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Abstract 1 

Dune slacks are biodiverse seasonal wetlands which experience considerable fluctuations in water 2 

table depths. They are subject to multiple threats such as eutrophication and climate change, and 3 

the interactions of both of these pressures are poorly understood. In this study we measured the 4 

impact of groundwater nitrogen contamination, as ammonium nitrate (0, 0.2, 10 mg/L of DIN, 5 

dissolved inorganic nitrogen), lowered water table depth (lowered by 10 cm) and the interactions 6 

of these factors, in a mesocosm study. We measured gross nutrient budgets, evapotranspiration 7 

rates, the growth of individual species and plant tissue chemistry. This study found that nitrogen 8 

uptake within dune slack habitats is substantial. Atmospheric inputs of 23 kg N ha−1 yr.−1 were 9 

retained by the mesocosms, with no increase of nutrient levels in the groundwater, i.e. there was 10 

no leaching of excess N. When N was added to the groundwater (in addition to atmospheric N), 11 

total uptake was equivalent to 116 kg N ha−1 yr.−1, at a groundwater DIN concentration of 10 mg/L. 12 

This resulted in increased plant tissue N concentrations showing uptake by the vegetation. The 13 

effect of lowering water tables did not influence N uptake, but did alter vegetation composition. 14 

This suggests that groundwater can be a substantial input of N to these habitats and should be 15 

considered in combination with atmospheric inputs, when assessing potential ecosystem damage. 16 

Keywords 17 

Dune slack, Ecology, Soil, Groundwater, Eutrophication 18 

Introduction 19 

Dune slacks are seasonal wetlands with an annually fluctuating water table (Stratford et al., 2013; van 20 

der Laan, 1979).  They are highly biodiverse and the vegetation communities they support are adapted 21 

to low levels of nutrient input (Grootjans et al., 2004). As a result, these wetland communities are 22 

sensitive to multiple threats including eutrophication and lowered water tables, e.g. from climate 23 

change or water abstraction (Clarke and Ayutthaya, 2010; Provoost et al., 2011). Many semi-natural 24 

habitats are sensitive to excess nutrients (Field et al., 2014), and critical loads were designed as a policy 25 

tool to protect plant communities from atmospheric nitrogen deposition. Critical loads are defined as 26 

“exposure to one or more pollutants below which significant harmful effects on specified sensitive 27 

elements of the environment do not occur according to present knowledge” (Nilsson, 1988). However, 28 

in addition to atmospheric inputs, wetlands may receive nutrients from sources including 29 

groundwater and overland flow as shown by Rhymes et al. (2014). It is not known how much of that 30 



2 

 

N is retained, denitrified or otherwise removed by soil and groundwater processes before it reaches a 31 

receptor wetland. This is a key knowledge gap in relating non-atmospheric and atmospheric nitrogen 32 

sources to biological impacts. The magnitude of N contributions from these other sources is 33 

recognised as a gap in knowledge (Achermann and Bobbink, 2003) and there is no framework currently 34 

able to account for these combined impacts. Recent studies have shown ecological impacts on dune 35 

slack vegetation resulting from low concentrations of nutrients in groundwater from a variety of non-36 

atmospheric sources (Rhymes et al., 2015; Rhymes et al., 2014). Those impacts included changes in 37 

plant species composition, with a shift towards nitrophilic species in the more nutrient-enriched areas. 38 

Crucially, those shifts were observed at very low nutrient concentrations in the groundwater, at a 39 

concentration of 0.2 mg L-1 of dissolved inorganic nitrogen (DIN).  40 

In addition to nutrient impacts, hydrology plays a key role in determining composition of wetland 41 

communities (Curreli et al., 2013; van der Laan, 1979; Willis et al., 1959), with 40 cm in hydrological 42 

regime separating wet from dry communities (Curreli et al., 2013). Hydrological fluctuations may also 43 

play a role in conserving the low nutrient status required by dune slack species (Berendse et al., 1998), 44 

