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Abstract As global average sea-level rises in the early part of this century there is great interest in
how much global and local sea level will change in the forthcoming decades. The Paris Climate Agree-
ment’s proposed temperature thresholds of 1.5∘C and 2∘C have directed the research community to ask
what differences occur in the climate system for these two states. We have developed a novel approach
to combine climate model outputs that follow specific temperature pathways to make probabilistic pro-
jections of sea-level in a 1.5∘C and 2∘C world. We find median global sea-level (GSL) projections for 1.5∘C
and 2∘C temperature pathways of 44 and 50 cm, respectively. The 90% uncertainty ranges (5%–95%) are
both around 48 cm by 2100. In addition, we take an alternative approach to estimate the contribution
from ice sheets by using a semi-empirical GSL model. Here we find median projections of 58 and 68 cm for
1.5∘C and 2∘C temperature pathways. The 90% uncertainty ranges are 67 and 82 cm respectively. Regional
projections show similar patterns for both temperature pathways, though differences vary between the
median projections (2–10 cm) and 95th percentile (5–20 cm) for the bulk of oceans using process-based
approach and 10–15 cm (median) and 15–25 cm (95th percentile) using the semi-empirical approach.

Plain Language Summary The sea level you experience at the coast can be estimated by the
sum of contributions from ocean expansion, currents, ice melt from glaciers and ice sheets, land-water
extraction/damming, and land motion. How sea level changes depends strongly on where you are
because each contribution has a unique pattern. We use knowledge of these changes to make projections
about future sea-level rise. We estimate how much sea-level could change if societies achieve either of the
Paris Climate Agreement’s temperature targets by 2100. If we reach 1.5∘C or 2.0∘C by 2100, GSL should
rise around 44–50 cm, respectively. Using a slightly different method we find the global rise could be
58–68 cm. An incomplete picture of the sea-level components means that estimates could be out by up
to 80 cm, though all projections show a sea-level rise of at least 20 cm.

1. Introduction

The Paris Climate Agreement (United Nations [UN], 2015a) aims to hold the rise in global average tempera-
tures to “well below 2∘C above preindustrial levels and to pursue efforts to limit the temperature increase
to 1.5∘C above preindustrial levels.” The agreement was signed by 195 countries and ratified by 170, equiv-
alent to 87.9% of global emissions (Climate Analytics, 2017). While this outcome is highly encouraging, the
process required to achieve deep and rapid emission reduction remains extremely challenging (Rogelj et al.,
2016). A key question posed to the research community is the difference between the climate systems for
these two temperature scenarios. At present, temperature pathways are an output of climate models for
specific emissions scenarios rather than being the parameter under control.

While the atmospheric community have developed intercomparison projects to explore the impact
of a Paris-like agreement upon, for example temperature and precipitation extremes (e.g., Mitchell
et al., 2017), such intercomparison projects have not been made by the oceanographic community.
This leaves the sea-level community needing to make the best of currently available data and meth-
ods. Two recent approaches aimed at overcoming this problem use idealized temperature pathways
to drive a simple semi-empirical global sea-level (GSL) model (Bittermann et al., 2017), and use a
reduced complexity carbon cycle—climate model to derive temperature ensembles that are used to
drive a temperature scaled regional sea-level model (Schleussner et al., 2016). Rasmussen et al. (2017)
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is currently exploring preexisting climate model temperature output to develop regional sea-level
projections.

GSL change can be explained by the sum of five components: ocean expansion, glaciers, Greenland ice
sheet, Antarctic ice sheet, and land-hydrology. Regional relative sea-level (RSL) change depends upon the
spatial variability of local ocean processes (Yin et al., 2010), static-equilibrium effects related to the redistri-
bution of ocean and land-ice/-water mass interactions (Mitrovica et al., 2011), and is measured relative to
vertical land motion due to glacial-isostatic adjustment (GIA; Farrell & Clark, 1976), local tectonics, ground-
water extraction, and sediment compaction.

There are two main approaches employed to project sea level; the process-based method and the
semi-empirical method.

The process-based method combines projections of individual components that are either directly output
from climate models or estimated from physical models driven by climate model output (e.g., Church et al.,
2013; Slangen et al., 2014). Implementations of this method have been probabilistic (e.g., Grinsted et al.,
2015; Jackson & Jevrejeva, 2016; Kopp et al., 2014; Le Bars et al., 2017), possibilistic (Le Cozannet et al., 2017),
and emulating coupled to a simplified climate-carbon cycle model (Nauels et al., 2017).

The semi-empirical method assumes a change in GSL as an integrated response of the climate system. The
approach uses simple, physically motivated relationships determined from observations of GSL and global
average temperature (e.g., Grinsted et al., 2010; Kopp et al., 2016; Vermeer & Rahmstorf, 2009) or global
radiative forcing (e.g., Jevrejeva et al., 2010). These relationships are then used to project GSL using temper-
ature or radiative forcing scenarios. Recently, the semi-empirical approach has been extended to estimate
the contribution to GSL from individual components (Mengel et al., 2016).

