
Accepted Manuscript

The crustal architecture of Myanmar imaged through zircon U-Pb,
Lu-Hf and O isotopes: Tectonic and metallogenic implications

Nicholas J. Gardiner, Michael P. Searle, Christopher K. Morley,
Laurence J. Robb, Martin J. Whitehouse, Nick M.W. Roberts,
Christopher L. Kirkland, Christopher J. Spencer

PII: S1342-937X(18)30049-2
DOI: doi:10.1016/j.gr.2018.02.008
Reference: GR 1925

To appear in:

Received date: 22 January 2018
Revised date: 28 February 2018
Accepted date: 28 February 2018

Please cite this article as: Nicholas J. Gardiner, Michael P. Searle, Christopher K. Morley,
Laurence J. Robb, Martin J. Whitehouse, Nick M.W. Roberts, Christopher L. Kirkland,
Christopher J. Spencer , The crustal architecture of Myanmar imaged through zircon
U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. The address for
the corresponding author was captured as affiliation for all authors. Please check if
appropriate. Gr(2018), doi:10.1016/j.gr.2018.02.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.gr.2018.02.008
https://doi.org/10.1016/j.gr.2018.02.008


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 1 

GR Focus Review: Special Issue on Tethyan Orogenesis and Metallogeny 

The crustal architecture of Myanmar imaged through 

zircon U-Pb, Lu-Hf and O isotopes: Tectonic and 

metallogenic implications 

Nicholas J. Gardiner1,2,3,4*, Michael P. Searle4, Christopher K. Morley5, 

Laurence J. Robb4, Martin J. Whitehouse6, Nick M.W. Roberts7, Christopher 

L. Kirkland1,2,3, Christopher J. Spencer2 

1. Centre for Exploration Targeting – Curtin Node, Department of Applied Geology, Western 

Australian School of Mines, Curtin University, Perth, WA 6102, Australia. 

2. The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin 

University, GPO Box U1987, Perth WA 6845, Australia. 

3. Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, 

Australia. 

4. Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom. 

5. Department of Geological Sciences, Chiang Mai University, Thailand. 

6. Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden. 

7. NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham 

NG12 5GG, United Kingdom. 

*Corresponding author. E-mail address: nicholas.gardiner@curtin.edu.au 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 2 

Abstract 

The Tethys margin in central and eastern Asia is comprised of continental 

terranes separated by suture zones, some of which remain cryptic. 

Determining the crustal architecture, and therefore the geological history, of 

the Eastern Tethyan margin remains challenging. Sited in the heart of this 

region, Myanmar is a highly prospective but poorly explored minerals 

jurisdiction. A better understanding of Myanmar’s mineralization can only be 

realized through a better understanding of its tectonic history, itself reflected in 

at least four major magmatic belts. The Eastern and the Main Range 

Provinces are associated with the Late Permian to Early Triassic closure of 

Palaeo-Tethys. The Mogok–Mandalay–Mergui Belt and Wuntho–Popa Arc are 

a response to the Eocene closure of Neo-Tethys. However, magmatic ages 

outside these two orogenic events are also recorded. We present new zircon 

U-Pb, Lu-Hf and O isotope data from magmatic rocks across Myanmar, which 

we append to the existing dataset to isotopically characterize Myanmar’s 

magmatic belts. Eastern Province Permian I-type magmatism has evolved Hf 

(-10.9 to -6.4), while Main Range Province Triassic S-type magmatism also 

records evolved Hf (-13.5 to -8.8). The Mogok-Mandalay-Mergui Belt is here 

divided into the Tin Province and the Mogok Metamorphic Belt. The Tin 

Province hosts ca. 77–50 Ma magmatism with evolved Hf (-1.2 to -15.2), and 

18O of 5.6–8.3 ‰. The Mogok Metamorphic Belt exhibits a more complex 

magmatic and metamorphic history, and granitoids record Jurassic, Late 

Cretaceous, and Eocene to Miocene phases of magmatism, all of which 

exhibit evolved Hf values between -4.6 and -17.6, and 18O between 6.3 and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 3 

9.2 ‰. From the Tagaung-Myitkyina Belt, we report a magmatic age of 172 

Ma and Hf of 18.1 to 10.8. To accommodate the geological evidence, we 

propose a tectonic model for Myanmar involving a greater Sibumasu – where 

the documented zircon isotopic variations reflect compositional variations in 

magmatic source – and invoke the role of the Tengchong Block. The Baoshan 

Block and Greater Sibumasu were likely assembled on or before the Triassic, 

a former Andean margin and suture which may lie across the Northern Shan 

Plateau, and reflected in isotopic differences between the northern and 

southern parts of the Mogok Metamorphic Belt. This contiguous Sibumasu–

Baoshan Block then sutured onto the Indochina margin in the Late Triassic. 

We propose that a Tengchong Block within Myanmar provides for a southerly 

termination of the Meso-Tethys suture immediately north of the Mogok area. A 

discrete Tengchong Block may explain a discontinuous arc of Late Triassic to 

Jurassic I-type magmatism in central Myanmar, representing an Andean-type 

margin sited above a subducting Meso-Tethys on the margin of Sibumasu. 

The Tengchong Block sutured onto Greater Sibumasu before the Late 

Cretaceous, after which subduction of Neo-Tethys drove the magmatism of 

the Wuntho-Popa Arc and ultimately that of the Tin Province. The 

metallogenic character of granite belts in Myanmar reflects the crustal 

architecture of the region, which is remarkable for its prolific endowment of 

granite-hosted Sn-W mineralization in two quite distinct granite belts related to 

sequential Indosinian and Himalayan orogenesis.  

Keywords Myanmar Burma; Tethys tectonics; zircon U-Pb Hf O; Himalayas; 

Indosinian; Yunnan 
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1. Introduction 

Isotope geochemistry and geochronology are techniques particularly 

applicable to deciphering the crustal architecture of cryptic terranes. They can 

provide information both on the timing, and style, of magmatism whose 

genesis may be driven through tectonic processes. Isotope geochemistry may 

also give insight into the geochemical nature of the underlying continental 

crust which provides a source component to that magmatism. The geological 

architecture of the Mesozoic to Cenozoic Eastern Tethyan margin within 

central–eastern Asia is highly complex. The margin is comprised of 

continental ribbon terranes which accreted onto the Asian continent during the 

closure of the various ocean basins of Tethys (Gardiner et al., 2015; Hall, 

2012; Metcalfe, 2013; Searle and Morley, 2011). The modern Tethyan margin 

in central and eastern Asia is thus a collage of continental and island arc 

terranes separated by suture zones. Some of these suture zones remain 

cryptic in places, in that there is no direct geological evidence of a former 

ocean basin in the form of, for example, ophiolitic material, or deep oceanic 

sediments such as cherts, whose presence may represent the surface 

expression of the suture. Determining the crustal architecture, and therefore 

the geological history, of the Eastern Tethyan margin within Southeast Asia 

remains challenging. 

The main Tethyan-related suture zones in Asia extend east–west across the 

Tibetan Plateau (Hodges, 2000; Searle et al., 2011). These sutures turn south 

into Southeast Asia around the Eastern Himalayan Syntaxis at Namche 

Barwa (Searle et al., 2017). Myanmar (Burma) lies at the heart of this key 
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tectonic region, and many of the Tethyan suture zones, and associated 

magmatic-metamorphic belts, recognized in Tibet, may be traced south 

through Myanmar into Thailand and the Malay Peninsula (Gardiner et al., 

2016c; Searle and Morley, 2011; Searle et al., 2007; Sone and Metcalfe, 

2008; Wai-Pan Ng et al., 2015a; Wai-Pan Ng et al., 2015b) (Figure 1). 

However, some suture zones interpreted as relating to the closure of Tethys, 

and which are identifiable within Tibet, remain unconstrained within Southeast 

Asia, particularly within Myanmar, rendering their precise location, or even 

their existence, equivocal. To further hinder geological restoration, some of 

the crustal units within Southeast Asia have experienced Cenozoic clockwise 

rotation and an oblique tectonic history of collision due to the northwards 

motion of India (e.g., Replumaz and Tapponnier, 2003). This rotation has 

been accommodated by the development of major strike-slip faults in the 

region.  

Myanmar is a highly prospective minerals jurisdiction. It contains significant 

known deposits of tin, tungsten, copper, gold, zinc, lead, nickel, silver, jade 

and gemstones (Barber et al., 2017a; Chhibber, 1934; Gardiner et al., 2014; 

Khin Zaw, 2017; Soe Win and Malar Myo Myint, 1998), the metallogenesis of 

much of which is tied to its Mesozoic to Cenozoic tectonic history. However, 

the country remains relatively poorly explored, at least with modern 

exploration methods. A better understanding of both the genesis of 

Myanmar’s mineralization, and thus of its mineral potential, can only be fully 

realized with an understanding of its tectonic history.   
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In this contribution, we present new zircon U-Pb, Lu-Hf and O isotope data 

from magmatic rocks sampled from across Myanmar. We append this data to 

an existing published dataset, to provide an isotopic characterization through 

zircon geochemistry, of the major magmatic belts of Myanmar. This dataset is 

interpreted in order to provide an account of the nature of crust and the 

architecture of the major tectonic blocks of the region, and to inform on the 

timing and style of accretion and collision. In doing so, we aim to bring some 

clarity both about what is currently understood but, perhaps more pertinently, 

about what questions still remain open. 

1.1. Zircon Isotopes: A Users Guide 

The accessory mineral zircon provides an exceptional record of magmatic 

evolution (Belousova et al., 2010; Kemp et al., 2007; Roberts and Spencer, 

2015; Scherer et al., 2007). Modern in-situ analytical techniques such as 

secondary ionization mass spectrometry (SIMS), and laser-ablation (multi-

collector) inductively coupled plasma mass spectrometry (LA-(MC)-ICP-MS), 

allow the precise measurement of U–Pb, Lu–Hf, and O isotope ratios, and of 

trace element concentrations, within zoned zircon grains, which arguably 

exhibit greater fidelity to magmatic source and differentiation processes than 

whole-rock isotope analysis. Zircon grains are robust and survive weathering 

processes, thus even highly degraded outcrops of magmatic rocks, such as 

those found in monsoonal southeast Asia, may offer zircon crystals from 

which useful information may be derived.  

Zircon crystals can be precisely dated through U–Pb geochronology, yielding 

a magmatic age, and in some cases an inherited age, for the host rock. The 
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Lu–Hf isotopic system, commonly measured in zircons, is highly sensitive to 

crustal differentiation processes (Hawkesworth and Kemp, 2006; Scherer et 

al., 2007). The Hf isotopic signature, expressed as Hf, provides a measure of 

magma source composition. It may indicate the extent to which the melt was 

either comprised of juvenile material, i.e. close to mantle value and enriched 

in radiogenic 176Hf, or was derived from an evolved, typically dominantly 

crustal source. Hf isotopes can also be used to calculate a two-stage Hf 

model age (TDM
2), which may give some indication of the timing of original 

extraction of that crustal packet from the mantle. The stable isotopes of O 

(usually 18O/16O ratio, expressed as 18OV-SMOW) are also sensitive to magma 

source. Values above a mantle signature of 18O = 5.3 ± 0.6 ‰ (2σ, Valley, 

2003) fingerprint a contribution from 18O-enriched material which has 

experienced (low-temperature) surface processes, thereby indicating a 

greater supracrustal component in the melt. Oxygen isotope analysis in zircon 

can therefore be used to “screen” Hf isotope data for such supracrustal 

contamination of the magma, and to identify where a Hf model age may 

represent a mixing of source materials, rather than yielding a discrete crust-

forming episode (Dhuime et al., 2012; Kemp et al., 2006). 

Thus, a combination of zircon U-Pb, Lu-Hf and O isotope analysis from 

magmatic rocks allows the measurement of the age of magmatism, the 

characterization of magma source, and the determination of a Hf model age. 

These parameters permit the comparison of rocks which may have different 

magmatic ages but which are ultimately derived from the same crustal block, 

and vice-versa. We apply these techniques to samples of magmatic rocks 

from across Myanmar. 
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2. Geological Background 

Myanmar has been affected by at least two major Tethyan-related suturing 

events. The closure of Palaeo-Tethys, interpreted as occurring in the Late 

Permian to Early Triassic, involved the collision of the Sibumasu block with 

Indochina and resulted in the Indosinian Orogeny and associated magmatism 

found in Eastern Myanmar, Northern Thailand, and further south in the Malay 

Peninsula (Gardiner et al., 2016c; Macdonald et al., 1993a; Metcalfe, 2000; 

Mitchell, 1977; Searle et al., 2012; Sone and Metcalfe, 2008; Wai-Pan Ng et 

al., 2015b). The Early Eocene closure of Neo-Tethys initiated the collision of 

India with Asia and resulted in the Himalayan Orogeny (Mitchell, 1993; 

Morley, 2012; Searle and Morley, 2011). The Neo-Tethys suture zone wraps 

around the Eastern Himalayan Syntaxis, and may reappear along the western 

Mount Victoria-Kawlun Belt (Searle et al., 2017). As a result of these orogenic 

events, major Tethyan-related metamorphic belts extend south from the 

Eastern Himalayan Syntaxis across Myanmar, and which may be correlated 

with those lying further west along the main India-Asia collision zone. The 

Himalayan Orogeny in particular is associated with significant regional crustal 

thickening and metamorphism (Morley, 2012; Searle and Morley, 2011; 

Searle et al., 2017; Searle et al., 2007; Sone and Metcalfe, 2008). 

The major magmatic belts outcropping within Myanmar are, from east to west 

(Figure 2A) (a) the Eastern Province and (b) the Main Range Province, or 

Central Belt, associated with the closure of Palaeo-Tethys and the Indosinian 

Orogeny, a result of which collision granite magmatism peaked at ca. 220 Ma; 

(c) the Mogok–Mandalay–Mergui Belt and (d) the Wuntho–Popa, or Popa–
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Loimye, Arc, which are both related to the subduction of Neo-Tethys which 

closed ca. 50 Ma, and the Himalayan Orogeny (Cobbing et al., 1986; Gardiner 

et al., 2015; Khin Zaw, 1990; Mitchell, 1977). The Mogok–Mandalay–Mergui 

Belt is here subdivided into, and discussed as, the northern Mogok 

Metamorphic Belt and the southern Tin Province. However, magmatic ages 

from across Myanmar have been recorded outside the two major Tethyan 

suturing events and ensuing periods of orogeny (e.g., Barley et al., 2003; 

Mitchell et al., 2012). Open questions therefore remain regarding the 

geological events to which their timing relates. 

3. Samples, Analytical Methods and Results 

3.1. Samples 

In this study we report new zircon U-Pb, Hf and O isotope data from magmatic 

rock samples sourced from three of Myanmar’s magmatic belts: (a) the 

Mogok–Mandalay–Mergui Belt (Mogok Metamorphic Belt and Tin Province); 

(b) the Wuntho–Popa Arc; and (c) a sample from the Tagaung-Myitkyina Belt, 

taken from near Myitkyina, in Kachin State, northern Myanmar. Samples are 

detailed in Table 1, and Figure 2B shows a map of sample localities.  

Samples MY1, MY4, MY9 and MY106 are taken from granitoids intruding into 

the Mogok Metamorphic Belt, central Myanmar (Figure 2B). Sample MY1 is of 

the Payangazu Granite, which outcrops ~150 km south of Mandalay, and 

which is a biotite-bearing granite which locally intrudes the sillimanite-grade 

metamorphic rocks of the Mogok Metamorphic Belt (Mitchell et al., 2012). 

Sample MY4 is taken from the Nattaung Granite, located in Nattaung Quarry 
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~200 km south of Mandalay. The Nattaung Granite outcrops as weakly 

foliated biotite granite sheets which intrude the schists and augen gneiss of 

the Mogok Metamorphic Belt (Mitchell et al., 2007). Sample MY106 was taken 

from the Kabaing Granite, a biotite microgranite outcropping immediately west 

of Mogok town. The Kabaing Granite intrudes the high-grade marbles of the 

Mogok Metamorphic Belt, and hosts numerous topaz-bearing pegmatites. 

This granite has previously been dated through SIMS zircon U-Pb 

geochronology, recording a magmatic age of 16.8 ± 0.5 Ma (Gardiner et al., 

2016a), and which compares well with an Ar-Ar cooling age of 15.8 Ma 

(Bertrand et al., 2001). Sample MY1 is the Byinge Granite, and records a 

complex magmatic history, as discussed below.  

Samples MY34, MY37 and MYYAD are of granites located within the Tin 

Province, southern Myanmar (Figure 2B). Samples MY34 and MY37 were 

taken from roadside quarries on the main Dawei to Myeik road. Sample 

MYYAD is from the host granite outcropping within the Yadanabon tin mine in 

southern Myanmar, close to the Thai border. All these Tin Province samples 

have Cenozoic magmatic ages (MY34: 62.3 ± 0.6 Ma; MY37: 69.5 ± 1.0 Ma; 

MYYAD: 50.3 ± 0.6 Ma) previously determined through SIMS zircon U-Pb 

geochronology (Gardiner et al., 2016a). 

MY145 is a diorite porphyry sampled from the Shangalon Cu–Au district, 

situated within the northern part of the Wuntho–Popa Arc. The diorite intrudes 

into the mid-Cretaceous (ca. 105–95 Ma) granodiorite which predominates the 

Wuntho Massif (Figure 2B), and has a zircon U-Pb magmatic age of 40.0 ± 

0.2 Ma (Gardiner et al., 2016a). Sample MY182 is a dacite porphyry from 
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Kachin State, and is located within the Tagaung-Myitkyina Belt. The sample 

location of MY182 lies on the eastern bank of the Irrawaddy, immediately east 

of the Myitkyina ophiolite, and north of Myitkyina town (Figure 2B). 

3.2. Analytical Methodology 

Zircon crystals from all samples were separated by crushing and then a 

combination of magnetic and heavy liquids techniques on the sub 500 micron 

fraction. Selected zircon grains were mounted in epoxy resin and polished. 

Grains were imaged under cathodoluminescence to reveal internal textures. 

U-Pb geochronology on zircon from samples MY1, MY4 and MY9 was 

undertaken using the large geometry Cameca IMS1280 ion microprobe at the 

NordSIMS facility, Swedish Museum of Natural History, Stockholm. Analytical 

methodology is found in Appendix A. U-Pb analysis of zircon from sample 

MY182 was undertaken using the Laser Ablation Inductively Coupled Plasma 

Mass Spectrometry (LA-ICP-MS) GeoHistory Facility at the John De Laeter 

Centre, Curtin University, Perth, as detailed in Appendix B.  

All zircon Lu-Hf isotope analyses were undertaken via Laser Ablation Multi-

Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS). 

Lu-Hf isotope analysis of zircon from samples MY1, MY4, MY9, MY106, 

MY34, MY37, MYYAD, and MY145 was undertaken at the NERC (Natural 

Environment Research Council) Isotope Geosciences Laboratory (NIGL), 

British Geological Survey, Keyworth, UK. A detailed description of the 

methodology is provided in Appendix C. Lu-Hf isotope analysis of zircon from 

sample MY180 was undertaken at the Geohistory Facility at Curtin University, 

Perth, Australia, and follows the procedures outlined in Appendix B. Zircon O 
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isotope analysis for samples MY1, MY4, MY106, MY145 was also undertaken 

using the Cameca IMS1280 ion probe facility at NordSIMS following the 

method outlined in Appendix D. Full analytical results are presented in Tables 

2, 3 and 4.  

For each main group of zircon U-Pb age analyses, a U-Pb concordia age is 

calculated from the 204Pb-corrected isotopic ratios, and is reported along with 

the MSWD of combined equivalence and concordance as calculated using 

Isoplot (Ludwig, 2004). In addition for those analyses, which scatter away 

from the main population, 207Pb-corrected ages are provided as a means to 

discuss the dissimilarity of analyses from the main population. All calculated 

U-Pb ages are presented at the 2σ level. Terra-Wasserburg U-Pb concordia 

plots for those samples with new age data reported here are presented in 

Figure 3. Initial 176Hf/177Hf ratios were calculated using the decay constant of 

Scherer et al. (2001). All two-stage Hf model ages (TDM
2) are calculated using 

the calculated concordia age and a 176Lu/177Hf of 0.015.  

3.3. Zircon U-Pb, Lu-Hf and O Isotope Results 

3.3.1. Mogok–Mandalay–Mergui Belt (MMM)  

Eight U-Pb analyses from discrete zircon grains separated from sample MY1 

(Payangazu Granite) yielded a concordia age of 55.02 ± 0.53 Ma (MSWD = 

1.7) (Figure 3A). Three older analyses with 207Pb-corrected ages ranging from 

63.2–64.8 Ma, and one younger analysis with a 207Pb-corrected age of 49.8 

Ma, interpreted to reflect minor inheritance or radiogenic-Pb loss respectively, 

were excluded from the concordia age calculation. This age of 55 Ma for MY1 
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is similar to the 50 Ma date reported for a dacite dyke from the same area, 

and younger than the ca. 121–128 Ma age from an adjacent granodiorite 

intrusion (Barley et al., 2003; Mitchell et al., 2012). Eight zircon Hf isotope 

analysis of MY1 yield a mean Hf of -13.3, with a maximum and minimum Hf 

of -9.68 and -15.30 respectively. These Hf isotope data resolve to two-stage 

Hf model ages (TDM
2) of 1.74–2.09 Ga, with a mean of 1.97 Ga. Thirteen 

zircon O isotope analyses of sample MY1 range in 18O from 6.14–8.03 ‰, 

with a mean 18O of 7.3 ± 0.3 ‰. 

Ten zircon U-Pb analyses from Sample MY4 (Nattaung Granite) yield a 

concordia age of 71.12 ± 0.55 Ma (MSWD 1.5) (Figure 3B). This is interpreted 

as the magmatic age, and is identical to that of 71.8 Ma reported from the 

same granite outcrop by Mitchell et al. (2012). Ten zircon Hf isotope analyses 

from MY4 range in Hf from -17.56 to -14.80, with a mean Hf of -15.9. These 

data resolve to two-stage Hf model ages (TDM
2) of 2.07–2.24 Ga, with a mean 

of 2.14 Ga. The evolved Hf isotope signal (negative Hf) of MY4 is consistent 

with the reworking of an older crustal source as also implied by a whole-rock 

Nd value of -7.1 from the same locality (Mitchell et al., 2012). Thirteen zircon 

O isotope analyses from MY4 range in 18O from 8.70–9.09 ‰ with a mean 

18O of 8.9 ± 0.3 ‰. 

