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Abstract. Potential evapotranspiration (PET) is a necessary input data for most hydrological models and is
often needed at a daily time step. An accurate estimation of PET requires many input climate variables which
are, in most cases, not available prior to the 1960s for the UK, nor indeed most parts of the world. Therefore,
when applying hydrological models to earlier periods, modellers have to rely on PET estimations derived from
simplified methods. Given that only monthly observed temperature data is readily available for the late 19th
and early 20th century at a national scale for the UK, the objective of this work was to derive the best possible
UK-wide gridded PET dataset from the limited data available.

To that end, firstly, a combination of (i) seven temperature-based PET equations, (ii) four different calibration
approaches and (iii) seven input temperature data were evaluated. For this evaluation, a gridded daily PET prod-
uct based on the physically based Penman–Monteith equation (the CHESS PET dataset) was used, the rationale
being that this provides a reliable “ground truth” PET dataset for evaluation purposes, given that no directly ob-
served, distributed PET datasets exist. The performance of the models was also compared to a “naïve method”,
which is defined as the simplest possible estimation of PET in the absence of any available climate data. The
“naïve method” used in this study is the CHESS PET daily long-term average (the period from 1961 to 1990 was
chosen), or CHESS-PET daily climatology.

The analysis revealed that the type of calibration and the input temperature dataset had only a minor effect
on the accuracy of the PET estimations at catchment scale. From the seven equations tested, only the calibrated
version of the McGuinness–Bordne equation was able to outperform the “naïve method” and was therefore
used to derive the gridded, reconstructed dataset. The equation was calibrated using 43 catchments across Great
Britain.

The dataset produced is a 5 km gridded PET dataset for the period 1891 to 2015, using the Met Office 5 km
monthly gridded temperature data available for that time period as input data for the PET equation. The dataset
includes daily and monthly PET grids and is complemented with a suite of mapped performance metrics to help
users assess the quality of the data spatially.

This dataset is expected to be particularly valuable as input to hydrological models for any catchment in the
UK.

The data can be accessed at https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c.
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1 Introduction

Potential evapotranspiration is a conceptual variable which
measures the atmospheric demand for moisture from an open
surface water. Reference crop evapotranspiration (also re-
ferred to as potential evapotranspiration PET) is the rate of
evapotranspiration of an idealised short grass actively grow-
ing and not short of water (Shuttleworth, 1993), providing
an upper limit of the evaporative losses of grass. As evapo-
transpiration is a major factor in the catchment water balance
(Beven, 2012), PET is used as input data for rainfall–runoff
models.

Different approaches have been proposed for estimating
PET. The most complex, combination methods, are based
on physical processes accounting for the energy available to
a plant to evaporate during photosynthesis, and the amount
of water that can be dissipated in the atmosphere (Penman,
1948; Monteith, 1965). They are referred to as combina-
tion methods as they combine the energy balance with the
mass transfer method. The simplest methods aim to cap-
ture the dominant climatic factors in the plant evapotran-
spiration processes. The simplified methods can be broadly
divided between the radiation-based methods (e.g. Dooren-
bos and Pruitt, 1984; Hargreaves and Samani, 1983; Jensen
and Haise, 1963), which use measured data such as net so-
lar radiation, sunshine hours or cloudiness factors; and the
temperature-based methods (e.g. Blaney and Criddle, 1950;
Thornthwaite, 1948; Oudin et al., 2005; McGuinness and
Bordne, 1972), which use temperature as a proxy for the ra-
diative energy available, along with extraterrestrial radiation
estimated from the date of the year and latitude. Both radia-
tion and temperature methods are used instead of combina-
tion methods when the full set of climatic variables neces-
sary for the latter is not readily available. However, there is
no general agreement on the best performing method, and the
final choice of the equation often depends on the application
and data availability, as well as the particular environmen-
tal setting (e.g. Donohue et al., 2010; Federer et al., 1996;
Oudin et al., 2005; Prudhomme and Williamson, 2013; Xu
and Singh, 2000, 2001). When little or no climatic variables
are available, an alternative is to use remote-sensing data in
simplified empirical PET methods (Barik, 2014; Barik et al.,
2016; Knipper, 2017; Mu, 2013), however this can only be
applied to the satellite era (from the 1970s or the 1980s).

In the UK, the Met Office Rainfall and Evaporation Calcu-
lation System (MORECS) (Thompson et al., 1982) is one of
the main sources of PET estimates, available as an approx-
imately 40× 40 km monthly gridded product, with time se-
ries from 1961. MORECS is based on the Penman–Monteith
formulation (Monteith, 1965), but includes evaporation from
rainfall intercepted by the canopy and considers 14 different
vegetation types and three different soils (Hough, 2003). Re-
cently, the Centre for Ecology and Hydrology (CEH) pub-
lished the Climate, Hydrology and Ecology research Sup-
port System (CHESS), a 1 km gridded daily meteorologi-

cal and land state dataset for Great Britain (Robinson et al.,
2016a, b, 2017) spanning the period 1961–2015. It includes
PET data calculated from the meteorological variables using
the Penman–Monteith equation for a well-watered grass sur-
face, following the Food and Agriculture Organisation of the
United Nations (FAO) guidelines for computing reference
crop PET (Allen, 1998), both with and without corrections
for water intercepted by the canopy (Robinson et al., 2016b).