To assess the question of future sea-level states at different temperature thresholds, we make sea-level pro-
jections using the process-based method in a probabilistic framework (Jackson & Jevrejeva, 2016). We make
use of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) and assess which
models from representative concentration pathway (RCP) 2.6 and 4.5 (Moss et al., 2010), have global aver-
age temperature pathways conforming to 1.5∘C and 2∘C by 2100. We then use outputs from the conforming
models for projections of steric, dynamic and glacier sea-level components. We use empirical relationships
between global average temperature and rates of surface mass-balance (SMB) for Greenland (Fettweis et al.,
2013) and Antarctic (de Vries et al., 2014) ice sheets to estimate their contribution to GSL rise. As with
Intergovernmental Panel on Climate Change [IPCC] (2013), we cannot establish a temperature dependent
dynamic ice-sheet contribution and thus use those estimated for Greenland and Antarctica for RCP 2.6
(Church et al., 2013). Changes in land-water storage are scenario independent in IPCC (2013), thus we apply
this estimate to both temperature pathways.

We extend our analysis by using a semi-empirical model (Grinsted et al., 2010) to project GSL driven by tem-
perature pathways from each of the CMIP5 models corresponding to 1.5∘C and 2∘C. We use these GSL pro-
jections in combination with process-based steric, glacier and land-water storage components to estimate
an alternative ice-sheet contribution. Partitioning this ice-sheet contribution into Greenland and Antarctica
allows us to regionalize the GSL projections. We selected this particular semi-empirical model because it
explores a wider range of uncertainties than alternative models.

We produce global and regional RSL projections over the 21st century for each of the temperature scenarios.
We compare projections of GSL, RSL, and individual components between the two temperature pathways
and the two approaches to explore uncertainty (process-based and semi-empirical).

2. Materials and Methods

2.1. Selecting Temperature Pathways

We use the CMIP5 archive of RCP scenarios to identify models with global mean temperature pathways
reaching 1.5∘C and 2∘C above preindustrial levels over the period 2080–2100 (relative to 1986–2005
where temperature is 0.61∘C above preindustrial level, Hartmann et al., 2013). Given that few models
achieve exactly 1.5∘C or 2∘C, we assign specific temperature ranges (centered about the desired mean) for
a particular time, which are scaled to represent temperature uncertainty proportional to its mean. To do
this we assess the relationship between mean global temperature (𝜇T) and uncertainty (𝜎T, multiplied by
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Figure 1. (a) Temperature pathways (relative to 1986–2005) of models from CMIP5 for RCP 2.6 and RCP 4.5 grouped by end-of-century
temperature. (b) and (c) Histograms of model distribution for 1.5∘C and 2∘C subsets at 2040 and 2090. All temperatures shifted by 0.61∘C
(reference period relative to preindustrial, Hartmann et al., 2013).

1.65 to give 90% range) for the four RCP scenarios (we estimate multimodel ensemble mean and standard
deviation) over the period 2080–2100 (Figure S1a, Supporting Information S1). We find a positive linear
relationship with equation:

𝜎T = 0.14𝜇T + 0.56. (1)

Since there are only four data points it is difficult to justify the use of any higher order polynomial and
a linear relationship is robust for both standard deviation (R2 = 0.96) and variance (R2 = 0.92). We optimize
the uncertainty bounds by adjusting 1 so that the higher temperature (T 2) uncertainty is scaled by the mean
temperature difference and the lower temperature (T 1) uncertainty:

𝜎T2
= 0.14

(
𝜇T2

− 𝜇T1

)
+ 𝜎T1

. (2)

We tested a range of uncertainty bands for 1.5∘C (Figure S1b) seeking a balance between large enough
uncertainty bands to select a reasonable number of available models to estimate ensembles and small
enough uncertainty bands to minimize their overlap to distinguish between the two temperature path-
ways. We select 𝜎1.5∘C and 𝜎2.0∘C of 0.21∘C and 0.28∘C, respectively, which results in 14 RCP 2.6 and 2 RCP 4.5
models for 1.5∘C, and 8 RCP 2.6 and 15 RCP 4.5 models for 2.0∘C (Figure 1).

We recognize that selecting subsets of models across RCP scenarios based upon their end-of-century rela-
tive temperature change is a subjective exercise. For this initial assessment, we briefly consider the statistical
aspects of the distributions of all models for RCP 2.6 and RCP 4.5.

Using a standard Kolmogorov-Smirnov test (Massey, 1951) we find that neither the distribution of models
for 1.5∘C and 2.0∘C at 2100 fail to reject the null-hypothesis of normally distributed models at the 5% signifi-
cance level (P-values are 0.78 and 0.39, respectively). We thus take a standard “model democracy” approach
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Table 1.
Subsets of CMIP5 Models Conforming to 1.5∘C and 2.0∘C

1.5∘C pathways 2∘C pathways

Model RCP 2.6 RCP 4.5 RCP 2.6 RCP 4.5

BCC-CSM1-1 0.83 1.59

BCC-CSM1-1-m 0.82 1.51

BNU-ESM 1.14

CanESM2 1.58

CCSM4 0.87 1.64

CESM1-BGC 1.61

CESM1-CAM5 1.50

CNRM-CM5 1.05

CSIRO-Mk3-6-0 1.41

EC-EARTH 0.93

FIO-ESM 1.03

GFDL-ESM2M 0.67 1.18

GFDL-ESM2G 1.00

GISS-E2-H 0.79 1.69

GISS-E2-H-CC 1.38

GISS-E2-R 1.42

GISS-E2-R-CC 1.18

HadGEM2-AO 1.14

HadGEM2-ES 1.45

inmcm4 1.25

IPSL-CM5A-LR 1.22

IPSL-CM5A-MR 1.12

IPSL-CM5B-LR 1.64

MIROC5 1.03 1.71

MIROC-ESM 1.65

MPI-ESM-LR 0.80

MPI-ESM-MR 0.79 1.69

MRI-CGCM3 0.98 1.68

NorESM1-M 0.88 1.63

NorESM1-ME 0.99

Average (# models) 0.91± 0.12∘C (16) 1.47± 0.20∘C (23)

Average plus 0.61∘C 1.52 2.08

Note. Temperatures averaged from 2080 to 2100 shown for each model relative to 1986–2005 (add 0.61∘C for ΔT ,
preindustrial to reference time).

