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 45 

The emergence of high-throughput DNA sequencing methods provides unprecedented 46 

opportunities to further unravel bacterial biodiversity and its worldwide role from human 47 

health to ecosystem functioning. However, in spite of the abundance of sequencing studies, 48 

combining data from multiple individual studies to address macroecological questions of 49 

bacterial diversity remains methodically challenging and plagued with biases. Here, using a 50 

machine learning approach that accounts for differences among studies and complex 51 

interactions among taxa, we merge 30 independent bacterial datasets consisting of 1,998 52 

soil samples from across 21 countries. While previous meta-analysis efforts have focused on 53 

bacterial diversity measures or abundances of major taxa, we show that disparate 54 

amplicon sequence data can be combined at the taxonomy-based level to assess bacterial 55 

community structure. We find that rarer taxa are more important for structuring soil 56 
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communities than abundant taxa, and that these rarer taxa are better predictors of 57 

community structure than environmental factors, which are often confounded across 58 

studies. We conclude that combining data from independent studies can be used to explore 59 

novel patterns in bacterial communities, identify potential ‘indicator’ taxa with an 60 

important role in structuring communities, and propose new hypotheses on the factors that 61 

shape bacterial biogeography previously overlooked.    62 

 63 

Soil microbial communities are more diverse and contain more individuals than any species 64 

groups on the planet1,2. Over the last decade, the use of high-throughput sequencing (HTS) 65 

methods has substantially advanced our understanding of the worldwide biogeography and 66 

ecology of soil bacterial and fungal communitie3–6. Recent work has further demonstrated that 67 

inclusion of microbial composition and functional attributes improves earth system models7,8, 68 

which is of paramount importance for predicting effects of global change on ecosystem services 69 

such as climate regulation or soil fertility9,10. Yet, opposite to the long-standing view that every 70 

organism may occur everywhere11, even at small scales bacterial communities turn out to be 71 

more patchy than previously expected12,13, raising questions regarding dispersal constraints, 72 

temporal dynamics, and niche breadth at the global scale14–17. Due to these knowledge gaps, 73 

combined with practical challenges of exhaustive sample collection and the massive diversity of 74 

communities, global assessment of soil microbial diversity remains an ongoing research 75 

challenge18,19.  76 

 77 

For plants and animals, the integration of data from independent studies has been a valuable 78 

option for generating an understanding of global biogeography patterns, answering ecological 79 
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questions (e.g. biodiversity-functioning relationships), and identifying threats to biodiversity 80 

from global changes20–23. Similarly, our understanding of soil microbial diversity would greatly 81 

improve from such worldwide assessments. However, the integration of microbial community 82 

HTS data from different studies is not so unlike the merging of museum species records where 83 

information and data is constrained by variations in nomenclature over space and time, among 84 

many other challenges24,25. Like plant and animal records, molecular microbial community 85 

records and information can be incomplete, processing and naming varies greatly between 86 

studies and over time26, data storage is inconsistent, and there are few curated databases with 87 

high quality data (especially for short read sequences)27,28. Further, most microbial community 88 

data and metadata are still available only in independently published studies that have been 89 

carried out according to their own standards and procedures, and the extent of these confounding 90 

factors has never been quantified across studies.  91 

 92 

Regardless of the challenges, as indicated by the many open access data initiatives29–31, merging 93 

microbial sequence data is a potential option to address global scale questions, whether relating 94 

to the human microbiome32, marine systems33, or predicting the response of soil organisms to 95 

global environmental change34. For soil systems, the need to merge sequence data is supported 96 

by the emerging role of bacterial phyla and classes as indicators of particular soil conditions such 97 

as soil pH and nutrient concentrations35,36. Until now, attempts to meta-analyze sequence data 98 

have been limited to assessing diversity measures or abundances of major taxa, because the 99 

merging of community data is constrained by methodological differences between sequencing 100 

studies13,30,37–39. However, a recent systematic review found that measures of microbial 101 

community structure were more often linked to microbial process rates than diversity or 102 
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presence/absence data40, and abundance ratios among phyla may be less important than previous 103 

believed41. Together indicating that information on variation in microbial community structure is 104 

potentially more ecologically relevant than measures of diversity and abundances of major taxa.  105 