In the UK, PET data is widely used for hydrological mod-
elling, where streamflow time series are generated from rain-
fall and PET inputs. This is particularly useful in providing
information where streamflow observations do not exist, i.e.
in reconstructing flows for pre-observational periods, or to
explore the response of a changing climate on hydrology.
Currently, there is no readily available source of PET time
series for studying long-term variability and change in hydro-
logical regimes before the 1960s, including water resources
availability and drought patterns. This is a major obstacle, be-
cause historical drought periods are used in water resources
and drought planning (Watts et al., 2012), as well as for pro-
viding a baseline of past hydrological variability for future
change assessments. In practice, however, limited availability
of atmospheric variables makes it difficult to account for the
majority of evapotranspiration processes for the pre-1960 pe-
riod using the Penman–Monteith equation. Simpler methods
therefore need to be used as an alternative, but this requires
a thorough evaluation of the differences they bring when
compared with established datasets. This study focuses on
temperature-based PET equations as temperature (together
with precipitation) are among the climate variables that have
observed, spatially distributed records for the longest period
for the UK. High-resolution gridded (5 km) temperature and
precipitation data from the Met Office are available from
1910, and have recently been extended back in time as part
of historical data rescuing effort by the Met Office funded by
the Historic Droughts project. Monthly temperature and pre-
cipitation data were available to project partners from 1891
and 1862 respectively. Detailed climatic variables are avail-
able in the UK only from 1961 onwards. Some other vari-
ables such as sea level pressure data are also available from
late 19th century (Met Office HADSLP2 product), however
the spatial resolution is much coarser (5◦).

While the focus was on applying PET methods for histor-
ical reconstruction, this undertaking will provide useful in-
formation for other applications where only temperature data
are available; for example, hydrological forecasting or long-
term climate change impact studies.

This paper describes the derivation of a 5 km gridded daily
and monthly PET dataset for the UK from 1891 to 2015, with
hydrological modelling being the main targeted application.
First, the data used for calibration, validation and production
of the gridded dataset are presented. This is followed by the
methods, where the temperature-based PET equations, the
calibration strategies and the evaluation approach used are
described. Thirdly, the results of the evaluation of the PET
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equations, and the assessment of the final PET grids are pre-
sented. Lastly, uncertainties and limitations of the product
are discussed, and recommendations for users are listed.

2 Data

This study has used various gridded temperature and PET
datasets, which are described in this section. Table 1 provides
a summary of all datasets used.

2.1 Temperature data

Three main sources of high-resolution gridded national-scale
temperature data exist for the UK:

– CHESS-met high-resolution mean daily temperature
(1 km grids, daily time series) for 1961–2015 for Great
Britain (henceforth CHESS-temp daily). This dataset is
part of a larger dataset developed by CEH for environ-
ment modelling applications; its derivation is fully de-
scribed in Robinson et al. (2016a).

– UKCP09 mean monthly temperature (5 km grids,
monthly time series) for 1910–2015 for the UK, in-
cluding Northern Ireland (henceforth UKCP09-temp
monthly). This is part of a larger dataset developed by
UK Met Office, its derivation is fully described in Perry
and Hollis (2005). The monthly mean temperature is
derived from the average of daily maximum and min-
imum temperature averaged across the month at each
contributing station. Stations with no more than two
missing days within a calendar month are used to create
the gridded product.

– Historic droughts mean monthly temperature (5 km
grids, monthly time series) for 1891–1909 for the
UK, including Northern Ireland (henceforth HD-temp
monthly). This was derived using the same methodol-
ogy as UKCP09, using historic weather station data res-
cued by the Met Office in the Historic Droughts project
(NERC grant number: NE/L01016X/1).

The two latter were combined in this study and treated as
a single dataset to provide a single, continuous record of
temperature from 1891 to 2015, which is used to derive the
long-term potential evapotranspiration dataset that is the fo-
cus of this study. The combined dataset will be referred to as
UKCP09 in the rest of the paper. The uncertainty associated
with the temperature dataset is discussed in Sect. 5.1. The
shorter (1961–2015) CHESS dataset is used for calibration
and sensitivity testing.

Prior to 1961, temperature data is only available at a 5 km
spatial resolution and monthly time step. Because of this
coarser temporal and spatial resolution of temperature data
in the earlier period, alternative datasets were generated and

used in the analysis to quantify the sensitivity of PET deriva-
tion to temperature input, and are summarised in Table 1a
and b:

– CHESS daily mean temperature climatology (1 km
grids) (henceforth CHESS-temp clim): long-term aver-
age (1961–1990) of daily mean temperature, derived
from CHESS-temp daily. This provides a default op-
tion that could be used even if no temperature data were
available in the past (or future). This gives a day-to-day
variability pattern of temperature throughout the year,
which is then repeated every year.

– CHESS daily mean temperature derived from monthly
averages (1 km grids). Different methods to disaggre-
gate monthly temperature into daily data were tested:

i. Constant temperature during the month (henceforth
CHESS-temp monthly I). This means there are
step changes in temperature between consecutive
months.

ii. Interpolated using pchip method for a smooth tran-
sition between months (henceforth CHESS-temp
monthly II). Pchip stands for piecewise cubic her-
mite interpolating polynomial, which is an interpo-
lation method in which a cubic polynomial approxi-
mation is assumed over each subinterval. Aràndiga
et al. (2016) describe this interpolation scheme in
detail together with its advantages, mainly that it is
both accurate (preserves values at the nodes) and
preserves monotonicity. Pchip was selected for the
present study because (i) the fitted curve passes
through observed values at inflexion points unlike
spline or quadratic methods, for example, and (ii) it
does not require re-fitting when the period of ap-
plication is extended as each subinterval is treated
separately.

iii. Disaggregated to daily using CHESS daily mean
temperature climatology pattern (henceforth
CHESS-temp monthly III). The daily relative
variation in temperature follows the climatology,
but for each month, the daily values are adjusted
so that monthly mean temperatures are correct. In
other words, CHESS-temp clim data is shifted uni-
formly so the monthly mean temperature matches
the CHESS monthly temperature data.