by moderating rates of nutrient uptake or of denitrification (Adema et al., 2005), but the conditions 45 

governing these mechanisms are poorly understood.  46 

However, in the field it is very difficult to manipulate water levels under controlled conditions, and to 47 

assess the relative importance of groundwater vs atmospheric inputs. Therefore, we designed an 48 

experiment to manipulate three levels of nitrogen concentration in groundwater supply to dune slack 49 

mesocosms, to determine whether that N was taken up by dune slack vegetation & soils. In factorial 50 

combination with the N treatments, we varied water levels seasonally using two treatments to mimic 51 

wetter and drier hydrological regimes, to see whether this affected N uptake. 52 

We tested the following hypotheses: 1) Higher groundwater nitrogen contamination concentrations 53 

will increase the quantity of nitrogen taken up by dune slack ecosystems, which will affect growth of 54 

dune slack vegetation. 2) Lowered water tables will decrease evapotranspiration rates and reduce 55 

exposure to nutrients, both of which will result in lower uptake of N in the drier community.  56 

Materials and methods 57 

Dune slack soil (from a 6 m X 6 m area to a depth of 50 cm) was collected from an uncontaminated 58 

Salix repens-Calliergon cuspidatum stellatum community dune slack at Aberffraw (Anglesey, North 59 

Wales, UK, 53°11’N, 4°27’W) identified by the presence of pristine vegetation communities and very 60 

low groundwater NO3 concentrations.  These were separated into two soil types: an organic 0 to 10 61 
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cm layer and mineral sand from depth range -10 to -50 cm. Roots were removed by hand from both 62 

soil types and the soils were separately homogenised with a clean cement mixer.  63 

The mesocosm experiment investigated lowered water levels, N loading, and their interactions under 64 

controlled water level conditions using reconstructed dune slack soils, planted with four 65 

representative dune slack plant species. Each mesocosm was constructed from plastic UPVC pipe, (50 66 

cm height and 16 cm diameter) with a mesh-lined perforated plastic base attached to the bottom for 67 

drainage. The first 42 cm was filled with the mineral sand collected from Aberffraw (see above) and 68 

the top 8 cm was filled with the organic matter collected from Aberffraw (see above) to replicate a 69 

mature slack. Each mesocosm was planted with four typical dune slack species (2 sedge and 2 forb 70 

species): one specimen each of Carex arenaria, Carex flacca, Leontodon autumnalis and Prunella 71 

vulgaris. The mesocosms were then placed into individual 10 L buckets filled with a synthesised and 72 

re-created groundwater (See Appendix I for chemical composition) and the additional nutrient 73 

treatments. Holes (1.5 cm diameter) in the side of the buckets were used to control the desired water 74 

table depth and were attached to plastic tubing and a collecting vessel to collect any overflow due to 75 

rainfall (See Fig. 1). The bucket rim was covered with plastic joined to the side of the mesocosm, thus 76 

evapotranspiration was limited to the mesocosm surface. This experiment ran from October 2013 to 77 

July 2014 in Bangor, North Wales, UK (53°13'N, 4°07'W). The mesocosms were setup in October 2013 78 

to allow for a seven month equilibration period, i.e. for mineralisation due to soil disturbance to 79 

diminish and for the plants to establish before the groundwater N treatments commenced in May.  80 

 81 

Fig 1: Diagram of constructed mesocosm 82 

There were three groundwater ammonium nitrate dissolved inorganic nitrogen (DIN) treatments; 83 

control (0.0 mg L-1  of DIN), low (0.2 mg L-1 of DIN) and high (10 mg L-1 of DIN) in factorial combination 84 
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with a wet or dry hydrological regime. The hydrological regimes followed a three-stage seasonal 85 

pattern. Wet hydrological regimes were altered from -10 cm water table depth in the winter months 86 

(1st of October 2013 to 15th of March) to -20 cm in spring (16th March to 31st April), to -30 cm in the 87 

summer months (1st of May onwards), whilst the dry hydrological treatments were altered to 88 

consistently be 10 cm lower than the wet treatment. There were eight replicates of each nitrogen X 89 

hydrological regime combination, giving 48 mesocosms overall. The low N treatment concentration of 90 

