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Preface 49 

There is much interest in using Earth Observation (EO) satellites to track biodiversity and 50 

ecosystem services, understandable given the fast pace of biodiversity loss. However, 51 

because most biodiversity is invisible to EO, EO-based indicators could be misleading, which 52 

can unintentionally decrease conservation effort and reduce the effectiveness of nature 53 

conservation. We describe an approach that combines automated recording devices, high-54 

throughput DNA sequencing, and ecological modelling to extract the full information content 55 

of EO data. This approach is achievable now, offering near-real-time monitoring of policy 56 

and management impacts on biodiversity and the supply of ecosystem services. 57 

Meeting the Aichi Biodiversity Targets 58 

From Google Earth to airborne sensors, the Copernicus Sentinels, and cube satellites, Earth 59 

Observation technology is undergoing a rapid expansion in capacity, accessibility, resolution, 60 

and signal-to-noise ratio, resulting in a recognized shift in our capability for monitoring land 61 

and water (Verrelst et al., 2015; Wulder et al., 2015; Toth & Jóźków, 2016). These advances 62 

are motivating calls to use Earth Observation products to manage our natural environment 63 

and to track progress toward global and national policy targets on biodiversity and 64 

ecosystem services (O'Connor et al., 2015; Skidmore et al., 2015; Pettorelli et al., 2016b). 65 

Foremost among these are the Strategic Plan for Biodiversity and the Aichi Biodiversity 66 

Targets, which were adopted in 2010 by the Parties to the Convention on Biological Diversity 67 

(CBD) to “take effective and urgent action to halt the loss of biodiversity in order to ensure 68 

that by 2020 ecosystems are resilient and continue to provide essential services…” (CBD, 69 

2010). The United Nations Sustainable Development Goals (UNGA, 2015) now include 70 

some of the Aichi Targets, and the 2015 Paris Agreement has reiterated the commitments of 71 

the UN Framework Convention on Climate Change to reducing emissions from deforestation 72 

and forest degradation (REDD+) and to secure non-carbon benefits, which include 73 

biodiversity and ecosystem services (UNFCCC, 2015). 74 

However, we have struggled to track and report progress toward the Aichi Targets in a 75 

standardized and comprehensive way (Tittensor et al., 2014). Although almost two-thirds of 76 

the CBD Parties have updated their National Biodiversity Strategies and Action Plans to 77 

reflect the 2010 revisions, many still do not contain measurable indicators on the state of 78 

biodiversity, let alone ecosystem services. This impedes inference on how biodiversity 79 

delivers ecosystem functions and services and conceals the impacts of policy and 80 

management interventions on them (Durance et al., 2016). The difficulty of designing 81 
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indicators (Dawson et al., 2016; IPBES, 2016; Pettorelli et al., 2016a) has prompted an 82 

international consortium of biodiversity scientists called GEO BON (Group on Earth 83 

Observations’ Biodiversity Observation Network) to propose a framework of Essential 84 

Biodiversity Variables (Pereira et al., 2013), with the aim of setting minimum standards of 85 

coverage to ensure informativeness and to harmonize disparate local measures so that 86 

biodiversity and ecosystem data can be compared over space and time. The Essential 87 

Biodiversity Variables thus measure the ‘state of biodiversity’ at multiple levels:  genetic 88 

composition, species populations, species traits, community composition, ecosystem 89 

structure, and ecosystem function (Pereira et al., 2013).  90 

Although it was originally envisioned that most of the variables (genetic to community 91 

composition) would be scaled up from “intensive in-situ measurements” taken on the ground, 92 

such measurements are costly and difficult because they are traditionally gathered by visual 93 

and aural detection of plants and animals in the wild (preceded by months or years of 94 

observer practice) and by mass collection of organisms (followed by months of identification 95 

from morphology), so that data collection is slowed by human-caused bottlenecks in 96 

sampling and taxonomy (Proença et al., 2016). 97 

As a result, attention is now being focused on designing ‘Satellite Remote Sensing-Essential 98 

Biodiversity Variables’ (SRS-EBVs) to enable cost-effective and global-scale monitoring 99 

(Skidmore et al., 2015; Pettorelli et al., 2016a; Pettorelli et al., 2016b). The problem here is 100 

that only a few Earth Observation products can be mapped directly to Essential Biodiversity 101 

Variables and then to Aichi Targets, because these products primarily measure gross 102 

vegetation and landscape metrics, such as land cover and phenology (O'Connor et al., 103 

2015). For example, Pettorelli et al. (2016a) found only two Earth Observation products (net 104 

primary productivity and fire incidence) that could serve as Essential Biodiversity Variables 105 

for the Sahara, despite this biome’s suitability for remote sensing due to its visible 106 

biodiversity hotspots, remoteness, and availability of long time series. Many of the Aichi 107 

Targets require data with species-level resolution, either because some species are direct 108 

policy targets (e.g. Target 9: “invasive species controlled or eradicated”) or because species 109 

compositional data define the metric (e.g. Target 11: “protected areas are ecologically 110 

representative and conserved effectively”).  111 

Clearly, a radically new approach (Figure 1, Box 1) is required if progress towards the Aichi 112 

Targets is to be accelerated, one that is robust, widely affordable, and can record stocks and 113 

changes in biodiversity and ecosystem services consistently, continuously, and at high 114 

resolution over large geographic scales. Here, we present such an approach in a framework 115 
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that exploits recent efficiency and capacity gains and analytical breakthroughs in sensors, 116 

computation, ecology, taxonomy, and genomics. 117 

 118 

 119 

Box 1. Inferring a hidden ecosystem function from space 120 

Large-bodied Amazonian monkeys are responsible for a key ecosystem function: they are 121 

the primary dispersers of large seeds, which are associated with more carbon-dense tree 122 

species. Peres et al. (2016) have proposed that this function boosts forest carbon storage. 123 

The idea can be tested by using Earth Observation data and public records to map human 124 

settlements and transport corridors and predict where monkey populations have declined 125 

through hunting (Levi et al., 2009; Peres et al., 2016). We can then use on-the-ground 126 

sampling and airborne sensors to test whether forests that are have had longer exposure to 127 

hunting lack monkey populations and have more low-carbon-density tree species dispersed 128 

by wind and birds. In short, by combining Earth-Observation-derived maps of human activity 129 

with empirical observations of the response of primate populations to that activity, it should 130 

be possible to map and track an ecosystem function (large-seed dispersal) that is invisible to 131 

satellites but contributes to an important ecosystem service (carbon storage). This would be 132 

valuable to carbon-sequestration payment programs like REDD+. 133 

 134 
 135 

From Point Samples to Continuous Maps 136 

Instead of trying to map Earth Observation (EO) products directly to biodiversity, as 137 

encapsulated by SRS-EBVs (O'Connor et al., 2015; Skidmore et al., 2015; Pettorelli et al., 138 

2016a; Pettorelli et al., 2016b), we propose to extract the full information content of EO data 139 

by interpolating biodiversity point samples to build continuous landscape maps of species 140 

distributions (Figure 1) (Ferrier, 2011). Because it is species that are mapped, it becomes 141 

possible to incorporate the vast biological knowledge that we have collectively built up over 142 

decades of research, including historical distributions, knowledge of species traits and 143 

interactions (Box 1), and phylogenetic relationships, to infer, map, and track the distributions 144 

of ecosystem functions and services. This approach, which we call CEOBES (Connecting 145 

Earth Observation to Biodiversity and Ecosystem Services), is possible because of (1) major 146 

advances in EO sensitivity and capacity, (2) more efficient techniques to record biodiversity 147 

data on the ground, and (3) modern community-analysis models from statistical ecology. We 148 

now review these advances, with additional detail in Supplementary Information. 149 
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The New Era of Earth Observation 150 

There are now ten times as many satellites in operation as there were in the 1970s, a result 151 

of increasing sensor longevity and a six-fold increase in launches (Belward & Skøien, 2015). 152 

Spatial resolution has improved to less than 1 m in both optical and radar sensors. Data 153 

continuity is also being maintained, most directly by the launch of NASA’s Landsat 8 in 2013, 154 

which technically enhances and extends the 40-year Landsat record of medium-resolution, 155 

multi-spectral surface observations (Roy et al., 2014). Data continuity is a key factor in 156 

understanding changes in biodiversity, as threats to biodiversity impact at a range of scales 157 

and often across lengthy time-spans (Turner et al., 2015). 158 

The long-term Landsat record is being enhanced by new satellite systems and multiple 159 

sensors in a global network, a ‘virtual constellation’ that may help overcome problems in 160 

terrestrial monitoring from single sensors (Wulder et al., 2015). As part of the Copernicus 161 

program, the ESA Sentinel satellites are the latest addition to the global network. With six 162 

missions planned and the first three launched, the Sentinels have radar, optical sensors, 163 

radiometers, and spectrometers with different goals (Butler, 2014). Sentinel-1, the radar 164 

satellite, and Sentinel-2, the superspectral high-resolution mission, are of particular interest 165 

to biodiversity monitoring, with long-term continuity of measurements, global coverage, and 166 

quick revisit times (Berger et al., 2012; Malenovský et al., 2012). 167 

There have also been developments in hyperspectral sensors with EnMAP, HyspIRI, 168 