– UKCP09 daily mean temperature (5 km grids) derived
from monthly averages. Two different methods to disag-
gregate monthly temperature into daily data were tested:

i. Constant during the month (henceforth UKCP09-
temp monthly I).

ii. Interpolated using pchip method (henceforth
UKCP09-temp monthly II).
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Figure S1 in the Supplement illustrates what these differ-
ent temperature time series look like for an example catch-
ment. Figure S2 in the Supplement shows the spatial cover-
age of the different datasets used in this study (Fig. S2a and
b), whereas Fig. S2c shows the geographical extend of Great
Britain, Northern Ireland and the UK.

In summary, seven different daily temperature datasets
were used as input data to the temperature-based PET
equations: CHESS-temp daily, CHESS-temp clim,
CHESS-temp monthly I, CHESS-temp monthly II,
CHESS-temp monthly III, UKCP09-temp monthly I
and UKCP09-temp monthly II. CHESS-temp daily is an
existing dataset (https://catalogue.ceh.ac.uk/documents/
b745e7b1-626c-4ccc-ac27-56582e77b900, last access:
30 April 2018), whereas the other six daily datasets are
manipulated versions of existing datasets (CHESS or
UKCP09).

2.2 PET

One main source of national-scale mean daily PET time se-
ries was available: CHESS-PET 1 km grids, daily time series
(Robinson et al., 2016b) available for 1961–2015, calculated
using the Penman–Monteith (PM) equation (Monteith, 1965)
for FAO-defined well-watered grass (Allen, 1998). Because
the PM equation is a physically based model which combines
the energy balance with the mass transfer method, and is rec-
ommended by the FAO to calculate PET, CHESS-PET daily
is here considered as “ground truth” and proxy for observa-
tions (hereafter referred to as CHESS-PM).

CHESS-PM daily climatology (hereafter CHESS-PM cli-
matology) was also calculated from 1961 to 1990, and is used
as a “naïve method” against which the PET reconstruction
methodology can be tested to assess performance. “Naïve
method” here refers to the simplest way PET could be es-
timated in the absence of any climate data.

3 Methods

To produce the PET gridded reconstruction product, a se-
quence of assessments and tests were first undertaken. In
the first stage, a set of seven temperature-based equations
(presented in Sect. 3.1) were tested with seven different
input temperature datasets (Sect. 2.1) and four calibra-
tion strategies (Sect. 3.2) (in addition to the non-calibrated
equations). These combinations of equation/calibration strat-
egy/temperature input data were evaluated in the second
stage (Sect. 3.3.1), leading to the selection of the best com-
bination. In the third stage, the effect of the spatial resolution
was investigated (Sect. 3.2.2.), followed by a study of the
effect of averaging over the catchments in the fourth stage
(Sect. 3.2.2.). Finally, in the fifth stage, the final PET gridded
product was evaluated with the calculation of performance
metrics both at catchment scale and grid scale (Sect. 3.2.2.).

Figure 1 is a workflow diagram summarising the different
stages of the work.

3.1 Temperature-based equations

Seven temperature-based equations were evaluated (see Ta-
ble 2). Four of them (Eqs. 1–4 in Table 2) were cali-
brated testing different calibration strategies (Sect. 3.2): Ha-
mon (Hamon, 1961), McGuinness–Bordne (McGuinness and
Bordne, 1972), Blaney–Criddle (Blaney and Criddle, 1950)
and Kharrufa (Kharrufa, 1985). Each contains a number of
parameters representative of the climatic region where the
equation was originally developed, which can be calibrated
to match the climatic regime of the UK. The other three equa-
tions were not suitable for simple calibration techniques, or
had set calibrations: Oudin (Oudin et al., 2005), MOHYSE
(Fortin and Turcotte, 2006) and Thornthwaite (Thornthwaite,
1948) (Eqs. 5 to 7 in Table 2).

The physical basis for estimating evaporation using tem-
perature alone is that both terms of the combination equation
(the energy required to sustain evaporation and the energy
removed from the surface as water vapour) are generally re-
lated to temperature (Shuttleworth, 1993).

The main difference between the different temperature-
based formulations, lies in the way temperature is linked to
PET to simulate the effect of the full set of variables normally
required in the combination equations. Most temperature-
based equations use day length or related variables (Ha-
mon, 1961; Blaney and Criddle, 1950; Kharrufa, 1985; Fortin
and Turcotte, 2006; Thornthwaite, 1948), except McGuin-
ness and Bordne (1972), and the derived Oudin et al. (2005)’s
equation which use extraterrestrial radiation instead. Blaney–
Criddle equation has also an additional parameter k, which
depends on crop type. Most of these equations were devel-
oped for the USA, except MOHYSE (which was developed
in Quebec), Kharrufa (developed for arid regions) and Oudin
(developed in Australia, USA and France).

Note that equations requiring minimum and maximum
temperature (Droogers and Allen, 2002; Hargreaves and
Samani, 1983; Heydari and Heydari, 2014) were not consid-
ered here as only low-data demanding methods that could
be easily reproduced and extended in cases of minimal data
availability were selected.

