developing a novel structured decomposition approach for a ‘Runoff Identity’ (see 349 

section 2.3), we are able to accurately identify and quantify the contribution from each 350 

individual driver including climatic and human-induced variables to RTN trend. Our 351 



results suggest that fertilization (or fertilizer-to-water ratio) is the dominant driver of 352 

RTN trends for both rice paddy fields and uplands across most of the country, which is 353 

consistent with experimental results at multiple N input levels (Liang et al., 2005; Shi 354 

et al., 2010; Yu, 2011). Indeed, over the last two decades, China experienced a growth 355 

rate in N fertilizer application of more than 4.0 kg N ha1 yr1 on average in response 356 

to a continuous increase in crop production (Fig. S5a). Previous studies suggest that 357 

this high rate of N additions to agricultural systems resulted in an increase in soil 358 

residual N (Yan et al., 2014). Such accumulated residual N was eventually transferred 359 

into aquatic ecosystems (Rasouli et al., 2014). Conversely, eastern and southern coastal 360 

regions in Mainland China remained largely unchanged with regard to N application 361 

rates and even rates even decreased in Taiwan (Fig. S5a). The N runoff rate in these 362 

regions therefore becomes the primary driving force for RTN trends. 363 

 364 

Likewise, we quantified the contribution of water input to the RTN trend increase in 365 

China. For rice paddy fields, our model suggests that the decreasing water input offsets 366 

27% of the impact of fertilization on the increasing RTN trend at the national scale, and 367 

this offset effect is more clearly observed in northern China than in south (Fig. 5). 368 

Previous studies indicated that RTN tends to increase with water input (Gao et al., 2016; 369 

Hou et al., 2016), because high precipitation and irrigation events in turn resulted in 370 

large runoff pulses (Sorooshian et al., 2014). As we illustrated, the decline in water 371 

input mainly occurred due to the decrease in irrigation inputs, rather than a marked 372 



change in precipitation patterns, except in Taiwan, Hainan and parts of northwestern 373 

China (Fig. S6a). Improving the irrigation efficiency could be an effective measure to 374 

reduce the overall amount of water used for irrigation in most provinces, whereas the 375 

expansion of irrigated area dominates the growth of irrigation mainly in the Northeast 376 

Plain, Sichuan Basin, and Yunnan-Guizhou Plateau. Similar drivers and patterns of 377 

irrigation trends are found for upland all over the country (Fig. S6b). It should be noted 378 

that our per-area irrigation dataset was compiled based on total values at municipal 379 

level, rather than on crop-specific amounts (Fig. S5b). Therefore, it would be valuable 380 

if future research focused on surveys to address this issue by gathering data per-area 381 

irrigation among different crops in each municipal area. 382 

 383 

Our results attributing the contribution by different factors also indicate that the N 384 

runoff rate positively affected the RTN trend for uplands across most of southern China, 385 

but in general had a negative effect for rice paddy fields (Fig. 5). To interpret such 386 

distinct effects on N runoff rates, we conducted two types of scenario assessments to 387 

separate the impact of changes in environmental conditions or agricultural management 388 

practices: a control simulation with all conditions and practices varying from 1990 to 389 

2012 and an experimental simulation with one condition or practice fixed at year 1990 390 

levels. The difference was considered as the response to one change in conditions or 391 

practices. SOM was identified as the dominant factor for the trends of N runoff rate for 392 

both uplands and rice paddy fields nationwide, followed by Nrate and water input (Fig. 393 



S7). Increased SOM led to N runoff rate growth for uplands, but a decline for rice paddy 394 

fields at provincial level during the period1990-2012 (Fig. S8). This result was also 395 

confirmed by observations from 63 field sites across China (Fig. S9), and could be 396 

explained by the difference in the generation process of N runoff. Upland N runoff 397 

begins when raindrops hit the ground and detach soil particles by splash. The sediments 398 

eroded from upland fields carry adsorbed N that is subsequently transported 399 

downstream. Therefore, high SOM may increase the risk of upland N runoff during 400 

rainfall events (Liu et al., 2014). In contrast, N runoff from paddy fields increases when 401 

rainfall input exceeds its storage capacity. Overflow through the paddy field levee 402 

carries dissolved N into ponding water and rainfall-driven interstitial runoff of nitrate 403 

at the soil-water interface to the surrounding water bodies (Huang et al., 2014; 404 