Sample MY9 (Byinge Granite) records a complex magmatic history. Three 

distinct zircon U-Pb age clusters from different zircon domains range from the 

Late Triassic through to the Late Cretaceous. Nine analyses have 207Pb-

corrected ages of 54–81 Ma, of which five give a calculated concordia age of 

71.84 ± 1.1 Ma (MSWD 2.1) (Figure 3C). Four analyses give a calculated 
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concordia age of 123.4 ± 2.0 Ma (MSWD 2.2) (Figure 3D). Twelve analysis 

resolve to a calculated corcordia age of 218.9 ± 2.5 Ma (MSWD 1.9) (Figure 

3E). Four zircon Hf isotope analysis corresponding to the 72 Ma age group in 

MY4 range in Hf from -15.01 to -13.03, with a mean Hf of -15.0, 

corresponding to TDM
2 of 1.96–2.14 Ga with a mean of 2.08 Ga. Three zircon 

Hf isotope analysis corresponding to the 123 Ma age grouping range in Hf 

from -10.15 to -9.30, with a mean Hf of -9.7, corresponding to TDM
2 of 1.77–

1.82 Ga, mean 1.79 Ga. Eleven zircon Hf isotope analysis corresponding to 

the 219 Ma age grouping range in Hf from -17.15 to -12.26, with a mean Hf 

of -13.4, corresponding to TDM
2 of 2.03–2.33Ga, mean 2.10 Ga. 

Sample MY106, the Kabaing Granite, yields one of the youngest magmatic 

ages reported within the Mogok Metamorphic Belt at 16.8 ± 0.5 Ma (Gardiner 

et al., 2016a). Ten zircon Hf isotope analysis from previously dated grains in 

MY106 range in Hf from -9.25 to -4.56, with a mean Hf of -7.3. These data 

resolve to TDM
2 of 1.38–1.68 Ga, with a mean of 1.56 Ga. Twelve zircon O 

isotope analyses from MY106 range in 18O from 7.81–9.02 ‰ with a mean 

18O of 8.5 ± 0.3 ‰. In summary, zircon U-Pb isotopes on samples sourced 

from granites which intrude the Mogok Metamorphic Belt yield zircon U-Pb 

magmatic ages ranging from 218–17 Ma. They have uniformly evolved (i.e. 

negative) Hf, and heavy (greater than mantle value) 18O.  

Zircon crystals taken from granites found within the Tin Province have U-Pb 

magmatic ages reported in Gardiner et al. (2016a). Sample MY34 has a 

magmatic age of 62.3 ± 0.6 Ma. Fifteen zircon Hf isotope analyses on this 

previously dated sample reveal a spread in Hf from -12.29 to -10.64, with a 
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mean of -11.4. These data give TDM
2 of 1.80–1.90 Ga with a mean of 1.85 Ga. 

Sample MY37 yielded a magmatic age of 69.5 ± 1.0 Ma. Six zircon Hf isotope 

analyses indicate a spread in Hf from -14.09 to -9.21, with a mean Hf of -

11.8. These data yield TDM
2 of 1.72–2.02 Ga with a mean of 1.88 Ga. A 

sample of the Yadanabon Granite, MYYAD, has a previously reported 

magmatic age of 50.3 ± 0.6 Ma. Eleven zircon Hf isotope analyses from 

MYYAD range in Hf from -11.38 to -9.27, with a mean Hf of -10.3. These 

data indicate TDM
2 of 1.71–1.84 Ga and a mean of 1.78 Ga. Thus, samples 

from granites found within the Tin Province also yield highly evolved zircon Hf 

isotope signatures. 

3.3.2. Wuntho-Popa Arc (WPA)  

We present new data on one diorite sample (MY145) from the Wuntho Popa 

Arc, which has a reported Eocene zircon U-Pb magmatic age of 40.0 ± 0.2 Ma 

(Gardiner et al., 2016a). Fourteen zircon Hf isotope analysis range in Hf from 

-0.03 to 5.32, with a mean Hf of 1.9. These data yield TDM
2 of 0.77–1.12 Ga 

and a mean of 0.99 Ga. Sixteen zircon O isotope analyses from MY145 give a 

spread in 18O values from 5.31–5.79 ‰ with a mean 18O of 5.5 ± 0.4 ‰, all 

within uncertainty of the mantle value (Valley, 2003). 

3.3.3. Tagaung-Myitkyina Belt (Kachin State) 

Eighteen zircon U-Pb analyses sited on oscillatory zoned zircon grains from 

sample MY182 analysis yield a concordia age of 172.0 ± 1.3 Ma (MSWD 

0.55) (Figure 3F). Four zircon U-Pb analyses with both younger 207Pb-

corrected ages (164 and 170 Ma) and older (187 and 191 Ma) ages were 
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excluded from the calculated concordia age. These older and younger dates 

are interpreted to reflect minor inheritance and radiogenic Pb loss 

respectively. Eighteen zircon Hf isotope analyses range in Hf from 10.84 to 

18.06, with a mean Hf of 15.3. These data indicate TDM
2 of 0.06–0.52 Ga and 

a mean of 0.24 Ga. 

4. Isotopic Trends of Myanmar’s Magmatic Belts  

4.1. Isotopic Characteristics and Geodynamic Implications 

A space-time diagram of ages of magmatism derived from zircon U-Pb ages 

from across the major magmatic belts outcropping within Myanmar (Wuntho-

Popa Arc, Mogok-Mandalay-Mergui Belt, Tagaung-Myitkyina Belt, Main 

Range Province and Eastern Province) is shown in Figure 4. To the isotope 

data presented in this paper we add previously reported zircon U-Pb, Lu-Hf 

and O isotope data, and use this dataset to isotopically characterize 

Myanmar’s magmatic belts (summarized in Table 5), to frame the discussion. 

We also provide an outline geological map of Myanmar in Figure 5. 

4.1.1. Palaeo–Tethyan Magmatic Belts 

The Eastern Province and the Main Range Province, the two magmatic belts 

associated with the Late Permian to Early Triassic suturing of Palaeo-Tethys 

and the ensuing Indosinian Orogeny, record the collision of the Sibumasu 

Block with Indochina (Cobbing, 2005; Cobbing et al., 1986; Gardiner et al., 

2016c; Metcalfe, 2000; Sone and Metcalfe, 2008). These two magmatic belts 

outcrop within eastern Myanmar (Figure 2) (Gardiner et al., 2016c), and 
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extend southwards into northern Thailand and the Malay Peninsula (Searle et 

al., 2012; Wai-Pan Ng et al., 2015a; Wai-Pan Ng et al., 2015b). Magmatic 

belts with similar mineralogical characteristics and magmatic ages are 

reported further north in Yunnan, where they are collectively termed the 

Nujiang–Lancanjiang–Jishajiang Belts (Dong et al., 2013; Zi et al., 2012). An 

accreted terrane, termed the Sukothai Arc, is interpreted as having developed 

on the western flanks of Indochina (Barr and Macdonald, 1991). The Sukothai 

Arc is bounded by Palaeo-Tethys suture zones on either side (Sone and 

Metcalfe, 2008).  

The granitoids which make up the Main Range Province are dominantly S-

type (Cobbing et al., 1986; Wai-Pan Ng et al., 2015a), and have been dated in 

Thailand and Malaysia at 220–200 Ma (Figure 4) (Ahrendt et al., 1997; 

Dunning et al., 1995; Gardiner et al., 2016c; Wang et al., 2016), and in 

eastern Myanmar at ca. 220 Ma (Gardiner et al., 2016c), interpreted as peak 

post-collisional magmatism, and providing a minimum age of ocean closure. 

These ages are similar to those interpreted for the Bentong–Raub suture in 

Malaysia (Wai-Pan Ng et al., 2015a; Wai-Pan Ng et al., 2015b).  

In northern Thailand, the Main Range Province exhibits a core of strongly-

deformed mid-crustal gneisses and migmatites, termed the “North Thailand 

Migmatite Complex” (Dunning et al., 1995; Macdonald et al., 1993b) (the high-

grade metamorphics indicated in Figure 5). Late Cretaceous (ca. 80–70 Ma), 

and Oligocene (34–24 Ma) ages calculated from both zircon and monazite U-

Pb dating have also been recorded in granites and gneisses within the 
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Inthanon Zone, reflecting minor magmatism likely related to the era of Neo-

Tethys (Figure 4) (Dunning et al., 1995; Gardiner et al., 2016b).  

In contrast to the Main Range Province, Eastern Province granitoids are of I-

type affinity, and record older U-Pb magmatic ages of Permian-Mid Triassic 

(290–220 Ma) (Wai-Pan Ng et al., 2015a; Wai-Pan Ng et al., 2015b); review in 

Morley (2012)). An outcrop of the Tachileik Granite in Myanmar, interpreted 

as part of the Eastern Province, has a zircon U-Pb magmatic age of 266 Ma 

(Gardiner et al., 2016c). 

Limited zircon Hf and O isotope data have been reported from across the 

Eastern Province and the Main Range Province. Two granite samples from 

the Main Range Province in eastern Myanmar have a measured zircon Hf of 

-9.6 and -10.5 (Gardiner et al., 2016c). The Tachileik Granite records zircon 

Hf of -12.4 (Gardiner et al., 2016c). Triassic age granites from within the 

Inthanon Zone yielded zircon Hf of -5.4 to -21.0 and 18O between 6.5–9.9 ‰ 

(Wang et al., 2016). These samples all resolve to TDM
2 of ca. 1.6–1.9 Ga.  

In summary, the Eastern Province comprises dominantly Triassic to Permian 

I-type magmatism, with evolved Hf values (-10.9 to -6.4), whilst the Main 

Range Province hosts younger Triassic S-type magmatism (220–230 Ma), 

and also records highly evolved zircon Hf (-13.5 to -8.8) and elevated zircon 

18O of 7–10 ‰. Evolved Hf is typical of magmatism in continent-collision 

zones, where the reworking of existing crustal material predominates 

magmatic sources.  
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4.1.2. Neo–Tethyan Magmatic Belts 

The two late Mesozoic to Cenozoic magmatic belts outcropping within 

Myanmar (Figure 2A) are the Wuntho–Popa Arc and the Mogok–Mandalay–

Mergui Belt, the latter is also known as the Western Belt (Cobbing et al., 

1986) or Central Belt (Khin Zaw, 1990). These two belts have been linked to 

the closure and suturing of Neo-Tethys (Gardiner et al., 2015; Mitchell, 1993; 

Mitchell et al., 2012; Searle et al., 2017). The Wuntho–Popa Arc is a 

discontinuous magmatic arc that extends north-south for ~1100 km in western 

Myanmar (Figure 5), and comprises Mesozoic to Neogene intrusive and 

volcanic rocks. It is marked by three Pliocene to Quaternary calc-alkaline 

stratovolcanoes (Mounts Popa, Taung Thonlon and Loimye), although Mount 

Loimye was active in the Eocene (Chhibber, 1934). Prior to this recent 

magmatic activity, four major magmatic epochs have been recorded in the 

Wuntho–Popa Arc on the basis of zircon U-Pb ages: Mid–Late Cretaceous 

(105–95 Ma, and 70 Ma); Eocene (ca. 40 Ma); Miocene (ca. 19–16 Ma); and 

Neogene volcanism (Figure 4) (Barley et al., 2003; Gardiner et al., 2017a; 

Gardiner et al., 2016a; Lee et al., 2016; Maury et al., 2004; Mitchell et al., 

2012). Wuntho–Popa Arc magmatism may also include the period 70–40 Ma 

on the evidence from recent U-Pb studies of both drill core samples, and of 

detrital zircons inferred to be derived from the Arc (Wang et al., 2014; Zhang 

et al., 2017). 

Limited Hf and O isotope studies have been reported from the magmatic 

rocks of the Wuntho-Popa Arc. Gardiner et al. (2017a) undertook zircon Hf 

isotope analysis of four samples of Late Cretaceous (102–98 Ma) intrusive 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 20 

rocks, reporting juvenile Hf (positive) of between 13.3 to 6.4 (Figure 7), and 

which resolved to calculated Hf model ages (TDM
2) of 0.3–0.8 Ga. The Eocene 

diorite from the Shangalon mine site (MY145) also records zircon Hf of 5.3 to 

0.3 (Figure 7). These Hf values are similar to those analyzed in detrital zircons 

from the Chindwin Basin by Wang et al. (2014), who interpreted their origin to 

be the magmatic rocks of the Wuntho-Popa Arc (pink domain, Figure 7). The 

Chindwin detrital zircon samples record a span of U-Pb ages from the Late 

Cretaceous to the Eocene, and all have positive Hf (0–15), with a TDM
2 of 

0.1–1.2 Ga. Zircon Hf isotope values are in agreement with whole-rock Sm-

Nd isotope data analyzed on Miocene samples from the Monywa and Mount 

Popa regions of the Wuntho-Popa Arc, with a reported Nd of 1.6–3.6 (Lee et 

al., 2016; Mitchell et al., 2012). Zircon oxygen isotope data has also been 

measured in samples from the Wuntho-Popa Arc (Gardiner et al. (2017a), and 

this study), with a range in 18O of 5.2–5.8 ‰, within error of mantle value 

(Figure 8).  

In summary, zircon isotope analyses from Late Cretaceous, Palaeocene–

Eocene, and Miocene Wuntho–Popa Arc magmatic rocks have juvenile Hf 

affinity and mantle-like O isotope values. These isotopic signatures, the I-type 

affinity of magmatic rocks, and the presence of Cu-Au type mineralization, are 

characteristic of the magmatic rocks being the product of subduction 

processes leading to an input of mafic crust (mantle) material into the source. 

The magmatism of the Wuntho–Popa Arc is driven by the eastwards 

subduction of Neo-Tethys under the Asian margin, as recorded by the Burma 

Seismic Zone (Stork et al., 2008). However, the apparent temporally 
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discontinuous nature of the magmatism implies phases of subduction, and the 

Hf isotopes of the Eocene (Shangalon) sample hints at a subtly different 

source to the Cretaceous rocks which volumetrically dominate the Wuntho 

massif. 

The Mogok–Mandalay–Mergui Belt extends from Mogok in central Myanmar 

south towards Mergui and Phuket, along the Andaman Sea (Figure 2A). We 

discuss the Tin Province found in the southern part of the Belt separately from 

the Mogok Metamorphic Belt found in the north, on the basis of their 

distinctive magmatic and metamorphic histories recorded through zircon 

isotope data. The dominant country rock in the Tin Province, into which the 

granitoids intrude, are Late Palaeozoic low-grade meta-sedimentary rocks, 

which in Myanmar is termed the Slate Belt, or Mergui Series (Mitchell et al., 

2004) (Figure 5). Zircon U-Pb geochronology studies show that Tin Province 

granites all have relatively similar magmatic ages ranging from 77–50 Ma 

(Late Cretaceous to Eocene; Figure 4) (Aung Zaw Myint et al., 2017; Gardiner 

et al., 2017a; Gardiner et al., 2016a; Jiang et al., 2017; Mitchell et al., 2012). 

However, Mi Paik (2017) reported magmatic ages of 121–107 Ma for three 

granite samples found in the Mawpalaw Taung area, north of the main Dawei 

tin district, which potentially stretch the magmatic history of the Tin Province 

back to the mid Cretaceous.  

Reporting on Cretaceous to Paleocene aged granites which outcrop on the 

western margin of the Tin Province, Sanematsu et al. (2014) noticed the 

granitoids young towards the west, and with time trend towards more S-type 

affinity and become more reducing. These authors invoked an island arc 
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setting for their petrogenesis. Sanematsu et al. (2014) also proposed that the 

granites found outcropping near the Thai border to the east of the Tin 

Province are, in contrast to the granites on the western margin, geochemically 

distinct, being of dominantly S-type character and associated with significant 

Sn-W mineralization. Using isotope geochemistry, Jiang et al. (2017) 

interpreted both the Hermyingyi and Taungphila tin granites as being derived 

from Palaeoproterozoic (1922–1741 Ma) crust of tonalitic to granodioritic 

composition, with little mantle-derived magmatic contribution.  

Zircon oxygen isotope data has been reported in samples from the Tin 

Province, with 18O ranging from 5.6–8.3 ‰ (Gardiner et al., 2017a), trending 

from mantle value towards elevated values (Figure 8). It is clear from the 

isotope signatures (both zircon Hf and O) that the Tin Province granites, 

certainly those of Eocene age, are broadly derived from a magmatic source 

dominated by the recycling of existing crustal material. However, the 

geodynamic setting of their genesis is of some debate, with postulated 

settings including their being inboard of an Andean type margin (Gardiner et 

al., 2015; Mitchell, 1977), or within an extensional back-arc setting above a 

flat Neo-Tethyan subduction zone (Jiang et al., 2017; Sanematsu et al., 

2014). 

In summary, in contrast to samples analyzed from the Wuntho-Popa Arc, 

magmatic rocks of the Tin Province record evolved zircon Hf isotope values, 

ranging in Hf from -1.2 to -15.2, equating to TDM
2 of 2.1–1.2 Ga (Figure 7) 

(Gardiner et al., 2017a; Jiang et al., 2017). These zircon Hf isotope values are 
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in agreement with published whole rock Nd isotope data (Nd -11) from 

granites from the same region (Jiang et al., 2017).  

The Mogok Metamorphic Belt is an amphibolite-grade sequence of meta-

sedimentary and meta-igneous rocks intruded by granitoids of both I- and S-

type affinity (Barley et al., 2003; Iyer, 1953; Mitchell et al., 2007; Searle et al., 

2017; Searle et al., 2007). Evidenced by zircon geochronology, some of these 

granitoids exhibit a more complex magmatic history than those found within 

the Tin Province, with inherited zircon domains yielding multiple magmatic 

and/or metamorphic ages, and zircon cores recording ages as old as the 

Jurassic (ca. 170 Ma) (Barley et al., 2003, and this study; Crow and Khin Zaw, 

2017) (Figure 4). This complex history may represent an overprinting of 

several arc-related phases of magmatism. Late Cretaceous (~120 Ma) ages 

are reported from granites with I-type affinity outcropping into the 

metasedimentary sequences in the vicinity of Mandalay (Barley et al., 2003, 

and this study), and Eocene and Miocene magmatic ages are also recorded 

(Barley et al., 2003, and this study; Gardiner et al., 2016a; Mitchell et al., 

2012). Within the country rocks of the Mogok Metamorphic Belt, at least two 

phases of post-collisional Barrovian-type regional metamorphism up to 

sillimanite grade have been identified through zircon and monazite U-Pb 

geochronology: one pre- to Mid Palaeogene, and one Eocene–Oligocene 

(Barley et al., 2003; Searle et al., 2017; Searle et al., 2007), this latter age 

similar to that of Doi Inthanon in northern Thailand (Dunning et al., 1995; 

Gardiner et al., 2016b). Localized partial melting of the country rock also 

produced leucogranitic melts, with a tourmaline and garnet Himalayan-type 
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leucogranite dated at 24.5 Ma (Searle et al., 2007), and the Kabaing granite 

dated at 16.8 Ma (Gardiner et al., 2016a). 

Zircon Hf isotopes analyzed from samples of granites which intrude the 

Mogok Metamorphic Belt record evolved Hf values. Zircons separated from 

granitoids intruding into the sillimanite-grade pelitic schists and gneisses 

which comprise the southern part of the Belt near Mandalay (MY1, MY4, 

MY9) record Hf isotope values ranging in Hf from -15 to -10. In contrast, the 

northern part of the belt near Mogok is comprised of high-grade marbles (Iyer, 

1953; Searle et al., 2017). The aforementioned Kabaing Granite (sample 

MY106) has the least evolved Hf isotope signal recorded so far within the 

Mogok Metamorphic Belt (Hf -7.1). Zircon oxygen isotope data on samples of 

granites intruding the belt have elevated 18O, ranging between 6.3 and 9.2 

‰.  

In summary, the granites from the Mogok–Mandalay–Mergui Belt, both within 

the Tin Province and the Mogok Metamorphic Belt, have evolved zircon Hf, 

with elevated zircon 18O. However, in terms of the data there remain 

complexities between the Tin Province and from the Mogok Metamorphic Belt, 

and additionally between the northern and southern parts of the Mogok 

Metamorphic Belt. 

4.1.3. Tagaung-Myitkyina Belt 

The Tagaung-Myitkyina Belt, in northern Myanmar (Figure 5; Figure 6) is one 

of three parallel, major metamorphic belts found within Myanmar, the other 

two being the Mogok Metamorphic Belt and the Katha-Gangaw Ranges. The 
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Tagaung-Myitkyina Belt is poorly exposed and studied, and comprises several 

extents of ophiolitic material: in the Kyawbingyon region on the eastern bank 

of the Irrawaddy north of the Mogok Metamorphic Belt, and on its western 

bank north of Myitkyina (Figure 6B) (Searle et al., 2017). For a summary of 

the geology of both the Tagaung-Myitkyina Belt and the Katha-Gangaw 

Ranges please refer to Mitchell (2018). 

Very little isotope data has been reported from rocks found outcropping within 

the Tagaung-Myitkyina Belt. The dacite sample MY182 we infer as being from 

the Tagaung-Myitkyina Belt, and it outcrops east of the Myitkyina ophiolite 

(Figure 6B). MY182 records a magmatic age of 171.9 Ma, a Middle Jurassic 

age comparable to that reported for the Myitkyina ophiolite itself of ca. 173 Ma 

(Liu et al., 2016). The zircon Hf isotope data from MY182 records a highly 

juvenile mean Hf of 15.1 (Figure 7). The locality of MY182 may represent a 

southerly exposure of an arcuate north–south perhaps I-type magmatic belt 

identified on Myanmar geological maps, and extending north towards Putao in 

northern Kachin State (Figure 5).  

4.2. Myanmar Crustal Evolution Trends 

A Hf evolution diagram plots magmatic age (U-Pb) against Hf, measured 

within the same zircon grain (Figure 7). It allows interrogation of Hf isotope 

data within the context of Hf evolution arrays, whose trends in epsilon space 

with time are controlled by the production of radiogenic 176Hf, itself determined 

by source 176Lu/177Hf (here 0.015). Evolution arrays are used to chart the Hf 

isotopic development of a package of crust, and allow determination of any 

external input into the magmatic system. If crust is reworked (remelted), then 
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addition of external material, either mantle–derived or existing exotic crust, 

may be interpreted where the isotopic composition of the daughter rock 

departs from the evolution array (Kemp et al., 2006; Kirkland et al., 2013). The 

evolution array may also be used to calculate Hf model ages, by projecting it 

back to intercept a modelled depleted mantle (DM). Figure 7 shows a Hf 

evolution plot for those data analyzed in the Myanmar samples (Table 1), and 

coloured by belt. Those samples from the two Palaeo–Tethyan belts, and 

from the Mogok-Mandalay-Mergui Belt, all plot with evolved, that is negative, 

zircon Hf values. Evolved Hf values may imply the rocks had their 

petrogenesis through a dominance of reworking of existing crustal material.  