PRISMA, and FLEX imaging spectrometer missions planned to produce large data streams 169 

to users (Verrelst et al., 2015). In addition, airborne data collection using high-resolution 3D 170 

airborne laser scanning is complementing spectral information with structure (Asner et al., 171 

2017). Many of these datasets are publicly funded, allowing cheap or even open access. 172 

Swarms of commercial cube satellites and the use of drones to carry sensors are significant 173 

steps that complement these large-scale programs (S1 “Earth Observation technology”). 174 

The increase in spatial resolution in the new sensors implies greater precision because 175 

smaller pixels contain less heterogeneity (Petrou et al., 2015), and reference measurements 176 

taken within meter-scale plots on the ground can be matched directly to meter-scale pixels. 177 

This in turn improves the ability of EO to recognize spatial gradients and boundaries. 178 

Remote sensing is not error-free, and an ongoing challenge is to ensure that EO products 179 

are well-defined to allow accurate estimates of error (Paganini et al., 2016). 180 

Two additional factors affect the utility of remote sensing data for understanding biodiversity 181 

change (S2 “Biodiversity and ecosystem information in EO data”):  affordability and access 182 
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(Turner et al., 2015). There has been a cultural shift, with free open access on the rise. The 183 

opening of the Landsat archive in 2008 was a monumental development (Wulder et al., 184 

2012), with ESA’s Copernicus program following suit. Data access also refers to the ability of 185 

users to retrieve, manipulate, and extract value from EO data. Technological advances are 186 

making these processes manageable, with cloud computing allowing the hosting of large 187 

data archives, and new portals and toolboxes being rolled out. 188 

The availability of copious EO data that have been shown in some studies to correlate 189 

closely with on-the-ground measures of ecosystem structure, habitat condition, and even 190 

animal communities (S2) might suggest that remote sensors can be used directly to define 191 

environmental indicators, but we must acknowledge that we are still in the early stages of 192 

understanding how biodiversity delivers ecosystem functions and services, and how they all 193 

respond to exogenous change. Directly observing functional diversity is a partial solution but 194 

only with ‘visible’ biodiversity such as vegetation (Asner et al., 2017). Thus, the challenge is 195 

to find ways to exploit the high efficiency and information content of EO data while not falling 196 

prey to reification fallacy (Box 2), which can arise when convenient but incomplete indicators 197 

are made available (Lindenmayer & Likens, 2011; Mueller & Geist, 2016). Our institutions 198 

and reporting systems then retain the option to add and respond to new knowledge. 199 

 200 

 201 

Box 2.  The perils of convenient indicators 202 

If we rely too much on EO data, we run the risk of reification fallacy, in which a mere 203 

indicator of a policy target itself ends up the target. Reification fallacy can reduce or narrow 204 

conservation effort (Newton, 2011) and can crowd out future discoveries (Smaldino & 205 

McElreath, 2016). For example, while remote sensing is an efficient and direct way to 206 

measure forest cover (Aichi Target 5:  reducing the loss rate of natural habitats), using SRS-207 

EBVs such as forest cover and phenology to measure ecosystem resilience (Target 15: 208 

contribution of biodiversity to carbon stocks) (O'Connor et al., 2015) would ignore taxa 209 

invisible to satellites and could thus result in policymakers failing to exert the additional effort 210 

that is required to conserve saprotrophic fungal diversity, seed-dispersing mammals, and the 211 

seemingly inconsequential isopod, all of which have been implicated in boosting carbon 212 

storage, in dead wood, living trees, and soil, respectively (Crowther et al., 2015; Peres et al., 213 

2016; Yang et al., 2016). More generally, land-cover class, which is a common EO-derived 214 

indicator type, is a highly error-prone way to map and assess the complex processes 215 

supporting ecosystem services (Eigenbrod et al., 2010). In short, convenient EO products 216 

could lead policymakers to focus only on that portion of biodiversity and ecosystem services 217 
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that is measurable by satellites, ignoring the rest. 218 

 219 

High-throughput biodiversity measurement 220 

Most biodiversity, whether animal, fungal, plant, or microbial, and its many functions and 221 

services, is invisible to EO and will remain so for some time. But a growing number of 222 

efficient technologies are available for detecting and identifying biodiversity on the ground 223 

(Snaddon et al., 2013; Turner, 2014) (S3 “Biodiversity technology”). Automated bioacoustic 224 

and camera-trap recording devices (ARDs), which can run continuously for weeks, can 225 

accumulate thousands of records of invertebrates, birds, fish, reptiles, amphibians, and 226 

mammals, and thus allow extended sampling of large areas at low workloads (Acevedo & 227 

Villanueva-Rivera, 2006; Lammers et al., 2008; Jung & Kalko, 2011; Aide et al., 2013; 228 

Sollmann et al., 2017). Alternatively, high-throughput DNA sequencers can now be used in 229 

metabarcoding or metagenomic pipelines to detect and identify anywhere from one to 230 

thousands of species at a time from mass-collected, bulk samples of organisms (e.g. 231 

‘biodiversity soups’; Yu et al., 2012) or from ‘environmental DNA’, which is DNA liberated 232 

into the environment in the skin, hair, mucous, saliva, sperm, eggs, exudates, feces, urine, 233 

blood, spores, root fragments, leaves, fruit, pollen, or rotting body parts of their original 234 

owners (Taberlet et al., 2012; Bohmann et al., 2014) (Figure 2, S3). Multiple studies have 235 

now shown that metabarcode datasets reflect high-quality, morphologically identified 236 

biodiversity datasets sufficiently closely to allow correct management decisions, given best-237 

practice protocols and controls (Ji et al., 2013; Edwards et al., 2014; Chariton et al., 2015; 238 

Lejzerowicz et al., 2015; Visco et al., 2015; Aylagas et al., 2016). 239 

The taxonomic identities, phylogenetic affinities, functional genes (Xue et al., 2016), spectral 240 

properties (of visible vegetation; Asner et al., 2016; Fisher et al., 2016; Asner et al., 2017), 241 

and/or co-occurrence patterns (Vacher et al., 2016) of the detected species can be used to 242 

parameterize process-based production functions for ecosystem services (Barnes et al., 243 

2016; Brose & Hillebrand, 2016; Burley et al., 2016) (Figure 1). For instance, the species 244 

identities and biomasses of wild bees identified metagenomically from bulk samples (Tang et 245 

al., 2015) could be combined with flower-use observation data (Wood et al., 2017) and 246 

detailed vegetation classification from EO to infer the availability and nature of local 247 

pollination services. Metagenomic data matched to identified species can be particularly 248 

powerful when the impacts of species loss on ecosystem function are not random, evidence 249 

that has previously relied on intensive field sampling, e.g. in tropical freshwater (McIntyre et 250 

al., 2007) and marine benthic communities (Solan et al., 2004).  251 
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Statistical Modelling as the Bridge 252 

Earth Observation technology can produce large-scale, fine-resolution maps and dense time 253 

series of a wide range of biophysical variables (S1, S2), but it is difficult to translate the 254 

biophysical variables into biodiversity information. In contrast, ARDs and DNA sequencing 255 

are capable of generating large amounts of biodiversity information at species- or even 256 

individual-level resolution (Sunarto et al., 2013; Sigsgaard et al., 2016), but only from point 257 

samples (S3). Modern methods of statistical modelling now allow us to scale up from data-258 

rich point samples to map the distributions of multiple species at once across large spatial 259 

extents (Ferrier, 2002; Ferrier & Guisan, 2006; Honrado et al., 2016; D'Amen et al., 2017), 260 

potentially also including estimates of abundance or biomass, depending on the sampling 261 

and analytical methods used (S4 “Statistical modelling”). Statistical models also provide a 262 

rigorous framework for quantifying the most important sources of uncertainty.  263 

The three approaches with immediate potential to interpolate point samples of community 264 

composition to build continuous species maps and to estimate emergent metrics such as 265 

richness and dissimilarity are: Joint Species Distribution Models (Warton et al., 2015; 266 

Ovaskainen et al., 2016a; Ovaskainen et al., 2016b; Ovaskainen et al., in press) (including 267 

Latent Variable Models), Community Occupancy-Detection Models (Dorazio & Royle, 2005), 268 

and Generalized Dissimilarity Models (Ferrier, 2002; Ferrier et al., 2007) (Figure 3, S4). 269 

Each approach starts with a site-by-species matrix, from data that have been collected by 270 

ARDs or been generated via metabarcoding or metagenomics (Figure 2, S3), plus any 271 

existing species distribution data. If some species are not detected, repeat sampling can be 272 

used to infer missing occurrences (Dorazio & Royle, 2005). The site-by-species matrix is 273 

then paired with a corresponding site-by-environmental-variate matrix, generated from 274 

continuous EO data plus any relevant geographical layers, and the two datasets are 275 

combined statistically to infer the joint distributions of multiple species across entire regions 276 