0.2 mg L-1  of DIN was chosen due to evidence that shows biological impacts on dune slack habitats at 91 

these low concentrations (Rhymes et al., 2014). The DIN treatments were maintained monthly and 92 

therefore fluctuated throughout the experiment. Mesocosms were located outside and exposed to 93 

natural levels of rainfall and sunlight, which allowed for water table fluctuations (below the maximum 94 

level controlled by the overflow tubes). 95 

Water table depth, water chemistry sampling and maintenance of treatments 96 

Water table depth was measured once a week. Volume of water within each mesocosm was calculated 97 

by the volume of water within the bucket and the water held within the mesocosm sand based on a 98 

water-holding capacity of 30 % (Ranwell, 1959). The groundwater chemical composition was 99 

measured on a monthly basis by taking a water sample from each bucket and filtering through 0.45um 100 

nylon syringe filter (Avonchem™) prior to chemical analysis. NO3 and NH4 concentrations were 101 

quantified by ion chromatography (Metrohm, UK Ltd.), whist total nitrogen (TN) concentrations were 102 

analysed by thermal oxidation on a thermalox TOC/TN analyser. DIN concentrations and water volume 103 

were then used to calculate the quantity of ammonium nitrate required to return DIN concentrations 104 

to the target DIN treatments on a monthly basis.  105 

Nitrogen and water budget experiment 106 

From the 1st of May to the 22nd of July 2014 a simplified water and nitrogen budget was calculated for 107 

each individual mesocosm. Inputs of water were rainfall and added groundwater stock, rainfall volume 108 

was measured weekly from a manual rain gauge. Measured outputs of water were water collected in 109 

the overflow bottles, measured every two weeks. Water loss from evapotranspiration was calculated 110 

on a monthly basis, and combined to give evapotranspiration losses over 84 days. 111 

Nitrogen inputs measured included monthly DIN inputs from the ammonium nitrate treatments added 112 

(see above) and monthly atmospheric deposition concentrations and fluxes (described below), DIN 113 

and TN concentrations from the overflow bottles were measured bi-weekly. Budget calculations 114 

estimated total uptake of N (assumed to include plant and soil uptake and denitrification losses) on a 115 
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monthly basis, to give total N losses over an 84 day period. Denitrification fluxes were not separately 116 

measured in this study.  117 

Atmospheric nitrogen deposition measurements 118 

A monitoring station located 3 metres away from the mesocosms, measured dry and wet N deposition 119 

over the three months. Gaseous nitrogen was measured using triplicate nitrogen dioxide diffusion 120 

tubes (Gradko International Ltd, Winchester, UK) and triplicate ammonia ALPHA badge samplers 121 

(Centre for Ecology and Hydrology, Edinburgh), (Tang et al., 2001), exposed monthly for a three-month 122 

period from May to July. Wet deposited nitrogen was sampled weekly for the three month period; 123 

rainfall volume was obtained from a rain gauge and NO3, NH4, and TN were measured for each weekly 124 

rainfall sample (methods described earlier). Dry gaseous NO2-N and NH3-N concentrations were 125 

converted to N fluxes using a deposition velocity of 1.13 mm s -1 for NO2-N (Jones et al., 2004) and 22 126 

mm s -1 for NH3-N (Jones et al., 2013). Total nitrogen concentrations from weekly rainfall samples were 127 

converted to fluxes using rainfall volumes and bulked to a monthly wet deposition flux. 128 

Plant responses 129 

At the end of July species cover was recorded using visual estimates of percentage cover with aid of a 130 

custom-built 5 cm X 5 cm grid for each species in each mesocosm. In order to measure plant tissue 131 

chemistry four randomly chosen leaves from each Carex flacca specimen were harvested, dried for 38 132 

hours at 30 ºC and ground using a ball mill. The samples were then analysed for Total C and total N by 133 

dry combustion using Leco Truspec CN analyser (Leco corp., St Joseph, MI, USA). 134 