We characterize the Hf isotopic composition of eastern Sibumasu basement 

through anchoring an evolution array at the Hf data from the Eastern Province 

samples (Figure 7). Zircon Hf data from the Main Range Province plot within 

this evolution array, although they have slight differences in their Hf model 

ages which can be attributed to data scatter. Here, the implication is that the 

Hf isotopic composition of these samples can be attained purely through the 

reworking of the same source material as that of the Eastern Province. The 

geochemical similarity of Main Range and Eastern Belt granitoids has been 

noted in Malaysia (Wai-Pan Ng et al., 2015a), but the evolved Hf isotope data 

indicates that Eastern Belt magmatism is less I-type than previously thought, 

at least in Myanmar. If, alternatively, the Eastern Province represents 

magmatic rocks sourced from the Indochina terrane rather than from 

Sibumasu crust, then we infer little Hf isotopic difference between Indochina 

and Sibumasu. However, a common mid-crustal isotopic signature may be 
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expected if both Indochina and Sibumasu were autochthonous blocks derived 

from the same margin of Gondwana (Metcalfe, 2011a).   

If Sibumasu is a single contiguous crustal block, then its western margin is 

likely to have similar Hf isotopic characteristics as its eastern margin. Hf data 

from samples across the Mogok–Mandalay–Mergui Belt lie on or above the 

eastern Sibumasu evolution array (Figure 7), implying these are potentially 

sourced from, and intrude into, Sibumasu basement. Samples from the Tin 

Province generally plot above the array (Hf from -15 to -1), presenting an 

isotopic composition which may be attained through reworking of Sibumasu 

basement with an additional input of external juvenile material. Alternatively, 

the crustal source of the Tin Province granites may be different to those of 

eastern Sibumasu, with the implication that Sibumasu in its current definition 

may be a composite terrane, or at least a continental block hosting crustal 

domains of different ages and compositions.  

In contrast to the Tin Province granites, samples from those Mogok 

Metamorphic Belt granites which intrude into sillimanite-grade schists and 

gneisses, identified as “Mogok South” in Figure 7, have a zircon Hf isotopic 

composition plotting close to the eastern Sibumasu evolution array. In 

particular, the earliest (Triassic) magmatic phase of MY9 records Hf isotope 

values which are isotopically identical to the Main Range Province. This may 

suggest a common crustal source for both sample MY9 and the Main Range 

Province magmatic rocks, implying Sibumasu contiguity from east to west. In 

contrast, the Kabaing Granite (MY106), intruding the Mogok high-grade 

marbles and identified on the diagram as “Mogok North”, records a less 
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evolved Hf isotope signal, plotting above the eastern Sibumasu evolution 

array (Figure 7). The Kabaing Granite is therefore likely to have a distinct 

crustal source to that of the Mogok South granitoids. Thus, from zircon Hf 

isotope evidence alone, it may be interpreted that the granitoids of Mogok 

South tapped a crustal source similar to that of eastern Sibumasu. However, 

both the Kabaing Granite, and those granites from the Tin Province, have 

distinct isotopic signatures to Mogok South, implying magmatic sources that 

either reflect the addition of juvenile material to existing Sibumasu basement, 

or the melting of a different crustal source.  

Samples from the magmatic rocks of the Wuntho-Popa Arc record juvenile 

zircon Hf values (Figure 7). Also highlighted in Figure 7 (light red) is the 

range of U-Pb ages and Hf measured in detrital zircons interpreted to be 

sourced from the Wuntho-Popa Arc (Wang et al., 2014), and which record 

similar Hf isotopic values to the Cretaceous-aged Arc rocks. The detrital 

zircons were interpreted by Wang et al. (2014) to have a similar age and 

isotopic composition to the Kohistan-Ladakh-Gangdese belt within Tibet. 

These authors proposed that the Wuntho-Popa Arc represented an extension 

of the Gangdese belt along the Tethyan margin. Notably, the Eocene 

Shangalon sample (MY145) plots at less juvenile values, which implies it is 

tapping a subtly different source to the older, Cretaceous Arc magmatic rocks.  

Oxygen isotopes measured in zircon complement Hf data in that they can 

further inform on the nature of source and are highly sensitive to any 

sedimentary contribution in the magmatic source, and reflected in heavier 

18O than a mantle value of 5.3 ‰. Zircon O isotope data from Myanmar has 
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mainly been reported in rocks from the two Neo-Tethyan magmatic belts, and 

plotting Hf versus 18O (Figure 8) for samples from these belts shows that 

they are isotopically distinct. Wuntho–Popa Arc samples plot at juvenile Hf 

and mantle-like 18O. In contrast, samples from both the Tin Province and 

Mogok Metamorphic Belt plot at evolved Hf with elevated 18O. Further, there 

are discernable differences in the Hf–O arrays between the samples from the 

Tin Province and those from the Mogok Metamorphic Belt, notably in their 

ox  values. The Mogok samples are in general of elevated 

18O, plotting between ca. 6.3 and 9.2 ‰; Tin Province samples plot between 

5.6 and 8.3 ‰. However, there is little difference in zircon oxygen isotope 

composition between the single sample from Mogok North and those reported 

from Mogok South. Any difference in oxygen isotope signature may reflect a 

difference in magmatic protolith between the granites of the Tin Province and 

Mogok Metamorphic Belt, and which is also implied by differences in their Hf 

isotope values. 

The sample from the Tagaung-Myitkyina Belt in Kachin State plots at highly 

juvenile Hf isotope values, close to modelled DM (Figure 7), implying little to 

no existing continental crustal material was incorporated in its magmatic 

source. 

5. Crustal Architecture, Blocks and Sutures 

5.1. Contiguity of Sibumasu versus a Meso-Tethys Suture 

Although the eastern boundary of Sibumasu is largely accepted as being 

delineated by the Palaeo–Tethys suture (Hutchison, 1975; Metcalfe, 1996; 
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Mitchell, 1977; Sone and Metcalfe, 2008), defining its western boundary has 

proved more contentious. The north–south Neogene–Recent Sagaing Fault 

provides one possible modern-day western boundary to Sibumasu (Figure 5). 

However, some workers have proposed a cryptic suture which may run along 

the Paung Laung–Mawchi Fault Zone located along the western edge of the 

Shan Scarps (Figure 1), thereby separating the Slate Belt sequences to the 

west from those on the Shan Plateau (Mitchell, 2018; Mitchell et al., 2012; 

Mitchell et al., 2015; Ridd, 2016). The model of Ridd (2016), in separating 

Sibumasu into two distinct blocks, represents one attempt to address whether 

a suture related to Meso-Tethys, an intermediate ocean basin lying between 

Palaeo- and Neo-Tethys, exists within Myanmar. In his model for a cryptic 

Meso-Tethys suture, Mitchell (2018) invoked a former west-dipping 

subduction zone which formed an island arc off the West Burma Block ca. 

110–90 Ma. 

Sutures related to the Meso-Tethys exist further north in Tibet and Yunnan, 

where they are collectively termed the Bangong–Nujiang Sutures (review in 

Burchfiel and Chen, 2012). The Nujiang Suture is proposed to separate the 

Tengchong and Baoshan Blocks, of which a key difference is the nature of 

Carboniferous to Early Permian glacio-marine sediments. These sediments 

reach thicknesses of kilometres on the Tengchong block, but are much less 

well-developed on the Baoshan block, only reaching 10–100’s of metres in 

thickness. These differences in stratigraphic thickness may be explained 

either by their being separated by an ocean basin, or through variations on a 

single continental block having developed through rifting (Ridd, 2009).  
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The stratigraphic arguments for defining separate Tengchong and Baoshan 

blocks, and the cryptic nature of the suture zone (as reviewed by Burchfiel 

and Chen (2012)), are very similar to those proposed to be present along the 

Paung Laung Fault in Myanmar, the Three Pagodas and Khlong Marui faults 

in Thailand, and the Straits of Malacca between Malaysia and Sumatra 

(Mitchell et al., 2015; Ridd, 2015). The so-called Medial Suture Zone in 

Myanmar (Mitchell et al., 2015) (Figure 9B), would in effect separate 

Sibumasu into two separate blocks (Ridd, 2016), with Ridd (2015) using the 

terms “Irrawaddy Block” and “Sibuma” to refer to the western and eastern 

areas respectively (Figure 9C), the correlatives of the Tengchong and 

Baoshan blocks. Ridd (2017) however accepted the term “Karen–Tenasserim 

Unit” for the Irrawaddy Block, recognizing the primacy of Bender (1983) who 

first postulated the existence of a separate terrane west of the Paung Laung 

Fault. However, structural and tectonic evidence for such a suture, especially 

along the Paung Laung Fault, is not strong, although this may have been 

obscured by later over-thrusting and strike-slip faulting (Ridd, 2015). In their 

models, the Meso-Tethys ocean basin closed in the Late Jurassic to Early 

Cretaceous (Mitchell et al., 2015; Ridd, 2016). However, this period is one of 

tectonic quiescence in western Thailand, with no radiometric ages from 

gneisses that lie close to the proposed suture and which may indicate 

metamorphism during, and following on from, the proposed collision time 

(Kanjanapayont et al., 2012; Kawakami et al., 2014; Nantasin et al., 2012).  

Separation of Sibumasu from Australia did not occur until the Early Permian 

(e.g., Metcalfe, 2013), hence the Carboniferous–Permian stratigraphic 

differences occurred too early in the rifting process to be explained by an 
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oceanic rift. This problem is recognized by Ridd (2016) who presents an un-

scaled palaeogeographic solution by placing eastern Sibumasu outboard of 

the Lhasa Block, leaving his Irrawaddy Block free to the east to transition into 

oceanic crust. However, when this reconstruction is done to scale it requires a 

2000 km-long margin connected to the ocean. Due to the length of the other 

blocks that must be present (see reconstructions shown in Metcalfe (2013)), 

there is insufficient room on the northwestern Australian margin for this 

reconstruction to be viable.   

Ridd (2017) argues (a) that the protolith of the eastern Irrawaddy Block 

metamorphics (i.e. the Mogok South metamorphic rocks) includes sediments 

up to Permian age (following Mitchell (1993); (Mitchell, 2018), Mitchell et al. 

(2012)), whereas (b) the protolith of the metamorphic rocks found within the 

Mogok area itself in the north – Mogok North; marbles and rare meta-pelitic 

material – is Precambrian in age, presumably due to the age of the overlying 

Chaung Magyi Group. However, there is clear evidence that metamorphic 

rocks around Mogok are not Precambrian. Peak metamorphism in the Mogok 

Metamorphic Belt is of Cenozoic age (Searle et al., 2007; Win et al., 2016; 

Yonemura et al., 2016). The marbles and rubies in the Mogok area are 

interpreted as resulting from metamorphism of a limestone sequence 

containing evaporites (e.g., Brunnschweiler, 1970; Garnier et al., 2008), and 

limited to the northern Shan Plateau area. Those marbles in the Mogok area 

may have as their protolith the “Plateau Limestone” units of Middle–Upper 

Permian age found within the Shan Plateau (Searle et al., 2017), whilst 

marble sequences found further south of Mogok have reported relict 

Ordovician, Silurian and mid-Permian fossils (Mitchell et al., 2012). 
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The Myanmar Median or Meso-Tethys suture models of Mitchell et al. (2015) 

and Ridd (2015, 2017) would suggest that there is a significant difference 

between Sibumasu lying east of the suture, and a terrane that includes the 

southern Mogok metamorphic rocks (the Irrawaddy Block of Ridd (2017)) to 

the west. However, at least on the basis of the zircon isotope data we see 

little evidence for this division. Instead, we find strong similarities between the 

Hf isotopes measured in zircons sourced from magmatic rocks in both the 

Mogok South area, and in Eastern Sibumasu (Figure 7).  

Barley et al. (2003) reported zircon U-Pb ages of ca. 170 Ma from both an (I-

type) biotite orthogneiss from the Kyanigan Hills, and a hornblende-bearing 

syenite from Mandalay Hill. Zircon U-Pb ages of 181–183 Ma have been 

reported from a biotite granite and a leucogranite from Monbinzon on the 

western margin of the Shan Plateau (Crow and Khin Zaw, 2017). These 

Jurassic ages may represent relics of an Andean-type margin for which other 

geological evidence has been lost. Rocks attributed to a similar period of 

subduction activity can be found elsewhere in Myanmar. Liu et al. (2016) 

reported a middle Jurassic magmatic age for the Myitkyina ophiolite, part of 

the Eastern Belt ophiolites in Kachin State, which they interpreted as marking 

an extension of the Nujiang Suture. These Jurassic ages may potentially be 

related to the closure of a Meso-Tethys ocean, however the location of the 

Myitkyina ophiolite is about 170 km west of the identified boundary between 

the Tengchong and Baoshan blocks in Yunnan (i.e. the southern extent of the 

Nujiang Suture). Hence it is difficult to place the Nujiang suture – as relating to 

the closure of Meso-Tethys – in Kachin State, unless it is simply a remnant of 

a large over-thrust sheet of ophiolites, displaced westwards from the suture 
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zone as suggested by Mitchell et al. (2015). Alternatively (a) the Myitkyina 

ophiolite does not equate with the Nujiang Suture, and is perhaps a separate 

branch of the Meso-Tethys, or (b) the documented Jurassic ages were driven 

through the subduction of Neo-Tethys, thereby extending the period of 

magmatism in Myanmar relating to Neo-Tethys back to the Mid-Mesozoic 

(Khin Zaw, 2017). Our magmatic age for the dacite (MY182) outcropping 

immediately to the east of the Myitkyina ophiolite is also Mid–Jurassic (172 

Ma). If this sample within the Tagaung-Myitkyina Belt represents the existence 

of I-type magmatism of this era within northern Myanmar, and related to the 

subduction of Meso-Tethys, its geographical siting east of the Myitkyina 

ophiolite would suggest east-wards directed subduction.  

5.2. Isotopic differences between the Mogok Metamorphic Belt and the Tin 

Province 

There are clear isotopic differences between that measured in zircons from 

granitoids outcropping within the Mogok Metamorphic Belt, and from those 

intruding the Tin Province. Zircon U-Pb magmatic ages imply different phases 

of magmatism; Tin Province granites record a main period of magmatic 

activity ca. 85–45 Ma, which overlaps with a period of magmatism recorded in 

the granitoids intruding into the Mogok Metamorphic Belt, although both older 

and younger phases are recorded (Figure 4). In terms of their zircon Hf 

isotopes, Tin Province granites are in general less evolved than the Mogok 

South granites (Figure 7). There are also contrasts between the two regions in 

the country rock into which the granites are emplaced. Tin Province granitoids 

intrude the low-grade metasediments of the Slate Belt, in contrast to the high–
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grade pelitic and marble country rocks which dominate the Mogok 

Metamorphic Belt. Specifically, the Tin Province lacks any evidence for the 

Cenozoic high-grade metamorphic events recorded within the Barrovian-style 

rocks of the southern part of the Mogok Metamorphic Belt (Searle et al., 2017; 

Searle et al., 2007).  

One significant stratigraphic difference between the Mogok Metamorphic Belt 

and the Tin Province is that the Permo-Carboniferous glacio-marine 

sediments (termed the Kaeng Krachan Group in Thailand, and the Slate 

Belt/Mergui Group in Myanmar; Figure 5) thicken from north to south. 

Although the basement is not well exposed in Peninsular Myanmar or in the 

adjacent areas of Thailand, Watkinson et al. (2011) describe sheared 

migmatites containing stretched pebbles of quartz and granite, along the 

Ranong and Khlong Marui Faults in Peninsular Thailand. These pebbles 

suggest the protolith to the migmatites are the pebbly mudstones of the 

Kaeng Krachan Group (Watkinson et al., 2011). Hence, at least part of the 

source of the granitic melts found within the Tin Province are these thick 

Permo–Carboniferous clastic sediments. These clastics represent a different 

magmatic source from the granites of the Mogok Metamorphic Belt, which 

may help explain the isotopic differences observed between the two regions. 

Possibly, there are further differences in the underlying Palaeozoic rocks 

between the two regions, but much of the isotopic differences may be due to 

the presence of the thick Kaeng Krachan and Mergui Group sediments that 

mask the deeper section within the Tin Province.  
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5.3. The Shan Plateau 

The northern Shan Plateau of Myanmar, and the Baoshan Block in Yunnan, 

are both characterized by a sequence of weakly metamorphosed siliciclastic 

and carbonate rocks, which pass upwards into intercalated volcanic rocks. In 

Yunnan these are called the Gongyanghe Group. Metabasalts have U-Pb 

ages of around 499 Ma (Yang et al., 2012), while granitic magmatism lasted 

from about 500 Ma to 450 Ma (Li et al., 2016). The sequence is interpreted as 

an Andean-type belt on the northern active margin of Gondwana (Li et al., 

2016; Zhu et al., 2012). In Myanmar’s northern Shan Plateau, the Chaung 

Maygi Group is the equivalent to the Gongyanghe Group (Figure 5). The 

famous Pb–Zn–Ag Bawdwin Mine sited in the northern Shan States is located 

within the Late Precambrian–Cambrian shales, slates and greywackes of the 

Chaung Maygi Group (Hopwood, 1985) (Figure 5). These sequences are 

unconformably overlain by the Cambrian–Ordovican volcaniclastic 

agglomerates and tuffs of the Bawdwin Volcanic Formation, and the clastic 

sediments of the Pangyun Formation (BGR, 1976; Brinckmann and Hinze, 

1981; Hopwood, 1985). The Bawdwin Mine has been interpreted as a 

volcanogenic massive sulphide-type deposit that may have formed on an 

Andean-type margin during the Cambrian to Ordovician (Gardiner et al., 

2017b).  

Additional evidence for lower Palaeozoic magmatism in the northern Shan 

Plateau comes from analysis of the Sedawgyi biotite gneiss which lies 35 km 

north of Mandalay on the eastern margin of the Mogok metamorphic belt. This 

gneiss has been dated through zircon U-Pb at 491±4 Ma, with the age 
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interpreted as that of the granite protolith (Mitchell et al., 2012). The same 

authors reported highly-evolved whole-rock Nd of -10.3 for the gneiss. The 

magmatic age of the Sedawgyi gneiss thus has an equivalence in the granites 

of the Baoshan block in Yunnan. Broad evidence therefore exists for early 

Palaeozoic magmatic and volcanic activity within the broad region of the 

northern Shan Plateau extending into the Baoshan Block. 

The Andean type setting invoked for the northern Shan Plateau contrasts with 

the Cambrian quartzite and Ordovician limestone deposits of Sibumasu 

further south in Thailand and much of the Shan Plateau in Myanmar 

(Bunopas, 1981). These extensive Cambrian to Ordovician sequences 

indicate a very different source area to that of the northern Shan Plateau. 

However, there is evidence for Cambro–Ordovician igneous activity on the 

eastern margin of Sibumasu from tuffaceous beds interbedded with 

sandstones and siltstone from Tarutao Island in Southern Thailand, and 

orthogneisses of Cambrian age south of Hua Hin in Peninsular Thailand at 

Khanom, and from a possible collided arc sequence near Chonburi 

(Kawakami et al., 2014; Ridd, 2011). The simplest solution is for the Andean 

margin in present-day Myanmar and Yunnan to run across the northern end of 

Sibumasu, following an ENE-WSW trend then down the eastern margin (as 

indicated by the red dashed line, Figure 5). Such a difference in stratigraphy 

and inferred geodynamic setting between north and south Sibumasu has 

inevitable implications for the Mogok Metamorphic Belt in particular. Ridd 

(2016); Ridd (2017) seeks to find differences between the Mogok 

Metamorphic Belt around Mogok, and the rest of the Mogok Metamorphic Belt 

further south, as is necessary for his model, where the Luxi–Nujiang 
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Suture/Shweli Fault separates the two. From an isotopic perspective (U-Pb 

and Hf), a terrane boundary in the Northern Shan states may help explain the 

subtle differences we find between the magmatic rocks of the Mogok South 

and Mogok North areas (Figure 7).  

5.4. The West Burma Terrane 

The major active fault within Myanmar is the north-south trending Neogene-

era dextral Sagaing Fault (Figure 5). This fault has been interpreted as a 

major structural boundary, separating western Myanmar, which hosts the 

Wuntho-Popa Arc, from central and eastern Myanmar, i.e. that currently 

assigned to the Sibumasu block, thereby defining the West Burma Terrane or 

West Burma Block (e.g., Figure 9A). However, the question remains whether 

the Sagaing Fault is a recent artifact dividing a previously contiguous terrane, 

or whether it is a remobilized lithospheric boundary, and thus western 

Myanmar represents a separate accreted terrane. The extensive cover of 

Cenozoic sediments over western Myanmar (Figure 5) is one of the 

contributing factors to the profusion and variety of tectonic models proposed 

for its Mesozoic development. These models have been reviewed extensively 

by Sevastjanova et al. (2016), Ridd (2017), Morley and Searle (2017), and by 

Barber et al. (2017b). Hence we more selectively discuss some of the models 

in this study, and provide Table 6, which summarizes the current range of 

models invoked to explain western Myanmar. 

In seeking to identify additional suture zones, at least two ophiolite belts are 

found within Myanmar (Figure 1). The Western Belt predominantly outcrops 

within the Indo-Burman Ranges, while the Eastern Belt is found in central 
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Myanmar (Archaryya, 2007; Searle et al., 2017). The Western Belt – including 

the Naga, Chin Hills and Andaman Island ophiolites – is thrust oceanic crust 

within an accretionary prism setting, which has been interpreted as 

representing the eastern suture of the Indian Plate, part of the Neo-Tethys 

suture (Archaryya, 2007; Rangin et al., 2013). The Eastern Belt ophiolites are 

poorly exposed, and in this definition comprise the Jade Mines Belt in Kachin 

State, as well as potential outcrops within central Myanmar. Eastern Belt 

ophiolites are unconformably overlain by Albian carbonates (Mitchell, 1993), 

and have been interpreted as either representing the Palaeo-Tethys suture 

(Archaryya, 2007; Rangin et al., 2013), or an extension of the Nujiang Suture 

(Meso-Tethys) based on the Mid-Jurassic age for the Myitkyina ophiolite (Liu 

et al., 2016). These latter authors also reported an Early Cretaceous age (ca. 

127 Ma) from the Kalaymyo ophiolite, part of the Western Belt, which they 

correlated with the Yarlung-Tsangpo suture in Tibet, thereby interpreting it as 

representing a fragment of the Neo-Tethys ocean basin. For a complete 

review of models invoked to explain the Myanmar ophiolites see Searle et al. 