(Knutti, 2010) with simple means and standard deviations of the model subsets. We reiterate that we use the
CMIP5 models to explore sea-level change conditional upon temperature and that temperature pathways
are a model output—the time-evolving emissions/concentrations of radiatively active constituents set by
RCPs drive the model results (Moss et al., 2010).

2.2. Deriving GSL Components

Modeling sea level is a challenging proposition because the physical mechanisms and their inter-
play/dependence with/upon temperature are complex and exist at a variety of time scales.

GSL is affected by changes in ocean volume and changes in ocean mass. Ocean volume is affected by rising
temperature and rising salinity that lead to an expansion and contraction of the ocean respectively, which
at the global scale is dominated by ocean warming.
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Ocean mass varies with the addition or removal of water by glaciers, ice sheets, and to a lesser extent
human-land-water management (land-water storage, ground-water extraction, etc.). While present day
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Figure 2. (a) Steric sea-level and (b) glacier contribution to GSL using available
models corresponding to temperature pathways of models from CMIP5 for RCP
2.6 and RCP 4.5 with end-of-century levels of 1.5∘C and 2∘C.

estimates of mass-loss are consistent
using a range of observation meth-
ods (e.g., Shepherd et al., 2012), and
while modeling SMB has been success-
ful using precipitation and tempera-
ture measurements for glaciers (e.g.,
Marzeion et al., 2012) and ice sheets
(e.g., Fettweis et al., 2013), a knowledge
gap exists in the dynamical contribu-
tion of ice sheets to sea-level change.
This results in conservative GSL esti-
mates using a process-based method
(Le Bars et al., 2017).

We use the CMIP5 models in Table 1
for 1.5∘C and 2∘C (Figure 1a) that
have global steric sea-level available to
estimate an ensemble mean and uncer-
tainty (Figure 2a). Similarly, we use
available models for 19 glacial regions
from Marzeion et al. (2012) (Figure 2b).
We present two alternative approaches
to estimate ice-sheet contributions to
GSL in the next section.

We use a bootstrap method to capture
uncertainty because of the limited number of available models for each temperature scenario. We estimate
the 95th percentile of a 500 sample bootstrap for the model ensemble standard deviation at each time slice
(and grid point for dynamic ocean processes).

The dependence of land-water storage/discharge upon temperature is much less clear. This is because
human transformations of Earth’s surface impact continental patterns of river flow and water exchange
(Wada et al., 2017), and anthropogenic influence is more often driven by societal demand (Dalin et al., 2017).
The uncertainty of land-water dependence is reflected in the same projected GSL contribution for all RCP
scenarios in Church et al. (2013) (4 cm [−1 to 9 cm] by 2081–2100), which we use for both 1.5∘C and 2∘C
scenarios.

2.3. Approaches to Calculate Ice-Sheet Contribution
2.3.1. Empirical Mass-Balance Model

We use the subsets of temperature time series to compute the SMB contribution of Greenland using
the cubic relationship derived by Fettweis et al. (2013), which we convert to sea-level equivalent (1 mm
GSL≈ 361.8 Gt):

dGRIS (t)SMB

dt
= − 1

361.8

(
−71.5 · 𝛿T (t)atm − 20.4 · 𝛿T (t)2

atm − 2.8 · 𝛿T (t)3
atm

)
(3)

where 𝛿T(t)atm is global mean surface temperature at time, t relative to 1980–1999.

Similarly, we compute rates of SMB for Antarctica using the time and temperature dependent relationship
used by de Vries et al. (2014):

dAIS (t)SMB

dt
= − 1

361.8
· Sref · N1 · N2 ∫

t

t0

𝛿T (t)atm dt (4)

where Sref is the average SMB of Antarctica (1983± 122 Gt) and T(t)atm is the global mean surface tem-
perature. Both measurements are estimated relative to 1979–2010 (Lenaerts et al., 2012). N1 and N2 are

JACKSON ET AL. 217



Earth’s Future 10.1002/2017EF000688

2000 2020 2040 2060 2080 2100

0

0.01

0.02

0.03

0.04

G
re

en
la

nd
 S

M
B

, m

2000 2020 2040 2060 2080 2100

-0.04

-0.03

-0.02

-0.01

0

A
nt

ar
ct

ic
a 

S
M

B
, m

a

b

                 1.5oC     2.0oC
RCP 2.6        (14)          (8)
RCP 4.5          (2)        (15)

Figure 3. Surface mass-balance contribution to global sea-level for, (a) Greenland
and b) Antarctic ice sheets using available models corresponding to those
projecting temperature (Figure 1).

the fractional precipitation increase
with temperature (5.1%± 1.5% [∘C]−1)
and polar amplification ratio to global
atmospheric temperature (1.1± 0.2).
For Antarctica, we sample the range
of parameter uncertainties to create a
suite of possible SMB trajectories for
a single model temperature pathway.
We then calculate the mean of multiple
trajectories for each model.