Statistical analysis 135 

All statistical analysis was performed using Minitab v.16. Data were tested for assumptions of 136 

normality. Where transformation was not sufficient to achieve assumptions of normality a non-137 

parametric Kruskal-Wallis test was carried out. Differences in nitrogen uptake (N mg L-1 ), mean species 138 

percentage cover, and Carex flacca tissue chemistry were analysed by a general linear model to test 139 

for the individual differences caused by the water level and nitrogen treatments and the interaction 140 

between the two. Differences in water losses between the wet and dry mesocosms from the 1st of 141 

May to the 22nd of July were analysed by analysis of covariance.  142 
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Results 143 

Maintenance of treatments 144 

The target treatment DIN concentrations for the whole experimental period were maintained, with 145 

values of (average ± standard error): control 0.151 ± 0.170 mg L-1, low 0.218 ± 0.018 mg L-1  and high 146 

9.486 ± 0.370 mg L-1. The average monthly DIN treatment concentrations for all nitrogen treatment 147 

measurements are shown within a time series (Fig.2 a), whilst the dry hydrological regime treatment 148 

was successfully maintained at approximately 10 cm lower than that of the wet hydrological regime 149 

treatment (average difference between the water tables was 9.2 cm). Total water losses from 150 

evapotranspiration over this period within mesocosms subject to the wet hydrological regime were 151 

403.31 ± 6.88 mm, compared with only 334.04 ± 5.86 mm water losses within mesocosms subject to 152 

the dry hydrological regime. Overall, and for many of the individual time points (Fig. 2 c), water 153 

losses were significantly greater (F= 297.85 df= 1 p= 0.000) in mesocosms subject to a wet water 154 

regime compared to those subject to a dry water regime. The exception was for the first two weeks 155 

in July. This was an artefact caused by the supplementary addition of the synthesised artificial 156 

groundwater (Fig. 2 c) to all treatments following a dry spell (Fig. 2 b) to reach the desired water 157 

table depth, with greater uptake of water to replenish the soil moisture deficit in the drier 158 

mesocosm treatment. 159 

 160 
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161 

 162 

 163 

Fig 2: Eighty-four day time series for; a) log DIN concentrations for all nitrogen treatments for the 164 

three month period. b) weekly rainfall and, c) fortnightly water loss where different letters denote 165 

significance between treatments; n.s = no significance. In Fig. 1a, the short arrows represent when 166 

ammonium nitrate treatment was added, grey arrows represent ammonium nitrate only, the black 167 

arrow represents when both groundwater stock and ammonium nitrate treatment was added. In Fig. 168 

2c, the long black arrow indicates when 2 litres of water was added to both treatments. 169 

1.1 Nutrient uptake 170 

The sum of nitrogen inputs and outputs for the three months is presented in Fig. 3 and shows that in 171 

the highest N treatment, an annual equivalent of 98 kg N ha-1 yr-1 had to be added to the groundwater, 172 

in addition to the 23 kg N ha-1 yr-1 coming from atmospheric deposition, in order to maintain a 173 
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concentration of 10 mg L-1 DIN in the groundwater. Comparing nitrogen outputs among the three DIN 174 

treatments (Fig. 3), the total N uptake by the mesocosms from the 1st of May to the 22nd of July was 175 

significantly higher in the high nitrogen treatment than the control and low nitrogen treatments. No 176 

significant difference was found between the control and low nitrogen treatments.  177 

 178 

 179 

Fig 3: Diagram summarising total nitrogen inputs and outputs from the 84 days from the 1st of May to 180 

the 22nd of July and calculated annual equivalent kg N ha-1 yr-1 from the 84 day period measurements. 181 

Values are expressed as mean ± standard error and values denoted with the same letter are not 182 

significantly different. 183 

 184 

Separating atmospheric deposition into wet and dry classes (Table 1) shows that rainfall contributes 185 

double the amount of atmospheric nitrogen inputs compared to the total dry gaseous nitrogen inputs. 186 