(2017). 

In the “Greater Sibumasu” model of Morley and Searle (2017), Sibumasu as a 

crustal entity includes west Burma, with its western boundary defined by the 

Western Ophiolite Belt (Figure 1). The Greater Sibumasu model assumes the 

Slate Belt/Mergui Series metasedimentary sequences to represent either the 

passive margin of Sibumasu during its rifting from the Gondwanan margin, or 

a rifted trough within Sibumasu. The Greater Sibumasu model also has an 

advantage in that it accommodates the detrital zircon conclusions of 

Sevastjanova et al. (2016). These authors, in investigating the heavy mineral 
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assemblages of the Triassic Pane Chaung Group from the Mount Victoria 

area, reported an abundance of Permian to Triassic–aged zircons. 

Sevastjanova et al. (2016) took this evidence as indicating the zircons were 

derived from the Palaeo-Tethyan magmatic belts, thereby indicating that West 

Burma had docked onto Southeast Asia by the Triassic (their “West Burma 

Model A”). However, since the Greater Sibumasu model does not 

accommodate the existence of any suture zone splitting Sibumasu into two or 

more blocks, the Eastern Belt ophiolites are not satisfactorily explained. 

Further, the isotopic trends observed in both zircon Hf and O isotopes from 

magmatic rocks of the Wuntho–Popa Arc (Figs. 7 & 8) are not conclusive in 

discriminating between the crust comprising West Burma and that of 

Sibumasu. These data record a significant input of juvenile material into the 

magmatic source of the Wuntho–Popa Arc, which disturbs any potential 

evolution trend. 

The “West Burma Block B” model of Barber and Crow (2009) implies a 

Triassic joining of a West Burma Block with Sibumasu, which accommodates 

the Permian–Triassic detrital zircon age spectra of Sevastjanova et al. (2016). 

However, the West Burma Block B model requires a Cathaysian origin for the 

West Burma Block, implying a more outboard position on the Gondwana 

(Australian) margin than for Sibumasu, which contradicts the findings of 

Sevastjanova et al. (2016) who determined a more inboard position on the 

Gondwana margin, similar to Sibumasu. The West Burma Block B model also 

does not accommodate any southerly extension of the Jurassic Nujiang 

Suture due to the docking of West Burma in the Triassic. 
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Both the “Mogok Foreland” (Figure 9B) and the “Irrawaddy Block” (Figure 9C) 

models solve the issue of a “hanging” Nujiang Suture terminating at the 

northern Shan Plateau, however they are unable to accommodate the 

requirement of the detrital zircon spectra for assembly on or before the 

Triassic. Further, these models separate eastern Sibumasu either entirely 

from the Mogok Metamorphics (Mogok Foreland model) or from Mogok South 

(Irrawaddy model). Placing Mogok South on a different terrane to Eastern 

Sibumasu may make it difficult to explain the Hf isotope evidence suggesting 

the Mogok South and Eastern Sibumasu magmatic rocks have a common 

magmatic source, unless both blocks were close by on the Gondwana margin. 

These models also struggle to explain the apparent identical magmatic age of 

sample MY9 in South Mogok to that of the Main Range Province granites. 

5.5. The Greater Sibumasu–Tengchong Model 

Here, we lean towards a hybrid model involving a Greater Sibumasu. This 

model assumes that significant stratigraphic, radiometric ages, metamorphic, 

igneous and geochemical variations can be explained as variations within a 

ribbon continent, rather than requiring separate blocks. In particular, the 

isotopic variations we observe where Mogok North is less similar to the Shan 

Plateau region than Mogok South, is the opposite of what would be expected 

from the Irrawaddy model of Ridd (2015), which we attribute either to 

compositional variations within a single Sibumasu, or to Mogok North lying 

within a discrete northern Shan domain of Palaeozoic-era basement.  

Further, to deal with the “hanging” Nujiang Suture we accept the presence of 

a separate Tengchong Block within Myanmar, and one which provides for a 
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southerly termination of this suture immediately north of the Mogok area. 

Such a “Greater Sibumasu–Tengchong Model” is outlined in Figure 10. In this 

definition, the Tengchong Block hosts both the Tagaung–Myitkyina and the 

Katha–Gangaw Belts (Figure 5), this latter being comprised of high-grade 

Barrovian-style metamorphic rocks of unknown age (Searle et al., 2017), and 

which has no obvious analogue further south. The Tagaung–Myitkyina Belt 

comprises ophiolitic material found outcropping on the eastern bank of the 

Irrawaddy. These rocks are reportedly typical Tethyan ophiolitic mantle rocks 

(serpentinized harzburgites) (Searle et al., 2017), and in places are 

mineralized, hosting the Tagaung Taung nickel laterite mine (Schellmann, 

1989). The Tagaung–Myitkyina Belt may be part of the Eastern Belt of 

ophiolites, typified by the Jurassic age of the Myitkyina ophiolite (Liu et al., 

2016), given by their regional association with Late Jurassic radiolarian cherts 

and Albian-Cenomanian limestones (Mitchell et al., 2012).  

We assume the Baoshan Block and Greater Sibumasu were assembled on or 

before the Triassic, the assembly of which may be marked by an Andean 

margin lying east-west across the Northern Shan Plateau (Figure 5), as 

postulated earlier. Alternatively the Baoshan Block and Sibumasu are simply 

the same terrane, with different names across a political, not a geological 

boundary. We also assume a contiguous Sibumasu/Baoshan Block sutured 

onto the Sukothai Arc/Indochina Block margin in the Late Permian to Early 

Triassic following the subduction of Palaeo-Tethys (Figure 10A).  

Any tectonic model needs to explain the Triassic to Mid–Jurassic magmatic 

ages recorded within I-type granitoids in the southern part of the Mogok 
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Metamorphic Belt (Figure 4). Cobbing et al. (1992) described an evolutionary 

series of granites in the Mogok-Mandalay-Mergui Belt (their Western Belt) 

from an I-type hornblende and/or biotite granite, through leucocratic main 

phase granites, to S-type Sn-bearing composite batholiths of K-feldspar and 

biotite-bearing granites. The implication of this is that this magmatic belt has 

witnessed earlier Late Triassic to Jurassic subduction-related I-type 

magmatism, trending towards S-type crustal melt magmatism in the Late 

Cretaceous to Palaeogene. Searle et al. (2012) reported a 214.4 ± 2.4 Ma 

Late Triassic age from an I-type granitoid on Phuket Island, Thailand, the 

southern extension of the belt, and a similar age to the early phase of MY9. 

These authors explained the similar magmatic age to that of the Main Range 

Province as resulting from two subduction zones operating simultaneously. It 

may be that this discontinuous arc of Late Triassic to Jurassic magmatic ages 

in Myanmar, and perhaps as far south as Phuket, represents the relics of a 

separate Andean-type margin sited above a subducting Meso-Tethys, for 

which other geological evidence has been lost. Thus, In our model, we 

propose this latter period of magmatism represents subduction of Meso-

Tethys between the Tengchong Block and Sibumasu (Figure 10C). The 

Tengchong Block we then interpret as suturing onto Greater Sibumasu before 

the Late Cretaceous (Figure 10D), after which subduction of Neo-Tethys 

drove the magmatism found in the Wuntho–Popa Arc and ultimately that of 

the Tin Province (Figure 10E). Our model requires the Wuntho–Popa Arc to 

be offset from the Tin Province by the Sagaing Fault, which may require some 

~400 km of displacement (Figure 10F). This would then result in a crustal 

architecture as outlined in Figure 11.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 44 

The Greater Sibumasu–Tengchong Model does not explain all the geological 

evidence observed within Myanmar. It may not explain the Late Triassic 

magmatism found within the vicinity of Mandalay, e.g. MY9. It fails to explain 

the location and origin of the Myitkyina ophiolite, and perhaps the associated 

arc-related rocks within the Tagaung-Myitkyina Belt. These may best 

explained as either (a) westwards-thrusted remnants 10’s to 100’s kms from 

the suture, thereby not actually defining a suture zone; or (b) perhaps a 

separate branch of the Meso-Tethys. 

6. Metallogenic Implications of Myanmar’s tectonic history 

The Tethys margin in central and eastern Asia is endowed with a significant 

diversity of mineral deposits (Khin Zaw et al., 2014; Searle et al., 2016). 

Myanmar, at the heart of this region, is highly prospective, however it remains 

a poorly explored minerals jurisdiction (Chhibber, 1934; Gardiner et al., 2014; 

Khin Zaw, 2017; Soe Win and Malar Myo Myint, 1998). The Tethys-related 

orogenies and concomitant magmatism are the major drivers for ore formation 

within this region. We briefly review the main ore deposit types that have their 

genesis directly linked to Myanmar’s magmatic history; recent work has made 

significant progress in providing a geologic and tectonic framework for better 

understanding the richness and diversity of Myanmar’s mineral provinces, and 

for more detail we refer readers to Mitchell (2018) and Barber et al. (2017a) 

which cover this topic in depth. We then briefly discuss the tectonic framework 

of Myanmar and surrounding region, and summarize the related metallogenic 

patterns and zonation. 
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An orogenic system, such as the subduction of an ocean basins and collision 

of continental fragments, provides a dynamic framework for the development 

of large–scale discrete Earth processes, which also finds expression in the 

genesis of diverse mineral deposits (Groves and Bierlein, 2007; Kerrich et al., 

2005). Orogenic belts evolve, and geologic processes develop that lead to 

characteristic mineral deposit types through the lifecycle of a belt. Gardiner et 

al. (2016a) presented a model that linked the genesis of mineral deposit styles 

found within Myanmar to the subduction and suturing of Neo-Tethys. These 

authors defined four major orogenic stages (Figure 13): (a) accretionary stage 

(100–50 Ma); (b) collisional stage (50–40 Ma); (c) late collisional stage (40–15 

Ma); and (d) oblique collisional stage (15–0 Ma). Within these stages were 

placed the genesis of different types of mineral deposits found within 

Myanmar; some deposit types found within Myanmar have robust 

geochronological constraints (e.g., Sn-W and Cu-Au porphyry), however for 

other types with poor age constraints, a potential age of formation was 

interpreted with respect to the orogenic cycle. During the Accretionary Stage, 

Gardiner et al. (2016a) proposed that magmatism associated with Sn-W 

mineralization intruded into the Tin Province, while I-type magmatism formed 

the Wuntho–Popa Arc. The Collisional Stage marked the suturing of the Neo-

Tethys ocean basin, and the transition to a continent-continent collision 

setting. Before, or during, this event, emplacement of ophiolitic material 

related to the Neo-Tethys basin was responsible for the formation of several 

ultramafic-associated ore deposits, such as the Ni laterite deposits at 

Tagaung Taung and the Jade Belts. During the Collisional Stage, ongoing 

orogeny drove metamorphism, and possibly resulted in the orogenic Au now 
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found within central Myanmar (Figure 13B), although this remains subjective 

due to poor age constraints. The Late Collisional Stage (Figure 13C) resulted 

in the development of the Cu mineralization at Monywa, and in Pb-Zn-Cu 

skarn deposits associated with late-stage magmatism within the Mogok 

Metamorphic Belt. Finally, the Oblique Collisional Stage was responsible for 

the development of epithermal-type Au mineralization, such as the 

Kyaukpahto deposit in central Myanmar, which developed in small pull-apart 

basins close to the Sagaing Fault (Ye Myint Swe et al., 2004). 

Khin Zaw (2017) presented a tectonic-metallogenic model for Myanmar, 

documenting tectonic events as far back as the Palaeozoic. In particular, he 

considered that Neo-Tethys related orogeny and magmatism extended back 

to at least the Jurassic. He assigned the Slate Belt hosted orogenic Au 

deposits found within central Myanmar, for example at Modi Taung, as having 

their genesis during the Late Mesozoic. Further, Khin Zaw (2017) highlighted 

that Cu-(Au) deposits documented within central Myanmar within or east of 

the Mogok Metamorphic Belt, such as at Monbinzon on the western margin of 

the Shan Plateau, are related to I-type Jurassic magmatism, and their  

genesis assigned to Neo-Tethys related subduction processes. 

6.1. Myanmar’s Magmatic-Hydrothermal Mineralization  

Mineralization associated with the arcs of Myanmar is largely magmatic-

hydrothermal in character, although significant styles of mineralization classed 

as orogenic (Au) and magmatic (Ni) also occur. The granites found within the 

Tin Province have long been known for their association with extensive 

deposits of vein and pegmatite-type Sn-W mineralization (Chhibber, 1934; 
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Hutchison and Taylor, 1978), and Myanmar’s principal Sn-W districts are 

found in the vicinity of Dawei, further south near Mergui, and also the Mawchi 

W-Sn mine district ~250 km northeast of Yangon (Coggin Brown and Heron, 

1923; Garson et al., 1975; Hutchison, 1989; Khin Zaw and Khin Myo Thet, 

1983). Sn-W mineralization in the Tin Province is found as cassiterite and/or 

wolframite-bearing pegmatites and greisen-bordered quartz veins. These are 

hosted both by the granites, and also by the Slate Belt country rock. For the 

most part, Sn-W mineralization is associated with Palaeogene S-type granites 

(Than Htun et al., 2017), and the mineralization is assumed to be of that age. 

Porphyry style Cu mineralization, found with associated Mo and Au, is known 

to occur at Shangalon in the northern Wuntho region of the Wuntho-Popa Arc, 

southwest of the town of Kawlin (Mitchell et al., 2011). The Shangalon 

prospect is centred on a suite of ca. 40 Ma (Oligocene) granodiorite to dioritic 

plutons (e.g., Gardiner et al., 2016a) that intrude the ca. 105–95 Ma 

granodiorites of the Kanzachaung–Wuntho batholith, in addition to a well-

exposed sequence of andesitic volcanics termed the Mawgyi Volcanics. The 

Mawgyi Volcanics are intruded by the Kanzachaung–Wuntho batholith but 

extrusive activity continued until at least late Cretaceous times (ca. 70 Ma). At 

Shangalon, mineralization is dominated by copper sulphides (chalcopyrite and 

minor bornite) in quartz veins that also contain occasional Mo and sporadic 

Au (Figure 12). Well-defined potassic and phyllic alteration systems are not 

evident in the main Shangalon area, although exploration in the broader 

region has identified other zones of mineralization and more extensive 

alteration. Likewise, more extensive indication of Au mineralization in the 
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region suggests that epithermal styles of Cu-Au ore formation may also be 

present.  

In the Monywa district of the Wuntho-Popa Arc, at least two world-class high-

sulphidation epithermal Cu deposits occur at Kyisintaung-Sabetaung and 

Letpadaung. These deposits are hosted by porphyritic andesite dykes, 

sandstones, and pyroclastics. Miocene sandstones and shales underlie the 

pyroclastics, and the sequences are underlain and intruded by andesite 

porphyry that yielded a mid-Miocene U-Pb zircon age of 13.6 Ma (Mitchell et 

al., 2011). In both deposits the andesitic porphyry bodies intrude a stratified 

volcaniclastic unit, which is the principal ore-bearing host rock. Hydrothermal 

alteration is pervasive in all rock types, comprising an outer chlorite (epidote) 

zone surrounding widespread quartz-sericite-pyrophyllite, occasional 

hematite, and quartz-pyrite-alunite. Copper sulphides are predominantly 

digenite-chalcocite, lesser covellite and enargite, and rare chalcopyrite and 

bornite. Mineralization is structurally-controlled, occurring in planar and 

stockwork veins, and in breccia dykes with a sulphide matrix. Gold is 

insignificant in both deposits. A prominent, up to 50m thick, oxidized zone is 

present at the surface comprising a leached cap and associated underlying 

zone of supergene enrichment.   

6.2. Southeast Asia’s paired magmatic belts and metallogenic implications  

Collectively, the four granite belts of southeast Asia (Figure 14C) represent 

one of the great metallotects of the World – their metallogenic endowment is 

dominated by Sn-W (predominantly in the Main Range of Malaysia and the 

Mogok-Mandalay-Mergui Belt of Myanmar), with significant Cu-Au-Mo 
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porphyry-epithermal mineralization being a feature of the Wuntho–Popa Arc. 

The relationships between tectonic evolution, the timing of granitoid 

magmatism, and the formation of magmatic-hydrothermal mineral deposits in 

the region is a topic that has long attracted the interest of researchers. 

To the east of Myanmar, the Main Range and Eastern Province form belts of 

granite that extend from Yunnan in China, through Thailand and into the 

Malaysian peninsula (Figure 14A, B). The Main Range Province is dominated 

by S-type granites that host substantial Sn mineralization, such as the prolific 

Kinta Valley deposits, that is both primary and alluvial/eluvial in character. The 

Eastern Province, also containing Sn mineralization, such as at Sungai 

Lembing and Kuantan, has traditionally been described as of predominantly I-

type in character, although this classification has more recently been 

questioned (Wai-Pan Ng et al., 2015a, and here), with the implication that a 

breakdown of granites in Southeast Asia into S- and I-types does not accord 

with either their petrogenetic or metallogenic characteristics.  

In contrast to the paired Thai-Malaysian granite belts, the spine of Myanmar is 

constructed by two near-parallel, broadly coeval, magmatic belts that are 

markedly different from one another in terms of metallogenic endowment 

(Figure 14A). The westerly Wuntho-Popa Arc comprises I-type granites with 

prominent Cu-Au mineralization. The easterly Mogok-Mandalay-Mergui Belt – 

here subdivided into a northerly Mogok Metamorphic Belt and a southerly Tin 

Province – comprising mainly S-type granites together with lesser I-type 

granites, and characterized by significant Sn-W mineralization, although some 

workers have classified these as A-types (Aung Zaw Myint et al., 2017; Jiang 
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et al., 2017). These two belts are coeval, forming between the early 

Cretaceous and mid-Miocene, and linked to Himalayan orogenesis and the 

closure of Neo-Tethys (Figure 4). Their spatial juxtaposition and their 

respective metallogenic endowments bear strong similarities to the 

metallogenic belts of the South American Cordillera (Gardiner et al., 2015).  

Destruction of the Tethyan ocean in Southeast Asia commenced in the 

Permian as Palaeo-Tethys was subducted beneath the Asian plate; 

magmatism commenced at around 280 Ma in the southeast of Malaysia  

(Figure 14B), and attained its maximum volumetric output in the early Triassic 

(250–240 Ma) forming the Eastern Province granites prior to, or perhaps 

during, collision of Sibumasu with the Asian plate along the Bentong-Raub 

suture (Figure 14B). Crustal thickening and collision-related magmatism 

reached its nexus in the mid-to-late Triassic (230–210 Ma) to form the 

voluminous and highly stanniferous Main Range batholiths. Zircon isotope 

data from the Eastern and Main Range Provinces define the commencement 

of the Eastern Sibumasu Hf-isotope evolution trend marked on the Hf 

evolution plot (Figure 7). Eastern Province zircon U-Pb ages are older and 

have slightly less evolved Hf than the Main Range Province, consistent with 

a crustal signature for both, but with a more prolific tin endowment for the 

more evolved suite. Palaeo-Tethys is suggested to have been consumed 

fairly rapidly with maximum production of granite magma in the Triassic period 

and culminating in accretion of Sibumasu onto Asia by 230 Ma (Figure 4). 

The subsequent evolution of the Neo-Tethyan related paired magmatic belts 

in Myanmar is slightly different to that of the Palaeo-Tethyan belts in Malaysia, 
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despite the fact that many parallels exist. Destruction of Neo-Tethys 

commenced at ca. 120 Ma (Figure 4) as oceanic crust was subducted 

beneath the western margin of Sibumasu. The oldest granites in the Wuntho-

Popa Arc are I-type granites formed at 105–94 Ma (here, and Crow and Khin 

Zaw, 2017), accompanied by outpouring of the dominantly calc-alkaline 

Mawgyi Volcanics at around the same time and extending down to ca. 70 Ma. 

Subsequent pulses of granitoid magmatism occurred in the Palaeocene to 

Eocene at 60–40 Ma, and again in the mid-Miocene at 20–10 Ma. 

Mineralization is associated with both these events. The diorite and 

granodiorite-hosting porphyry style Cu-Mo-Au mineralization at Shangalon 

have been dated at 53 Ma and 38 Ma (Crow and Khin Zaw, 2017; Gardiner et 

al., 2016a), and the high sulphidation epithermal Cu mineralization at Monywa 

has been interpreted as forming at 13 Ma (Mitchell et al., 2011). The absence 

of reported mineralization in Late Cretaceous Wuntho–Popa magmatic suites 

contrasts with these mineralized younger suites. The zircon Hf isotope data 

imply that the Shangalon porphyry diorite may be sourced in part from the 

older granodiorite material, their more evolved Hf lying on a crustal evolution 

trend (Figure 7). Thus, it may be the Cu-Au endowment of the younger 

Cenozoic magmatic suites is related partly to processes of crustal reworking. 

Collision of the Indian plate with Asia occurred at 50 Ma in the western and 

central Himalaya (e.g., Green et al., 2008), but subduction of Neo-Tethys 

continued through the Palaeogene period to the east and also along the 

western margins of Sibumasu. Construction of the Mogok-Mandalay-Mergui 

Belt was broadly coeval with the Wuntho–Popa Arc (Figure 4). Here, the 

oldest granites formed in the range 130-120 Ma, with the major pulse of 
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magmatism occurring in the Palaeocene to Eocene at 60–40 Ma. The host 

granite and associated W-Sn mineralization at the Mawchi Mine has been 

dated at 43 Ma (Aung Zaw Myint et al., 2017). It is pertinent to emphasize that 

mineralization in the Mogok-Mandalay-Mergui Belt is characterized by 

significant concentrations of tungsten in addition to, and often superseding, 

tin. As in the Wuntho–Popa Arc, late stage magmatism in the Mogok-

Mandalay-Mergui Belt also occurred in mid-Miocene times, such as the 17 Ma 

Kabaing granite which is spatially associated with Cu-Au mineralization in the 

Mogok Metamorphic Belt. 

Unlike the Eastern Province and Main Range Province granite belts in 

Malaysia that formed sequentially and largely within the Triassic period, the 

paired magmatic belts in Myanmar are coeval and formed over a more 

extended time period that ranged from Early Cretaceous to mid-Miocene. 