After estimating rates of SMB using 3
and 4, we integrate the result for each
model and adjust the series so that they
are relative to 1986–2005 (Figure 3).

Since the approach outlined here only
estimates ice-sheet SMB, we incorpo-
rate rapid ice dynamics from Church
et al. (2013) that contributes 4 cm
[1–6 cm] and 7 cm [−1 to 16 cm] for
Greenland and Antarctica, respectively.
The ice dynamics component is invari-
ant between scenarios in Church et al.
(2013). While recent work simulating
specific dynamic features shows a

strong dependence upon emissions scenario, strong mitigation (e.g., RCP 2.6) indicates a small ice-sheet
dynamical contribution at least for those dynamic mechanisms included (DeConto & Pollard, 2016).

2.3.2. Semi-Empirical Sea-Level Model

To augment the empirical mass-balance calculation of the ice sheet (IS) contribution, we also use a
semi-empirical sea-level model (Grinsted et al., 2010) to simulate GSL rise and then back-calculate the
ice-sheet contribution. For each temperature subset (1.5∘C and 2∘C), each model temperature pathway is
used to estimate future sea level from the semi-empirical model, giving a mean and uncertainty envelope.
We then calculate the model-mean ensemble mean and model-uncertainty ensemble mean (Figure 4). We
assume the validity of process-based contributions to GSL from steric, glacier and land-water components
(STR, GLA, and LAN) to perform the back calculation:

IS = GSL − STR − GLA − LAN. (5)

where we randomly sample each of the uncertainty envelopes of all components and solve 5 for each sam-
ple. We then use a ratio of 6:5 between Greenland and Antarctica sea-level contributions to partition the
total ice-sheet contribution. This ratio is consistent with observations between 1992 and 2005 (e.g., Church
et al., 2013; Shepherd et al., 2012).

2.4. Probabilistic Projections

We follow the same method as Jackson and Jevrejeva (2016) to make GSL and RSL projections. We cre-
ate probability distribution functions (PDFs) to fit the percentiles of each global average contribution at
each time slice. We sample these PDFs, and sum samples across components for each realization then esti-
mate quantiles for GSL to establish a probabilistic projection. For RSL, we use the realizations of each global
component to scale its associated normalized fingerprint. We sum across components at each grid point
for each realization and then estimate quantiles to establish a probabilistic projection. We assume each of
the sea-level components is uncorrelated (Jackson & Jevrejeva, 2016) and that the spatial pattern of future
land-based mass loss will be the same as at present (Bamber & Riva, 2010).
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Figure 4. (a) Global sea-level projections using semi-empirical model for
corresponding temperature pathways. Back-calculated contributions for (b)
Greenland and (c) Antarctic ice sheets.

While the glacier, ice sheet and
land-water components use a nor-
malized fingerprint of RSL change, DSL
(with net-zero GSL change, but signif-
icant nonzero spatio-temporal fields)
is calculated at 10 year time slices as
the multi-model ensemble mean of
those CMIP5 models available for each
temperature pathway.

There are three small changes made to
the methodology compared to Jackson
and Jevrejeva (2016). The first is that we
estimate the global average projection
from the global average components,
rather than solving an area-weighted
average of the regional projection. Sec-
ond, we sample each PDF 5000 times
rather than 1000 to improve the con-
vergence and increase the number of
samples drawn from the tails of the
distribution. Third, we do not account
for the impact of ocean self-attraction
and loading (Richter et al., 2013), where
ocean mass is redistributed from the
deep ocean interior to shallow coastal
regions as a result of volumetric expan-
sion (Landerer et al., 2007). This effect
alters sea level by less than 2 cm by
2100 for RCP 2.6 (Richter et al., 2013) as

estimated for the NorESM1-M model (Iversen et al., 2013).

3. Results

3.1. Global Projections

Figure 5 shows the probabilistic projections for GSL using the process-based approach of estimating tem-
perature dependent sea-level components. The end-of-century median (5%–95% range) projected GSL is
44 cm (20–67 cm) and 50 cm (24–74 cm) for 1.5∘C and 2∘C pathways respectively. It certainly appears that
there is little difference between projections using this approach, though the 1.5∘C pathway has a slightly
lower variance than for 2∘C (47 versus 50 cm, respectively by 2100). Likewise the relative proportions of each
component’s variance to the total variance for each of the pathways are very similar, with the exception of
glaciers, whose variance is greater for 2∘C than 1.5∘C.