 106 

Here, we show that, despite the outlined challenges, published microbial community data from 107 

independent studies can be analyzed together to address questions about the global structuring of 108 

communities. Using a novel machine learning approach, we take methodological and technical 109 

biases into account, factor in interactions among taxa, and produce an improved assessment of 110 

the abiotic and biotic drivers of soil community structure. The objectives of this study were two-111 

fold: (1) to identify the biases and incompatibilities of microbial community HTS studies (and 112 

confounding factors) so as to strengthen our ability to integrate data from disparate studies, and 113 

(2) to reveal worldwide soil microbial community patterns by merging independent taxonomy-114 

based datasets. 115 

 116 

Results and Discussion 117 

Taxonomy-based merging of disparate amplicon sequence data  118 

We identified 30 individual HTS bacterial studies from 21 countries for our analysis (Figure 1A 119 

and Supplementary Table 1). While we aimed to merge HTS data of both soil bacterial and 120 

fungal datasets, our approach was only successful for bacterial data (Figure 1B and 1C), and 121 

highlights the well-known dilemma of fungal databases, where extremely high diversity 122 

combined with high endemism and mismatched taxonomy across continents make merging data 123 

by taxonomy difficult and unusable for downstream analyses4,5,42. For the bacterial studies, we 124 

were able to successfully merge 30 individual OTU tables; using a taxonomy-based approach, 125 
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datasets were merged using the taxonomic affiliations of individual OTUs. Once filtered, and 126 

singletons removed, the final ‘taxonomy-based’ community contained 1,998 individual soil 127 

samples, and 8,287 taxa.  Here ‘taxon’ is defined as a unique name in the classification; where a 128 

name could be a specific phylum, genus, or other taxonomic level. For example, ‘Acidovorax’ 129 

(genus) and Proteobacteria (the phylum containing Acidovorax) were both considered as taxa). 130 

To account for variation in sequencing depth between different studies, OTU relative abundances 131 

were used per sample, rather than absolute read abundance. To test known biogeographical 132 

patterns, metadata (information on geographical location, soil pH and soil core measurements) 133 

were compiled for all studies. Technical and methodical information was also collected; all of 134 

these 30 studies had conducted amplicon sequencing on hypervariable regions of the 16S rRNA 135 

gene in soil samples using either Illumina or (Roche) 454 pyrosequencing (with any primer pair) 136 

(Supplementary Table 1). For a validation step we retrieved all usable raw sequence data 137 

available, resulting in 417 samples from locations across the globe (approximately 1/5 of all our 138 

samples) (Figure 1A). Data not included in this sequence-matched analysis either had an 139 

incompatible raw sequence format or simply no longer existed. Available raw sequence data 140 

were combined into a single ‘sequence-matched’ community comprising 44,106 OTUs 141 

(Supplementary Figure 1).  142 

 143 

Machine learning assessment of bacterial community structure 144 

Ordination of the taxonomy-based community reveals large amounts of structure both within and 145 

between studies (structure that is removed by permuting taxa among samples (Supplementary 146 

Figure 2), without greatly affecting diversity (Supplementary Table 3)), and the observation of 147 

the well-established negative relationship between relative abundance of Acidobacteria and soil 148 
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pH (Figure 1D)43 confirms our merging method. This visualization also suggests that some of the 149 

community variation (e.g. the near absence of Acidobacteria in some studies, even at low pH) is 150 

due to technical factors such as the particular primer sets chosen, region sequenced, and 151 

sequencing platform (Supplementary Methods and Supplementary Table 2). However, we expect 152 

that some taxa are not correlated with technical factors, and are non-randomly distributed with 153 

respect to biotic and abiotic factors. Therefore, using a machine learning approach capable of 154 

accounting for complex interactions among taxa (Random ForestsTM, see methods), we 155 