Collision did not herald the onset of crustal melting and magmatism in 

Myanmar but rather, as in the Andes, I- and S-type magmatism occurred 

contemporaneously, with differences in granite melt compositions reflecting 

differing protoliths as well as increasing distances from the trench and 

progressive enhancement of crustal input. This pattern is evident in the zircon 

Hf and O isotope trends of Figure 8. The Wuntho–Popa Arc is characterized 

by zircons with mantle 18O signatures, whereas zircons from the Mogok-

Mandalay-Mergui Belt are variably contaminated with crustal material. In 

terms of Hf trends, Wuntho–Popa Arc isotopes define a mantle-like trend that 

evolves towards the chondritic (CHUR) value over time (Figure 7). Parts of the 

Mogok Metamorphic Belt fall on the Eastern Sibumasu Hf evolution trend, 

however the Tin Province, as well as the northerly portion of the Mogok zone, 
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reflecting crustal sources that are less evolved than would be expected if 

Sibumasu basement were present as, or dominated, the protolith. 

Interestingly, it is this protolith (i.e. the so-called ‘Slate Belt’ lithologies or 

Mergui Group) that appear to have been responsible for the Sn plus W 

endowment of the Tin Province – this is in contrast to the Sn only endowment 

provided by the Eastern Sibumasu basement in Malaysia. These data suggest 

that the crustal source material that was melted to form the S-type, 

stanniferous granites of Southeast Asia differed as a function of geography 

and the secular tectonic evolution of the region. 

These data are relevant to suggestions that the gap between Palaeo-Tethyan 

suturing at 230 Ma, and the onset of Neo-Tethyan subduction at ca. 130 Ma, 

an interval of relative magmatic quiescence (Figure 4), is one which may have 

witnessed the docking of a Tengchong Block onto northern Sibumasu during 

the closure of Meso-Tethys (Figure 10). This model finds support from the age 

of the Myitkyina ophiolite at 173 Ma (Liu et al., 2016), and our dating of a 

dacite at 172 Ma that defines the possible existence of a magmatic arc 

referred to here as part of the Tagaung-Myitkyina Belt. This latter belt on the 

basis of age determination alone cannot be part of the Wuntho–Popa Arc, but 

rather we suggest reflects subduction of a Meso-Tethys ocean beneath the 

northern (Baoshan) portion of Sibumasu (Figure 10). We interpret the 

Tagaung-Myitkyina Belt to be presently sited within the Tengchong Block, 

thus invoking a scenario whereby this belt is overthrust (westwards) onto the 

Tengchong Block during final suturing. The presence of such an arc could 

have implications for the prospectively of (poorly-explored) northern Myanmar, 
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since it is likely to be similar in its metallogenic signature to the Wuntho-Popa 

Arc. 

6.3. The Zircon Geochemical Response to Myanmar’s Metallogeny  

In the Tin Province and the Wuntho–Popa Arc, Myanmar hosts two magmatic 

belts which have developed contrasting metallogeny: vein-and-pegmatite Sn-

W versus porphyry Cu-Au and epithermal Cu styles. Their geographic location 

only a few 100 km’s apart, the fact that they record near-contemporary 

magmatism (Figure 4) potentially driven through the same geodynamic event, 

means they present a natural laboratory for constraining the petrogenetic 

development of magmatic-hydrothermal mineralization. Accordingly, Gardiner 

et al. (2017a) undertook a zircon-based trace element and isotope study to 

constrain how zircon geochemistry may inform on the different characteristics 

leading to the contrasting types of metallogeny. In focusing on the role of 

source, redox and fractionation, these authors showed how the two belts may 

be broadly distinguished through zircon trace elements. A plot of U/Yb versus 

Hf highlights a greater crustal contribution in the source of the Tin Province 

(Figure 15A). Magmatic source is also distinguished through zircon Hf and O 

isotopes, as discussed for these two belts earlier (Figure 8).  

Sn-W mineralization is associated with reducing, more fractionated magmatic 

systems, and Cu-Au with oxidizing, less fractionated magmatic systems 

(Blevin and Chappell, 1995; Ishihara, 2004). The Ce and Eu anomalies in 

zircon (Ce/Ce* and Eu/Eu*) may be sensitive to redox and magma 

fractionation respectively (Gardiner et al., 2017a; Trail et al., 2012). When 

zircon Ce/Ce* versus zircon Eu/Eu* are plotted for the samples from both the 
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Myanmar belts (Figure 15B), the zircon analyses from Wuntho–Popa Arc 

granites are seen to have elevated Ce/Ce* and higher Eu/Eu*, whilst those 

from the Tin Province samples have lower Ce/Ce*, and lower Eu/Eu* 

(Gardiner et al., 2017a). These differences in Ce and Eu anomalies reflect the 

differences in redox and fractionation expected for Cu-Au and Sn-W bearing 

granites (Blevin and Chappell, 1995). Significantly, those Tin Province 

samples with elevated whole-rock Sn contents were shown to have 

significantly lower Eu/Eu*, implying significant fractionation and concentration 

Sn.  

6.4. Southeast Asian Metallotects: Summary 

The metallogenic character of granite belts in Myanmar and Malaysia reflects 

the crustal architecture of the region and can be used to constrain the secular 

tectonic evolution of Indosinian and Himalayan orogenesis, as well as in 

identifying zones of mineralization and the nature of granite melt protoliths 

and magma fertility. The region is remarkable for its prolific endowment of 

granite-hosted Sn-W mineralization in two quite distinct granite belts related to 

sequential Indosinian and Himalayan orogenesis. The Wuntho-Popa Arc is an 

unadulterated calc-alkaline, I-type magmatic belt whose magma isotopic and 

geochemical compositions reflect a strong mantle-like protolith, and whose 

metallogenic endowment is dominated by porphyry and epithermal style Cu-

Au(-Mo) mineralization. It formed in response to Neo-Tethyan subduction over 

an extended period from the early Cretaceous to mid-Miocene. An older, mid-

Jurassic, version of this arc may be present in the Tagaung-Myitkyina Belt of 

northern Myanmar, if it can be demonstrated that a (Tengchong) crustal block 
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docked onto northern Sibumasu in Meso-Tethyan times, i.e. the mid-Jurassic, 

and which may also find some expression in the older magmatism of the 

Mogok Metamorphic Belt.  

The Mogok-Mandalay-Mergui Belt and Main Range Province of Malaysia, 

which together extend over a strike length of some 2500 km and represent the 

pre-eminent Sn-W metallotect on the planet, had a convoluted origin that 

involved successive periods of Palaeo- and Neo-Tethyan subduction/collision 

and the generation of crustally–dominated granite melts derived from different 

protoliths and/or continental blocks. These differences may explain the 

different Sn and Sn-W endowments evident in the Main Range (Malaysia) and 

Mogok-Mandalay-Mergui (Myanmar) Belts respectively. An evolved crustal 

signature is clearly a pre-requisite for Sn-W fertility in granite-hosted 

magmatic-hydrothermal styles of mineralization, although this study raises 

questions regarding the causes of repeated Large Ion Lithophile (LILE) 

endowment in granites that formed at different times and from different crustal 

sources. The degree of LILE fertility in granite magmas also appears to be 

related to magma generation and source constraints, as suggested in the 

differing extents to which the Main Range and Eastern Province granite belts 

are mineralized for tin. 

7. Postscript 

Zircon-based geochronology and isotope studies provide a foundation both for 

constraining lithospheric architecture and tectonic history, but also for 

understanding the source of magma, which ultimately develops magmatic-
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hydrothermal mineralization. In presenting zircon U-Pb, Lu-Hf and O isotope 

data from magmatic rocks across Myanmar, we attempt to isotopically 

characterize Myanmar’s magmatic belts. The results can then be interpreted 

to further inform on the nature of crustal architecture and tectonic assembly, 

and to understand the metallogenic character of the major magmatic belts. In 

proposing a tectonic model for the assembly of Myanmar we acknowledge 

that neither our model nor the existing models accommodate all the available 

geological evidence. There remains work to be done. 
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Figure Captions 

Figure 1. Geological terrane map of the Eastern Himalaya, southeast Tibet, 

Myanmar, Yunnan and Thailand. See legend and: ITPS – Indus-Tsangpo 

suture zone; SH – Shillong plateau; SFZ – Sagaing fault zone; TPFZ – Three 

Pagodas Fault zone; MPFZ – Mae Ping Fault Zone; PFZ – Panlaung Fault 

Zone; ST – Sibumasu; ASRR – Ailao Shan – Red River shear zone. Of note 

are the two ophiolite belts: WB – Western Belt; EB – Eastern Belt .  

Figure 2. A: Schematic map of the main magmatic belts discussed in the text, 

both within Myanmar and extending into Northern Thailand. B: Sample locality 

map; orange circles represent those samples from which new data are 

presented here, grey circles are those samples with existing published data. 

Figure 3. Terra-Wasserburg Concordia diagrams for all analyzed samples, 

showing common Pb-corrected zircon U-Pb analyses (red circles) selected for 

calculation of Concordia ages (black circle). Error ellipses are 2 sigma. 

Figure 4. Timechart showing reported zircon U-Pb age data from granitoids 

across the major belts discussed in this paper. Also annotated are ages of 

detrital zircons, timing of metamorphic events, and reported ages of ophiolite 

belts. The horizontal lines show our assumed ages of the final suturing of 

Neo-Tethys and Palaeo-Tethys respectively. Data from this paper, and 

Ahrendt et al. (1997); Barley et al. (2003); Barr et al. (2000); Barr et al. (2006); 

Dong et al. (2013); Dunning et al. (1995); Gardiner et al. (2016a); Gardiner et 

al. (2016b); Gardiner et al. (2016c); Hennig et al. (2009); Liu et al. (2016); 

Mitchell et al. (2012); Palin et al. (2013); Peng et al. (2008); Peng et al. 
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(2013); Searle et al. (2007); Searle et al. (2012); Wai-Pan Ng et al. (2015b); 

Wang et al. (2014); Watkinson et al. (2011). Inferred suturing ages from 

Green et al. (2008) and Gardiner et al. (2016c). Epoch ages based on the 

International Chronostratigraphic Chart v 2014/02. 

Figure 5. Geological map of Myanmar. TMB = Tagaung-Myitkyina Belt. The 

locations of the Shangalon mining district and the Bawdwin mine are 

identified. After Myanmar Geosciences Society (2014). 

Figure 6. Maps of the Tagaung-Myitkyina Belt and the Katha-Gangaw Range. 

A: geographical, and B: geological, after Mitchell (2018), and Myanmar 

Geosciences Society (2014). The approximate location of sample MY182 is 

identified. 

Figure 7. Hf evolution diagram plotting zircon magmatic age versus zircon Hf 

isotope data from the major granite belts in Myanmar. Also shown in light red 

is a domain defined by detrital zircon Hf data from the Chindwin basin of 

Wang et al. (2014), interpreted as of Wuntho-Popa Arc provenance. 

Figure 8. Plot of zircon Hf versus 18O for samples from the Wuntho-Popa 

Arc, the Mogok Metamorphic Belt, and the Tin Province. 

Figure 9. Tectonic models. A. Map of the major terranes in Southeast Asia 

modified from Sone and Metcalfe (2008), Metcalfe (2011b) and Barber et al. 

(2011). This map shows separate West Burma and Sibumasu terranes. B. 

The medial suture zone, the Western Myanmar Mogok Foreland model after 

Mitchell (2018). C. The Irrawaddy Block model: modification to Sibumasu as 
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proposed by Ridd (2015), where this terrane is split into western (Irrawaddy) 

and eastern (Sibuma) blocks. A and C taken from Morley and Searle (2017). 

Figure 10. Schematic tectonic development of the Greater Sibumasu–

Tengchong tectonic model for the assembly of present-day Myanmar. See 

text for discussion. 

Figure 11. Tectonic subdivision of Southeast Asia, detailing a Greater 

Sibumasu cut by movement on the north-south Sagaing Fault. Modified after 

Metcalfe (2011a). Also shows is the Tengchong (T’chong) Block, and a 

postulated suture between Sibumasu and the Baoshan block running east-

west across the northern Shan Plateau. 

Figure 12. A. Surface workings at the discovery site of the Shangalon 

mineralized system - showing sheeted and stockwork vein sets in oxidized 

granodiorite (part of the Kanzachaung batholith); B and C. Core samples from 

drilling carried out at Shangalon – B. granodiorite and diorite rocks similar to 

those that host vein-related Cu-Mo mineralization; C. Dacite porphyry 

samples considered to intrude rocks of the Kanzachaung batholith.  

Figure 13. Schematic tectonic evolution of Myanmar, detailing interpreted 

metallogenesis related to each major stage and location of major mines. A. 

Accretionary Stage (100–50 Ma): An Andean-type accretionary setting on the 

margins of Neo-Tethys, with extensive magmatism driving Cu-Au 

mineralization in the Wuntho-Popa Arc and Sn-W in the Tin Province 

respectively. B. Collisional Stage (50-40 Ma): Suturing of Neo-Tethys marks 

the onset of continent collision. Tethys ophiolite fragments hosts deposits of 
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platinum, chromite, jade and nickel. C. Late Collisional Stage (40-15 Ma): 

Ongoing orogeny and enhanced crustal thickening results in amphibolite-

grade metamorphism in the Mogok Metamorphic Belt. D. Oblique Collisional 

Stage (15-0 Ma): Ongoing clockwise rotation during Oligocene-Miocene times 

initiated movement on the strike-slip Sagaing Fault and the development of 

dominantly oblique convergence and faulting, resulting in sandstone-hosted 

hydrothermal Au mineralization, such as at the Kyaukpahto Au deposit (Ye 

Myint Swe et al., 2004). 

Figure 14. Distribution of exposed granite intrusions, and their ages, in A: 

Myanmar (ages from Aung Zaw Myint et al., 2017; Gardiner et al., 2017a; 

Gardiner et al., 2016c); B: on the Malaysian peninsula (ages from Wai-Pan Ng 

et al., 2017; Wai-Pan Ng et al., 2015b); C: Simplified map showing the granite 

belts of Southeast Asia with location of maps A and B. After Cobbing et al. 

(1986).  

Figure 15. Paired metallogenic belts study. A. Zircon isotope and trace 

element plot of U/Yb versus Hf (sensu Grimes et al., 2015) highlighting 

source, plotted by sample and suite. Samples MY71, MY75 and MY76 have a 

high (>15 ppm) whole-rock Sn content (white crosses). B. Plot of median 

zircon Eu/Eu* versus Ce/Ce* for the Cu-Au and Sn-W granites. The grey 

curves represent the modelled isothermal covariance of Ce/Ce* with Eu/Eu* 

as a function of log fO2 (values annotated) for different temperatures. Both 

plots from Gardiner et al. (2017a). 
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Table Captions 

Table 1: Summary table of all samples discussed by magmatic belt, with 

location, description, assigned U-Pb magmatic age, and mean Lu-Hf and O 

isotope data. Some data previously reported in †Gardiner et al. (2016a); 

‡Gardiner et al. (2017a);  *Gardiner et al. (2016c). 

Table 2: Compilation of new SIMS and LA-ICP-MS (MY182) zircon U-Pb age 

data. Errors quoted are 1. 207Pb-corrected ages calculated as per Ludwig 

(2004). f207%: % of common 207Pb estimated from measured 204Pb. ‡Disc. %: 

discordance of the centrepoint of data error ellipse regardless of uncertainty. 

Table 3: Compilation of new zircon Lu-Hf isotope data from the Myanmar 

samples. A 176Lu/177Hf of 0.015 was used for the calculation of two-stage Hf 

model ages (TDM
2). 

Table 4: Analytical details for SIMS zircon O isotope analysis. 

Table 5: Summary of isotope characteristics of the major magmatic belts 

within Myanmar and Northern Thailand, discriminated on the basis of age. 

Data from this study, and Gardiner et al. (2017a); Gardiner et al. (2016a); 

Gardiner et al. (2016c); Jiang et al. (2017); Lee et al. (2016); Mitchell et al. 

(2012). 

Table 6: Summary of the major tectonic models invoked for Mesozoic–

Cenozoic Myanmar. See text for discussion. 
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TABLE 1 

SAMPLE Description Locality N/E 

U-Pb age 

(2) Hf (2) 18O (2) 

Tin Province  

MYYAD granite Yadanabon 11º17’45’”N/ 
99º16’10”E  

50.3 ± 0.6† -10.3 ± 0.8   

MY37 granite Dawei 14º19’85’”N/ 
98º11’55”E 

69.5 ± 1.0† -11.8 ± 1.9   

MY34 granite Dawei 14º10’79’”N/ 
98º21’46”E 

62.3 ± 0.6† -11.4 ± 0.5   

MY71 bt + pl + kfs 
granite 

Dawei 14º16’32’”N/ 
98º15’37”E 

75.6 ± 8.8‡ -10.4 ± 1.1‡ 6.3 ± 0.3‡ 

MY72 bt + pl + kfs granite Dawei 14º08’15”N/ 
98º07’06”E 

64.1 ± 1.6‡ -7.0 ± 1.0‡ 6.6 ± 0.3‡ 

MY73 bt + pl + kfs granite  13º40’12” N/ 
98º23’00”E 

58.5 ± 0.5‡ -13 ± 1.2‡ 7.1 ± 0.3‡ 

MY74 bt + pl + kfs granite  13º34’05”N/  
98º25’13”E 

58.7 ± 0.6‡ -9.4 ± 1.1‡ 7.2 ± 0.3‡ 

MY75 bt + pl + kfs granite Myeik  12º41’31”N/  
98º44’12”E 

72.1 ± 1.3‡ -10.3 ± 1.4‡ 7.7 ± 0.3‡ 

MY76 bt + pl + kfs granite Myeik  12º29’36”N/  
98º41’55”E 

75.3 ± 7.7† -10.2 ± 3.4 6.2 ± 0.3  

Mogok Metamorphic Belt 

MY-9 Ms granite Payangazu 20º44’28’”N/ 
96º13’29”E 

71.9 ± 1.1 -15.0 ± 1.3   

    123.4 ± 2.0 -9.7 ± 0.4   

    218.9 ± 2.5 -13.4 ± 1.3   

MY-4 Bt granite  Nattanng  20º16’41’”N/ 
96º15’35”E 

71.1 ± 0.6 -15.9 ± 0.9 8.9 ± 0.3 

MY-1 Bt-Kfs granite Byinge  20º03’29’”N/ 
96º15’33”E 

55.1 ± 0.5 -13.3 ± 2.4 7.3 ± 0.3 

MY106 granite Kabaing  22º55’19’”N/ 
96º20’79”E 

16.8 ± 0.5† -7.3 ± 1.2 8.5 ± 0.3 

Wuntho-Popa Arc 

MY109 graniodiorite Banmauk 24º24’46”N/ 
95º45’35”E 

102.1 ± 0.95‡ 11.5 ± 1.2‡ 5.2 ± 0.2‡ 

MY145 graniodiorite Shangalon  23º42’03’”N/ 
95º31’28”E 

40.0 ± 0.2† 1.9 ± 1.5‡ 5.5 ± 0.4‡ 

MY149 graniodiorite Wuntho  24º00’12”N/ 
95º27’56”E 

98.1 ± 0.47‡ 7.6 ± 0.9‡ 5.4 ± 0.3‡ 

MY150 graniodiorite Monywa 22º10'30”N/ 
94º58'05”E 

99.8 ± 1.3‡ 7.3 ±1.4‡ 5.4 ± 0.4‡ 

MY151 diorite Salyingyi 21º56'49”N/ 
95º05'32”E 

98.3 ± 1.0‡ 7.4 ± 1.7‡ 5.5 ± 0.4‡ 

Tagaung-Myitkyina Belt 

MY182 dacite Myitkyina 25º25’48”N/ 
97º25’58”E 

171.9 ± 0.7 15.3 ± 2.1   

Main Range Province 

MY55 granite Kyaing Tong 21º23’63”N/ 
99º62’17”E 

219.3 ± 1.3* -10.5 ± 1.0*   

MY56 granite Kyaing Tong 21º29’22”N/ 
99º57’41”E 

220.1 ± 1.1* -12.4 ± 0.9*   

Eastern Province 

MY53 granodiorite Tachileik 20º56’14”N/ 
99º97’72”E 

265.8 ± 2.1* -9.6 ± 1.2*   

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 77 

Table 2 

       

207-
corrected 
ratios 

   

Ag
e 
Ma 

 

Ag
e 
Ma 

   
Sam
ple/ [U] 

[Th
] 

[P
b] 

Th
/U 

206Pb
/204P

b 
f206

% 238U ± 

207

Pb ± 

Dis
c. 
% 

207P
b ± 

206P
b 

±

 
207-
corr 

±

 

spot 
# 

pp
m 

pp
m 

pp
m 

m
ea
s 

mea
s   206Pb % 

206

Pb % 
con
v. 

206P
b   238U   

age 
(Ma)   

MY1 
                 

n511
4-11 

525
.2 

16
3.6 4.8 

0.
31 451 4.15 

128.2
151 

1.5
0 

0.0
51
1 

13
.8
0 

-
80.

0 
246

.6 

29
0.
1 

50.
1 

0.
7 49.8 

0.
9 

n511
4-08 

773
.1 

23
4.0 7.5 

0.
30 

1164
8 

{0.1
6} 

118.5
310 

0.8
9 

0.0
47
1 

1.
40 -8.0 

58.
9 

33
.0 

54.
2 

0.
5 54.2 

0.
5 

n511
4-01 

414
.1 

14
3.6 4.1 

0.
35 

8455
9 

{0.0
2} 

118.3
614 

0.9
7 

0.0
48
5 

1.
89 

-
57.

8 
127

.7 
43
.8 

54.
2 

0.
5 54.1 

0.
5 

n511
4-12 

463
.7 

30
5.4 4.9 

0.
66 

1630
8 

{0.1
1} 

118.2
110 

1.0
0 

0.0
47
2 

1.
81 

-
14.

5 
63.

4 
42
.7 

54.
3 

0.
5 54.3 

0.
5 

n511
4-06 

284
.9 

20
2.4 3.1 

0.
71 

3701
9 

{0.0
5} 

117.3
760 

0.9
6 

0.0
48
5 

2.
32 

-
56.

6 
125

.3 
53
.6 

54.
7 

0.
5 54.6 

0.
5 

n511
4-02 

216
.3 

12
9.7 2.3 

0.
60 

1651
6 

{0.1
1} 

117.2
255 

1.0
8 

0.0
48
9 

2.
62 

-
62.

0 
143

.1 
60
.5 

54.
8 

0.
6 54.6 

0.
6 

n511
4-10 

126
9.5 

68
0.2 

13.
4 

0.
54 

2345
3 

{0.0
8} 

115.1
895 

0.8
4 

0.0
47
9 

1.
91 

-
44.

0 
99.

1 
44
.5 

55.
7 

0.
5 55.7 

0.
5 

n511
4-07 

190
5.8 

21
19.

2 
23.