3.2 Calibration strategies

To compare the different calibration methods (stage 1 in
Fig. 1), the calibration and testing was done at catchment
scale using two independent sets of catchments representa-
tive of typical hydroclimatic conditions prevailing in the UK
and with good spatial coverage: 43 were used for calibra-
tion and assessment of the equations, and an additional 263
(making a total of 306 catchments) used for evaluation of
the final PET grids (Fig. 2). Table S1 (Excel spreadsheet)
in the Supplement shows the catchments with some of their
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catchment before or 
after applying the PET 
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Figure 1. Work flow diagram of the evaluation procedure of the PET equations and final PET gridded product. This process was made in
five stages: in stage 1, the equations were calibrated using different calibration strategies and different input temperature data; in stage 2,
the multiple combinations of PET equation/calibration approach/temperature input data were evaluated; in stage 3, the effect of spatial
resolution of the input temperature data was assessed. These first three stages led to the selection of PET equation, calibration strategy and
input dataset used to produce the final gridded PET product. In the fourth stage, the effect of calibrating the equations at the catchment scale
was investigated; and finally, in stage 5, a final evaluation of the new gridded PET product was carried out both at the catchment scale and at
the grid scale. Stages 1, 2 and 3 used the set of 43 catchments shown in Fig. 2a, whereas stages 4 and 5 used the full set of 306 evaluation
catchments shown in Fig. 2b.

catchment characteristics. The spatial averaging of tempera-
ture and PET time series to conduct the analysis has the ad-
vantage of smoothing out any discontinuity that could exist at
the grid-scale level due to different interpolation algorithms
and recording stations and which could consequently impact
on local performance of the PET generation technique. In

addition, for many practical hydrological modelling appli-
cations, PET is required at the catchment scale. The impact
of catchment-scale vs. grid-scale calibration is assessed in
Sect. 4.2 (stage 4 in Fig. 1).

As previously mentioned, temperature-based PET equa-
tions use parameters to link temperature to PET as a simpli-
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Figure 2. Maps of the boundaries and outlets of (a) catchments that were used to calibrate the PET equations and to calculate the performance
metrics of the PET equations, described in Sect. 3.3.1 (stages 1, 2 and 3 in Fig. 1); and (b) catchments that were used to carry out the
assessment of the final PET grids using the performance metrics described in Sect. 3.3.2 (stages 4 and 5 in Fig. 1).

fication of full evaporation dynamics. Because of important
climatic variation across space, and in time across the year,
it might be possible that optimal parameterisation could be
achieved by letting the parameters vary in time and space.
Therefore, four calibration strategies, which are graphically
represented in Fig. 3, were considered. The simplest one con-
sists in a global parameterisation (GB) leading to a single
equation (1P) for all 43 catchments (1P-GB). In the most
complex approach, a local and monthly parametrisation leads
to 12 equations for each of the 43 catchments (12P-ind). The
trade-off between a simplified method (global parameterisa-
tion), which is much easier to implement, and a local method,
which requires a long calibration procedure and a parameter
transfer methodology for Northern Ireland (where no daily
PET dataset is available), is discussed in the results section.

Two independent time periods were selected for the cal-
ibration (1961–1990) and evaluation (1991–2012) proce-
dures. The equations’ parameters were calibrated using the
ordinary least squares (OLS) method against CHESS-PM.
The data showed some heteroscedasticity and a moderate
degree of autocorrelation, which violates the assumption of
OLS. However the effect of these violations has been investi-
gated and does not affect parameter estimations in our partic-
ular case. More detail on this can be found in the Supplement
(Sect. S1).

3.3 Evaluation

3.3.1 Catchment-scale performance metrics for
evaluating the combinations of PET
equations/calibration strategy/input
temperature data

This evaluation corresponds to stage 2 in Fig. 1, and was
done on the 43 calibration catchments shown in Fig. 2a for
the period 1991–2012.

Two metrics were used to evaluate the best combination of
temperature data, PET equation, and calibration strategy: the
mean absolute percentage error (MAPE) and Nash–Sutcliffe
efficiency (NSE) coefficient, using CHESS-PM daily as
ground truth.

MAPE is widely used in the forecasting community to
evaluate accuracy of output from models (Danladi et al.,
2017; Lefebvre and Bensalma, 2015). Applied to PET, it is
calculated as follows:

MAPE=
100
n

n∑
t=1

∣∣∣∣PETtO−PETtm
PETtO

∣∣∣∣
where t is the time step, n is the number of time steps, PETtO
is the actual value of PET at time t and PETtm is the modelled
value of PET at time t .

In order to be able to apply MAPE, values of observed
PET of 0 were replaced by 0.1. Smaller values of MAPE
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Local

Annual

Global

Monthly

1P-GB
Single parameter set for all catchments
Single parameter set for the whole year

12P-GB
Single parameter set for all catchments

One parameter set for each month

1P-ind
One parameter set for each individual catchment

Single parameter set for the whole year

12P-ind
One parameter set for each individual catchment

One parameter set for each month

Figure 3. Schematic of the calibration strategies. Four calibration approaches were considered to calibrate the PET equations: from local
and monthly parametrisation leading to 12 equations for each of the 43 catchments (12P-ind), to a global parameterisation leading to a single
equation for all 43 catchments (1P-GB).

indicate greater accuracy of the model prediction. Observed
PET was found to be equal to 0 about 3 % of the time, which
is not frequent enough to significantly skew the MAPE score.

The Nash–Sutcliffe efficiency (NSE) coefficient was ini-
tially developed to assess hydrological models (Nash and
Sutcliffe, 1970), but has since then also been widely used
to evaluate PET models (Ershadi et al., 2014; Guerschman et
al., 2009; Liu et al., 2005; Schneider et al., 2007; Spies et al.,
2014; Srivastava Prashant et al., 2013). NSE, which is also
referred to as mean square error skill score (MSESS) in the
forecasting community, looks at how much superior a given
model is in predicting a variable (here: PET) compared to the
long-term average (climatology). It is calculated as follows:

NSE= 1−

n∑
t=1

(
PETtm−PETtO

)2
n∑
t=1

(
PETtO−PETO

)2 ,
where PETO is the mean of observed PET, PETtm is modelled
PET at time t , and PETtO is observed PET at time t .