(Figure 3, S4). All three statistical approaches have already been applied successfully to 277 

conventionally acquired datasets (Box 3).  278 

 279 

280 
Box 3. Current Practice in Community Modelling 281 

Ovaskainen et al. (2016b) used a joint species distribution model to predict the distributions 282 

of 55 butterfly species scored for presence/absence on a grid of 2609 10 X 10-km cells 283 

across Great Britain that had been sampled from 1995-1999 in a large citizen-science 284 

project. The model was successfully parameterized with just 300 cells and four measured 285 
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environmental covariates (degree-days and three types of vegetation cover), plus spatially 286 

structured latent variables. Latent variables use observed species subgroupings to detect 287 

the effects of unmeasured environmental filters or species interactions such as competition. 288 

The parameterized model was used to predict butterfly communities in the remaining 2309 289 

grid cells. Together, the measured and latent variables explained an average of 42% of the 290 

variance in species occurrence (with medium-prevalence species more accurately 291 

predicted), and the two most-dominant latent variables revealed a north-south gradient in 292 

species composition, with especially distinct communities in the southeast and northwest. 293 

Species richness per grid cell was accurately predicted, and the model’s ability to 294 

discriminate presence and absence was high (mean AUC = 0.91).  295 

Kery and Royle (2009) used community-occupancy modelling to analyze the 2001 Swiss 296 

breeding-bird survey while accounting for variation in detectability due to season, site, and 297 

species effects. The dataset consisted of 254 1-km2 grid cells, each visited three times. The 298 

fitted model predicted each species’ probability of occurrence as a function of site elevation 299 

and forest cover, as well as variance in the uncertainty of occurrence estimates, making it 300 

possible to estimate species distributions across the landscape and confidence in those 301 

estimates. Parameter estimates were naturally less precise for rare species, but using the 302 

nested model design, information could be ‘borrowed’ from data-rich species to increase the 303 

precision of predictions for rare species. These procedures were able to compensate for the 304 

fact that only 134 total bird species were recorded in the survey, less than the true total of 305 

163 species known to breed regularly in Switzerland, plus 22 occasional residents. The 306 

occupancy-corrected model estimated that between 1 and 11 species had been overlooked 307 

per grid cell and thus, that the true total in 2001 was 169 species.  308 

Finally, Mokany et al. (2011) applied Generalized Dissimilarity Modelling (GDM) to a dataset 309 

of 2330 specialist surveys of New Zealand land snails, which recorded 845 of 998 known 310 

species. The GDM used fourteen environmental variables to explain 57% of the variation in 311 

beta diversity, and a generalized additive model explained 27% of the variation in species 312 

richness (after scaling the 20 x 20-m survey quadrats to match the area of modelling units 313 

(200 x 200-m); see discussion of scaling in S4). These outputs were combined using a 314 

procedure called DynamicFOAM that used the models of richness and dissimilarity as top-315 

down constraints to assign the most probable species of snail to communities across New 316 

Zealand. The error was assessed by predicting compositions in 50 sites, with the remaining 317 

2280 surveys used for model parameterization. On average, the model was able to predict 318 

half the species that had been observed in each cell, and the predicted total occupancy area 319 
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per species was highly correlated with the number of quadrat occurrences (Pearson’s r = 320 

0.902). When quadrats were pooled into groups of 3 to 400 to reduce sampling stochasticity, 321 

predicted species richnesses almost perfectly explained observed richnesses (R2 = 0.99).  322 

 323 

 324 

By mapping species distributions as the primary output, we do not lock ourselves into an 325 

arbitrary set of convenient indicators, and ongoing discoveries on the relationship between 326 

biodiversity and function (typically focused at the species level) can be added. As an 327 

illustration, the species diversity of wood-decaying fungi in natural forests is notoriously 328 

difficult to assay but can be predicted in part by the volume and species diversity of the stock 329 

of dead wood on the ground (Hottola et al., 2009), and these environmental covariates are 330 

partially quantifiable via airborne LiDAR sensors (S1) (Mücke et al., 2013), thus allowing 331 

inference of the distribution and level of wood-decaying fungal diversity via EO. Subsequent 332 

and unrelated research has suggested that dead wood pieces inhabited by a higher diversity 333 

of fungal species decompose more slowly, possibly due to more intense interference 334 

competition (Yang et al., 2016). Combining the two results suggests that an EO-derived map 335 

of fungal species diversity could be used to contrast landscape management options for how 336 

well they conserve saprotrophic fungal biodiversity and thus enhance carbon storage 337 

services. Two further reasons for focusing on species maps as the primary output are that 338 

the regional species pool (gamma diversity) and the biological dissimilarity of sites (beta 339 

diversity) could contribute to maintaining functional stability (Pasari et al., 2013; Wang & 340 

Loreau, 2014; Burley et al., 2016) and that species-resolution outputs retain the option of 341 

aggregation to represent different aspects of biodiversity, including higher-taxonomic, 342 

functional, and phylogenetic groupings (Cardinale et al., 2012).  343 

Many methods are also available to predict individual species ranges, and EO can help 344 

improve their accuracy (S3 Single Species Detection; Gillespie et al., 2008; Lausch et al., 345 

2016). However, ecosystem functions and services are rarely delivered by a single species, 346 

and summing the outputs of multiple individual models to simulate communities is 347 

computationally inefficient, statistically flawed, and does not account for species interactions 348 

(Calabrese et al., 2014). In the CEOBES framework, we focus on methods for modelling the 349 

compositions of whole communities.  350 

From CEOBES to Aichi 351 

In essence, our argument is that new technologies now make these statistical approaches 352 
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(Figure 3, Box 3) much more widely applicable, including in biodiversity hotspots where there 353 

is low capacity for generating the large conventional biodiversity datasets that have been 354 

prerequisites for the above demonstrations. Lower costs and reduced requirements for 355 

taxonomic expertise allow increased numbers of species and environmental covariates 356 

(Leitão et al., 2015; Asner et al., 2017) to be included, which in turn increase explanatory 357 

power by providing more predictors and by exploiting latent variables and letting rare species 358 

‘borrow’ information (Kery & Royle, 2009; Ovaskainen & Soininen, 2011; Sollmann et al., 359 

2017). Reduced costs also allow larger numbers of training and validation samples to be 360 

taken, which improves the reliability of model parameterization, widens the range of 361 

environmental conditions under which a model is valid, and helps to justify in-situ 362 

surveillance monitoring, which is necessary for detecting threats, such as broad-spectrum 363 

insecticides, that could alter the statistical relationships between EO data and biodiversity. 364 

The maps of community composition that are the primary outputs of the CEOBES approach 365 

(Figure 1) can then be used to inform multiple Aichi Targets.  366 

The first example of such a CEOBES approach is given by Sollmann et al. (2017), who used 367 

community-occupancy modelling to connect environmental covariates from the 5-m-368 

resolution RapidEye satellite to point-sample data from camera traps in three tropical forest 369 

reserves managed for logging in Sabah, Malaysian Borneo. They tested whether 370 

mammalian biodiversity is being conserved more effectively in the reserve that is managed 371 

to standards set by the Forest Stewardship Council (Aichi Target 7, sustainable 372 

management under forestry). The dataset consisted of 166 camera-trap stations, each 373 

operating for a minimum of six weeks and scored for three environmental covariates: 374 

distance to water, distance to oil-palm plantation, and forest condition. Estimated 375 

relationships between species occurrence and covariates was used to interpolate species 376 

occurrences from the camera-trap stations over the three reserves. They modelled the 377 

distributions of 28 species, including estimates for the rare species that were improved by 378 

‘borrowing’ information from more common ones. Species richness was higher in the FSC-379 

certified reserve, particularly for threatened species (Target 12, improved conservation 380 

status of threatened species). Percentage of area occupied, which could indicate larger 381 

population sizes, was also higher in the certified reserve for the majority of species, including 382 

for some highly endangered species like the Sunda pangolin Manis javanica. Finally, the 383 

species richness maps were found to correlate strongly with EO-estimated aboveground 384 

biomass at the large spatial grain of whole reserves, but not at a finer resolution (potentially 385 

due to hunting at reserve borders), further demonstrating the usefulness of ground data for 386 

linking pure-EO data to biodiversity. See also Figure S3.1 for an example combining EO 387 
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data and environmental DNA to successfully map an invasive diatom over a watershed 388 