0 
1.
11 

2641
2 0.07 

114.6
028 

0.8
0 

0.0
46
5 

0.
95 

109
.7 

26.
8 

22
.7 

56.
0 

0.
4 56.0 

0.
4 

n511
4-09 

344
.5 

37
1.9 4.2 

1.
08 >1e6 

{0.0
0} 

114.2
663 

1.4
0 

0.0
46
7 

2.
08 

59.
4 

35.
3 

49
.1 

56.
2 

0.
8 56.2 

0.
8 

n511
4-03 

153
21.

0 

15
93.

6 
16

2.9 
0.
10 >1e6 

{0.0
0} 

101.4
252 

1.0
5 

0.0
47
6 

0.
35 

-
21.

4 
80.

3 
8.
4 

63.
2 

0.
7 63.2 

0.
7 

n511
4-05 

183
3.2 

16
61.

4 
23.

5 
0.
91 

3240
1 0.06 

101.2
462 

4.2
9 

0.0
46
1 

1.
10 

>10
0 

.4 0.0 
33
.2 

63.
4 

2.
7 63.4 

2.
7 

n511
4-14 

377
5.8 

29
3.6 

41.
4 

0.
08 873 2.14 

98.64
20 

1.3
5 

0.0
49
6 

8.
35 

-
63.

5 
176

.5 

18
4.
0 

65.
0 

0.
9 64.8 

1.
0 

MY4 
                 

n511
2-06 

615
.8 

23
4.5 7.3 

0.
38 4886 0.38 

93.22
11 

0.8
3 

0.0
47
8 

2.
08 

-
26.

4 
93.

3 
48
.6 

68.
8 

0.
6 68.7 

0.
6 

n511
2-09 

629
.2 

26
0.2 8.1 

0.
41 >1e6 

{0.0
0} 

91.50
32 

0.9
1 

0.0
47
4 

1.
37 -0.1 

70.
1 

32
.4 

70.
1 

0.
6 70.1 

0.
6 

n511
2-12 

761
.4 

27
1.2 9.6 

0.
36 

1287
9 0.15 

91.49
89 

0.8
4 

0.0
46
5 

1.
46 

161
.3 

26.
9 

34
.6 

70.
1 

0.
6 70.1 

0.
6 

n511
2-08 

937
.1 

20
5.8 

11.
5 

0.
22 

4755
9 

{0.0
4} 

91.16
31 

0.9
0 

0.0
46
8 

1.
13 

61.
0 

43.
8 

26
.8 

70.
3 

0.
6 70.4 

0.
6 

n511
2-03 

909
.7 

31
6.1 

11.
6 

0.
35 

2562
6 

{0.0
7} 

90.95
36 

1.5
3 

0.0
48
0 

1.
04 

-
32.

1 
103

.5 
24
.4 

70.
5 

1.
1 70.4 

1.
1 

n511
2-13 

741
.4 

15
5.3 9.1 

0.
21 

2921
2 

{0.0
6} 

90.20
05 

0.8
7 

0.0
48
0 

1.
23 

-
28.

8 
99.

7 
28
.9 

71.
1 

0.
6 71.0 

0.
6 

n511
2-10 

936
.2 

13
0.1 

11.
3 

0.
14 

1555
6 0.12 

89.97
50 

0.9
3 

0.0
46
9 

1.
34 

50.
5 

47.
4 

31
.8 

71.
3 

0.
7 71.3 

0.
7 

n511
2-04 

137
6.5 

16
1.2 

16.
7 

0.
12 

2419
35 

{0.0
1} 

89.60
84 

0.8
6 

0.0
47
7 

1.
01 

-
19.

8 
89.

1 
23
.8 

71.
5 

0.
6 71.5 

0.
6 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 78 

n511
2-01 

676
.9 

13
7.2 8.5 

0.
20 9660 0.19 

89.01
44 

1.8
5 

0.0
46
2 

1.
80 

>10
0 0.0 

54
.8 

72.
0 

1.
3 72.1 

1.
3 

n511
2-05 

894
.8 

24
4.5 

11.
4 

0.
27 

1187
6 0.16 

88.83
68 

0.8
1 

0.0
46
1 

1.
51 

>10
0 0.0 

43
.8 

72.
2 

0.
6 72.3 

0.
6 

n511
2-11 

110
7.2 

24
7.1 

14.
0 

0.
22 

7435
0 

{0.0
3} 

88.39
71 

0.9
9 

0.0
47
5 

1.
01 -8.3 

79.
0 

23
.7 

72.
5 

0.
7 72.5 

0.
7 

n511
2-07 

132
7.7 

61
25.

7 
67.

6 
4.
61 1397 1.34 

84.91
48 

2.3
0 

0.0
41
5 

2.
23 

130
.5 

-
253

.5 
55
.6 

75.
5 

1.
7 76.0 

1.
8 

n511
2-14 

103
8.7 

68
9.9 

10
1.1 

0.
66 >1e6 

{0.0
0} 

12.94
03 

0.9
4 

0.0
56
9 

0.
53 -2.2 

490
.2 

11
.7 

479
.9 

4.
4 

479.
7 

4.
4 

MY9 
                 

n510
4-13 

191
5.7 

91
7.7 

18.
9 

0.
48 1706 1.10 

119.0
510 

1.1
2 

0.0
39
7 

2.
66 

115
.1 

-
368

.2 
67
.7 

53.
9 

0.
6 54.4 

0.
6 

n510
4-
09x 

374
.0 

75.
2 4.5 

0.
20 

1521
6 

{0.1
2} 

92.80
05 

0.9
2 

0.0
48
3 

1.
50 

-
40.

9 
116

.5 
34
.9 

69.
1 

0.
6 69.0 

0.
6 

n510
4-
08x 

607
.2 

14
8.1 7.5 

0.
24 

2369
0 

{0.0
8} 

91.54
36 

0.9
7 

0.0
47
2 

1.
52 

15.
5 

60.
7 

35
.7 

70.
0 

0.
7 70.1 

0.
7 

n510
4-08 

801
.6 

14
8.9 9.7 

0.
19 

2174
0 

{0.0
9} 

91.29
15 

1.3
2 

0.0
48
0 

1.
17 

-
31.

0 
101

.5 
27
.5 

70.
2 

0.
9 70.2 

0.
9 

n510
4-09 

561
.9 

12
2.1 7.0 

0.
22 

2553
0 

{0.0
7} 

89.85
14 

1.1
9 

0.0
47
1 

1.
40 

23.
6 

57.
8 

33
.0 

71.
3 

0.
8 71.4 

0.
9 

n510
4-
03x 

136
4.4 

10
48.

5 
20.

1 
0.
77 2921 0.64 

87.92
31 

0.7
7 

0.0
47
6 

2.
68 -8.8 

79.
9 

62
.4 

72.
9 

0.
6 72.9 

0.
6 

n510
4-03 

157
4.9 

45
8.0 

20.
7 

0.
29 4261 0.44 

87.36
13 

1.1
0 

0.0
47
2 

1.
99 

16.
4 

63.
1 

46
.8 

73.
4 

0.
8 73.4 

0.
8 

n510
4-20 

677
.8 

66
8.0 

15.
6 

0.
99 744 2.51 

85.48
59 

2.0
4 

0.0
43
5 

5.
55 

155
.6 

-
137

.1 

13
2.
0 

75.
0 

1.
5 75.3 

1.
6 

n510
4-31 

232
6.8 

28
62.

9 
40.

9 
1.
23 

3671
1 0.05 

79.48
57 

2.6
1 

0.0
47
5 

0.
81 4.6 

77.
1 

19
.1 

80.
6 

2.
1 80.6 

2.
1 

n510
4-21 

512
.6 

85
3.8 

15.
6 

1.
67 

2806
4 0.07 

52.86
92 

0.8
6 

0.0
48
7 

1.
04 

-
12.

2 
137

.5 
24
.1 

120
.8 

1.
0 

120.
7 

1.
0 

n510
4-27 

153
.3 

22
9.3 4.6 

1.
50 

2523
3 

{0.0
7} 

51.44
75 

0.9
8 

0.0
46
8 

1.
80 

194
.8 

42.
4 

42
.6 

124
.1 

1.
2 

124.
4 

1.
2 

n510
4-
01x 

264
.1 

25
1.0 7.0 

0.
95 

3714
5 

{0.0
5} 

51.30
40 

0.8
3 

0.0
47
6 

1.
37 

55.
8 

80.
1 

32
.3 

124
.4 

1.
0 

124.
6 

1.
0 

n510
4-01 

335
.2 

31
6.4 8.9 

0.
94 

3828
8 

{0.0
5} 

51.05
83 

1.1
5 

0.0
48
9 

1.
37 

-
14.

7 
146

.4 
31
.8 

125
.0 

1.
4 

125.
0 

1.
4 

n510
4-04 

178
03.

0 

73
45.

3 
59

7.8 
0.
41 8201 0.23 

34.41
48 

2.5
6 

0.0
49
5 

0.
28 6.2 

174
.0 

6.
4 

184
.6 

4.
7 

184.
7 

4.
7 

n510
4-02 

191
3.1 

44.
8 

66.
2 

0.
02 

4897
3 0.04 

30.51
87 

1.3
2 

0.0
49
8 

0.
47 9.4 

190
.2 

10
.9 

207
.8 

2.
7 

207.
9 

2.
7 

n510
4-24 

277
4.0 

12
7.6 

96.
6 

0.
05 9891 0.19 

30.50
11 

1.6
8 

0.0
49
9 

1.
05 9.3 

190
.5 

24
.3 

208
.0 

3.
4 

208.
1 

3.
5 

n510
4-39 

150
.9 

12
2.6 6.5 

0.
81 5625 0.33 

30.38
06 

1.0
9 

0.0
50
1 

2.
27 3.5 

201
.8 

51
.8 

208
.8 

2.
2 

208.
8 

2.
3 

n510
4-07 

302
.1 

19
4.6 

12.
7 

0.
64 >1e6 

{0.0
0} 

30.00
59 

1.2
9 

0.0
50
3 

1.
19 -0.5 

212
.4 

27
.3 

211
.3 

2.
7 

211.
3 

2.
7 

n510
4-30 

511
.3 

48
4.7 

23.
2 

0.
95 3919 0.48 

29.85
10 

0.8
1 

0.0
50
6 

1.
34 -4.7 

222
.8 

30
.7 

212
.4 

1.
7 

212.
4 

1.
7 

n510 825 47 34. 0. 1771 0.11 29.68 0.8 0.0 0. 13. 188 14 213 1. 213. 1.

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 79 

4-34 .8 0.3 1 57 1 55 2 49
8 

64 8 .0 .8 .6 7 7 7 

n510
4-22 

41.
2 

61.
0 2.1 

1.
48 >1e6 

{0.0
0} 

29.66
53 

1.0
5 

0.0
49
3 

2.
56 

29.
2 

166
.1 

58
.8 

213
.7 

2.
2 

214.
0 

2.
2 

n510
4-32 

784
.7 

93.
4 

28.
9 

0.
12 

3036
09 

{0.0
1} 

29.49
87 

0.8
2 

0.0
50
7 

0.
68 -6.4 

229
.5 

15
.6 

214
.9 

1.
7 

214.
8 

1.
8 

n510
4-05 

895
.1 

87.
6 

33.
2 

0.
10 

8045
5 

{0.0
2} 

29.23
59 

1.1
9 

0.0
50
1 

0.
58 7.4 

202
.2 

13
.4 

216
.8 

2.
5 

216.
9 

2.
5 

n510
4-16 

959
.4 

63
7.1 

41.
4 

0.
66 9693 0.19 

29.06
35 

1.2
2 

0.0
49
6 

0.
73 

20.
9 

180
.8 

17
.0 

218
.1 

2.
6 

218.
3 

2.
6 

n510
4-10 

519
.6 

60
9.0 

25.
5 

1.
17 

4327
1 

{0.0
4} 

29.00
02 

1.0
6 

0.0
49
8 

1.
06 

16.
5 

188
.0 

24
.5 

218
.5 

2.
3 

218.
7 

2.
3 

n510
4-25 

67.
1 

25.
0 2.7 

0.
37 

5009
8 

{0.0
4} 

28.94
30 

0.9
7 

0.0
49
4 

2.
65 

30.
0 

169
.2 

60
.7 

219
.0 

2.
1 

219.
3 

2.
1 

n510
4-33 

120
9.0 

34
4.9 

48.
8 

0.
29 

3912
9 0.05 

28.38
43 

1.0
1 

0.0
50
6 

0.
51 -0.7 

224
.8 

11
.7 

223
.2 

2.
2 

223.
2 

2.
2 

n510
4-19 

724
.2 

43
3.7 

31.
5 

0.
60 

1361
74 

{0.0
1} 

28.33
67 

1.5
7 

0.0
49
9 

0.
88 

15.
1 

194
.7 

20
.3 

223
.6 

3.
5 

223.
7 

3.
5 

n510
4-06 

463
.6 

23
0.8 

20.
0 

0.
50 

5048
8 

{0.0
4} 

27.76
02 

1.7
3 

0.0
50
2 

0.
99 

11.
2 

205
.5 

22
.8 

228
.1 

3.
9 

228.
3 

3.
9 

n510
4-29 

393
0.2 

24.
2 

16
4.1 

0.
01 

5749
9 0.03 

25.18
21 

0.9
9 

0.0
49
9 

0.
31 

31.
1 

192
.3 

7.
2 

251
.0 

2.
4 

251.
4 

2.
5 

n510
4-36 

568
.4 

17
2.0 

56.
2 

0.
30 

4167
88 

{0.0
0} 

11.82
86 

1.6
4 

0.0
60
1 

0.
39 

-
14.

7 
609

.4 
8.
4 

523
.2 

8.
2 

521.
6 

8.
3 

n510
4-
02x 

787
.6 

31
2.9 

86.
9 

0.
40 

1912
02 

{0.0
1} 

11.60
57 

1.5
5 

0.0
66
6 

0.
33 

-
37.

0 
826

.8 
6.
8 

532
.8 

7.
9 

527.
0 

8.
0 

n510
4-15 

145
1.8 

62
9.9 

24
6.7 

0.
43 

8550
7 0.02 

7.331
1 

2.9
7 

0.0
95
0 

0.
41 

-
49.

0 
152
8.7 

7.
7 

824
.3 

2
3.
0 

794.
7 

2
3.
3 

n510
4-40 

108
6.5 

62
1.4 

25
8.0 

0.
57 

6344
21 

{0.0
0} 

5.249
5 

1.1
8 

0.0
76
0 

0.
17 2.8 

109
6.1 

3.
4 

112
4.1 

1
2.
2 

112
5.6 

1
2.
9 

n510
4-14 

682
.0 

44
4.0 

25
7.7 

0.
65 

4845
14 

{0.0
0} 

3.418
3 

1.2
5 

0.1
00
1 

0.
19 1.8 

162
7.8 

3.
6 

165
4.2 

1
8.
2 

>12
00 

 
n510
4-37 

131
8.3 

65
8.1 

11
12.

6 
0.
50 >1e6 0.00 

1.637
7 

0.7
8 

0.2
45
0 

0.
10 -3.2 

315
3.1 

1.
5 

307
2.4 

1
9.
1 

>12
00 

 MY1
82 

                 

1 
71.

2 
26.

0 2.3 
0.
37 2200 

260
0.00 

37.45
32 

0.9
3 

0.0
48
2 

0.
00 

-
55.

7 
109

.1 
88
.2 

169
.9 

2.
0 

170.
1 

4.
1 

2 
99.

5 
39.

8 3.3 
0.
40 5400 

720
0.00 

37.67
90 

0.8
5 

0.0
48
6 

0.
00 

-
31.

3 
128

.6 
82
.8 

168
.9 

1.
8 

169.
0 

3.
8 

3 
62.

9 
19.

6 1.6 
0.
31 2700 

340
0.00 

37.45
32 

0.8
8 

0.0
47
0 

0.
00 

-
245

.1 
49.

2 

11
1.
5 

169
.9 

1.
9 

170.
4 

4.
0 

4 
64.

2 
19.

4 1.5 
0.
30 2300 

480
0.00 

36.71
07 

0.8
5 

0.0
43
4 

0.
01 

219
.8 

-
144

.6 

13
6.
6 

173
.3 

1.
9 

174.
6 

4.
0 

6 
68.

3 
18.

0 1.4 
0.
26 2800 

540
0.00 

37.11
95 

0.8
4 

0.0
49
3 

0.
01 -5.7 

162
.1 

11
8.
9 

171
.4 

1.
9 

171.
4 

3.
8 

7 
72.

1 
18.

4 1.6 
0.
26 4900 

560
0.00 

36.77
82 

0.8
4 

0.0
49
4 

0.
01 -3.6 

166
.9 

11
0.
4 

172
.9 

1.
9 

173.
0 

3.
9 

9 
93.

5 
37.

1 3.0 
0.
40 3000 

560
0.00 

37.35
53 

0.8
5 

0.0
46
5 

0.
00 

-
620

.9 
23.

6 

11
7.
6 

170
.3 

1.
9 

170.
9 

3.
8 

10 
86.

8 
31.

6 2.8 
0.
36 4100 

440
0.00 

36.94
13 

0.9
0 

0.0
45

0.
00 

104
6.8 

-
18.

87
.8 

172
.2 

2.
0 

173.
0 

4.
1 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 80 

7 2 

11 
114

.1 
50.

7 3.9 
0.
44 

1500
0 

110
00.0

0 
36.96

86 
0.8

9 

0.0
51
4 

0.
00 

33.
5 

258
.8 

68
.5 

172
.1 

2.
0 

171.
7 

4.
1 

12 
105

.4 
33.

9 2.7 
0.
32 1900 

490
0.00 

37.52
35 

0.8
2 

0.0
49
0 

0.
00 

-
14.

7 
147

.8 
73
.2 

169
.5 

1.
8 

169.
6 

3.
6 

13 
102

.0 
36.

5 3.6 
0.
36 900 

660
0.00 

33.27
79 

0.7
5 

0.0
50
9 

0.
00 

19.
2 

236
.3 

71
.5 

190
.9 

2.
1 

190.
6 

4.
3 

14 
58.

3 
17.

9 1.6 
0.
31 

-
2600 

550
0.00 

36.03
60 

0.8
7 

0.0
48
2 

0.
00 

-
61.

7 
109

.1 
96
.9 

176
.5 

2.
1 

176.
8 

4.
2 

16 
62.

6 
20.

5 1.7 
0.
33 2500 

290
0.00 

36.61
66 

0.7
2 

0.0
50
3 

0.
00 

16.
8 

208
.9 

10
1.
7 

173
.7 

1.
7 

173.
5 

3.
4 

17 
203

.3 
35.

3 3.6 
0.
17 

1800
0 

120
00.0

0 
37.66

48 
0.8

4 

0.0
53
9 

0.
00 

54.
0 

366
.9 

54
.6 

168
.9 

1.
8 

168.
0 

3.
7 

18 
69.

7 
24.

4 2.0 
0.
35 3300 

570
0.00 

35.91
95 

0.8
9 

0.0
45
3 

0.
00 

548
.2 

-
39.

5 

10
5.
5 

177
.0 

2.
1 

178.
0 

4.
3 

19 
102

.7 
39.

5 3.0 
0.
38 5200 

600
0.00 

38.68
47 

1.2
3 

0.0
52
7 

0.
00 

47.
9 

315
.9 

68
.2 

164
.5 

2.
5 

163.
8 

5.
2 

20 
56.

1 
10.

9 0.8 
0.
19 600 

430
0.00 

37.10
58 

0.9
4 

0.0
57
3 

0.
01 

65.
9 

503
.1 

94
.1 

171
.4 

2.
1 

169.
8 

4.
3 

22 
54.

6 
14.

8 1.2 
0.
27 

1500
0 

150
00.0

0 
36.48

30 
0.9

8 

0.0
52
0 

0.
01 

38.
9 

285
.4 

11
0.
8 

174
.3 

2.
3 

173.
8 

4.
6 

23 
62.

9 
15.

3 1.5 
0.
24 

-
2800 

570
0.00 

33.90
98 

1.0
0 

0.0
50
2 

0.
00 8.3 

204
.3 

99
.9 

187
.4 

2.
6 

187.
3 

5.
4 

24 
53.

3 9.5 0.8 
0.
18 600 

480
0.00 

36.44
32 

1.0
1 

0.0
48
8 

0.
01 

-
26.

2 
138

.2 

12
8.
8 

174
.5 

2.
3 

174.
7 

4.
8 

25 
65.

7 
20.

6 1.8 
0.
31 3000 

800
0.00 

36.84
60 

0.8
6 

0.0
51
4 

0.
00 

33.
3 

258
.8 

82
.8 

172
.6 

1.
9 

172.
2 

4.
0 

 

 
  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 81 

Table 3 
Analysis 
No. Age 

 

176Hf/177

Hf 1 se 

176Lu/177

Hf 

176Yb/177

Hf 

176Hf/177

Hf Hf 1 TDM TDM
2 

  (Ma) 1s         initial     
(Ga

) 
crustal 

(Ga) 

MY37 
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7 1.83 

MY-34_4 62.3 0.6 
0.28241

5 
0.0049

57 
0.00162

1 0.0495 
0.28241

3 

-
11.

3 
0.
5 

1.2
0 1.85 

MY-34_5 62.3 0.6 
0.28239

2 
0.0037

18 
0.00513

0 0.1670 
0.28238

6 

-
12.

3 
0.
4 

1.3
6 1.91 

MY-34_6 62.3 0.6 
0.28241

4 
0.0054

88 
0.00093

5 0.0318 
0.28241

2 

-
11.

3 
0.
5 

1.1
8 1.85 

MY-34_7 62.3 0.6 
0.28243

5 
0.0046

03 
0.00211

5 0.0662 
0.28243

2 

-
10.

6 
0.
5 

1.1
9 1.81 

MY-34_9 62.3 0.6 
0.28239

8 
0.0054

89 
0.00096

2 0.0297 
0.28239

6 

-
11.

9 
0.
5 

1.2
0 1.89 

MY-34_10 62.3 0.6 
0.28242

2 
0.0044

26 
0.00160

3 0.0466 
0.28242

0 

-
11.

1 
0.
4 

1.1
9 1.83 

MY-34_11 62.3 0.6 
0.28240

3 
0.0047

80 
0.00163

3 0.0466 
0.28240

1 

-
11.

8 
0.
5 

1.2
2 1.88 

MY-34_12 62.3 0.6 
0.28243

1 
0.0053

11 
0.00089

1 0.0241 
0.28242

9 

-
10.

7 
0.
5 

1.1
5 1.81 

MY-34_13 62.3 0.6 
0.28240

6 
0.0051

34 
0.00140

0 0.0384 
0.28240

4 

-
11.