determined the extent to which individual taxa could influence the community structure of 156 

merged independent studies. Here community structure is defined by the presence and relative 157 

abundances of individual taxa, along with co-occurrence relationships between those taxa. This 158 

was done in two ways: first, we constructed a model that classified the study from which a 159 

sample came based on the proportions of the 8,287 taxa it contained (1.5% [± 0.02% CI] 160 

classification error, by internal cross-validation). Second, we determined the contribution of each 161 

taxon to bacterial community structure by quantifying its importance in a model that separated 162 

the observed data from synthetic data randomly drawn from the observed distributions of relative 163 

abundances for each taxon 44,45 (see Methods).  164 

 165 

Merging of disparate microbial sequence data is known to be plagued with potential biases 166 

including: lack of standardization of sample collection, methodological issues regarding DNA 167 

extraction and primer choice, incomplete metadata, the technical biases of different sequencing 168 

platforms, sequencing depth, PCR Bias, different clustering methods, and the use of different 169 

taxonomic classification pipelines46–52. We therefore took the novel step to quantify the 170 

importance of both technical and environmental factors alongside taxa in the Random Forests 171 
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models (Figure 2). Of note, ‘owner’, which encompasses the technical biases and uniqueness of a 172 

given dataset, is very effective for differentiating between studies (i.e. the owner is far to the 173 

right in Figure 2) yet is entirely uninformative about community structure (i.e. owner is at the far 174 

bottom in Figure 2). In fact, all technical factors included are better than 98.5% of all taxa to 175 

differentiate between studies, indicating that the observed differences among studies in taxon 176 

relative abundances are strongly confounded with technical factors. Independent of taxonomy, 177 

certain environmental factors, such as country of origin, latitude and longitude, and soil pH, were 178 

highly important in differentiating studies but not in determining community structure. By 179 

contrast, minimum soil sampling depth was not very important in separating studies, and was 180 

more associated with community structure. It is well known that bacterial diversity decreases 181 

with soil depth53 and our results show that in a global assessment, soil depth remains a strong 182 

predictor of bacterial community composition. Perhaps most useful for future research, this result 183 

highlights that not all environmental factors are equally confounded by technical factors, and 184 

shows that by combining data from across many independent studies we may identify previously 185 

overlooked taxa and factors relevant for structuring communities.  186 

 187 

Importance for structuring soil bacterial communities 188 

Although all studies were confounded by technical and environmental covariates, there remained 189 

many taxa that were non-randomly distributed and were not confounded with technical 190 

differences among studies (upper left in Figure 2). When assessing the role of these different taxa 191 

in structuring the community, we found a trade-off between taxon abundance and importance in 192 

community structure, such that low abundance taxa are disproportionately important in the non-193 

random structure of communities, where the most important taxa are rarer than expected 194 
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compared to the randomly permuted data (Figure 3). Thus, the importance of taxa for 195 

determining community structure is negatively correlated with the average abundance of those 196 

taxa, whereas taxon abundance is positively correlated with importance for separating studies (ρ 197 

= -0.79 and ρ = +0.51 respectively, rank correlation, cf. null expectations of ρ = -0.62 and -0.12 198 

respectively in permuted data). The taxa most closely associated with differences between 199 

studies tend to be those present at or greater than 0.1% relative abundance, but those most 200 

important in determining community structure tend to be present at 0.0001% abundance or less 201 

(with a null expectation of around 0.01-0.001% in each case, Figure 3). This result is only found 202 

by considering the full set of studies and is neither apparent within single studies (Supplementary 203 

Fig. 4A-B) nor a subset of studies (whether matched by name or sequence Supplementary Fig. 204 

5). It corresponds to the long tail in frequency-abundance distributions of soil microbial 205 

communities54, where many taxa in the soil are known to occur at low abundance. Thus, if rarer 206 

taxa tend to be more important for distinguishing between communities, it is within this long tail 207 

that we might identify taxa that could indicate ecological or functional differences among soil 208 

communities33,55,56.  209 

 210 

To be ecological indicators57,58, taxa need to vary in abundance in response to environmental 211 

factors and have high occurrence across studies, as is the case for the phylum Acidobacteria43. 212 