(Target 9, invasive species pathway identified) (Olson et al., 2014).  389 

A second example is the use of Generalized Dissimilarity Modelling to assess progress 390 

against multiple Aichi Targets by connecting EO-derived metrics of habitat degradation and 391 

fragmentation (Hansen et al., 2013; Newbold et al., 2016) to models of spatial turnover in 392 

biodiversity composition at 1-km-resolution globally, based on over 300 million records of 393 

more than 400,000 species from the Global Biodiversity Information Facility 394 

http://www.gbif.org/ and the Map of Life http://mol.org/ (GEO BON, 2016). For instance, by 395 

invoking the assumption that terrestrial biodiversity declines according to the classic species-396 

area power function, this modelling framework estimates the proportion of biodiversity 397 

associated with each grid cell that is expected to be retained based on the proportion of 398 

similar habitat remaining unimpacted within the landscape (Allnutt et al., 2008). Such metrics 399 

can in turn help to track whether the rates of loss, degradation, and fragmentation of natural 400 

habitats are being reduced (Target 5). By further combining this approach with a global 401 

database of protected-area coverage https://www.protectedplanet.net/, it is possible to report 402 

progress against Target 11, which aims for protected areas to cover areas of particular 403 

importance to biodiversity and ecosystem services and to be ecologically representative and 404 

connected (see also Ferrier et al., 2004). An important caveat is that the biodiversity data in 405 

this case are historical in nature and thus contain the taxonomic and sampling biases and 406 

constraints of the past (Box 2). Ideally, the biodiversity data will transition to up-to-date, 407 

properly sampled, and more taxonomically comprehensive point samples, and this can be 408 

implemented region by region. 409 

Implementation  410 

It is extremely difficult to identify all the species present in a location (the Linnaean 411 

challenge), to delimit the geographic distributions of species (the Wallacean challenge), and 412 

to quantify their responses to natural and anthropogenic environmental change (the 413 

Hutchinsonian challenge) (Cardoso et al., 2011). A synergy of Earth Observation, automated 414 

recording devices, high-throughput DNA sequencing, and modern statistical modelling can 415 

meet these challenges by making it possible to scale up from data-rich but finite sets of point 416 

samples to spatially continuous biodiversity maps, which are more informative than a few 417 

convenient indicator species but still let us generate summary statistics to communicate 418 

trends to decision-makers and the general public. The use of formal statistical frameworks 419 

lets us quantify error, more readily identify gaps in our understanding, objectively identify the 420 

most likely pressures on biodiversity from multiple candidates, and increase the robustness 421 
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of change detection. Adding information on species interactions and functions helps link 422 

biodiversity to ecosystem functions and services (Box 1, Figure 1) in a process-based 423 

approach (Barnes et al., 2016), rather than relying on crude estimates from land classes 424 

(Eigenbrod et al., 2010). Finally, as DNA-based technologies mature, the same samples 425 

could track population-genetic diversity (Fitzpatrick & Keller, 2015; Crampton-Platt et al., 426 

2016; Sigsgaard et al., 2016). 427 

A global, multi-resolution monitoring network is thus within our capacity but will still involve a 428 

number of challenges associated with technical capability, computation and data storage, 429 

and data standardization. For every biologically distinct region, there will be an initial cost to 430 

collect data for model parameterization, followed by a reduced level of continuous sampling 431 

to update models in the face of directional environmental change that could alter statistical 432 

relationships. The initial investments are probably best borne by governments, as part of 433 

their commitment to the Convention on Biological Diversity, and there is also great promise 434 

in using citizen-science networks to collect standardized, bulk biodiversity samples over 435 

large areas. A laudable example is the School Malaise Trap Program that recruited 436 

hundreds of secondary-school science classes to collect arthropods across Canada 437 

(malaiseprogram.com). Initial investment could also come from existing monitoring budgets 438 

with the expectation that additional information content will compensate for reduced sample 439 

numbers within existing programs (Olson et al., 2014). Follow-up sampling requires steady 440 

funding streams, and the standardization of our approach meets the needs of international 441 

certification schemes, such as REDD+, Climate, Community & Biodiversity Standards, 442 

Forest Stewardship Council, and the Roundtable on Sustainable Palm Oil, which all require 443 

the continuous monitoring of biodiversity and ecosystem services. Biodiversity offset 444 

payments to mitigate the impacts of development and carbon emissions are also expected to 445 

provide funding streams, and standardized assessments are needed to ensure that 446 

offsetting results in biodiversity net gain (Maron et al., 2015).  447 

Our approach also depends on institutional support for the multidisciplinary collaborations 448 

needed to generate and analyze disparate datasets from multiple disciplines (EO, ARDs, 449 

genomics, functional ecology, and ecosystem services), expertise that no single individual 450 

has (Mueller & Geist, 2016; Palumbo et al., 2016; Pettorelli et al., 2016a). In addition, 451 

identifying causal determinants of species distributions needs a clear understanding of the 452 

phylogenetic structure and functional diversity present, what ecological processes may be 453 

involved, and what EO sensors can and cannot observe (Dafforn et al., 2015). Expert 454 

knowledge will also contribute to sampling design and covariate selection so that the full 455 
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breadth of environmental conditions (especially those not visible to EO) is captured by the 456 

point samples.  457 

On the other hand, collaborations need not be global. Political and social interests will vary 458 

by region, and agencies should be encouraged to trial CEOBES within their jurisdictions 459 

where there are clear opportunities to improve management, while also enforcing the 460 

publication of primary data, sampling design, and analytical pipelines (Petrou et al., 2015; 461 

Schmeller et al., 2015). The Intergovernmental Platform on Biodiversity and Ecosystem 462 

Services (IPBES) could play an important role as a coordinating institution.  463 

Resources for environmental management are always likely to be limited, but by doing more 464 

with our expensively gained field data, we can take action more efficiently and effectively. 465 

What is required now is leadership by governments and international organizations to 466 

stimulate integrated research and to endorse the use of comprehensive biodiversity 467 

information (Pettorelli et al., 2016b). 468 
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Figures 474 

 475 

Figure 1. CEOBES: Connecting Earth Observation data to Biodiversity and Ecosystem 476 

Services. Top row left: EO data and other geographical datasets are used to generate 477 

spatially continuous maps of biophysical data (S1, S2). Middle row left:  A real landscape 478 

with sampling locations indicated by yellow dots. Bottom row left: Biodiversity is recorded 479 

manually using traditional methods, automated audio or image recording devices, or 480 

metabarcoding or metagenomic pipelines to generate a site X species table (Figure 2, S3). 481 

However, most of the landscape is not sampled (empty rows in the table). Right side: The 482 

point biodiversity samples are combined statistically with continuous biophysical maps to 483 

predict biodiversity composition over the whole landscape (S4). In combination with ancillary 484 

data like trait databases, process-based models can then identify the functional composition 485 

of any location and map the expected distributions of ecosystem functions and services.  486 



 
 
Bush et al. CEOBES 

16 

487 



 
 
Bush et al. CEOBES 

17 

  488 

Figure 2. Metabarcoding and metagenomic processing pipelines for high-throughput 489 

biodiversity surveys. Top row: Point locations across a landscape are sampled for 490 

biodiversity, and DNA is separately extracted from each sample. Three common sample 491 

types are (i) bulk samples of arthropods (depicted here), (ii) environmental DNA from soil, 492 

water, and air, and (iii) invertebrate collectors of vertebrate DNA (iDNA), such as 493 

mosquitoes, leeches, flies, dung beetles, and ticks. Left column:  Metabarcoding – Each 494 

sample’s DNA is amplified via PCR (polymerase chain reaction) for a particular marker gene 495 

that is taxonomically informative, the samples are pooled and sequenced on a high-496 

throughput sequencer, and then sorted back to sample by the sample-specific tags added 497 

during PCR. The sequences are then clustered into Operational Taxonomic Units (OTUs), 498 

which are species hypotheses, and assigned taxonomies by matching against online 499 

databases. Right column:  Meta/mitogenomics – Each sample’s total DNA is sequenced, 500 

and the output DNA reads are matched to reference genomes, which are often mitochondrial 501 

genomes. Bottom row:  The output of both processing pipelines is a ‘sample X species’ 502 

table. Metabarcoding pipelines are useful for general biodiversity discovery and surveys 503 

because online barcode databases are more taxonomically complete, and even without 504 

taxonomic assignment, it is possible to calculate community metrics from OTUs only. 505 

Metagenomic pipelines are more costly, but advantageous when it is important to reliably 506 

identify particular sets of species and to a greater extent preserve relative biomass 507 

information. See S3 for further details. 508 

 509 
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 511 

Figure 3.  Three statistical pathways to map community composition and summary metrics 512 

(local diversity – α, species turnover – β, and regional diversity – γ) from the combination of 513 

biodiversity point samples and continuous Earth Observation (EO) maps. For clarity, the 514 

figure only considers models for species occurrence (OCC), not abundance. GAM:  515 

Generalized Additive Model. DynamicFOAM is described in Mokany et al. (2011). See S4 for 516 

further details.  517 
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S1. Earth Observation Technology 47 

Earth Observation (EO) sensors can be differentiated into active and passive types. Active 48 

sensors direct their own source of electromagnetic radiation at the Earth and receive the 49 

signal reflected back from the target (e.g. Synthetic Aperture Radar, SAR, transmits 50 

microwave pulses). Passive sensors rely on external radiation sources such as the Sun 51 