Nash–Sutcliffe efficiency can range from−∞ to 1. An ef-
ficiency of one (NSE= 1) corresponds to a perfect match of
modelled PET to the observed data. An efficiency of zero
(NSE= 0) indicates that the model predictions are as accu-
rate as the mean of the observed data, whereas an efficiency
less than zero (NSE< 0) occurs when the observed mean is
a better predictor than the model or, in other words, when the
residual variance (described by the numerator in the expres-
sion above), is larger than the data variance (described by the
denominator).

The performance of each of the different combina-
tions (PET equations/calibration approaches/input tempera-
ture data) was compared against an independent benchmark
(reference) for comparison – CHESS-PM clim, used as an
alternative way to estimate daily PET locally when no data

is available (e.g. for the past or the future). It is worth noting
that PETO used in the calculation of NSE is different from
CHESS-PM clim, in that (i) the latter has a daily value for
each day of year (which is repeated for every year), whereas
PETO is just a single value (CHESS-PM averaged over time);
and (ii) CHESS-PM clim is the daily average PET calcu-
lated for the period 1961–1990, whereas PETO is the average
CHESS-PM value for the evaluation period which is 1991–
2012.

The same two metrics (MAPE and NSE) are also used to
assess the effect of the input temperature data’s spatial reso-
lution on the estimated PET (stage 3 in Fig. 1).

3.3.2 National-scale performance metrics for final PET
grid quality assessment

One of the possible issues with a catchment-scale calibration
such as implemented here is its applicability at a finer spa-
tial scale. To test the validity of catchment-scale calibration
(stage 4 in Fig. 1), catchment-average daily PET time series
extracted from the final 5 km daily PET gridded product were
compared with daily PET series based on catchment average
temperature, derived using the same equation. The correla-
tion coefficient (r) was calculated to measure the goodness
of fit.

To assess the quality of the final gridded PET product
(stage 5 in Fig. 1), a series of performance metrics were cal-
culated at national scale, and provided together with the final
product. Once again, CHESS-PM daily was used as ground
truth.

In addition to MAPE, NSE and the correlation coefficient
(r) described previously, the following three metrics were
also calculated:

– Bias ratio (β), calculated as β = PETm
PETO

where PETm and

PETO are the mean modelled and observed PET.
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– Variability ratio (VR), calculated as VR= CVm
CVO
=

σm/PETm
σO/PETO

, where CV is the coefficient of variation and
σ is the standard deviation of PET.

– Kling–Gupta efficiency (KGE) which is a com-
bination of r , β and VR (Gupta et al., 2009;
Kling et al., 2012) and is calculated as KGE= 1−√

(r − 1)2
+ (β − 1)2

+ (VR− 1)2.

KGE, VR, r and β coefficient all have their optimum at unity
(1). All the metrics were calculated both at catchment scale
(using 306 validation catchments shown in Fig. 2b) and at
grid scale. MAPE was also calculated for each month as
the error varies seasonally. Monthly MAPE can be used as
a measure of uncertainty in the data.

These six metrics were chosen as they assess different as-
pects of the modelled data. NSE looks as how much better
our model is in predicting PET compared to the long-term
average (climatology), MAPE gives an indication of the un-
certainty, r informs about how well the modelled PET fits
the observed values (or “proxy” to observed in our case), β
tells us whether the estimations are biased, VR whether the
spread of the estimated values matches the observed spread,
and finally KGE informs on the combined effect of r , β and
VR.

4 Results

4.1 Assessment of the temperature-based
PET equations

In this section, results from the evaluation represented in
stage 2 and 3 of Fig. 1 are presented.

Figure 4 is a summary graphic showing the average MAPE
and NSE for all combinations of forcing data, PET equation
and calibration strategy tested. For simplicity, Fig. 4 does not
show the results from the following:

– models that were not calibrated in this study, i.e. Oudin,
MOHYSE and Thornthwaite (Eqs. 5 to 7 in Table 2) (as
these were performing worse than the calibrated mod-
els);

– using CHESS-temp monthly III forcing (similar results
to those for CHESS-temp monthly II);

– using UKCP09-temp monthly I and II, as they were only
used with the final selected equation as an additional test
to check the effect of spatial resolution on the results
(stage 3 in Fig. 1).

The full list of performance metrics is given in Tables S1 and
S2 in the Supplement.

Figure 4 displays the following:

i. Calibration yields substantial improvement in perfor-
mance, except for Hamon (Eq. 1 in Table 2) which per-
formed well before calibration.

ii. Calibration strategy has very little effect on the per-
formance. Both annual and global calibrations show a
similar performance to the locally calibrated, monthly
models. The simplest calibration approach was hence
adopted: national-scale application was conducted us-
ing the 1P-GB strategy (see Fig. 3).

iii. Daily temperature data only performs marginally better
than forcing based on monthly temperature time series.
This might be explained by the small day-to-day vari-
ability in temperature fields (and hence, in any resulting
PET field) compared with other climate variables such
as wind speed, humidity or radiation, which provide a
much larger contribution to the daily variability of PET
than temperature. The artificial daily pattern introduced
by temporal disaggregation of monthly temperature is
in fact small compared with the error introduced by us-
ing temperature-only forcing to estimate PET. This is il-
lustrated in Fig. S1 (Supplement). Also, the temperature
seasonal variability is a main component to the PET, and
is well captured by monthly values, with sub-monthly
values only adding some noise. This is why the choice
of temperature data only has a marginal effect, because
the daily variance is of secondary importance in com-
parison to an accurate representation of the seasonality.

iv. CHESS-PM climatology is only outperformed by the
calibrated version of McGuinness–Bordne equation
(Eq. 2 in Table 2). This suggests a small inter-annual
variability of PET, with a daily climatology being a
good alternative when no other time series is available.
Note however that the evaluation period (1991–2012)
is too short for investigating the possible impact of
trends (e.g. temperature trends, interdecadal variability,
climate change signal) in the PET signal, which might
reduce the overall ability of a climatology average to
represent PET correctly. A surprising result is that, in
the absence of any climate data available, calibrating the
McGuinness–Bordne equation with CHESS-temp clim
(long-term daily temperature climatology) outperforms
using CHESS-PM climatology. NSE scores are equiv-
alent for both approaches but MAPE is worse for the
latter. The two approaches give similar results, but run-
ning the McGuinness–Bordne equation using CHESS-
temp clim produces smoother time series than directly
using CHESS-PM climatology. The latter displays ran-
dom noise which explains the larger values of MAPE
compared to the smoother version. This is illustrated in
Fig. S4 in the Supplement.