Acidobacteria, however, are typically abundant and our analysis suggests that the most abundant 213 

taxa are not the most important in determining community structure. While dominant taxa like 214 

Acidobacteria do change with environmental factors such as pH (Figure 1D), those changes are 215 

of lesser importance for the ‘non-randomness’ of community structure, and more confounded 216 

with technical effects, than changes in less dominant, pH responsive taxa (Supplementary Figure 217 
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3A). Therefore, we assessed which taxonomic ranks are more or less distinguished from the 218 

randomly permutated data. Although differences among domains and phyla are strongly 219 

associated with differences among studies (Figure 4B) only taxa at a rank lower than phyla are 220 

consistently better than random at identifying community structure (Figure 4A).  221 

 222 

A very similar pattern was found for the sequence-matched community, emphasizing the 223 

importance of taxa at the level of Class and below (Supplementary Figure 7A and 7B). However, 224 

this was not apparent in individual studies (Supplementary Figure 4C-D), where phyla were 225 

relatively important. A subset of the taxonomy-matched studies showed a pattern intermediate 226 

between the single studies and the full dataset (phyla with some importance, but less than Class, 227 

Order or Family, Supplementary Figure 7C). This, along with abundance analyses (Figure 3 and 228 

Supplementary Figure 5), suggests that our name matching approach is consistent with, but less 229 

powerful than a full sequence-matched analysis. At the same time, the taxonomy-matching is 230 

worthwhile because, as with the findings on abundance (Figure 3), macroecological patterns (the 231 

importance of taxa below phyla and of relatively low abundance in community structure) are 232 

evident when we consider thousands of samples from tens of studies, that are not apparent from 233 

hundreds of samples from one or a handful of studies.   234 

 235 

To be a good ecological indicator a taxon should occur in most studies; we therefore looked 236 

explicitly at the relationship between a taxon’s importance in community structure and its 237 

occurrence across studies. Low abundance taxa and taxa of lower taxonomic rank are 238 

consistently important in determining community structure, but tend to be detected in fewer 239 

studies (ρ = 0.59 and 0.31 respectively Supplementary Figure 3B and 3C). We discovered a 240 
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novel relationship between taxon occurrence across studies and importance for structuring 241 

communities for all taxa (Figure 5, Supplementary Table 4). Comparison with the null 242 

expectation reveals a range of taxa, occurring in multiple samples from most studies, which are 243 

much more important in determining community structure than expected by chance. A similar 244 

pattern is apparent in the sequence-matched dataset (Supplementary Figure 8A) and the same 245 

subset of studies when taxonomy-matched (Supplementary Figure 8B). Altogether, the analyses 246 

clearly illustrate the significance of taxonomic rank, for example class Gemmatimonadetes is 247 

relatively unimportant for community structure but genus Gemmatimonadetes is relatively 248 

important. The result also shows rarer taxa being more important in structuring communities and 249 

suggests rarer bacterial taxa play overlooked ecologically important roles for bacterial 250 

community dynamics56. This result is robust to artifacts caused by the rarest taxa (e.g. 251 

differences between 0 and 1 reads in a sample could be significant for a model, without being 252 

biologically significant) – a very similar pattern is seen when only taxa present at above 0.003% 253 

in any given sample were included in this analysis (typically removing the rarest 10% of taxa 254 

from any given sample, Supplementary Figure 9). Conversely, many taxa of high taxonomic rank 255 

with high occurrence across samples, such as the phyla Actinobacteria, Acidobacteria, 256 

Proteobacteria, and Bacteroidetes, were much less important for community structure than the 257 

null expectation. These taxa have been reported elsewhere as ‘core’ members of the soil 258 

community43,59,60, and even been included in source-tracking of microbial communities due to 259 

their ubiquitous presence in soil61. Yet, it is the consistent presence of the core taxa across 260 

samples and studies that makes them inadequate for assessing community structure. 261 