(optical and thermal sensors fall into this category). Different sensors record electromagnetic 52 

radiation in specific ranges of the electromagnetic spectrum, with wavelengths from 400-700 53 

nm (visible light) to 700-2400 nm (near to shortwave infrared), 3000-14000 nm (thermally 54 

emitted radiation), and 1 cm-1 m (microwave radar wavelengths). Passive EO instruments 55 

record radiances at sensor, which generally have to be corrected for atmospheric aerosol 56 

and water vapour impacts in order to estimate the land surface reflectances from which EO-57 

derived metrics are usually extracted. Active radar sensors record the transmitted energy 58 

that is scattered back from the surface, and since microwaves penetrate clouds, they provide 59 

an all-weather observing capability. However longer wavelengths such as L-band (15-30 cm) 60 

and P-band (30-100 cm) can be affected by fluctuations in the total electron content of the 61 

ionosphere and the Faraday rotation. Optical and radar sensors are available from both 62 

airborne platforms (drones, aircraft) and spaceborne platforms (polar orbiting and 63 

geostationary satellites, international space station). Important characteristics of an EO 64 

sensor are its spectral coverage and spectral resolution (which bands of the electromagnetic 65 

spectrum it measures and at what wavelength detail), its spatial resolution (pixel size), and 66 

temporal repeat-frequency (number of days between two acquisitions at the same location). 67 

Many applications do not require frequent acquisitions, but multiple images can for instance 68 

help account for artefacts and error due to cloud cover (Wilson & Jetz, 2016). 69 

Light Detection and Ranging (LiDAR) is an active remote-sensing technique that transmits 70 

infrared or visible polarised light and records the intensity and temporal delay of the received 71 

signal. Because of the constant speed of light in air, airborne LiDAR can measure the 72 

vertical height of objects with very high accuracy (Bradbury et al., 2005). Radar 73 

interferometry from tandem satellite constellations can also measure vertical height but is not 74 

as accurate as LiDAR and has a coarser spatial resolution than airborne LiDAR (Balzter et 75 

al., 2016). LiDAR systems can be imaging LiDARs or profiling LiDARs, and some systems 76 

record the full waveform of the received radiation, allowing the study of vegetation canopies 77 

in great detail, while others only record the first and last return of the waveform. LiDAR 78 

instruments are usually mounted on airborne platforms (aircraft, drones) or used as 79 

terrestrial instruments (mounted on a tripod or used as a handheld device), with the 80 

exception of the spaceborne ICESAT-GLAS profiling LiDAR and the planned GEDI mission 81 

to be mounted on the International Space Station. 82 
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S2. Biodiversity and ecosystem information in EO data 83 

The spatial and temporal coverage of EO cannot be matched by in-situ surveys, and 84 

mapping of habitat extent and land cover types has therefore been incorporated into national 85 

monitoring programs for many years (Firbank et al., 2003; Duro et al., 2007). 86 

Aboveground biomass and carbon storage – Forest ecosystems play a crucial role in global 87 

biogeochemical cycles, and deforestation has been a major contributing factor to increasing 88 

anthropogenic carbon emissions. Global initiatives such as REDD+ (Reducing emissions 89 

from deforestation and forest degradation, and the role of conservation, sustainable 90 

management of forests and enhancement of forest carbon stocks in developing countries) 91 

has been negotiated by the UNFCCC for years and was reiterated in the Paris Agreement 92 

(UNFCCC, 2015). While the main aim is to mitigate climate change by reducing carbon 93 

emissions, for which developing countries receive results-based payments, safeguards and 94 

non-carbon benefits (NCBs) are recognized, including consistency with the conservation of 95 

natural forests and biodiversity (UNFCCC, 2010; Turnhout et al., 2016). The success of 96 

REDD+ therefore depends on our ability to accurately quantify the global distribution of 97 

carbon sources and sinks, for which EO such as SAR or LiDAR are now being developed 98 

(Lynch et al., 2013).  99 

Airborne LiDAR can quantify forest canopy height and complexity, and understorey density 100 

over large areas, and has been particularly useful in forestry (Vierling et al., 2008). Although 101 

individual trees can be mapped by very high pulse densities (Maltamo et al., 2004), forest 102 

structure is more commonly described by the heights of a lower density point-cloud 103 

aggregated over a forest plot. The average parameters for that forest can then be used to 104 

estimate aboveground biomass, which can be translated to ecosystem services like carbon 105 

sequestration and storage (McKinley et al., 2011). Hollaus et al. (2009) demonstrated that 106 

even simple models could make accurate predictions of timber stock in alpine forests after 107 

being calibrated with inventory plot data (r2 > 0.80). The study also showed model accuracy 108 

was not sensitive to LiDAR point density or the season of acquisition.  109 

Although performance is likely to vary among habitat types, with accuracy usually greater in 110 

low diversity systems, and dependent on the number and size of calibration plots, a meta-111 

analysis of more than 70 studies by Zolkos et al. (2013) found airborne LiDAR to be more 112 

accurate than radar or passive optical data. Yet more accurate estimates of carbon stocks 113 

may be possible using hyperspectral to discriminate tree species (Dalponte & Coomes, 114 

2016). LiDAR can also be used in ecosystems other than forests. For example, Zlinszky et 115 

al. (2015) demonstrated that LiDAR can replicate ground-based multi-parameter 116 
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assessments of habitat conservation status in a Natura 2000 grassland reserve in Hungary 117 

(Overall Accuracy=0.8); and using EO, the entire reserve could be surveyed.  118 

Biodiversity – While the main focus of REDD+ is to reduce carbon emissions, there is also 119 

great potential to improve predictions of spatial patterns of biodiversity from vegetation 120 

structure. As argued elsewhere in this paper, these relationships could prove critical to 121 

achieving the ambitions of initiatives like REDD+ without compromising the benefits for 122 

biodiversity conservation (Beaudrot et al., 2016a). 123 

For instance, early EO products like NDVI (normalized difference vegetation index) have 124 

been shown to approximate changes in vegetation structure and hence turnover of the 125 

invertebrate ground fauna (Lassau et al., 2005; Lassau & Hochuli, 2008), and more recently 126 

high spatial resolution airborne imagery has been shown to identify canopy gaps that are 127 

associated with the diversity of understorey vegetation (Getzin et al., 2012). Spectral traits of 128 

plants are determined by their physiological and morphological traits, and there are 129 

demonstrated applications using EO to reveal the distribution of vegetation types (Gillespie 130 

et al., 2008; Asner et al., 2017), functional types (Ustin & Gamon, 2010), richness (Fricker et 131 

al., 2015), and temporal changes (Hansen et al., 2013) to name but a few (Lausch et al., 132 

2016). Nonetheless, the success of habitat mapping varies with habitat type, and research 133 

into the right combination of sensors and algorithms is ongoing (Pfeifer et al., 2012; Petrou 134 

et al., 2015; Rocchini et al., 2016). Finally, the combination of hyperspectral sensors and 135 

LiDAR provides an extremely detailed picture of Earth’s surface, potentially capable of 136 

identifying the composition of individual trees in some landscapes (Colgan et al., 2012) and 137 

reproducing patterns of tree richness and turnover in highly diverse rainforests at landscape 138 

scales (Féret & Asner, 2014a, b; Asner et al., 2017). Eventually, similar measurements that 139 

directly observe or predict the distribution of biodiversity could be extended globally as 140 

satellite-based LiDAR and hyperspectral imaging systems become operational (S1). 141 

LiDAR-derived structural metrics have also proven useful as predictors in many animal 142 

groups (Davies & Asner, 2014; Simonson et al., 2014), and LiDAR could be more cost-143 

effective than traditional methods for censusing invertebrate communities (Müller & Brandl, 144 

2009) and is likely to perform even better once taxonomic uncertainties are reduced with 145 

DNA-based identification (Vierling et al., 2011). 146 
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S3. Biodiversity technology 147 

Automated Recording Devices (ARDs) 148 

The first set of technologies encompass ARDs, such as camera traps and bioacoustic 149 

recorders that can be left in even remote field locations for weeks to months, continuously 150 

capturing records of birds, amphibians, and mammals, and thus allow continuous sampling 151 

of tens of thousands of hectares at a time, with only occasional fieldwork to maintain sensors 152 

and retrieve data. 153 

Camera traps. - Camera traps are powerful tools for detecting medium to larger-sized 154 

mammal species, particularly in forests (e.g. Sunarto et al., 2013), and they have also been 155 

used to study ground-dwelling bird species (O’Brien & Kinnaird, 2008; Suwanrat et al., 2015) 156 

and lizards (Broeckhoven & le Fras Nortier Mouton, 2015). Camera traps readily detect rare 157 

and cryptic or nocturnal species, and once set up, operate independently of an observer until 158 

battery life or memory capacity is exhausted. Early models used film roll cameras and active 159 

sensors, where an infrared beam was established across a potential animal path, and the 160 

unit was triggered when that beam was broken. Set-up of the infrared beam (height, 161 

positioning) had to be tailored specifically to the target species, and early studies often 162 

focused on the demography of single charismatic species such as tigers (e.g. Karanth & 163 