A single annual McGuinness–Bordne PET equation cali-
brated over all catchments simultaneously was selected as
the most appropriate method to derive daily PET time series
from monthly mean temperature data.

To investigate the effect of coarser spatial resolution in the
forcing temperature data, McGuinness–Bordne 1P-GB was
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Figure 4. Performance of the different combinations of PET equations (shown in different shades of red), calibration approaches (shown in
different shades of blue) and input temperature data (one in each quadrant). The green line on the plots shows the reference CHESS PET
climatology for comparison. (a) Mean absolute percentage error (MAPE) – note that the y axis is inverted so that lower MAPE values (which
indicate better performance) are shown towards the outside of the radial plot. (b) Nash–Sutcliffe efficiency (NSE); a higher NSE indicates
better performance.

applied using UKCP09-temp monthly I and II (5 km grid-
ded data) as forcing data (stage 3 in Fig. 1). Results show
(Table S1 in the Supplement) that at the catchment scale,
the spatial resolution of the forcing temperature data has vir-
tually no effect on the performance, with MAPE and NSE
values almost identical when using 1 km gridded CHESS-
temp monthly I data (MAPE= 32.02, NSE= 0.72) or 5 km
gridded UKCP09-temp monthly I data (MAPE= 31.65,
NSE= 0.72), and when using CHESS-temp monthly II data
(MAPE= 32.13, NSE= 0.72) or UKCP09-temp monthly II
data (MAPE= 32.06, NSE= 0.72). This suggests that for the
reconstruction prior to 1961, when only 5 km monthly tem-
perature time series are available across the UK, performance
is expected to be equivalent to if finer spatial and temporal
resolution of mean temperature data existed.

The relationship between performance and catchment area
was also tested, but no clear relationship was found.

4.2 Assessment of the final PET grids

This section presents the results of the assessment described
in stages 4 and 5 in Fig. 1.

Based on the results in Sect. 4.1, the McGuinness–Bordne
1P-GB equation calibrated on 43 catchments was selected
to generate a 5 km PET dataset covering the period 1891 to
2015, using UKCP09-temp monthly II data. A monthly ver-
sion of the dataset (monthly aggregation of the daily PET for
consistency) was also produced for applications requiring a
coarse temporal resolution such as groundwater modelling,

which has the advantage of a smaller data volume. The final
gridded PET data produced here is hereafter referred to as
“historic PET dataset”.

4.2.1 Catchment-scale calibration (stage 4, Fig. 1)

At catchment scale, there is virtually no difference in deriv-
ing PET time series from the historic PET dataset or from
PET calculated with the same equation using catchment-
average temperature. The correlation coefficient is close to
1 for the 306 catchments. This validates our assumption that
the selected equation calibrated at catchment scale is appli-
cable at grid scale.

4.2.2 Final evaluation (stage 5, Fig. 1)

PET extracted from the historic PET dataset was compared
with CHESS-PM (ground truth), both at daily and monthly
timescale, to evaluate the performance of the final recon-
structed product, at catchment scale and grid scale.

At catchment scale, the results are more varied. Spatial dif-
ferences can be observed between the different metrics and
are represented in detail in Figs. S5 and S6 in the Supple-
ment. The results are not discussed here as they are very
similar to the grid-to-grid comparison described in the fol-
lowing.

At the grid scale, the following observations can be made
(Fig. 5 for daily PET and Fig. 6 for monthly PET; note dif-
ferences in the legend colour scale):
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Figure 5. Grids of evaluation metrics for the new daily gridded PET dataset. The darker the colour, the better the performance for all metrics
represented, except for the bias ratio (β) (e) where the middle-range colour is optimal (see Sect. 3.3).

i. Performance is greater for monthly (Fig. 6) than daily
(Fig. 5) PET, except for the bias ratio β which is very
similar for both. This suggests that the error is greater
at daily than at monthly resolution, likely to be due to
the smoothing of the day-to-day variability absent in
a temperature-based method. The PET equation shows
very good performance at a monthly scale with values of
NSE> 0.9, r > 0.97 and KGE> 0.8 for the whole coun-
try. For daily values, the performance is more moderate
(NSE> 0.4, r > 0.8 and KGE> 0.7).

ii. Performance varies spatially, but this variability de-
pends on the metrics chosen and is different for monthly
and daily PET. For daily PET, MAPE (Fig. 5a), NSE
(Fig. 5b) and r (Fig. 5c) show lower performance near
the coasts. This is probably because daily variation of
wind and humidity are higher near the coast, which is
not captured in temperature-based PET equations and
hence results in larger errors. VR (Fig. 5d) displays a
north–south gradient in performance, the north being
better. This is because the coefficient of variability in
observed PET is smaller in the north than it is in the
south, with less daily noise (see Fig. S3 in the Supple-
ment, grey line). The bias ratio β (Fig. 5e) is close to
one everywhere across Great Britain, which indicates
that the calibrated McGuinness–Bordne equation shows

very little bias. KGE (Fig. 5f) which is a combination
of r , VR and β, shows a north–south gradient as the
strongest influence comes from VR. For monthly PET,
the daily noise in the climate variables is absent, which
explains smaller differences in performance scores for
most metrics.