 262 

Conclusions 263 
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Our results demonstrate the power of combining global bacterial HTS data from multiple 264 

independent sources for the detection of biogeographical patterns and for identifying community 265 

patterns that can be used to generate hypotheses on the roles of certain taxa. Though our 266 

assessment was on soil communities, our methods can be applied to broadly to other microbial 267 

datasets and disciplines. Taxonomy-based merging gives results that are consistent with raw 268 

sequence data, and expands opportunities for extracting information about microbial 269 

communities from the wealth of existing and future studies. Moreover, we find that rarer 270 

bacterial taxa are more important in differentiating communities than previously assumed, and 271 

hold potential as overlooked soil indicators or keystone species. Still, there are considerable 272 

challenges associated with merging large sequence datasets beyond the well-known biases that 273 

accompany any molecular HTS study. Perhaps the most concerning was that so few raw 274 

sequence datasets for publically deposited analyses could be retrieved. This highlights the need 275 

for wider community adoption of open and accessible short read sequence databases62, open 276 

reference clustering63, standardized databases64 and—as always—that metadata should be 277 

consistent and accessible. Regardless of these challenges, as HTS methods rapidly advance we 278 

must find ways to simultaneously curate and carry our research knowledge forward32. Only then, 279 

in combination with the many novel and classical approaches, can we uncover the full breadth of 280 

soil diversity and the roles soil microbes play for ecosystem processes.  281 

  282 
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Methods:  283 

Description of datasets: 284 

Metadata from the 30 studies and 1998 samples were collected and compiled into a summary 285 

data file. To do so, we standardized the metadata of each study using the dplyr package 286 

(Wickham & Francois, 2016) of the R statistical platform (R Core Team, 2016). Samples were 287 

collected from 21 counties representing all continents except Antarctica. In addition to location 288 

and pH data (median = 6.1, quartile range=5.3-7.0), which were available from all studies, 289 

information on altitude (10 m, 10-860 m), soil moisture (19.5%, 14.1-27.4%), and total soil 290 

nitrogen (0.36 mg kg-1, 0.23-0.51 mg kg-1), carbon (4.7%, 1.9-7.5%) and phosphorus (20.7 mg 291 

kg-1, 7.0-223.0 mg kg-1) was noted where available. Depth of sample collection was also noted 292 

and ranged from surface collections to a maximum depth of 70 cm, with 83% of samples 293 

originating from 0-10 cm below the soil surface. Samples represented anthropogenically 294 

managed (59%) and natural (40%; remaining samples undefined) systems, and were taken from 295 

arable, grassland, peatland, forest, scrub (including tundra) and urban habitats. The majority of 296 

samples (71%) were described as non-experimental, meaning no treatments were applied, with 297 

the remainder described as experimental. Sequencing data were either produced using Roche 454 298 

technology (22%) or one of the Illumina platforms (78%). Primer pairs were defined for 92% of 299 

the samples and nine different pairs were identified from the study meta data (27F:338R; 300 

341F:518R; 341F:806R; 341F:907R; 357F:926R; 515F:806R; 577F:926R; 799F:1193R and 301 

341F:805R) with the majority of samples (66%) using 515F and 806R to produce amplicons. 302 

Post sequencing processing varied, but 81% of samples were run through the QIIME workflow 303 

at some point. An OTU table for 1 study comprising 43 samples was programmatically retrieved 304 

from the MG-RAST public metagenome repository65. Taxonomy for the different studies was 305 
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mainly assigned using the Greengenes database (84 %), but RDP (6 %;46 and the Silva database 306 

(9 %)66 were also used. 307 

 308 

Merging OTU tables:  309 

For the OTU tables from the 30 individual studies to be merged, extensive data cleaning was 310 

carried out on the OTU and taxonomy files to maximize the possibility of matching taxa across 311 

datasets. This comprised several steps: (1) Most datasets contained a seven-level taxonomy, 312 

recorded in a variety of ways, which was converted to a standardized format. (2) Individual 313 

taxon names were cleaned, to give a single name at each taxonomic level (e.g. removing special 314 

characters and extra annotations, such as ‘candidate division’ or details of containing taxa). (3) 315 