Nichols, 1998; Karanth et al., 2006). Even with passive heat-in-motion sensors, which made 164 

for a more flexible set-up because of the increased area over which animals can be 165 

detected, the low number of exposures on film rolls was a severely limiting factor to the time 166 

that camera traps could be left in the field without revisiting. 167 

The development of a wide range of digital models in the last 10 years greatly expanded the 168 

applications of camera traps. With increasingly powerful memory cards and batteries, 169 

cameras can now routinely be left unattended for weeks up to several months (depending on 170 

the expected amount of animal traffic). Options for infrared flash make the equipment nearly 171 

invisible, even at night, preventing theft. Modern camera traps capture images of sufficient 172 

quality to allow identification to species in 80-90% of photos. Rapid sequential triggers of 173 

video options further increase the likelihood of obtaining the footage needed to identify 174 

species and individuals. Whereas the up-front investment in the equipment can be high 175 

(depending on manufacturer and specifications, a single trap can cost anywhere between 176 

$80 and $800), camera traps have repeatedly been shown to beat other methods (e.g. 177 

transects, track plates) in their efficiency to document medium to large terrestrial mammal 178 

species (Silveira et al., 2003; Lyra-Jorge et al., 2008; Balme et al., 2009), and they become 179 

more cost effective for longer surveys (Lyra-Jorge et al., 2008). 180 



Bush et al. CEOBES 

      6 

Although the method is still used to study the demography of individual species, particularly 181 

those with natural coat patterns allowing individual identification (Gardner et al., 2010; 182 

Sollmann et al., 2011; Wilting et al., 2012), camera traps are now also used in behavioural 183 

studies (Armenteros et al., 2015) and to study species interactions in space and time (e.g. 184 

Linkie & Ridout, 2011; Sollmann et al., 2012). Moreover, camera traps have increasingly 185 

become a tool to survey mammal biodiversity. Several studies have employed camera 186 

trapping to characterize terrestrial (Brodie et al., 2015; Beaudrot et al., 2016b; Sollmann et 187 

al., 2017) and even arboreal mammal communities (Gregory et al., 2014; Bowler et al., 188 

2016; Whitworth et al., 2016). Camera traps have been proposed as a tool in systematic 189 

biodiversity assessments in the context of biodiversity co-benefits of forest management 190 

certification and REDD+ payments (Waldon et al., 2011). As an example application, a 191 

recent study on mammalian communities in Bornean forest reserves revealed that 192 

particularly threatened species benefit from sustainable forest management practices, 193 

applied in the context of certification by the Forest Stewardship Council (FSC) (Sollmann et 194 

al., 2017). Similarly, such standardized camera-trapping surveys, if repeated over time, can 195 

be used to monitor population and biodiversity trends, which would be impossible using 196 

traditional, observer-based fieldwork techniques. 197 

How readily camera traps detect certain species is a function of many factors, including the 198 

species’ behaviour and abundance, and the specific location and setup of the camera traps 199 

(Harmsen et al., 2010; Sollmann et al., 2013). For example, arboreal species are harder to 200 

detect with ground-based cameras than terrestrial species; and if cameras are set up 201 

preferably along roads and trails, those species that use these trails will be detected sooner 202 

and more frequently than species that prefer to move through vegetation. Comparing 203 

biodiversity inventory data across sites and/or years therefore requires a standardized study 204 

design, and application of analytical methods that account for these differences in 205 

detectability (see Occupancy Modelling, below). 206 

Bioacoustic sensors. - Species that produce acoustic signals can further be surveyed with 207 

standalone bioacoustic sensors (Blumstein et al., 2011). Taxonomic groups most frequently 208 

studied with bioacoustic methods include birds (Hobson et al., 2002; Acevedo & Villanueva-209 

Rivera, 2006), bats (e.g. O'Farrell & Gannon, 1999; Russo & Voigt, 2016), anurans 210 

(Acevedo & Villanueva-Rivera, 2006), certain insects (Diwakar & Balakrishnan, 2007; 211 

Lehmann et al., 2014), and cetaceans (Sousa-Lima et al., 2013). Bioacoustic recordings 212 

have also been used to study fish (Rountree et al., 2006), and non-flying mammals such as 213 

forest elephants (Thompson et al., 2010) and primates (Heinicke et al., 2015; Kalan et al., 214 

2015).  215 

Using calls to detect and identify species has a long standing history in bird studies (e.g. 216 
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Graber & Cochran, 1959). Handheld sound recorders are a useful tool in such surveys to 217 

create permanent records of species audio-detections and to allow for later identification (or 218 

verification) of records by specialists. In contrast to these handheld devices, Automatic 219 

Recording Systems (Peterson & Dorcas, 1994) are standalone bioacoustic sensors that, 220 

similar to camera traps, can be set up in the field to collect audio information without an 221 

observer’s presence. Also similar to camera traps, they are primarily limited by battery and 222 

storage capacity, but particularly storage capacity has increased dramatically with the switch 223 

from analogue to digital equipment (Acevedo & Villanueva-Rivera, 2006). Automatic Digital 224 

Recording Systems can be programed to record 24 hours, or at certain times of the day, or, 225 

alternatively, more advanced equipment can be triggered by calls above a certain amplitude 226 

or of a certain frequency spectrum (Obrist et al., 2010; Stahlschmidt & Brühl, 2012). 227 

Once recorded, calls/songs can be identified ‘by ear’ by a trained human observer 228 

(obviously, only if the species produces a sound that is audible to humans) and/or by 229 

visualization. The latter depicts species-specific acoustic parameters such as the temporal 230 

structure and frequency composition of a call/song. Most frequently, visualization takes the 231 

form of a spectrogram, which shows the evolution of the frequency structure of a call over 232 

time, using color-coding for changes in amplitude (Obrist et al., 2010). Such visualization can 233 

reveal call characteristics that the human ear might not perceive. Call-matching to species 234 

based on these characteristics can be performed manually, or using automated computer 235 

algorithms. Obrist et al. (2010) indicate that most automated identification software packages 236 

achieve a 90% recognition rate but can rarely be expected to cover all species present in a 237 

sample. Conversely, Russo and Voigt (2016) have voiced concern over the accuracy of 238 

automated species identification of bat calls. 239 

Criticism notwithstanding, advances in the development of audio-recorders and call-240 

matching software make automated devices a promising tool for biodiversity inventory and 241 

monitoring (Waldon et al., 2011). Such surveys, however, require extensive preliminary 242 

studies to compile reference call data bases. Similar to genetic reference libraries, there are 243 

now multiple available sound libraries (e.g. http://www.ibac.info/links.html#libs, accessed 8 244 

Dec 2016), but especially for species-rich tropical communities, bioacoustic databases are 245 

currently limited (Walters et al., 2013). Circumventing the need for species identification, 246 

some studies have suggested the use of bioacoustic diversity as a measure in and of itself. 247 

Rather than identifying individual calls and species, this approach is based on measuring the 248 

acoustic entropy (i.e. temporal and frequency heterogeneity) of the entire soundscape, and, 249 

on the assumption that there is competition for sound niches in time and frequency, a more 250 

complex soundscape is taken as an index for a more diverse community (Sueur et al., 251 

2009). Such bioacoustics diversity indices have been shown to correlate with taxonomic and 252 
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functional diversity in birds (Gasc et al., 2013) and are a promising emergent field of study, 253 

albeit in need of further development and testing (Sueur et al., 2014). 254 

As with other survey methods, detectability and identifiability of individuals and species can 255 

be influenced by their vocalization and other behaviour, habitat, weather, time of day, or the 256 

sensitivity of the recording equipment. For example, wind and concurrent vocalization by 257 

other species were found to have a negative impact on the ability to identify frog calls (Aide 258 

et al., 2013), and different equipment has been shown to result in different numbers of bird 259 

species detected (Rempel et al., 2013). In addition to false negatives (i.e. failing to record a 260 

species even though it is present), misidentification of calls can also result in false positives 261 

(Towsey et al., 2012). As such, standardized surveys and appropriate analytical methods are 262 

required to ensure comparability of results across space and time. Occupancy models, for 263 

example (discussed below) were developed to account for false negatives, and can be 264 

adjusted to account for false positives as well (Miller et al., 2011; Miller et al., 2012). They 265 

have been successfully used in combination with automated acoustic monitoring (Campos-266 

Cerqueira & Aide, 2016). 267 

DNA-based methods 268 

Almost all DNA-based techniques exploit the stylised fact that some DNA regions exhibit 269 

higher levels of sequence difference between species and low levels of difference within 270 

species, which can be used to tell species apart. For animals, the best known of these so-271 

called ‘DNA barcodes’ is a 658-nucleotide portion of the mitochondrial cytochrome oxidase 272 

subunit I gene, or COI, which taxonomists have used to build an online reference database 273 

that links sequences to species (boldsystems.org, accessed 11 Oct 2016) (Ratnasingham & 274 

Hebert, 2007). Other mitochondrial markers can also be used for taxonomic assignment, and 275 

these are available in online databases such as GenBank (blast.ncbi.nlm.nih.gov, accessed 276 