The metrics grids are provided as part of the dataset, and can
inform the users on the quality of the PET estimation for a
given location.

5 Data availability

The new PET dataset is called “Historic Gridded
Potential Evapotranspiration (PET)” based on the
temperature-based equation McGuinness–Bordne cal-
ibrated for the UK (1891–2015)” and is available
from https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-
f7780159939c (Tanguy et al., 2017). The dataset is stored in
NetCDF4 format.

For the monthly grids, the dataset is structured as three-
dimensional grids covering the UK, with twelve time steps
(monthly grids) in the time dimension in each yearly file, and
a spatial resolution of 5 km.

For the daily grids, the dataset is structured as three-
dimensional grids covering the UK, with 365 or 366 (leap
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Figure 6. Grids of evaluation metrics for the new monthly gridded PET dataset. The darker the colour, the better the performance for all
metrics represented, except for the variability ratio (VR) (d) and bias ratio (β) (e) where the middle-range colour is optimal.

year) time steps (daily grids) in each yearly file, and a spatial
resolution of 5 km.

In addition, four metric files, also in NetCDF format, ac-
company the PET files (two for daily grids and two for
monthly grids), also at a spatial resolution of 5 km.

The data are projected using the British National Grid co-
ordinate system.

The following citation should be used for every applica-
tion of the data: Tanguy, M., Prudhomme, C., Smith, K., and
Hannaford, J.: Historic Gridded Potential Evapotranspiration
(PET) based on temperature-based equation McGuinness–
Bordne calibrated for the UK (1891–2015), NERC Environ-
mental Information Data Centre, 2017.

The dataset is available for download from the CEH Envi-
ronmental Information Data Centre (EIDC).

The temperature and PET datasets used in this study are
available to download from the following links:

– CHESS temperature data (Robinson et al.,
2016a) can be downloaded from the EIDC cat-
alogue: https://catalogue.ceh.ac.uk/documents/
b745e7b1-626c-4ccc-ac27-56582e77b900.

– CHESS PET data (Robinson et al., 2016b)
can be downloaded from the EIDC cata-
logue: https://catalogue.ceh.ac.uk/documents/
8baf805d-39ce-4dac-b224-c926ada353b7.

– UKCP09 temperature data (Perry and Hollis, 2005) can
be downloaded from CEDA catalogue: http://catalogue.
ceda.ac.uk/uuid/87f43af9d02e42f483351d79b3d6162a.

6 Discussion, limitations and recommendations

In this section, the uncertainties linked to the temperature
dataset and the PET method are discussed. Subsequently, rec-
ommendations to users depending on the intended applica-
tion of the data are listed. Lastly, a summary of findings and
potential future work are presented.

6.1 Uncertainties

Firstly, the uncertainties linked to the underpinning tempera-
ture data should be considered. The data rescuing work that
the UK Met Office has undertaken to extend the temperature
data back to the late 19th century raises some questions about
how the change in network density might affect the accuracy
of the spatial data.

According to information provided by the Met Office, the
station density gradually increased from 74 stations across
the country in 1891 to a peak of 672 in the mid-1990s, after
which it decreased again to reach a total of 355 stations in
2015. Legg (2015) has extensively investigated the effect of
network density on the error in gridded dataset in the UK,
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and his results suggest that the change in density observed
here would only lead to a minor increase in error in temper-
ature. An increase in the root mean square error of less than
0.2 ◦C is observed for most cases when the network density
changes from 570 to 75 stations across the UK. This reflects
the spatial coherence in the temperature data.

A sensitivity analysis of McGuinness–Bordne PET on er-
rors in input temperature was conducted. It was found that
a ±0.2 ◦C in input temperature translates into a 0.5 to 2 %
difference (with an average of 0.8 %) in PET estimation. We
consider these differences negligible in comparison to the un-
certainties arising from the PET method itself (MAPE rang-
ing from 14 to 24 % for monthly PET estimation, see Fig. 6a).

Some additional considerations regarding the joining of
the two temperature datasets can be found in the Supplement
(Sect. S2).

The main limitation of the historic PET dataset comes
from the method used to derive it, which only takes tem-
perature into account. This is the case particularly for the
daily version. The PM evapotranspiration equation has radia-
tive and convective components. In simplified temperature-
based equations, temperature is used as a proxy for radia-
tion but does not account for the convective aspect. There-
fore, temperature-based equations are not able to reproduce
the full daily fluctuation of PET, and are only a smoothed
version of reality. This has to be kept in mind for applica-
tions where the daily variability of PET is important, such as
the estimation of daily water balance, flood peaks and crop
water demand, among others. Users are strongly advised to
look at performance metrics associated with the dataset in
their study area, such as monthly MAPE for example, which
provide information on the uncertainty in the estimates. Note
that because of the absence of the reference dataset CHESS-
PM in Northern Ireland, no quality metrics are available in
that region. Datasets based on physically based equations
such as CHESS-Penman–Monteith (CHESS-PM) are a better
option when and where they are available, which is not the
case in Great Britain before 1961, and in Northern Ireland.
When and where such high-resolution physically based PET
datasets are not available, temperature-based PET datasets
such as the historical PET dataset reconstructed here provide
a valuable substitute.

At a monthly timescale, the magnitude in the seasonal cy-
cle is well captured, which is reflected in better performance
metrics for the monthly PET data compared to the daily PET
(Figs. 5 and 6). This makes this dataset particularly suitable
for deriving monthly or seasonal river discharges or run-offs,
as its accuracy is adequate at this coarser timescale, and its
daily temporal resolution is sufficient for most hydrological
modelling applications.