For the many cases where a taxon was not assigned at a particular taxonomic level, a unified 316 

‘unassigned’ label was created. Repeating analyses with all these taxa removed made no 317 

qualitative difference to the results (Supplementary Figure 10). Merging at the taxonomy-based 318 

level has the added benefit of lessening the impacts of hypervariable regions. For example, the 319 

identification of an organism at a specific level in one sample also contributes to the 320 

identification of the containing genus for that sample, allowing direct comparison with a sample 321 

where, because a different region was sequenced, that same organism is only resolved to the 322 

genus level. Next, relative abundance data were, where necessary, re-scaled to sum to 1 for a 323 

sample, using original OTU count files where possible. These values were then manipulated to 324 

give data tables usable for modeling using custom R scripts. For some analyses (Figures 3-5), a 325 

dataset without community structure was created by randomly permuting the relative abundance 326 

of each taxon across all samples. Unless otherwise stated, the analyses performed on the 327 

permuted dataset was identical to that performed on the observed data.  328 
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 329 

Merging raw sequence data and other validation datasets:  330 

While no dataset can currently provide a “ground truth” against which to judge our approach, we 331 

can at least validate it. The primary validation of our taxonomy-matching approach was to merge 332 

raw sequence data (‘sequence-matched’) from five studies (Supplementary Table 1). Per sample 333 

fastq files were obtained for each individual dataset. Read files were quality filtered with sickle 334 

67 for single end reads trimming bases below phred score 36 and shorter than 100bp. These 335 

stringent filtering criteria were applied to keep only high quality reads and to make sure it is 336 

possible to map reads to full length 16S rRNA gene sequences. Full length 16S rRNA gene 337 

sequences from the Silva 119 release 66 were obtained in Qiime compatible format from the Silva 338 

Download Archive For each dataset, all reads were mapped to the full length 16S rRNA gene 339 

sequences using the usearch global algorithm implemented in VSEARCH version 1.9.6 68. The 340 

alignment results in usearch table format (uc) were directly converted to BIOM format using 341 

biom version 2.1.5 69. Consensus/majority taxonomy was added as metadata to the biom file. 342 

Finally, all BIOM files of each dataset were merged using Qiime version 1.9.1 70. All steps were 343 

implemented in a workflow made with Snakemake version 3.5.4 71 available: (De Hollander 344 

2016). See Supplementary Fig 1 for workflow.  345 

 346 

To use this sequence-matched dataset to validate our taxonomy-matching approach across 347 

studies using different taxonomy databases (Supplementary Figures 5, 7 & 8) we created an 348 

equivalent taxonomy-matched dataset from the same 5 studies. As with the full dataset, only taxa 349 

occurring in at least two studies were included in either this or the sequence-matched dataset. To 350 

test what is gained or lost by considering different numbers of studies simultaneously, we 351 
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considered, not only the full dataset (30 studies) and the subset of 5 studies used in the sequence-352 

matched dataset, but two of the largest individual studies: from Central Park, NYC 353 

encompassing 594 samples (study #24) and a global dataset encompassing 103 samples (study 354 

#30). In each case a simple subset of the full dataset was analyzed (Supplementary Figure 4). To 355 

address PCR biases (Supplementary Table 2) and biases associated with rare taxa, we created a 356 

filtered subset of the data where only taxa present at above 0.003% in any given sample were 357 

considered, meaning that all taxa deemed present are represented by multiple sequence reads 358 