11 Oct 2016). An organism can thus be assigned a taxonomic identification by extracting its 277 

DNA, amplifying it with a primer set for the chosen marker(s), sequencing these, and 278 

comparing them to a DNA reference database. Even if a species is not represented in a 279 

database, its congeners or confamilials usually are, allowing at least higher-level taxonomic 280 

identification. 281 

When going from DNA barcoding of single specimens, as described above, to using DNA in 282 

synoptic biodiversity surveys, the major challenge is the need to assign taxonomic names to 283 

mixed samples containing DNA from multiple taxa, such as occurs in soil, water, faeces, and 284 

bulk insect samples. The rise of high-throughput sequencing platforms now makes this 285 

routine, and three major approaches are now being used: metabarcoding, high-throughput 286 

individual barcoding, and meta/mitogenomics.  287 
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Metabarcoding. – DNA is extracted from bulk or environmental samples containing DNA 288 

from a mix of different taxa, and a taxonomically informative marker like COI is PCR 289 

amplified using a universal primer set targeting the taxonomic group of interest (Fig. 2 Main 290 

Text). In this way, only DNA markers of interest are sequenced, making this a cost-effective 291 

approach. The resulting sequences are then clustered into self-similar sets of sequences, 292 

each known as an Operational Taxonomic Unit (OTU), which is a species hypothesis. A 293 

representative sequence is taken from each OTU and assigned a taxonomy using an online 294 

database. The main output of metabarcoding is the classic ecological table of sample by 295 

species (OTU), but now achieved for at least hundreds of species across hundreds of 296 

samples, plus, to a lesser extent, their phylogenetic relationships. Metabarcoding data thus 297 

carry information on species co-occurrence at an unprecedented scale for joint-species-298 

distribution modelling. 299 

Metabarcoding relieves the taxonomic bottleneck, and it also helps relieve the sampling 300 

bottleneck. Firstly, metabarcoding can be applied to taxa such as meiofauna and dipterans 301 

that are easy to collect and ecologically informative but are so difficult to identify 302 

morphologically that they have been ignored in conventional surveys. Secondly, 303 

metabarcoding allows difficult-to-find species, such as fungi, fish, and terrestrial vertebrates, 304 

to be detected directly from microscopic bits of tissue that can be filtered out of soil, water, 305 

air, and parasites, known as ‘environmental DNA’ or eDNA (Bohmann et al., 2014; Thomsen 306 

& Willerslev, 2015). For instance, leeches, flies, mosquitoes, dung beetles, and ticks retain 307 

trace amounts of DNA from their previous meals on animal hosts or faeces, so mass 308 

invertebrate trapping could be used to survey other wildlife (Calvignac-Spencer et al., 2013). 309 

However, metabarcoding unavoidably introduces error, including inter alia taxonomic 310 

uncertainty due to e.g. PCR and sequencing error and incomplete reference databases, 311 

sample cross-contamination, and loss of species, biomass, and abundance information. 312 

Judicious sampling and primer design, lab practice, and bioinformatic and statistical 313 

pipelines are able to correct or compensate for these errors, and studies have shown that 314 

metabarcoding datasets reflect on-the-ground reality sufficiently closely to allow correct 315 

management decisions (Ji et al., 2013; Edwards et al., 2014; Gibson et al., 2015; 316 

Lejzerowicz et al., 2015; Hänfling et al., 2016; Madden et al., 2016). It is worth noting that 317 

errors are explicit and quantifiable in DNA-based pipelines, whereas conventional surveys 318 

contain important error sources, such as visual misidentifications (Austen et al., 2016), that 319 

are essentially impossible to quantify or correct retrospectively. 320 

High-throughput individual barcoding – In this method (Meier et al., 2016), large numbers of 321 

organisms, typically insects, are individually extracted, amplified, and tagged during 322 



Bush et al. CEOBES 

      10 

amplification. Hundreds of individual amplicons are then pooled and sequenced, producing a 323 

separate barcode for each organism. Throughput is lower and workload is higher than in 324 

metabarcoding, but abundance information is preserved, and individual organisms can be 325 

revisited for further taxonomic study. 326 

Meta/mitogenomics – Like metabarcoding, metagenomics can be used on bulk or 327 

environmental samples, but instead of targeting a specific gene, all DNA is sequenced, and 328 

the output datasets are interrogated in silico for taxonomically and functionally informative 329 

gene sequences (Fig. 2 Main Text). Compared to metabarcoding, the advantage of this 330 

genomic approach is that it does not require a PCR amplification step to enrich for target 331 

taxa, which should reduce bias. If samples are sequenced deeply enough, even low-332 

biomass species can be detected in the mix (although sequencer library construction still 333 

imposes some biases). Metagenomics also preserves more information on species relative 334 

biomasses (a proxy for ecosystem-function importance), can reduce the risk of sample 335 

contamination, and depending on the number of samples, can reduce workload. Lastly, it 336 

increases the certainty of taxonomic assignment for species that are present in reference 337 

database. Currently, metagenomics is routinely applied to microbial communities but is not 338 

yet applied to Eukaryotes, due to their much larger genomes and thus higher costs. 339 

However, bioinformatic approaches that allow rapid pairwise comparisons of genomic 340 

datasets (Ondov et al., 2016) and continued decreases in sequencing costs will make this 341 

approach feasible for Eukaryotes. That said, because orders-of-magnitude fewer species 342 

have been genome-sequenced, relative to barcode databases, metagenomics applied to 343 

Eukaryotes is best suited for studies that focus on hundreds of target species or fewer, for 344 

which it is possible to build custom reference databases. 345 

In mitogenomics, the focus is on mitochondrial genomes, which can be individually 346 

assembled out of even low-coverage sequencing of bulk samples (‘genome skims’), even 347 

though mitochondrial reads typically make up <1% of a sequencer’s output (Crampton-Platt 348 

et al., 2016). This greatly reduces the cost of building reference databases. Mitogenomics 349 

has been used to reconstruct the phylogenetic community structure of soil-dwelling beetle 350 

communities (Andújar et al., 2015) and to reliably assign bee species to samples, even after 351 

the samples had been DNA-cross-contaminated by handling (Tang et al., 2015). 352 

Single-species detection – Finally, in situations where it is imperative to detect particular 353 

species of concern (e.g. early detection of invasive species or monitoring threatened 354 

species) with high probability, older molecular techniques can be used and/or added to the 355 

above methods. Species-specific primers can be used in addition to generic primers during 356 

metabarcoding to increase detection probability (Schubert et al., 2015), or species-specific 357 
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quantitative PCR (qPCR) can be conducted on eDNA samples. Although low throughput, 358 

this application of targeted qPCR reduces false negatives, provided that proper lab 359 

procedure, including negatives controls, is followed (Wilcox et al., 2016). Improved detection 360 

rates lead to improvements in model performance, thus increasing the reliability of the 361 

predicted distributions of these species of concern, and greater cost efficiency (Lahoz-362 

Monfort et al., 2016). Single-species detections using qPCR have been combined with 363 

MODIS satellite observations to build maximum-entropy species distribution models that 364 

predicted the distribution of an invasive diatom (Didymosphenia geminata) across the Rocky 365 

Mountains (Fig S3.1; Olson et al., 2014). Models based on occurrence data from both eDNA 366 

and traditional methods correctly predicted occurrence of D. geminata at external validation 367 

sites with a 93 – 100% correct classification rate (area under the receiver operating 368 

characteristic curve, a combined measure of sensitivity and specificity, ranged from 0.94 to 369 

1.00). Temporally concurrent environmental predictors, including evapotranspiration or land 370 

surface temperature data from MODIS, allow these models to account for spatial and 371 

temporal variation and produce robust predictions (Fig S3.1a). This provides natural 372 

resource managers spatially explicit and extensive predictions on where this invasive 373 

species is likely to occur. The same approach is also being applied to mapping distributions 374 

of six native fish on the north-slope of Alaska to aid in their conservation (Olson et al., 2014). 375 

 376 
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S4. Statistical modelling 377 

Occupancy Detection Models – Logistical constraints dictate that a site-by-species matrix 378 

can only ever comprise a finite set of point samples, leaving most of the environment 379 

unsampled. Moreover, even within sampled sites, an unavoidable problem is false 380 

negatives:  species that are indeed present but not detected (Chen et al., 2013; Tingley & 381 

Beissinger, 2013), and in some cases false positives (species detected are in fact absent). 382 

To correct for imperfect detection, occupancy-detection models are used to disentangle the 383 

factors that determine the occurrence of a species from those that affect the probability of 384 

detection, given occurrence (Guillera-Arroita, 2016). To estimate the probability of detection, 385 

a location is repeatedly sampled, either by spatially sub-sampling a site, or by re-visiting the 386 

same location multiple times within a short time period. A hierarchical generalised linear 387 

mixed model (GLMM) – technically a zero-inflated logistic regression of species 388 

detection/non-detection data – is then used to predict the probability that a species occurs at 389 

a site, based on the site’s environmental covariates and the empirically estimated probability 390 

of detection, which can also itself be a function of site- and time-specific covariates. 391 