Very high rainfall volumes in May compared with previous months accounted for most of the wet 187 

deposition measured, and lead to a relatively high annual equivalent. The highest proportion of 188 
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gaseous nitrogen inputs is from gaseous ammonia with a small amount contributed by nitrous oxide 189 

deposition.  190 

Table 1: Total wet and dry measured atmospheric deposition inputs into individual mesocosms from 191 

the 1st of May to the 22nd of July and calculated annual deposition from the 84 day period 192 

measurements. 193 

Atmospheric deposition mg of N 

deposited in 84 

days, per 

mesocosm 

Annual 

equivalent  

(kg N ha -1 yr -1) 

Wet NO3-N 2.87 7.07 

NH4-N 3.06 7.52 

Dry NO2-N 0.67 1.64 

NH3-N 2.79 6.87 

 194 

In order to compare the effects of the experimental treatments on nutrient uptake in plants, the 195 

nitrogen and carbon content was measured within the leaves of the dominant species within the 196 

experiment, Carex flacca. The comparison of nitrogen treatments showed that plant tissue nitrogen 197 

of C. flacca was elevated in the high nitrogen treatment, with values significantly greater  (F= 3.87 df= 198 

2 p= 0.029) than the low nitrogen treatment (Fig. 4 a), although the high and low nitrogen treatment 199 

were not significantly different from the control. The C:N ratio was  not significantly different (p= 200 

0.084) between the nitrogen treatments (Fig. 4 b), although the C:N ratio is nonetheless noticeably 201 

lower within the high nitrogen treatment than the control and low nitrogen treatments. No difference 202 

was found when comparing the effects of the wet and dry hydrological regime or the interaction 203 

between hydrological regime and nitrogen treatment on either nitrogen content or the C:N ratio. 204 

 205 
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   206 

Fig 4: Carex flacca tissue composition of a) nitrogen and, b) C:N ratio for all nitrogen treatments. 207 

Different letters denote significance between treatments; n.s = not significant. 208 

1.2 Effects of water tables 209 

The plant responses to the wet and dry treatment, the nitrogen treatment and the interaction 210 

between the two were analysed. The percentage cover of the forb Prunella vulgaris (Fig.5 a) was 211 

significantly greater (F= 19.15 df= 1 p<0.001) within the dry treatment than the wet, whereas the 212 

sedge Carex flacca (Fig.5 c) showed significantly greater (F= 6.81 df= 1 p=0.013) percentage cover in 213 

the wet treatment compared to the dry. There were no significant differences between the wet and 214 

dry treatments for Leontodon autumnalis (Fig.5 b) or Carex arenaria (Fig.5 d), and no influence on 215 

overall species percentage cover from the nitrogen treatment or the interaction between the wet and 216 

dry treatments and nitrogen treatments (Fig.5). Carex flacca had the greatest percentage cover within 217 

all mesoscosms compared with all other species.  218 
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220 

 221 

Fig 5: Species percentage cover in wet/dry and nitrogen treatments for a) Prunella vulgaris, b) 222 

Leontodon autumalis, c) Carex flacca and, d) Carex arenaria. No difference was found between 223 

nitrogen treatments; significant differences between wet and dry treatments are indicated. Error bars 224 

show +/- 1 s.e. 225 
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1.3 Discussion 228 

Results of this study show that high DIN groundwater concentrations increase nitrogen uptake by 229 

dune slack mesocosms, however groundwater DIN concentrations ≤ 0.2 mg/Lhad no effect on nitrogen 230 

uptake. A water table lowered by only 10 cm resulted in lower water losses in the drier dune slack 231 

mesocosms and altered percentage plant cover in a forb and sedge species. 232 

Very high levels of nutrient uptake were revealed in the experiment. The quantity of N which had to 233 

be added to the groundwater in order to maintain a concentration of 10 mg L-1DIN suggests that, for 234 

sites where groundwater N concentrations are elevated, the input fluxes from groundwater are likely 235 

to be substantial, and are larger than the inputs from atmospheric deposition. The annual equivalent 236 

atmospheric inputs were also high, due partly to an extremely wet month and to the study being 237 

located in an urban area where dry atmospheric loads are typically 47 % higher than non-urban areas 238 