6.2 Applications

While uncertainties in the PET dataset are quite large, es-
pecially in the daily version, the impact it might have will
depend on the intended purpose of the data.

For hydrological applications, the choice of PET equation
was shown to affect the estimated streamflow when using hy-
drological models (Seiller and Anctil, 2016), in particular at
high and low flows (Samadi, 2016). However, several stud-
ies show that hydrological models are much more sensitive
to errors in rainfall than to errors in PET, especially in tem-
perate climates such as the UK (Bastola et al., 2011; Guo
et al., 2017; Paturel et al., 1995). Furthermore, other studies
(Bai et al., 2016; Seiller and Anctil, 2016) show that hydro-
logical model parameter calibration can eliminate the influ-
ences of different PET inputs on runoff simulations. Oudin
et al. (2005) have also demonstrated that temperature-based
methods are suitable for conceptual hydrological modelling,
and when available at a fine spatial scale, are also suitable
for distributed hydrological modelling. Therefore, the his-
toric PET dataset is considered particularly suitable for use in
hydrological models, especially if these are being calibrated
using this dataset, as the impact of PET uncertainties will
be small compared to those of rainfall. It’s also worth men-
tioning that the McGuinness–Bordne equation used to derive
the historic PET dataset was calibrated against CHESS-PM.
There is no systematic bias (bias ratio ≈ 1, see Figs. 5 and
6) between the two datasets. The use of the historic PET
data would therefore be adequate in hydrological models
that have been calibrated using CHESS-PM, but recalibra-
tion would be recommended if any other PET source was
used in the original calibration.

For macroecology and biogeography studies, Fisher
Joshua et al. (2010) have produced a global “guide to choos-
ing an ET model for geographical ecology”, according to
the climate zone of the study area. For temperate climates
such as the UK, their conclusion is that any PET model
type (temperature-based, radiation-based or combination) is
equally adequate for its use in biodiversity modelling. There-
fore, the historic PET dataset would be appropriate for this
type of application. However, for crop modelling, greater
caution is required as modelled crop yield is highly sensi-
tive to the choice of PET model (Balkovič et al., 2013; Liu et
al., 2016; Luo et al., 2009).

Regarding the derivation of drought indices which use
PET, some seem insensitive to the choice of PET model, such
as the Reconnaissance Drought Index (Tsakiris et al., 2007)
as demonstrated by Vangelis et al. (2013); whereas for others
such as the Standardized Precipitation-Evapotranspiration
Index (Vicente-Serrano et al., 2009) or the Palmer Drought
Severity Index (Palmer, 1965), different formulations of PET
have a significant impact on the result (Beguería et al., 2013;
Sheffield et al., 2012; Stagge et al., 2014). However, this is
less important in humid areas such as the UK (Beguería et al.,
2013). Therefore, the impact of uncertainties in PET for de-
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riving drought indices will depend on the choice of drought
index.

In general, for the use of the historic PET dataset to
derive drought indices, or any other application not men-
tioned above, we would recommend that the user compares
the results over the more recent period (1961–2015) using
(i) CHESS-PM and (ii) the historic PET dataset, to estimate
the impact of PET uncertainties in their study. This way, the
user can truly assess the sensitivity of their specific applica-
tion to the errors in PET, investigate how the uncertainties
propagate in their model and make an informed decision on
whether the historic PET dataset is suitable for their needs or
not.

6.3 Further findings and future work

Beyond generating a new 125 years gridded daily PET
dataset for the UK, this research has highlighted valuable in-
sights for PET calculation in the UK:

i. calibration is essential for realistic results, but the
choice of calibration method (global/annual or lo-
cal/monthly) has a minimal effect, and therefore the eas-
iest, most cost-effective calibration method is recom-
mended (global/annual);

ii. the temporal resolution of the input temperature data
and the temporal disaggregation method when using
monthly data has little influence on the results;

iii. temperature-based equations perform better at a
monthly scale than at a daily scale, as the full daily
fluctuation of PET due to other climate variables (wind
speed, humidity, radiation) are not being accounted for,
but these are smoothed out at the monthly scale;

iv. the temperature-based PET equation (from the seven
equations tested) that produces the best results for the
UK is the calibrated version of the McGuinness–Bordne
equation;

v. for this equation, the spatial resolution (1 or 5 km) of
the input temperature data has virtually no effect in the
results at catchment scale;

vi. CHESS-PM daily climatology is the second best of the
tested options, and is therefore a possible alternative
source of PET if no climate variables are available.
(Whilst mean seasonal PET or climatology can be used
in hydrological modelling (Burnash, 1995; Calder et al.,
1983; Fowler, 2002), McGuinness–Bordne derived PET
time series are preferable as they are able to reproduce
the inter-annual variability existing in PET, absent from
any climatology); and finally,

vii. performance of the McGuinness–Bordne equation
across the UK is variable in space, and the gridded met-
rics provided within the dataset can inform future work

on the adequacy of using this approach for estimating
PET in particular areas.

Future research could explore the use of reanalysis data as
an alternative or complementary source of data to derive past
spatio-temporal PET data. The use of reanalysis data would
enable the calculation of PET through the more accurate
combined methods (such as PM). However, the uncertain-
ties associated with reanalysis data should be carefully ex-
amined, as some of the modelled variables can display large
errors (Reichler and Kim, 2008), and PM has also shown sen-
sitivity to input data inaccuracy (Oudin et al., 2005; Debnath
et al., 2015; Estévez et al., 2009; Gong et al., 2006).

The Supplement related to this article is available online
at https://doi.org/10.5194/essd-10-951-2018-supplement.
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