6 
0.
5 

1.2
0 1.87 

MY-34_14 62.3 0.6 
0.28239

1 
0.0037

18 
0.00152

0 0.0401 
0.28238

9 

-
12.

2 
0.
4 

1.2
3 1.90 

MY-34_15 62.3 0.6 
0.28240

9 
0.0033

64 
0.00189

9 0.0550 
0.28240

6 

-
11.

6 
0.
3 

1.2
2 1.86 

MY-34_16 62.3 0.6 
0.28240

9 
0.0037

18 
0.00259

6 0.0719 
0.28240

5 

-
11.

6 
0.
4 

1.2
4 1.87 

MY-34_21 62.3 0.6 
0.28242

4 
0.0047

80 
0.00147

4 0.0390 
0.28242

2 

-
11.

0 
0.
5 

1.1
8 1.83 

MYYAD 
           

MY-YAD_1 50.3 0.6 
0.28243

3 
0.0054

88 
0.00111

6 0.0269 
0.28243

1 

-
10.

9 
0.
5 

1.1
6 1.81 
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MY-YAD_6 50.3 0.6 
0.28247

6 
0.0042

48 
0.00113

8 0.0282 
0.28247

4 -9.4 
0.
4 

1.1
0 1.72 

MY-YAD_7 50.3 0.6 
0.28245

3 
0.0042

48 
0.00160

6 0.0402 
0.28245

1 

-
10.

2 
0.
4 

1.1
4 1.77 

MY-YAD_8 50.3 0.6 
0.28242

9 
0.0047

80 
0.00159

8 0.0393 
0.28242

7 

-
11.

1 
0.
5 

1.1
8 1.86 

MY-YAD_9 50.3 0.6 
0.28242

1 
0.0049

57 
0.00089

0 0.0218 
0.28242

0 

-
11.

3 
0.
5 

1.1
7 1.84 

MY-
YAD_10 50.3 0.6 

0.28245
4 

0.0038
94 

0.00085
6 0.0208 

0.28245
3 

-
10.

2 
0.
4 

1.1
2 1.77 

MY-
YAD_11 50.3 0.6 

0.28242
2 

0.0033
64 

0.00322
0 0.0754 

0.28241
8 

-
11.

4 
0.
3 

1.2
4 1.84 

MY-
YAD_12 50.3 0.6 

0.28247
6 

0.0044
25 

0.00087
9 0.0195 

0.28247
5 -9.4 

0.
4 

1.0
9 1.72 

MY-
YAD_13 50.3 0.6 

0.28245
1 

0.0040
72 

0.00160
3 0.0406 

0.28244
9 

-
10.

3 
0.
4 

1.1
5 1.78 

MY-
YAD_15 50.3 0.6 

0.28248
0 

0.0069
03 

0.00126
0 0.0335 

0.28247
8 -9.3 

0.
7 

1.1
0 1.71 

MY-
YAD_16 50.3 0.6 

0.28245
1 

0.0044
26 

0.00054
9 0.0148 

0.28245
0 

-
10.

3 
0.
4 

1.1
2 1.77 

MY1 
           

MY1_1 
55.0

2 
0.5

3 
0.28243

8 
0.0072

58 
0.00080

4 0.0270 
0.28243

7 

-
10.

6 
0.
7 

1.1
4 1.80 

MY1_2 
55.0

2 
0.5

3 
0.28230

6 
0.0040

74 
0.00064

5 0.0199 
0.28230

5 

-
15.

3 
0.
4 

1.3
2 2.09 

MY1_6 
55.0

2 
0.5

3 
0.28232

2 
0.0030

11 
0.00059

7 0.0184 
0.28232

1 

-
14.

7 
0.
3 

1.3
0 2.06 

MY1_7 
55.0

2 
0.5

3 
0.28246

7 
0.0038

94 
0.00267

0 0.0865 
0.28246

4 -9.7 
0.
4 

1.1
6 1.74 

MY1_8 
55.0

2 
0.5

3 
0.28242

2 
0.0035

41 
0.00122

7 0.0378 
0.28242

0 

-
11.

2 
0.
4 

1.1
8 1.84 

MY1_9 
55.0

2 
0.5

3 
0.28231

6 
0.0031

88 
0.00097

0 0.0311 
0.28231

5 

-
15.

0 
0.
3 

1.3
2 2.07 

MY1_10 
55.0

2 
0.5

3 
0.28231

2 
0.0035

42 
0.00100

6 0.0318 
0.28231

0 

-
15.

1 
0.
4 

1.3
2 2.08 

MY1_12 
55.0

2 
0.5

3 
0.28231

9 
0.0058

44 
0.00093

0 0.0314 
0.28231

8 

-
14.

9 
0.
6 

1.3
1 2.06 

MY4 
           

MY4_1 
71.1

2 
0.5

5 
0.28229

2 
0.0058

45 
0.00186

7 0.0602 
0.28228

9 

-
15.

5 
0.
6 

1.3
8 2.12 

MY4_3 
71.1

2 
0.5

5 
0.28223

3 
0.0024

80 
0.00120

1 0.0425 
0.28223

1 

-
17.

6 
0.
2 

1.4
4 2.25 

MY4_4 
71.1

2 
0.5

5 
0.28231

2 
0.0040

74 
0.00178

4 0.0632 
0.28230

9 

-
14.

8 
0.
4 

1.3
5 2.07 

MY4_5 
71.1

2 
0.5

5 
0.28230

1 
0.0037

19 
0.00150

3 0.0521 
0.28229

9 

-
15.

2 
0.
4 

1.3
6 2.10 

MY4_8 
71.1

2 
0.5

5 
0.28227

6 
0.0040

74 
0.00132

4 0.0461 
0.28227

4 

-
16.

0 
0.
4 

1.3
9 2.15 

MY4_9 
71.1

2 
0.5

5 
0.28228

1 
0.0056

68 
0.00117

1 0.0415 
0.28227

9 

-
15.

9 
0.
6 

1.3
7 2.14 

MY4_10 
71.1

2 
0.5

5 
0.28225

0 
0.0047

83 
0.00129

8 0.0456 
0.28224

8 

-
17.

0 
0.
5 

1.4
2 2.21 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 83 

MY4_11 
71.1

2 
0.5

5 
0.28226

9 
0.0037

20 
0.00145

2 0.0528 
0.28226

7 

-
16.

3 
0.
4 

1.4
0 2.17 

MY4_12 
71.1

2 
0.5

5 
0.28228

5 
0.0042

51 
0.00102

4 0.0371 
0.28228

3 

-
15.

7 
0.
4 

1.3
6 2.13 

MY4_13 
71.1

2 
0.5

5 
0.28230

1 
0.0042

51 
0.00179

9 0.0624 
0.28229

8 

-
15.

2 
0.
4 

1.3
7 2.10 

MY9 
           

MY-9_3 71.9 0.6 
0.28236

2 
0.0049

58 
0.00212

8 0.0573 
0.28235

9 

-
13.

0 
0.
5 

1.2
9 1.96 

MY-9_8 71.9 0.6 
0.28229

0 
0.0044

28 
0.00142

8 0.0393 
0.28228

8 

-
15.

5 
0.
4 

1.3
7 2.12 

MY-9_9 71.9 0.6 
0.28228

1 
0.0042

51 
0.00154

9 0.0434 
0.28227

8 

-
15.

9 
0.
4 

1.3
9 2.14 

MY-9_20 71.9 0.6 
0.28228

7 
0.0056

68 
0.00091

2 0.0230 
0.28228

5 

-
15.

6 
0.
6 

1.3
5 2.13 

MY-9_1 123 1 
0.28242

6 
0.0047

80 
0.00122

5 0.0323 
0.28242

3 -9.6 
0.
5 

1.1
7 1.79 

MY-9_21 123 1 
0.28243

8 
0.0042

49 
0.00222

7 0.0546 
0.28243

2 -9.3 
0.
4 

1.1
9 1.78 

MY-9_27 123 1 
0.28241

4 
0.0040

72 
0.00219

9 0.0538 
0.28240

8 

-
10.

1 
0.
4 

1.2
2 1.82 

MY-9_5 
218.

9 1.3 
0.28225

9 
0.0044

29 
0.00065

6 0.0176 
0.28225

6 

-
13.

4 
0.
4 

1.3
8 2.10 

MY-9_7 
218.

9 1.3 
0.28226

5 
0.0044

28 
0.00103

9 0.0278 
0.28226

0 

-
13.

3 
0.
4 

1.3
9 2.09 

MY-9_10 
218.

9 1.3 
0.28228

3 
0.0061

99 
0.00143

0 0.0351 
0.28227

7 

-
12.

7 
0.
6 

1.3
8 2.06 

MY-9_15 
218.

9 1.3 
0.28216

1 
0.0044

30 
0.00232

8 0.0537 
0.28215

1 

-
17.

1 
0.
4 

1.5
9 2.34 

MY-9_16 
218.

9 1.3 
0.28229

3 
0.0053

14 
0.00079

8 0.0196 
0.28228

9 

-
12.

3 
0.
5 

1.3
4 2.03 

MY-9_22 
218.

9 1.3 
0.28228

8 
0.0056

68 
0.00141

7 0.0383 
0.28228

2 

-
12.

5 
0.
6 

1.3
7 2.05 

MY-9_30 
218.

9 1.3 
0.28223

9 
0.0042

52 
0.00099

8 0.0231 
0.28223

4 

-
14.

2 
0.
4 

1.4
3 2.15 

MY-9_32 
218.

9 1.3 
0.28227

4 
0.0046

05 
0.00080

4 0.0196 
0.28227

0 

-
12.

9 
0.
5 

1.3
7 2.07 

MY-9_34 
218.

9 1.3 
0.28226

2 
0.0035

43 
0.00105

6 0.0256 
0.28225

7 

-
13.

4 
0.
4 

1.4
0 2.10 

MY-9_38 
218.

9 1.3 
0.28227

1 
0.0040

74 
0.00077

2 0.0186 
0.28226

7 

-
13.

0 
0.
4 

1.3
7 2.08 

MY-9_39 
218.

9 1.3 
0.28227

6 
0.0047

83 
0.00099

9 0.0272 
0.28227

1 

-
12.

9 
0.
5 

1.3
7 2.07 

MY106 
           

MY106_01 
16.8 0.5 

0.28260
1 

0.0148
62 

0.00059
6 0.0192 

0.28260
0 -5.7 

0.
4 

0.9
1 1.46 

MY106_02 
16.8 0.5 

0.28253
6 

0.0069
02 

0.00052
8 0.0203 

0.28253
5 -8.0 

0.
7 

1.0
0 1.60 

MY106_03 
16.8 0.5 

0.28256
2 

0.0074
32 

0.00069
1 0.0257 

0.28256
1 -7.1 

0.
7 

0.9
6 1.55 

MY106_04 
16.8 0.5 

0.28259
2 

0.0079
62 

0.00130
0 0.0555 

0.28259
1 -6.0 

2.
1 

0.9
4 1.48 

MY106_05 
16.8 0.5 

0.28256
3 

0.0051
32 

0.00080
6 0.0308 

0.28256
2 -7.0 

1.
4 

0.9
7 1.54 
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MY106_06 
16.8 0.5 

0.28253
1 

0.0053
09 

0.00051
4 0.0195 

0.28253
0 -8.2 

0.
2 

1.0
0 1.62 

MY106_07 
16.8 0.5 

0.28253
5 

0.0070
79 

0.00078
3 0.0271 

0.28253
4 -8.0 

0.
7 

1.0
0 1.61 

MY106_08 
16.8 0.5 

0.28254
2 

0.0053
09 

0.00070
6 0.0273 

0.28254
1 -7.8 

1.
0 

0.9
9 1.59 

MY106_09 
16.8 0.5 

0.28253
1 

0.0054
86 

0.00018
2 0.0068 

0.28253
0 -8.2 

0.
5 

0.9
9 1.62 

MY106_10 
16.8 0.5 

0.28250
0 

0.0058
41 

0.00021
3 0.0083 

0.28249
9 -9.3 

1.
3 

1.0
4 1.68 

MY106_11 
16.8 0.5 

0.28256
9 

0.0054
85 

0.00065
0 0.0245 

0.28256
8 -6.8 

0.
4 

0.9
5 1.53 

MY106_12 
16.8 0.5 

0.28254
0 

0.0063
71 

0.00075
2 0.0281 

0.28253
9 -7.8 

0.
8 

1.0
0 1.59 

MY106_13 
16.8 0.5 

0.28254
4 

0.0056
63 

0.00072
4 0.0249 

0.28254
3 -7.7 

0.
5 

0.9
9 1.59 

MY106_14 
16.8 0.5 

0.28251
8 

0.0084
95 

0.00103
6 0.0392 

0.28251
7 -8.6 

0.
7 

1.0
4 1.64 

MY106_15 
16.8 0.5 

0.28257
4 

0.0063
70 

0.00081
6 0.0320 

0.28257
3 -6.6 

0.
8 

0.9
5 1.51 

MY106_16 
16.8 0.5 

0.28263
3 

0.0171
60 

0.00109
0 0.0423 

0.28263
2 -4.6 

2.
3 

0.8
7 1.38 

MY145 
           

MY145_01 40 0.2 
0.28280

6 
0.0159

12 
0.00348

4 0.1400 
0.28280

3 2.0 
1.
7 

0.6
7 0.99 

MY145_02 40 0.2 
0.28279

2 
0.0038

90 
0.00144

9 0.0507 
0.28279

0 1.5 
0.
9 

0.6
6 1.01 

MY145_04 40 0.2 
0.28280

3 
0.0058

34 
0.00204

6 0.0724 
0.28280

1 1.9 
1.
4 

0.6
5 0.99 

MY145_05 40 0.2 
0.28278

9 
0.0067

19 
0.00194

0 0.0696 
0.28278

7 1.4 
3.
0 

0.6
7 1.02 

MY145_06 40 0.2 
0.28277

5 
0.0088

41 
0.00201

0 0.0710 
0.28277

3 0.9 
3.
9 

0.6
9 1.05 

MY145_07 40 0.2 
0.28275

6 
0.0074

27 
0.00190

5 0.0674 
0.28275

4 0.3 
1.
3 

0.7
2 1.10 

MY145_08 40 0.2 
0.28280

0 
0.0067

19 
0.00186

0 0.0660 
0.28279

8 1.8 
2.
3 

0.6
5 1.00 

MY145_10 40 0.2 
0.28282

5 
0.0084

86 
0.00288

0 0.1020 
0.28282

2 2.7 
5.
1 

0.6
3 0.94 

MY145_11 40 0.2 
0.28274

7 
0.0067

20 
0.00084

3 0.0292 
0.28274

6 -0.0 
0.
3 

0.7
1 1.11 

MY145_12 40 0.2 
0.28278

3 
0.0104

32 
0.00154

0 0.0523 
0.28278

1 1.2 
1.
8 

0.6
7 1.03 

MY145_13 40 0.2 
0.28277

7 
0.0076

03 
0.00160

1 0.0565 
0.28277

5 1.0 
1.
6 

0.6
8 1.05 

MY145_14 40 0.2 
0.28283

2 
0.0077

78 
0.00287

0 0.0988 
0.28282

9 2.9 
3.
7 

0.6
2 0.93 

MY182 
           

MY182 - 1 172 0.7 
0.28317

1 
0.0000

89 
0.00633

0 0.0834 
0.28315

0 
17.

2 
2.
4 

0.1
3 0.11 

MY182 - 2 172 0.7 
0.28304

6 
0.0000

88 
0.00792

2 0.1226 
0.28302

0 
12.

6 
2.
2 

0.3
5 0.41 

MY182 - 3 172 0.7 
0.28310

0 
0.0001

00 
0.00452

0 0.0643 
0.28308

5 
14.

9 
3.
0 

0.2
3 0.26 

MY182 - 4 172 0.7 
0.28319

0 
0.0001

10 
0.00437

8 0.0643 
0.28317

5 
18.

1 
3.
4 

0.0
9 0.06 

MY182 - 6 172 0.7 
0.28318

0 
0.0001

00 
0.00340

1 0.0511 
0.28316

9 
17.

8 
3.
2 

0.1
0 0.07 

MY182 - 7 172 0.7 
0.28307

6 
0.0000

84 
0.00321

0 0.0501 
0.28306

5 
14.

2 
2.
6 

0.2
6 0.31 

MY182 - 8 172 0.7 
0.28305

0 
0.0001

00 
0.00296

6 0.0498 
0.28304

0 
13.

3 
3.
2 

0.3
0 0.37 

MY182 - 9 172 0.7 
0.28304

0 
0.0001

40 
0.00560

2 0.1133 
0.28302

2 
12.

6 
4.
3 

0.3
4 0.41 

MY182 - 
10 172 0.7 

0.28307
0 

0.0001
00 

0.00524
7 0.1036 

0.28305
3 

13.
7 

2.
9 

0.2
9 0.34 

MY182 - 
11 172 0.7 

0.28313
8 

0.0000
87 

0.00455
0 0.0820 

0.28312
3 

16.
2 

2.
6 

0.1
7 0.18 

MY182 - 
12 172 0.7 

0.28317
0 

0.0000
87 

0.00467
0 0.1056 

0.28315
4 

17.
3 

2.
5 

0.1
2 0.10 

MY182 - 
16 172 0.7 

0.28315
0 

0.0000
84 

0.00316
6 0.0714 

0.28313
9 

16.
8 

2.
6 

0.1
5 0.14 

MY182 - 
17 172 0.7 

0.28309
4 

0.0000
85 

0.00247
2 0.0546 

0.28308
6 

14.
9 

2.
7 

0.2
3 0.26 
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MY182 - 
18 172 0.7 

0.28311
2 

0.0000
99 

0.00401
0 0.1035 

0.28309
9 

15.
3 

3.
0 

0.2
1 0.23 

MY182 - 
21 172 0.7 

0.28315
0 

0.0001
60 

0.00130
5 0.0284 

0.28314
5 

16.
9 

5.
5 

0.1
4 0.13 

MY182 - 
22 172 0.7 

0.28312
5 

0.0000
60 

0.00230
8 0.0493 

0.28311
7 

16.
0 

1.
9 

0.1
8 0.19 

MY182 - 
23 172 0.7 

0.28314
8 

0.0000
82 

0.00242
0 0.0591 

0.28314
0 

16.
8 

2.
6 

0.1
5 0.14 

MY182 - 
24 172 0.7 

0.28298
0 

0.0001
00 

0.00256
0 0.0550 

0.28297
1 

10.
8 

3.
2 

0.4
0 0.52 
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Table 4 

Sample Seq. in 18O/16O Samples Standards Stage Position 

Field 

Aperture 

ID run drift corrected δ18O (‰) δ18O (‰)   Centring 

     x y X Y 

MY4         

915ox_mt1428_@1 1 0.00201976 ± 13 

 

9.76 ± 0.13 -5560 701 -13 -4 

915ox_mt1428_@2 2 0.00201996 ± 13  

 

9.86 ± 0.13 -5620 701 -13 -5 

915ox_mt1428_@3 3 0.00201981 ± 19 

 

9.78 ± 0.15 -5680 701 -14 -5 

Tem2ox_mt1428_@1 4 0.00201609 ±17 

 

7.92 ± 0.14 -4965 3691 -8 -2 

n5334ox_@1 5 0.00201808 ± 25 8.92 ± 0.17 

 

-928 -3097 0 -8 

n5334ox_@2 6 0.00201819 ± 21 8.97 ± 0.15 

 

-886 -2973 0 -7 

n5334ox_@3 7 0.00201795 ± 13 8.85 ± 0.13 

 

-852 -2937 1 -7 

n5334ox_@4 8 0.00201796 ± 17 8.86 ± 0.14 

 

-684 -2388 4 -6 

n5334ox_@5 9 0.00201822 ± 19 8.99 ± 0.15 

 

-725 -2830 2 -7 

n5334ox_@6 10 0.00201800 ± 23 8.88 ± 0.16 

 

-465 -3149 3 -8 

915ox_mt1428_@4 11 0.00201992 ± 30 

 

9.84 ± 0.19 -5560 641 -15 -5 

915ox_mt1428_@5 12 0.00202027 ± 23 

 

10.01 ± 0.16 -5620 641 -15 -6 

n5334ox_@7 13 0.00201788 ± 17 8.81 ± 0.14 

 

-316 -3578 3 -9 

n5334ox_@8 14 0.00201829 ± 27 9.02 ± 0.17 

 

-313 -3629 2 -9 

n5334ox_@9 15 0.00201843 ± 23 9.09 ± 0.16 

 

-226 -3635 3 -9 

n5334ox_@10 16 0.00201843 ± 24 9.09 ± 0.16 

 

-693 -3789 -1 -9 

n5334ox_@11 17 0.00201765 ± 27 8.70 ± 0.18 

 

-717 -3694 -1 -9 
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n5334ox_@12 18 0.00201809 ± 18 8.92 ± 0.14 

 

-875 -4254 -4 

-

10 

915ox_mt1428_@6 19 0.00201973 ± 17 

 

9.74 ± 0.14 -5680 641 -16 -6 

915ox_mt1428_@7 20 0.00202021 ± 19 

 

9.98 ± 0.15 -5740 641 -16 -6 

Tem2ox_mt1428_@2 21 0.00201573 ± 21 

 

7.74 ± 0.15 -4640 4032 -5 -2 

n5334ox_@13 22 0.00201830 ± 13 9.02 ± 0.13 

 

-841 -4725 -5 

-

11 

MY1         

n5333ox_@1 23 0.00201544 ± 19 7.60 ± 0.15 

 

2504 -4411 25 -9 

n5333ox_@2 24 0.00201601 ± 16 7.88 ± 0.14 

 

2462 -4417 23 

-

10 

n5333ox_@3 25 0.00201462 ± 16 7.19 ± 0.14 

 

2393 -4211 23 -9 

n5333ox_@4 26 0.00201427 ± 23 7.01 ± 0.16 

 

2591 -4296 26 -8 

n5333ox_@5 27 0.00201551 ± 22 7.63 ± 0.16 

 

2862 -4108 27 -9 

915ox_mt1428_@8 28 0.00202029 ± 17 

 

10.02 ± 0.14 -5800 641 -17 -5 

915ox_mt1428_@9 29 0.00202012 ± 29 

 

9.94 ± 0.18 -5560 581 -17 -5 

n5333ox_@6 30 0.00201501 ± 21 7.38 ± 0.15 

 

2827 -3824 28 -7 

n5333ox_@7 31 0.00201291 ± 26 6.33 ± 0.17 

 

2599 -3566 26 -7 

n5333ox_@8 32 0.00201558 ± 18 7.67 ± 0.14 

 

2641 -3286 26 -7 

n5333ox_@9 33 0.00201543 ± 20 7.59 ± 0.15 

 