(Bettez and Groffman, 2013). The atmospheric deposition contributions already exceed the critical 239 

load of 10-20 kg N ha-1 yr-1 for wet dune slack habitats (Bobbink and Hettelingh, 2010), yet this did not 240 

cause groundwater DIN concentrations in the control to rise above those observed in dune 241 

groundwater un-impacted by groundwater nitrogen contamination (Rhymes et al., 2014), and 242 

additional N had to be added to maintain the ‘low’ treatment concentration of 0.2 mg L-1 of DIN. The 243 

implication here is that dune slack soils are able to retain relatively high levels of atmospheric inputs 244 

without excess N leaching into groundwater. Taken together, and since N deposition in most dune 245 

areas of the UK is < 20 kg N (Field et al., 2014), these findings suggest that, where groundwater 246 

concentrations are elevated, the most likely source is terrestrial rather than atmospheric and that the 247 

input fluxes, from either source, are high.  248 

However, although dune slack soils appear to be able to process relatively high rates of atmospheric 249 

inputs, that does not mean there are no ecological effects. Ecological damage such as altered plant 250 

community composition can still occur at very low groundwater N concentrations (Rhymes et al., 251 

2014), even at the concentrations of the low N treatment (0.2 mg L-1) in this study. At higher 252 

concentrations, ecological changes can be profound. At a site in South Wales, UK, Jones et al. (2006) 253 

discuss the effects of a seasonal limestone spring with high levels of nitrate, equivalent to 8.7 mg L-254 

1DIN. The outflow area of the spring supports eutrophic flood meadow vegetation rather than the 255 

typical dune slack vegetation found elsewhere on the site. In The Netherlands, nitrate (and phosphate) 256 

concentrations were negatively correlated with dune slack species richness at groundwater nitrate-N 257 

concentrations ranging from 0.01 – 2.44 mg L-1 of N (Meltzer and Van Dijk, 1986). However, to date 258 
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there are still relatively few studies that have studied plant community responses to elevated 259 

groundwater N in dune systems, and this remains a knowledge gap. 260 

In all three treatments, including the control, the average plant tissue nitrogen content for Carex flacca 261 

was greater than 1.5 %. By comparing with data from other studies (Jones et al., 2013), these tissue 262 

concentrations are broadly comparable with exposure to 22 kg N ha -1 yr -1 of ammonia fumigation, or 263 

>40 kg N ha -1 yr -1 of bulk deposition in the field, i.e. well above the critical load (Bobbink & Hettelingh 264 

2010). At these loads, both the atmospheric and groundwater inputs of N in this study are likely to 265 

cause ecological damage. The overall uptake of N was greater than 116 kg N ha-1 yr-1 annual equivalent 266 

in the high N treatment. Some of this uptake was due to the incorporation into plant tissue by C. flacca 267 

in the high N treatment, but not all of the potential loss pathways were separately quantified in this 268 

experiment. Uptake may consist of a combination of nitrogen incorporation into plant tissues, binding 269 

and uptake by the soil and microbes, and losses through denitrification. Denitrification has been found 270 

to significantly increase with N availability (Adema et al., 2005; Rhymes et al., 2016). The use of 15N 271 

labelling to trace the fate of N would help quantify the relative magnitude of these pathways in future 272 

studies. While the experimental nutrient additions ran for only three months, after a seven-month 273 

settling period for the mesocosms, this was sufficient to demonstrate substantial uptake of N. 274 