Community Occupancy Detection Models – In the simplest application of occupancy 392 

detection, each species is considered independent, so a multi-species model simply 393 

combines the species’ environmental responses and their different detectabilities, and 394 

calculates metrics of diversity either from occupancy probabilities (in a likelihood framework, 395 

richness is the sum of all occupancy probabilities at a site), or from realized occupancy 396 

states (in a Bayesian framework, richness is the number of species estimated to occur at 397 

that site) (Dorazio & Royle, 2005; Mihaljevic et al., 2015). However, if the environmental 398 

responses of multiple species follow a common distribution, community occupancy detection 399 

models allow individual coefficients to be modelled as a random effect, whereby the data-400 

poor species borrow information from data-rich species (Gelman & Hill, 2006; Ovaskainen & 401 

Soininen, 2011), which allows information on species traits to be included as predictors 402 

(Pollock et al., 2012). Furthermore, based on differences in species detection probabilities, 403 

occupancy models can also estimate the number of species that were never detected, by 404 

introducing zero-inflation within the inputs (“data augmentation”; Royle et al., 2007; Royle & 405 

Dorazio, 2012), recently extended for multi-region comparison (Sutherland et al., 2016). 406 

More complex models can include the effect of community dynamics on spatial and temporal 407 

variation in occurrence (Dorazio et al., 2010). 408 

Joint Species Distribution Models / Latent Variable Models – An extension of the single-409 

species approach is to consider all pairwise co-occurrences among species (Pollock et al., 410 

2014). These so-called joint species distribution models (J-SDMs) predict multi-species 411 
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responses by not only modelling species-specific responses to environmental covariates as 412 

random effects but also accounting for residual patterns of co-occurrence not explained by 413 

environmental factors (Warton et al., 2015). In the past, the number of taxa that J-SDMs 414 

could consider was limited because the number of parameters in unstructured variance-415 

covariance matrices rises rapidly (Ovaskainen et al., 2010). However, J-SDMs can now 416 

analyse high numbers of species by inducing correlation among taxa using ‘latent’ 417 

unobserved factors (Warton et al., 2015). Residual correlation might indicate species 418 

interactions, like competition or predation, unmeasured predictors, spatial autocorrelation, or 419 

misspecification of the model, all of which warrant further investigation (Ovaskainen et al., 420 

2016a). Spatially explicit latent variables allow one to predict a species community for a focal 421 

site using as predictors not only the environmental variables measured at the focal site, but 422 

also the occurrences and co-occurrences of the species in nearby sites (Ovaskainen et al., 423 

2016b), thus providing a statistically efficient tool for producing interpolated species 424 

distribution maps from sparse data on species rich communities. In principle, the detection 425 

probability itself could also be included as a layer describing the observation process 426 

(Dorazio et al., 2015; Beissinger et al., 2016; Warton et al., 2016). LVMs are currently an 427 

area of active research, and there has been rapid progress to expand computational limits 428 

and integrate with the breadth of previous development using hierarchical mixed models 429 

(Warton et al., 2015). Of particular interest is the opportunity to cluster species responses to 430 

environmental covariates according to species traits (i.e. “the fourth-corner problem”: Jamil 431 

et al., 2013) making it easier to translate compositional turnover to functional shifts (Abrego 432 

et al., 2017). 433 

Generalised Dissimilarity Models – Finally, in very diverse communities with hundreds or 434 

thousands of taxa (e.g. soil fauna), it might not be meaningful to model the responses of 435 

individual species. Instead, generalised dissimilarity models (GDM) use a pairwise matrix of 436 

compositional dissimilarity to predict the nonlinear response of compositional turnover to 437 

environmental changes; weighting and transforming environmental variables so that 438 

conversion of multidimensional environmental space best describes the scaled turnover of 439 

biological composition (Ferrier et al., 2007). GDM can help identify new sampling sites for 440 

more reliable prediction (Rose et al., 2015), and uncertainty in variable selection can be 441 

further evaluated using Bayesian bootstrapping (Woolley et al., 2017). The dissimilarity 442 

matrix can also be derived from other biological distance metrics like sequence reads, allelic 443 

turnover, functional differences, or phylogenetic diversity (Rosauer et al., 2014; Fitzpatrick & 444 

Keller, 2015; Ondov et al., 2016). The link between turnover of composition or function can 445 

then be tested using scaled environmental variables as predictors of spatial or temporal 446 

changes in service provision (Mokany et al., 2016).  447 
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GDM has already been incorporated into EO-based applications to estimate ecological 448 

values at landscape scales (Willis et al., 2012; Willis et al., 2015), and model performance 449 

improves when combined with multispectral EO sensors (Leitão et al., 2015). By predicting 450 

the dissimilarity of sites alongside an expected species-area relationship, GDM can also be 451 

used to estimate the proportion of biodiversity retained regionally (Box 3 in main text). This 452 

has numerous conservation applications (e.g. protected areas effectiveness – Aichi Target 453 

11: Reside et al., 2013), as well as quantifying the biodiversity left regionally (gamma 454 

diversity) to support ecosystem services (Allnutt et al., 2008). If the identity of species 455 

composition is still desired, GDM can be combined with a model of alpha diversity to 456 

estimate the probable species composition of every cell in a landscape (Mokany et al., 457 

2011). Furthermore, ecological processes like dispersal, growth rates, and metacommunity 458 

dynamics have been incorporated to predict ecosystem function and to rank management 459 

actions (Mokany et al., 2015; Mokany et al., 2016). 460 

Sampling design. – Proper sampling design is fundamental to proper model inference and 461 

should consider environmental representativeness, sampling adequacy, and spatial grain. 462 

Sampling should capture the full range of environmental conditions within the region of 463 

interest so that model extrapolation is minimised (Stevens & Olsen, 2004). If possible, 464 

sampling design should also consider the relative rate of change between environmental 465 

gradients and biological turnover, helping to identify when the former are more likely to be 466 

influencing the latter (e.g. Rose et al., 2015). Implicit in this process are decisions regarding 467 

the spatial grain of analysis, again ideally informed by an understanding of the heterogeneity 468 

of the target community. Importantly, the signal for some ecological processes can be 469 

dependent on scale, and multiple resolutions may need to be tested to demonstrate reliable 470 

conclusions (Münkemüller et al., 2014; Yuan et al., 2016). The advances in EO resolution 471 

offer more opportunities for our assumptions about the scales of community assembly to be 472 

tested (Leibold et al., 2004; Pavoine & Bonsall, 2011; D'Amen et al., 2017). 473 

A given survey design must also sample diversity adequately at the spatial grain of interest. 474 

For example, if quadrats are used to sample a large grid cell, the species-area relationship 475 

can predict how many species we would expect to find if we could survey the whole grid cell; 476 

and the slope of this function will depend on the average dissimilarity among samples (i.e. 477 

beta diversity; Tjørve & Tjørve, 2008). If the point samples collectively underestimate the 478 

diversity of the target spatial unit, the model will be biased toward common species, and 479 

typically overestimate turnover between separate sites. Using simulations and tropical forest 480 

inventories, Mokany et al. (2013) showed that while a power function could help scale 481 

species richness and dissimilarity estimates, these performed poorly when a sample covered 482 

less than 10% of the ‘local unit’. Another limitation is that scaling based on the species-area 483 
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relationship is also inherently limited to holistic measures of diversity like richness and 484 

dissimilarity. However, the accumulation of species as the sampled area increases could 485 

also be considered as an increase in sampling effort. Diversity is therefore underestimated 486 

as a result of imperfect detection (see the example of community occupancy-detection 487 

modelling by Kery and Royle (2009) in main text). Where multiple samples are available 488 

from sites, it is possible to explicitly correct for sampling sufficiency, retain species identity, 489 

and predict the true diversity at any scale required (Dorazio et al., 2006). If occupancy 490 

models are impractical (e.g. in highly diverse communities), other scaling methods are 491 

available but require parameterisation (e.g. Guilhaumon et al., 2010). Therefore, when not 492 

explicitly accounting for imperfect detection, model performance could be improved by 493 

testing for sampling sufficiency and calibrating scaling relationships (Schuldt et al., 2015). 494 

In addition to the pathways that we have described above and in the Main Text (Figure 3), 495 

there of course exist other methods to model communities, which take into explicit account 496 

biological mechanisms such as demography, dispersal, evolution, and specialist interactions 497 

(Wisz et al., 2013; D'Amen et al., 2017). We have not covered these methods because they 498 

require much more input data (Urban et al., 2016) and thus are limited in their applicability, 499 

although when possible, of course all information should be exploited. We note that the 500 

species co-occurrence matrices, latent variables, phylogenetic structure, and ecological 501 

functions that can be extracted from the three statistical pathways in Figure 3 do provide an 502 

efficient way to generate causal hypotheses from large datasets for further, targeted 503 

investigation.  504 
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