2613 -2840 27 -7 

n5333ox_@10 34 0.00201452 ± 27 7.13 ± 0.18 

 

2392 -2895 25 -7 

n5333ox_@11 35 0.00201252 ± 20 6.14 ± 0.15 

 

2552 -2466 28 -6 

915ox_mt1428_@10 36 0.00202035 ± 24 

 

10.05 ± 0.17 -5620 581 -17 -5 

915ox_mt1428_@11 37 0.00201956 ± 20 

 

9.65 ± 0.15 -5680 581 -17 -6 
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Tem2ox_mt1428_@3 38 0.00201628 ± 18 

 

8.02 ± 0.14 -4468 3498 -7 -1 

n5333ox_@12 39 0.00201178 ± 23 5.77 ± 0.16 

 

2745 -2310 30 -6 

n5333ox_@13 40 0.00201631 ± 14 8.03 ± 0.13 

 

2809 -2003 31 -6 

n5333ox_@14 41 0.00201354 ± 15 6.65 ± 0.14 

 

2461 -1883 28 -6 

915ox_mt1428_@12 46 0.00201967 ± 21 

 

9.71 ± 0.15 -5740 581 -17 -6 

915ox_mt1428_@13 47 0.00201989 ± 16 

 

9.82 ± 0.14 -5800 581 -17 -5 

MY145         

n5329ox_@1 32 0.00201362 ± 33 5.79 ± 0.21 

 

-1440 -655 3 3 

n5329ox_@02 33 0.00201281 ± 19 5.38 ± 0.17 

 

-1109 -670 5 3 

n5329ox_@03 34 0.00201360 ± 18 5.78 ± 0.16 

 

-1157 -693 4 2 

915ox_mt1432_@10 35 0.00202144 ± 29 

 

9.70 ± 0.20 -3739 1776 0 3 

915ox_mt1432_@11 36 0.00202216 ± 16 

 

10.05 ± 0.16 -3831 1435 -3 3 

n5329ox_@04 37 0.00201326 ± 24 5.61 ± 0.18 

 

-1494 -1284 0 2 

n5329ox_@05 38 0.00201293 ± 25 5.44 ± 0.19 

 

-1215 -1044 3 1 

n5329ox_@06 39 0.00201293 ± 14 5.45 ± 0.15 

 

-670 -1090 6 1 

n5329ox_@07 40 0.00201286 ± 25 5.41 ± 0.18 

 

-629 -1804 4 2 

n5329ox_@08 41 0.00201309 ± 20 5.52 ± 0.17 

 

-463 -2008 4 0 

n5329ox_@09 42 0.00201310 ± 14 5.53 ± 0.15 

 

-442 -2088 4 0 

915ox_mt1432_@12 43 0.00202167 ± 25 

 

9.81 ± 0.18 -3847 1360 -2 3 

915ox_mt1432_@13 44 0.00202187 ± 24 

 

9.91 ± 0.18 -3840 1288 -3 2 

n5329ox_@10 45 0.00201278 ± 28 5.37 ± 0.19 

 

-846 -2195 1 -1 

n5329ox_@11 46 0.00201311 ± 16 5.54 ± 0.16 

 

-1234 -2411 -2 -1 
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n5329ox_@12 47 0.00201276 ± 21 5.36 ±0.17 

 

-903 -2716 -1 -1 

n5329ox_@13 48 0.00201266 ± 18 5.31 ± 0.16 

 

-580 -2969 0 -1 

n5329ox_@14 49 0.00201291 ± 23 5.43 ± 0.18 

 

-280 -2948 3 -1 

n5329ox_@15 50 0.00201266 ± 32 5.31 ± 0.21 

 

-206 -2952 3 -2 

915ox_mt1432_@14 51 0.00202080 ± 35 

  

-3919 1452 -2 2 

915ox_mt1432_@15 52 0.00202130 ± 14 

 

9.63 ± 0.16 -3924 1389 -2 2 

n5329ox_@16 53 0.00201279 ± 15 5.37 ± 0.16 

 

-1282 -3505 -7 -2 

MY106         

915ox_mt1433_@1 1 0.00202383 ± 18 

 

9.89 ± 0.13 -5207 -116 -34 7 

915ox_mt1433_@2 2 0.00202371 ± 19 

 

9.83 ± 0.13 -5234 -178 -36 7 

915ox_mt1433_@3 3 0.00202356 ± 12 

 

9.75 ± 0.11 -5301 -161 -35 7 

Tem2ox_mt1433_@1 4 0.00201975 ± 34 

 

7.85 ± 0.19 -4667 -4968 -106 11 

n5326ox_@1 5 0.00202015 ± 16 8.05 ± 0.12 

 

-198 -1620 -25 7 

n5326ox_@02 6 0.00202141 ± 22 8.68 ± 0.14 

 

-103 -1658 -26 6 

n5326ox_@03 7 0.00202162 ± 19 8.78 ± 0.13 

 

-56 -1259 -18 7 

n5326ox_@04 8 0.00202209 ± 20 9.02 ± 0.14 

 

-56 -1132 -17 7 

n5326ox_@05 9 0.00202119 ± 13 8.57 ± 0.11 

 

430 -1259 -15 7 

n5326ox_@06 10 0.00202149 ± 12 8.72 ± 0.11 

 

-582 -1414 -24 7 

915ox_mt1433_@4 11 0.00202390 ± 15 

 

9.92 ± 0.12 -5301 -85 -31 7 

915ox_mt1433_@5 12 0.00202406 ± 21 

 

10.00 ± 0.14 -5316 -14 -30 7 

Tem2ox_mt1433_@2 13 0.00202034 ± 21 

 

8.14 ± 0.14 -4707 -4935 -103 10 

n5326ox_@07 14 0.00202198 ± 19 8.96 ± 0.13 

 

-813 -1420 -24 6 
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n5326ox_@08 15 0.00202105 ± 27 8.50 ± 0.16 

 

-1163 -1406 -27 6 

n5326ox_@09 16 0.00202016 ± 22 8.06 ± 0.14 

 

-1184 -897 -20 6 

n5326ox_@10 17 0.00201966 ± 16 7.81 ± 0.12 

 

-1091 -890 -20 6 

n5326ox_@11 18 0.00202049 ± 20 8.22 ± 0.13 

 

-532 -1036 -17 7 

n5326ox_@12 19 0.00202032 ± 18 8.13 ± 0.13 

 

-398 -1414 -22 7 

915ox_mt1433_@6 20 0.00202394 ± 17 

 

9.94 ± 0.13 -5311 58 -28 7 

915ox_mt1433_@7 21 0.00202371 ± 18 

 

9.83 ± 0.13 -5606 16 -29 6 

Tem2ox_mt1433_@3 22 0.00202019 ± 12 

 

8.07 ± 0.11 -4721 -4973 -102 8 

 

 
  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 91 

 
 
TABLE 5 

Belt Age (Ma) Hf  18O ‰  Notes 

Eastern Province 266 -10.9 – -6.4  Pre to Post 
Collisional/ 
Arc 

Palaeo-
Tethys 

Main Range Province 220 
(80–70) 

-13.5 – -8.8  Post 
Collisional 

Palaeo-
Tethys 

Tagaung-Myitkyina 
Belt 

172 18.1 – 10.8  ?Pre-
Collisional 
Arc 

Meso-
Tethys? 

Mogok-Mandalay-
Mergui Belt 
(Tin Province) 

77–50 -1.2 – -15.2 5.6–8.3 Pre to Post 
Collisional 
or back-arc 

Neo-Tethys 

Mogok-Mandalay-
Mergui Belt 
(Mogok Belt) 

219; 123; 71–
55; 17 

-4.6 – -17.6 6.3–9.2 Post 
Collisional 

Neo-Tethys 

Wuntho-Popa Arc 102–98; 40 (16) 13.3 – 0.3 5.2–5.8 Pre and 
Post 
Collisional 
Arc 

Neo-Tethys 
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TABLE 6 

 Advantages Requirements Problems 

1) Greater Sibumasu 

(Morley and Searle, 
2017) 

1) Is a good size for a 
ribbon continent, Lord 
Howe Rise is a good 
analogue. 
2) Simplest model. 
3) Compatible with detrital 
zircon data of 
Sevastjanova et al. (2016) 

1) Pre Middle Cretaceous 
ophiolite (s) emplaced 
from west.  
2) Gondwana origin for 
block. 
3) Rifting can explain the 
stratigraphic variations in 
the Carboniferous-
Permian section.  

1) What to do with SW to 
southern extension of 
Luxi-Nujiang suture? 
2) How to explain 
Carboniferous-Permian 
Cathaysian fauna in NE 
Central Myanmar Basin?  

2) West Burma Block A 

(Gatinksy and Hutchison, 
1987; Hall, 2012, 2014; 
Hall et al., 2009; 
Hutchison, 1989; 
Metcalfe, 2011b; Mitchell, 
1993; Morley, 2012; 
Sevastjanova et al., 
2016) 
 

1) Evidence for location, 
and timing of collision (in 
Triassic) from detrital 
zircon data (Sevastjanova 
et al., 2016) 

1) Gondwana origin for 
block. 
2) Early collision or 
amalgamation with 
Sibumasu (Triassic). 
3) Pre Middle Cretaceous 
ophiolite (s) emplaced 
from west.  
4) Rifting can explain the 
stratigraphic variations in 
the Carboniferous-
Permian section. 

1) What to do with SW to 
southern extension of 
Luxi-Nujiang suture? 
2) How to explain 
Carboniferous-Permian 
Cathaysian fauna in NE 
Central Myanmar Basin? 

3) West Burma Block B. 

(Barber and Crow, 2009; 
Metcalfe, 2013)  

1) Possibly Mt Victoria area 
represents a Gondwana 
fragment outboard of the 
Cathaysian Block.  
2) Is consistent with the 
origin of terranes in 
Sumatra.  
 

1) Cathaysian origin for 
block. 
2) Collision in Triassic, 
then long-distance strike-
slip motion to put in 
position adjacent to 
Sibumasu.  
3) Pre Middle Cretaceous 
ophiolite (s) emplaced 
from west.  
 

1) Evidence for Indosinian 
age strike-slip fault on 
eastern margin has yet to 
be established.  
2) What to do with SW to 
southern extension of 
Luxi-Nujiang suture? 
3) Does not directly 
address stratigraphic 
variations (particularly 
those in the 
Carboniferous-Permian) 
across Sibumasu 
 
 

4) West Burma Block C 

(Audley-Charles, 1988; 
Metcalfe, 1990; Sengor, 
1987; Veevers, 1988) 
  

 1) Separated from 
Western Australia in 
Jurassic. 
2) Accreted to SE Asia in 
Cretaceous.  

) 1Timing of separation 
from Western Australia is 
incompatible in plate 
reconstructions with 
Cretaceous collision with 
Myanmar (Hall, 2012, 
2014).  
2) Scenario incompatible 
with findings from Detrital 
zircon study of 
Sevastjanova et al. (2016) 

5) Irrawaddy Block  

(Ridd, 2016; Ridd, 2017) 
1) Permits emplacement of 
pre-Mid Cretaceous 
ophiolites from the east. 
2) Explains the projection 
of the Luxi-Nujiang suture 
from Yunnan into 
Myanmar. 

1) Requires that the 
stratigraphic variations 
observed between 
eastern and western 
Sibumasu are so 
fundamentally different 
and incompatible as to 
need a suture zone 
between them.   
2) A cryptic suture is 
located along the trend of 
the Pan Luang Fault in 
Myanmar, and the Three 
Pagodas-Ranong-Khlong 

1) Sibumasu (Sibuma) 
reduced to very narrow 
continental sliver.  
2) For incorrect reasons 
considers the 
metamorphics around 
Mogok to be separate 
(part of Sibuma) from rest 
of the metamorphic belt 
(part of the Irrawaddy 
Block).  
3) No hard evidence for a 
(purely cryptic) suture 
(Luxi-Nujiang) on the 
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Marui faults in Thailand.  
3) That the Luxi-Nujiang 
Suture cuts across the 
Mogok Metamorphic belt 
north of Mogok.   
 
 

eastern side of the 
Irrawaddy Block either in 
Myanmar or Thailand.  
4) Requires unrealistic 
restoration of blocks onto 
Gondwana margin. 
5) Incompatible with 
existence of Cathaysian 
fossils in Central Myanmar  
 

6) Western Myanmar 
Mogok Foreland 

(Mitchell, 2018; Mitchell 
et al., 2015) 

1) Permits emplacement of 
pre-Mid Cretaceous 
ophiolites from the east  
2) Compared with 
Irrawaddy Block A model, 
the Mogok Metamorphic 
belt is considered as a 
single entity.  
2) Explains the projection 
of the Luxi-Nujiang suture 
from Yunnan into 
Myanmar. 

1) That the stratigraphic 
variations observed 
between eastern and 
western Sibumasu are so 
fundamentally different 
and incompatible as to 
require a suture zone 
between them.   
2) A cryptic suture is 
located along the trend of 
the Pan Luang Fault in 
Myanmar, and the Three 
Pagodas-Ranong-Khlong 
Marui faults in Thailand.  
3) That the Luxi-Nujiang 
Suture runs between the 
Mogok Metamorphic Belt 
and the Chaung Magyi  
formation.  
 

1) No hard evidence for a 
(purely cryptic) suture 
(Luxi-Nujiang) on the 
eastern side of the 
Irrawaddy Block either 
 in Myanmar or Thailand. 
2) Incompatible with 
existence of Cathaysian 
fossils in Central Myanmar  
  
 

7) West Burma Platelet 

(Rangin et al., 2013)  
 1) Treats Mt Victoria 

region as separate from 
the area under the 
Central Basin.  
2) Requires a suture 
between Mt Victoria area, 
and the Central Myanmar.  
 

1) Does not fit with 
findings of detrital zircon 
study of Sevastjanova et 
al. (2016). 
2) Is only focused on origin 
of  schists and Triassic 
clastics in eastern Indo-
Burma Ranges, does not 
offer solution for Central 
Myanmar.  

8) Greater Sibumasu-
Tengchong 

(this study) 

1) Compatible with detrital 
zircon data of 
Sevastjanova et al. (2016) 
2) Accommodates a Meso-
Tethys suture within 
Myanmar 

1) Gondwana origin for 
block. 
2) Rifting can explain the 
stratigraphic variations in 
the Carboniferous-
Permian section. 
 

1) Does not satisfactorily 
explain the location of the 
Myitkyina Ophiolite and 
arc-related rocks within the 
Tagaung-Myitkyina Belt. 
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Appendix A: NordSIMS Cameca 1280 Ion Probe Zircon U/Pb 

Geochronology Analytical Methodology 

Zircon U–Pb analyses on samples MY1, MY4 and MY9 was performed at the 

NordSIMS facility (Swedish Museum of Natural History, Stockholm) using a 

CAMECA IMS 1280 SIMS. Analytical procedures closely follow those of 

Whitehouse et al. (1999) and  Whitehouse and Kamber (2005), using a ca. 6 

nA O2 primary ion beam to sputter an elliptic crater of ca. 20–25 m. 

Secondary ions were measured at a mass resolution sufficient to resolve Pb 

ions from molecular interferences (M/M c. 5400) using a single ion-counting 

electron multiplier and a peak-hopping routine. All analyses were run in fully 

automated chain sequences. The U/Pb ratio calibration was based on 

regularly interspersed analyses of the 91500 zircon standard. Common lead 

corrections were made using the terrestrial Pb-isotope composition of Stacey 

and Kramers (1975) when the count rate of 204Pb exceeded detection limit (3 

× standard deviation of the detector background over the analytical session). 

Ages were calculated and presented using Isoplot v3.16; Ludwig (2004). Ages 

are presented at the 95% confidence (2) level and, when concordia ages are 

calculated, the quoted mean square of weighted deviates (MSWD) value is 

that of combined concordance and equivalence following the recommendation 

of Ludwig (2004). 

Appendix B: Curtin GeoHistory Facility LA-(MC)-ICP-MS Split-stream 

U/Pb and Lu/Hf Geochronology Analytical Methodology 

Sample MY182 was analyzed for combined zircon U-Pb and Lu-Hf analysis 

through combined laser ablation inductively-coupled plasma mass 
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spectrometry (LA-ICP-MS) and multicollector mass spectrometry (MA-MC-

ICP-MS) at the John de Laeter Centre, Curtin University. Zircon grains were 

ablated using a Resonetics RESOlution M-50A-LR sampling system 

(incorporating a Compex 102 excimer laser) coupled to an Agilent 7700 ICP-

MS. Following 15-20 seconds of background analysis, samples were ablated 

for 30 seconds at a 7 Hz repetition rate using a 33 μm beam spot, and laser 

energy of 1.5 J/cm2. The sample cell was flushed by ultrahigh purity He (0.68 

L min-1) and N2 (2.8 mL min-1). Isotopic intensities were measured using an 

Agilent 7700s quadrupole ICP-MS, with high purity Ar as the plasma gas. In 

each scan of the mass spectrum, the dwell time for most elements was 0.01 

s, with the exception of 88Sr (0.02 s), 139La (0.04 s), 141Pr (0.04 s), 204Pb, 

206Pb, 207Pb, 208Pb (0.03 s), 232Th (0.0125 s), and 238U (0.0125 s). International 

glass standard NIST 610 was used as the primary standard to calculate 

elemental concentrations other than Hf (using 29Si as the internal standard 

element and an assumed 14.76 % Si content in zircon) and to correct for 

instrument drift. Hf in zircon samples was determined using standard zircon 

GJ-1 (Jackson et al., 2004) with 90Zr as the internal standard element. 

Standard blocks were typically run after 20 unknown analyses. During the 

time-resolved analysis, contamination resulting from inclusions and 

compositional zoning was monitored, and only the relevant part of the signal 

was integrated. The trace element results for NIST 612 (secondary standard) 

using NIST 610 as the reference material and assuming 33.6 wt % Si, indicate 

that the accuracy was better than 3% for most elements with the exception of 

P (5%) and Fe (10%). The analytical precision was better than 10% for most 

elements. 
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Appendix C: NIGL LA-MC-ICP-MS Lu-Hf Analytical Methodology 

Samples MY1, MY4, MY9, MY106, MY34, MY37, MYYAD, and MY145 were 

analyzed at the NERC Isotope Geosciences Laboratory (NIGL) to measure 

their zircon Lu-Hf isotopic compositions using a Thermo Scientific Neptune 

Plus MC-ICP-MS coupled to a New Wave Research UP193UC excimer laser 

ablation system (see Spencer et al. (2015) for the full method description). 

Helium was used as the carrier gas through the ‘TwoVol2’ cell, and mixed with 

Argon at a Y-piece before the torch. Measurement comprised the masses: 

172Yb, 173Yb, 175Lu, 176Hf+Yb+Lu, 177Hf, 178Hf, 179Hf and 180Hf, with a 1 second 

integration time during a 30 second ablation. A 35 μm spot size was used, 

with a fluence of 7 j.cm-2. Standard sample bracketing using reference 

material zircons Plešovice, Mud Tank and 91500 (Sláma et al., 2008; 

Woodhead and Hergt, 2005) allowed for the monitoring of precision and 

accuracy, correction for instrumental drift of the Lu/Hf ratio, and accuracy of 

the Yb ratio correction. Normalization of the laser ablation Hf isotope data was 

achieved with solution analyses of reference solution JMC475 (both un-doped 

and doped with up to 5 ppb Yb). The interference of 176Yb on the 176Hf peak 

was corrected using a 176Yb/173Yb ratio calibrated for Hf mass bias using the 

Yb-doped JMC475 solutions (Nowell and Parrish, 2001). The 176Lu 

interference on the 176Hf peak was corrected using the measured 175Lu and an 

assumed natural ratio of 176Lu/175Lu of 0.02653. Systematic uncertainties of Hf 

and Lu isotope ratios were propagated quadratically, incorporating the 

external variance of the reference material for each analytical session. The 

reproducibility of the 176Hf/177Hf ratio of the reference materials ranges from 46 

to 56 ppm, and the accuracy based on accepted values is <100 ppm. Iolite 2.5 
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(Paton et al., 2011)  was used for data reduction. Full results of the samples 

and reference material are provided in the accompanying excel sheet. All 

uncertainties are reported at 2 sigma. 

Appendix D: NordSIMS Cameca 1280 Zircon O isotope analytical 

methodology  

Oxygen isotope analyses of samples MY1, MY4, MY106, MY145 were 

performed using a CAMECA IMS 1280 large geometry SIMS at the NordSIMS 

facility in Stockholm, Sweden following methods similar to those described by 

Whitehouse and Nemchin (2009). A critically focused Cs+ primary beam with 

20 keV impact was used to sputter the sample, and a low-energy electron 

flooding gun was used for charge compensation. The primary beam current 

was ca. 2 nA yielding a ca. 15 µm analytical spots, including a 10 µm raster to 

homogenize the beam. Each analysis consisted of an initial pre-sputter over a 

rastered 20 µm area to remove the gold coating, followed by centering of the 

secondary beam in the field aperture (field of view on the sample of 30 µm 

with 90x magnification transmission ion optics). The 16O (ca. 2 x 109 cps) and 

18O ion beams were mass filtered at a mass resolution of ca. 2500 (M/ΔM) 

and analysed simultaneously using two Faraday detectors with amplifiers 

housed in an evacuated, temperature stabilized chamber. The secondary 

magnet field was locked at high stability using an NMR field sensor operating 

in regulation mode. All pre-sputter, beam centering and data acquisition steps 

were automated in the run definition. Typical internal precision obtained for 

individual run 18O/16O ratios determined from 12 4-second integrations was 

ca. 0.1 ‰ (SE). 
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Fully automated sequences comprised two measurements of the reference 

zircon, Geostandards 91500 (Wiedenbeck et al., 2004) bracketing six 

measurements of unknown targets, over four analytical sessions. The 

regularly interspersed 91500 measurements were used to correct measured 

isotope ratios for any drift during the analytical session and for instrumental 

mass fractionation (IMF), assuming δ18OV-SMOW = 9.86 ‰. External precision 

on δ18OV-SMOW was 0.14 ‰ (SD) and is propagated onto the internal precision 

to yield the overall uncertainty reported in Table 4. Six analyses of the 

Temora-1 zircon standard yield a weighted 7.98 ± 0.11 ‰ (SD), which is 

within error of the value of 7.93 ‰ reported by Valley (2003). 
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Highlights 

 We present new zircon U-Pb, Hf and O isotope data from Myanmar 

 isotopically characterising major magmatic belts informs on crustal 

architecture 

 a tectonic model for Myanmar’s Mesozoic-Cenozoic assembly is 

proposed  
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