In addition, Figure 6 shows the GSL projections using the semi-empirical approach to calculate ice-sheet
contributions. The end-of-century median (5%–95% range) projected GSL is 57 cm (28–93 cm) and 68 cm
(32–117 cm) for 1.5∘C and 2∘C pathways, respectively. The GSL projections thus differ markedly between
the approaches used to calculate ice-sheet contributions. This is most obvious in the fraction of vari-
ance where the ice-sheets contribute 65%–70% of total uncertainty, which is consistent for the century
(Figures 6c and 6d) compared to an increase from 10% to 50% over the century (Figures 5c and 5d) for the
process-based approach to calculate ice-sheet contributions. Furthermore, the ratio between the contri-
bution to uncertainty between Greenland and Antarctica is 1:4 (25:75) and 7:6 (54:46) for process-based
and semi-empirical approaches of calculating ice-sheet contributions respectively. Interestingly, while we
have forced the ice-sheet contributions with the semi-empirical method to have a fixed ratio of 6:5 (55:45)
(e.g., Church et al., 2013; Shepherd et al., 2012), the ratio using the process-based approach varies between
49:51 and 56:44 over the course of the 21st century.
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Figure 5. Global average sea-level projections (a) and (b) and fraction of variance of each sea-level component (c) and (d) for 1.5∘C and
2∘C temperature pathways using process-based approach to calculate ice-sheet contributions.

3.2. Regional Projections

Figures 7 and 8 show the RSL projections for 2100 and their associated uncertainties using the process-based
and semi-empirical approaches respectively. Both projections include uplift from glacial-isostatic adjust-
ment, which is a long-term pattern of land motion (and associated redistribution of ocean mass) due to
the last deglaciation. We deem the rates of relative sea level associated with GIA to be constant at the
multidecadal time scale (Peltier et al., 2015).

The patterns of all projections are similar for both temperature pathways and method of ice-sheet calcu-
lation. The differences between RSL for temperature pathways are 2–10 cm (median) and 5–20 cm (95th
percentile) for the bulk of oceans using process-based approach (Figure 9) and 10–15 cm (median) and
15–25 cm (95th percentile) using semi-empirical approach (Figure 10).

4. Discussion

4.1. Comparison with Previous Work

We have made global (Table 2) and regional sea-level projections using process-based and semi-empirical
approaches for 1.5∘C and 2∘C temperature scenarios. For the 1.5∘C pathway we project median global sea
level rise in 2100 of 44 cm and a 66% range of 30–58 cm (Table 2), both of which are in agreement with a
median of 41 cm and 66% range of 29–53 cm by Schleussner et al. (2016). For the 2∘C pathway we project
median GSL rise in 2100 of 50 cm and a 66% range of 36–65 cm, which is almost identical to the median of
50 cm and 66% range of 36–65 cm by Schleussner et al. (2016). The results of Rasmussen et al. (2017), who
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Figure 6. As in Figure 5 but using semi-empirical approach to calculate ice-sheet contributions.

use a very similar method (for temperature pathways and sea-level) to us, are currently in good agreement
with ours.

In the case of our semi-empirical approach we project median global sea level rise in 2100 for the 1.5∘C
pathway of 57 cm and a 90% range of 28–93 cm (Table 2). While the median is in poor agreement with
34 cm by Bittermann et al. (2017) and 77 cm by Schaeffer et al. (2012), the range substantially overlaps with
that of Bittermann et al. (2017) (23–58 cm) and Schaeffer et al. (2012) (54–99 cm). For the 2∘C pathway we
project median GSL rise in 2100 of 68 cm and a 90% range of 32–117 cm. Again, the median is in poor
agreement with 46 cm by Bittermann et al. (2017) and 80 cm by Schaeffer et al. (2012) while the range fully
encompasses that of Bittermann et al. (2017) (36–57 cm) and Schaeffer et al. (2012) (56–105 cm).

A larger range of projected median GSL change occurs in the semi-empirical results (Tables 2 and 3),
which is due to a combination of model formulation, observations used to calibrate the semi-empirical
models (for further discussion see, e.g., Rahmstorf et al., 2012; Moore et al., 2013; Church et al., 2013) and
temperature pathways applied (Bittermann et al., 2017). While it is straightforward to compare published
sea-level projections from the same emissions scenario knowing that differences will primarily be due to
the sea-level model employed (Table 3) it is less straightforward for temperature because in addition to a
range of sea-level models, different definitions and methods are used to obtain temperature pathways.

Schleussner et al. (2016) used a reduced complexity carbon-cycle/climate model to derive temperature
ensembles keeping global mean temperature to below 1.5∘C and below 2∘C during the 21st century, each
with 50% probability, and then projected GSL change using a temperature scaled sea-level model (Perrette
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Figure 7. Median sea-level projections (a) and (b) and 90% range of uncertainty (c) and (d) for 1.5∘C and 2∘C temperature
pathways in 2100 using process-based approach to calculate ice-sheet contributions. Black contour represents global average (labeled in
each plot).

Figure 8. As in Figure 7 using semi-empirical approach to calculate ice-sheet contributions.
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et al., 2013) with additional modifications to ice-sheet contributions. For the 1.5∘C scenario, Bittermann
et al. (2017) used a subsampled version of RCP 2.6 temperature outputs for a range of likelihoods of not
exceeding 1.5∘C with/without overshoot (in Table 2 we show 66% likelihood without overshoot) and for
the 2∘C scenario used idealized temperature pathways designed to stabilize at 2∘C for a range of times (in
Table 2 we show GSL for stabilization in 2080). Bittermann et al. (2017) then used the semi-empirical model
by Kopp et al. (2016) to project GSL. Schaeffer et al. (2012) used temperature stabilization pathways with
40% and 50% chance of remaining below 1.5∘C and 2∘C in 2100 respectively, and then projected GSL using
the semi-empirical model by Rahmstorf et al. (2012).