Higashino and Stefan, 2014). High SOM improves the adsorption of soil N in ponding 405 

water thus lowers the magnitude of N runoff from paddy fields. Additionally, high SOM 406 

benefits upland N mineralization under aerobic environment, resulting in increases in 407 

soil inorganic N availability and hence N runoff. Little inorganic N, however, will be 408 

released from SOM in paddy field under anaerobic environment, which helps reducing 409 

N runoff (Wu et al., 2017). 410 

 411 

In this study, we comprehensively quantified and analyzed the attribution factors for N 412 

runoff trends in China’s croplands. However, we found that some results for simulated 413 

N runoff were significantly different from observations (Fig. 2). Previous experiments 414 



showed that N runoff or N runoff rate were also changed following different fertilization 415 

(e.g., methods, timing), irrigation schemes, or rainfall intensity (Liu et al., 2016; 416 

Miyazato et al., 2010; Wang et al., 2015a; Xu et al., 2013). For example, field trials 417 

highlighted that the application of controlled release N fertilizers significantly reduced 418 

N runoff by 48-72% compared to top-dressing fertilization for paddy fields. Similarly, 419 

the application of optimized irrigation methods significantly reduced N runoff by 24% 420 

compared to flooding irrigation (Yang et al., 2015); N runoff from paddy fields was not 421 

only passively generated by monsoon rain in China, but also a consequence of human-422 

induced drainage before transplanting (Yan et al., 2016). However, the current 423 

upscaling model did not fully consider such management practices. Meanwhile, air 424 

temperature and clay content were used in this study as proxies for soil temperature and 425 

soil water content within the experimental period, respectively, due to the lack of long-426 

term observations across China. Although previous works have found a significant 427 

linear relationship between air and soil temperatures or between clay and water contents 428 

(Zheng et al., 1993; Wäldchen et al., 2012), more robust estimations of soil temperature 429 

and water content become another question to be undertaken by future studies. In 430 

addition, in situ measurements of N runoff are scarce in Northwest China (e.g., Xinjiang 431 

province), leading to large uncertainty in RTN estimates in this regions. Previous studies 432 

indicated that the dominant pathways of N losses would be ammonia volatilization to 433 

the atmosphere and N leaching to aquifers (Gao et al., 2016; Van Damme et al., 2017), 434 

rather than surface N runoff. More importantly, this region accounts for only 8.6% of 435 



N fertilizer application and 11% of the sowing area in China and has a low N runoff 436 

rate observed in the NPCP (0. 34  0.26 %). Therefore, N runoff in Northwest China 437 

makes a small overall contribution to the total N runoff of Chinese croplands. To 438 

confirm the contribution from Northwest China, more observations should be 439 

conducted in the future to verify RTN estimates. Furthermore, data from field 440 

manipulation experiments on the response of RTN to environmental conditions (e.g., 441 

SOM) is lacking and would be useful to constrain our upscaling model. Therefore, 442 

further efforts to make widespread measurements and to carry out field manipulation 443 

experiments for RTN are necessary to improve the reliability of such model simulations. 444 

 445 

In summary, cropland N runoff has been increasing significantly in China for the period 446 

1990-2012. At a national scale, increases in fertilizer application and decreases in 447 

irrigation amounts were identified as the most likely causes for the N runoff trend. The 448 

positive contribution of N runoff rate to the RTN trend is more evident in southern China 449 

than in the north. We expect a continuously decreasing trend in irrigation amounts into 450 

the future, and fertilizer application rates likely to plateau, since China aims to improve 451 

water use as well as fertilizer N application efficiencies through the action plans like 452 

clean water and “zero-increase fertilizer use” (Ju et al., 2016). However, current 453 

projections on climate change suggest that precipitation, particularly extreme rainfall 454 

events, will increase. This might further lead to N runoff and N runoff rate increase in 455 

the future. In addition to the expected improvements on N use efficiency and water use 456 



efficiency in China’s croplands, applying effective management approaches that 457 

generate benefits for both N runoff and crop yields are urgently required to design more 458 

efficient and sustainable agricultural N management. Improving the representations 459 

associated with the effects of agricultural management practices and understanding the 460 

response of N runoff to environmental conditions should be the priorities for the 461 

agricultural modeling. 462 
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