However, running the experiment for a full year would have allowed a more accurate annual budget 275 

to be calculated. 276 

It is well documented that the species composition and distribution within dune slack habitats are 277 

primarily influenced by water table depth (Curelli et al., 2013; Willis et al.,1959). Here we found that 278 

a small (10 cm) difference in water level treatments had an effect on both plant growth and water 279 

losses. The responses of Prunella vulgaris and Carex flacca were consistent with the UK National 280 

vegetation classification (Rodwell et al., 2000); where the SD16 drier slack communitycontains 281 

relatively lower cover of C. flacca and higher cover of P. vulgaris and the wettest subtype slack 282 

community of SD14, SD14b, is characterised by higher C. flacca and lower P. vulgaris  cover. This 283 

indicates the sensitivity of individual dune slack species to changes in water tables as small as 10 cm. 284 

Similar sensitivity to elevation above the water table in dune slacks has been shown in the field by 285 

Hope-Simpson et al. (1979). With only 40 cm differences in water table depth separating the drier 286 

from the wetter dune slack communities (Curreli et al., 2013), and the increasing threat of dropping 287 

water table depths due to climate change, dune slack communities are likely to change from wetter 288 

SD15/14 to drier SD16 communities. 289 
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Previous studies show that annual water losses through evapotranspiration are greater in wet dune 290 

slacks than dry slacks (Stratford et al., 2007). Overall, this study found that the water losses due to 291 

evapotranspiration were significantly greater in the wet hydrological regime than the dry. These 292 

findings are comparable to those of Stratford et al. (2007), which suggests that water losses within 293 

natural dune slack systems are likely to decrease with lowered water tables from climate change 294 

(Clarke and Ayutthaya, 2010), thus providing a degree of negative feedback on hydrological change. 295 

However, the response under further lowering of the groundwater level may not be linear since 296 

evaporation and transpiration can decouple. In drier conditions, surface soils may be dry but deep-297 

rooted plants still have access to groundwater and can continue transpiring. Further research to 298 

assess likely impacts of lowering water tables on evapotranspiration would be useful under both 299 

controlled experimental conditions, and in the field. 300 

 301 

Despite altered plant growth and water fluxes, nitrogen uptake was not affected by the differing water 302 

table regimes. This may be due to the soils and plants within both treatments having equal accessibility 303 

to groundwater nitrogen due to capillary processes, which can carry water 45cm above the water 304 

table (Ranwell, 1959) and due to deeper rooting depths observed within drier slack communities 305 

(Rhymes et al., 2014), i.e. the plant rooting depth is constrained by high water levels, meaning that for 306 

the hydrological regimes and species used in this study, the roots maintained similar contact with the 307 

water table. 308 

1.4 Conclusions 309 

These results suggest that for sites where nutrient concentrations in dune groundwater are elevated, 310 

there is a nutrient source in addition to atmospheric deposition. This highlights the necessity to 311 

develop a mechanism to include the contribution of groundwater nitrogen loads when assessing 312 

critical nitrogen loads for dune slack and other wetland habitats (Bobbink and Hettelingh, 2010).  313 

This study demonstrates loss of DIN in groundwater suggesting N uptake and processing in dune slacks 314 

however, additional work is required to investigate the fate of this N, whether it is stored in soil and 315 

plant N pools and microbial biomass, or whether it is denitrified and emitted as N2 or the greenhouse 316 

gas N2O.  317 

This study also highlights the vulnerability of dune slack communities to hydrological change. Changes 318 

in plant species cover due to a 10 cm change in water table depth emphasises the necessity to consider 319 

the potential impacts of climate change and groundwater abstraction on water tables and therefore 320 
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on botanical composition of dune slacks, and to implement conservation management plans to 321 

respond to these combined threats.  322 
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 385 

Appendix I 386 

Table 1 – Artificial groundwater recipe compound weights added to 20L of deionised water. Table 387 
extracted from Rhymes et al. (2016). 388 

 389 

Compound Weight 

CaCO3 0.941 

CaCl2 7.541 

MgSO4 0.370 

MgCL2 0.996 

KCl 0.089 

NaHCO3 5.082 

 390 
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