One of our key aims in using the semi-empirical approach is to explore uncertainty in future GSL pro-
jections and our results show a considerable overlap with the other published projections (Table 2).
Our semi-empirical sea-level model (Grinsted et al., 2010), like others, is constrained by the sea-level/
temperature behavior during the calibration period. We recognize that critical thresholds that have not
been reached in the observational record will be unaccounted for in model projections, however these are
more likely to be reached in far-future projections or high-end temperature scenarios (Bittermann et al.,
2017) neither of which are relevant to our projections. Furthermore, many process-based models do not
currently show large contributions from passing critical thresholds (e.g., Ritz et al. 2015), nor do advanced
simulations indicate this in low-end scenarios (e.g., DeConto & Pollard, 2016).

In contrast to the research presented in Table 2, we also regionalize both process-based and semi-empirical
projections by assuming the process-based global steric, glacier and land-water components are valid and
that the residual GSL contribution represents the component from the ice sheets. This allows us to explore
uncertainty in regional projections, which we expand upon in the following sections.

4.2. Sources of Uncertainty

The key unknown uncertainty in this analysis is a lack of process-based model simulations specifically tar-
geted at 1.5∘C and 2∘C scenarios. In choosing to rely (though not exclusively) upon RCP 2.6, which implies

Figure 9. Difference between (a) median and (b) 95th percentile, projected
regional sea-level in 2100 for 1.5∘C and 2∘C pathways using process-based
approach to calculate ice-sheet contributions.

very strong mitigation, we assume
ocean-mass redistribution and ice-
sheet dynamics remain well behaved,
in line with current estimates (Church
et al., 2013) to inform us about the
future state of sea level for these
temperature thresholds.

The methodology we have taken is
limited by the selection of models
conforming to a temperature pathway
within set limits. However, we have
scaled the limits of each temperature
pathway to be consistent with the
uncertainty bounds for RCPs (Hart-
mann et al., 2013; Knutti et al., 2008;
Stott & Kettleborough, 2002) and used
a bootstrap technique to estimate the
95% level of 1 sigma uncertainty across
models for each sea-level component
(Figure S1 and description).

The information related to pathways
is limited by the fact that our subsets
of models are specific to two emis-
sion scenarios (RCP 2.6 and 4.5) with
specified emissions pathways through
the century (Moss et al., 2010) thus it
is informative to compare our results
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Figure 10. As in Figure 9 using semi-empirical approach to calculate ice-sheet
contributions.

with projections for these scenarios
(Tables 2 and 3, for completeness we
recalculated GSL using Grinsted et al.,
2010 with all available models for
each RCP).

While the uncertainties estimated for
our temperature scenarios are narrow
(due to the specified temperature
ranges) compared to RCPs (Tables 2
and 3: 67% range for 1.5/2.0∘C:
0.24/0.4∘C, for RCP 2.6/4.5: 1.4/1.5∘C),
the uncertainties of the process-based
GSL for our temperature scenarios are
close to those of the RCPs (Tables 2 and
3: 67% range for 1.5/2.0∘C: 28/29 cm,
for RCP 2.6/4.5: 33/35 cm). The similar-
ity of GSL uncertainty ranges between
our temperature scenarios and the
RCPs shows that even a reduced
subset of climate models, which are
selected for their temperature path-
ways, display wide ranging behavior
for other climate parameters.

A further source of uncertainty lays in
the response time of individual com-
ponents to the changes in tempera-
ture (or forcing). Mengel et al. (2016)
modeled each component in a global
semi-empirical model but underesti-

mated 20th century GSL while 21st century projections under RCP 2.6 showed an underestimation of steric
and glacier contributions and an overestimation of ice-sheet SMB and dynamics (particularly Greenland
SMB) drawing total GSL closer to the process-based result (Table 3). Clearly more research is needed in this
area and many of these component-based responses are likely to be distinct after 2100 (Church et al., 2013;
Jevrejeva et al., 2012). For sea level, the key component illustrating this problem is the dynamical response
of the ice sheets, which we discuss further in Section 4.3.

4.3. Dynamical Sea Level

While the two patterns of regional sea level are very similar, the bulk of these changes are driven by the
range of dynamic sea-level (DSL) patterns from individual models driven by the two scenarios (Figures S2
and S3). It is clear that for the 1.5∘C temperature pathway, MIROC5 (Watanabe et al., 2010) has enhanced
DSL in most ocean basins (with the exception of the Southern Ocean) while CCSM4 (Gent et al., 2011) and
BCC models (Wu et al., 2014) show little DSL response to temperature/scenario compared to other models.
We also find this is the case for the 2∘C temperature pathway where BCC models (Wu et al., 2014) show
little DSL response but GISS-E2-R (Miller et al., 2014) shows strong DSL in the Arctic. Interestingly, MIROC5
and GISS-E2-R models require a sea-ice correction in the DSL component which we have performed and
has been noted elsewhere (Landerer et al., 2013; Yin, 2012). MIROC5 gives unphysically low values of DSL in
the Mediterranean, which we treat as an outlier in the solution of a multimodel ensemble mean. The Arctic
enhancement of DSL is common for 2∘C pathway models (14 out of 20 models) and to a lesser degree 1.5∘C
pathway models (6 out of 14 models).

4.4. Ice-Sheet Contributions

There remains a great deal of uncertainty surrounding the current state of the major ice sheets. While obser-
vational and model-based estimates of SMB have been reconciled, estimates of historical and present-day
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Table 2.
Summary of Global Temperature and Sea-Level Projections to 2100 (Relative to 1986– 2005) for 1.5∘C and 2.0∘C Scenarios

Scenario

1.5∘C 2.0∘C

Reference Median 17–84 5–95 Median 17–84 5–95

Global surface temperature (∘C)a

This study 0.91 0.79–1.03 1.47 1.27–1.67

Global sea-level (cm)

Process-based

This study 44 30–58 20–67 50 35–64 24–74

Schleussner et al. (2016)b 41 29–53 50 36–65

Semi-empirical

This study 57 40–77 28–93 68 47–93 32–117

Schaeffer et al. (2012)c 77 54–99 80 56–105

Bittermann et al. (2017)d 34 23–58 46 36–57

aTemperature values averaged over 2081–2100.
bSchleussner et al. (2016): idealized scenarios stabilizing below temperature thresholds during 21st century with
50% probability.
cSchaeffer et al. (2012) use “MERGE400” and “Stab 2∘C” scenarios with 40% and 50% chance of global mean temper-
ature staying below 1.5∘C and 2.0∘C by 2100 respectively.
dBittermann et al. (2017): 1.5∘C scenario is subsampled RCP 2.6 with 66% likelihood of not exceeding 1.5∘C without
overshoot. 2.0∘C scenario is idealized to stabilize in 2080.

dynamical ice sheet changes are limited, while projections are rare, primarily due to the complexity of the
modeling problem. The physical mechanisms of dynamic ice sheet change include melt-water lubrication
of the ice-sheet bed, increased ice stream flow after removal of buttressing ice shelves, ice cliff instability,
bathymetry effects upon grounding line location, ocean ice-sheet interaction. Recent work by DeConto and
Pollard (2016) introduced an ice-cliff failure mechanism and demonstrated in a calibrated ice-sheet model
that projections of future Antarctic contributions varied widely between scenarios. Interestingly, under RCP
2.6, DeConto and Pollard (2016) find that contributions to sea level are small for two Pliocene calibration
levels (11± 11 cm and 2± 13 cm by 2100). These are on the same order as the dynamic contribution to
Antarctica estimated in IPCC AR5 (7± 9 cm, Church et al., 2013). Under RCP 4.5, DeConto and Pollard (2016)
find contributions to sea level that are statistically significant from zero (49± 20 and 26± 28 cm by 2100).
Since the lower third of RCP 4.5’s temperature uncertainty range conforms to the 2∘C threshold, this higher
range of Antarctic contributions should not be neglected as in-compatible with either temperature path-
way we use here, particularly 2∘C. In fact, DeConto and Pollard (2016) state that an alteration to their model
to allow higher Pliocene sea levels results in an RCP 2.6 projection of 16± 16 cm by 2100.

To place these model-based contributions into context, we identify where they lie within the PDF of Antarc-
tic sea-level contribution of the expert elicitation by Bamber and Aspinall (2013). The RCP 2.6 projections lie
between the 0th and 79th percentiles while RCP 4.5 projections lie between the 11th and 91st percentiles.
Of course, the expert elicitation (Bamber & Aspinall, 2013) merged end-of-century rates based upon an
end-of-century temperature range that was itself elicited. This means that the expert elicited rates were
made according to the same experts end-of-century temperature estimate, whose perfect weights mean
was 3.51∘C (0.62–5.81∘C) by 2100 relative to preindustrial from 2012 survey.

4.5. Vertical Land Motion

GIA, local tectonics, groundwater extraction and sediment compaction all impact vertical land motion at a
range of spatial and temporal scales.

GIA is a global effect and is scenario independent. In this research we do not consider uncertainties asso-
ciated with it because a limited number of models are availabel which we consider updates rather than
parallel experiments. Each GIA field is the result of an inversion for both glacial ice sheet evolution and
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Table 3.
Summary of Published Global Temperature and Sea-Level Projections in 2100 (Relative to 1986– 2005) for RCP 2.6 and RCP
4.5 Scenarios

Scenario

RCP 2.6 RCP 4.5

Reference Median 17–84 5–95 Median 17–84 5–95

Global surface temperature (∘C)a

IPCC (2013) 1.0 0.3–1.7 1.8 1.1–2.6

Global sea-level (cm)

Process-based

IPCC (2013) 44 28–61 53 36–71

Kopp et al. (2014) 50 37–65 29–82 59 45–77 36–93

Jackson and Jevrejeva (2016)b 44 29–58 16–68 54 36–72 22–85

Semi-empirical

This study 59 28–101 69 30–122

Schaeffer et al. (2012) 75 52–96 90 64–121

Kopp et al. (2016) 38 28–51 24–61 51 39–69 33–85

Mengel et al. (2016) 39 28–56 53 37–77

aTemperature values averaged over 2081–2100.
bJackson and Jevrejeva (2016) did not originally publish projections for RCP 2.6, but we have applied identical
methodology to give values here.

one-dimensional (1D) Earth structure conditioned on a range of geodetic observations (Peltier et al., 2015).
While Slangen et al. (2014) recognize the scenario independence of GIA, they estimate systematic uncer-
tainties by calculating the absolute difference between ICE5G (Peltier, 2004) and ANU (Nakada & Lambeck,
1988). These are small for the bulk of the global ocean, but are potentially more important close to for-
mer centers of deglaciation (e.g., US East coast see Fig. 2 in Slangen et al., 2014). Recently, Love et al. (2016)
developed an approach similar to the climate community by estimating GIA fields for multiple glacial his-
tories coupled to multiple 1D Earth structures in order to more accurately estimate GIA uncertainty along
the Atlantic and Gulf coasts of North America.

Local tectonics, groundwater extraction and sediment compaction have increasingly local effects, beyond
the resolution of our RSL projections. In many cases, the rates of vertical land motion associated with
these effects exceed the magnitude of modern and future projected rates of sea-level change. If these
rates are negative (that is the land is subsiding), then local sea-level will be locally amplified as evidenced
today in mega cities like Jakarta and Manilla (Deltares, 2013). Cities like Tokyo illustrate how local land
motion can be altered by halting groundwater extraction, thus making local sea-level projections chal-
lenging. Furthermore, studies using Interferometric Synthetic Aperture Radar have revealed fine scale
patterns of deformation from whole river-deltas (e.g., Erban et al., 2014) to street-by-street level in a city
(e.g., Dixon et al., 2006). Planners and policy makers must identify the resolution of projections that are
desirable for their needs and recognize the limitations of sea-level projections when applied to a given
location.

5. Conclusions

We have used a novel approach to make global and regional sea-level projections by selecting climate
model output based upon each models end-of-century global temperature falling within 1.5± 0.21∘C or
2± 0.28∘C. We find that combinations of models from RCP 2.6 and RCP 4.5 provide GSL estimates (median
and 5%–95% range) of 44 cm [20–67 m] and 50 cm [26–74 cm] in 2100 for 1.5∘C or 2∘C pathways. While
these estimates use a conventional process-based approach, we also use a semi-empirical model to project
GSL for each model-based temperature pathway to give GSL estimates of 58 cm (28–95 cm) and 68 cm
(33–115 cm) by 2100 for 1.5∘C or 2∘C pathways.
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Both of these approaches may underestimate contributions from Greenland and Antarctica, though the
present knowledge indicates that low emissions scenarios (e.g., RCP 2.6), in line with an end-of-century
temperature rise of 1.9∘C, will contribute ∼10 cm to GSL. It is pertinent to recognize that while a successful
implementation of the Paris accord would significantly reduce potential sea-level rise by 2100, there will
remain a commitment to sea-level rise beyond 2100 because of the equilibrium state sea-level will con-
stantly try to reach. Jevrejeva et al. (2012) used the Grinsted et al. (2010) semi-empirical model conditioned
upon radiative forcing rather than temperature to project GSL for RCP 2.6 and RCP 4.5 by 2500 of 53 cm
(13–174 cm) and 184 cm (72–430 cm) while DeConto and Pollard (2016) projected to 2500 giving Antarctic
contribution to GSL of 25± 23 and 569± 100 cm for RCP 2.6 and RCP 4.5, respectively. Further work clearly
needs to be done to investigate the dynamic effects of ice sheets to improve projections, and in these strong
mitigation scenarios the interaction between sea-level components needs to be clearly established as small
changes to the underlying correlation structure will significantly alter uncertainties.

The research community has made scientifically rigorous projections of future climate change conditional
upon scenarios to which conclusions about whether or not to implement strong mitigation are obvious.
The commitments made in Paris were ground-breaking and revealed a political will for mitigation. One key
question is the feasibility of implementing strong mitigation scenarios (e.g., RCP 2.6) to achieve a 2∘C target
(Anderson, 2015), which indicates the need for transformative technological innovation and globally afford-
able distribution (by no means a rapid process). However it is not a geophysical impossibility to achieve the
Paris accord by 2100 with strengthened national commitments in 2030 followed by deep and rapid mit-
igation (Millar et al., 2017), though many economic sectors will require fundamental change to facilitate
success (e.g., Wollenberg et al., 2016).

While half-a-degree warming sounds small, it matters (Schleussner et al., 2016, 2017). For sea level, the dif-
ferences between 1.5∘C and 2∘C scenarios by 2100 are on the multi-centimeter scale and up to 20 cm in
the right-hand tails of the probability distribution. Beyond 2100, projections of the future sea-level state
for these two temperature scenarios will continue to (Church et al., 2013; Jevrejeva et al., 2012), though
this is beyond the scope of this study. Future divergence is primarily due to the centennial response times
of individual sea-level components to the changes in temperature (Church et al., 2013; Levermann et al.,
2013). Further divergence between sea-level states at 1.5∘C or 2∘C may occur if the temperature threshold
for Greenland ice sheet instability lies within these bounds, though the ice sheet tipping phase could last
many hundreds of years (Lontzek et al., 2015; Robinson et al., 2012).

It is clear that achieving the Paris accord this century will reduce our long-term commitment to future
sea-level rise over the next few centuries (DeConto & Pollard, 2016), tens of centuries (Levermann et al.,
2013), and millennia (Clark et al., 2016). Naturally, decision makers have the infinitely more challenging job
of identifying how best to achieve strong mitigation in the context of the UN’s Sustainable Development
Goals (UN, 2015b).
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