(Supplementary Figure 9). To address the issue of differential 16S copy numbers skewing 359 

abundance estimates, we created a binary dataset of the presence/absence of all taxa. The results 360 

for a model separating studies using this dataset were very similar to the main dataset using 361 

relative abundance, however, there was insufficient power to identify taxa important for 362 

community structure (Supplementary Figure 6). Nonetheless, this analysis did agree with the 363 

main analysis that phyla were the most stable taxonomic level, with lower importance than on 364 

the permuted data (Supplementary Figure 6). Finally, to test the effect of ‘unknown’ or 365 

unclassified bacterial taxa we created a reduced dataset where all taxa classified as ‘unassigned’ 366 

at any level were removed (Supplementary Figure 10).  367 

 368 

Random forest models.  369 

To test for the importance of different taxa in the structuring of the data we used Random Forest 370 

models 45,72 with the relative abundances of the taxa as explanatory variables. Random Forest 371 

models have two principal advantages in this context: 1) they can deal easily with thousands of 372 

explanatory variables and quantify their relative importance, and 2) they can run equivalently in 373 

both supervised and un-supervised modes. In the latter, the importance of a variable describes 374 
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how effective it is at separating the observed data from randomized synthetic data44. In both 375 

cases, a proximity matrix may be generated, which can be used for ordination (Supplementary 376 

Figure 2). The importance of individual taxa in a Random Forest relate to traditional ecological 377 

measures. For instance, the importance in a supervised model, such as that used separating 378 

studies (x-axis in Figure 2) is closely correlated with the sensitivity component of the indicator 379 

value of each taxon (ρ = 0.89, Supplementary Figure 3D)58. There are two key parameters that 380 

may be adjusted in a Random Forest model, mtry, the number of variables randomly sampled as 381 

candidates for a split in the constituent trees and ntree, the number of trees in the forest. mtry was 382 

set at its default value (square root of the number of variables) ntree was set to 100,000 for each 383 

forest. Such a large number of trees was found to be necessary to achieve stable importance 384 

across taxa and was achieved by combining several forests run in parallel without normalizing 385 

votes. Other parameters were left at default values, in particular, trees were grown to completion 386 

(i.e. a minimum node size of 1). The un-scaled permutation importance of variables is used 387 

throughout: Each variable importance is the difference between the classification error rate of a 388 

tree on data not used to construct it (the ‘out of bag’ data) and the same error following random 389 

permutation of the variable in question, averaged over all trees.  390 

 391 

We used permuted data (see above) to create null distributions for taxon importance. For 392 

unsupervised Random Forests analyses, such as the community structure model, this amounts to 393 

calculating how important a taxon with a particular abundance distribution is for separating two 394 

randomized distributions. This can then be compared to its importance for separating the 395 

observed from a randomized distribution. This clarifies the fact that, even in null data without 396 

community structure (Supplementary Figure 2), variable importance correlates with ecologically 397 
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important factors, such as abundance. This makes intuitive sense in as much as, even with 398 

randomized samples, is easier to separate them on the basis of taxa that occur in only some of 399 

them than on the basis of ubiquitous taxa. This, for instance, results in the negative slope of the 400 

orange (permuted, null, data) line in Figure 5.  401 

 402 

All analyses were completed with RandomForest package for R version 4.6. 403 
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Figures:  578 

 579 

Figure 1. Merging of data from 32 independent studies demonstrates wide geographic 580 

breadth, community variation, and confirms the well-known importance of soil pH. A. Map 581 

of locations from which samples were collected, with zoom panels on the United States (left) and 582 

western Europe (right). Points in blue were used in both the taxonomy-based and raw-unified 583 

analyses and red points were only used in taxonomy-based analyses. B. Average proportion of 584 

total prokaryotic abundance and C. eukaryotic abundance, represented by taxa shared among 585 

different numbers of datasets at different taxonomic levels. Level 1 indicates the complete data, 586 

levels 2-4 are subsets of the data containing only taxa present in a minimum of 2-4 separate 587 

datasets. D. Correlation plot of Acidobacteria relative abundance to soil pH where ach color 588 

represents a different study (r = -0.42 p=8.6 x 10-87).  589 

 590 

Figure 2: Regardless of technical differences between studies, many bacterial taxa are still 591 

informative about bacterial community structure. Machine learning models classify the study 592 

from which samples came (x-axis) based on the relative abundance of taxa within samples and 593 

distinguish the observed distribution of taxa among samples from random (y-axis). Plotted 594 

alongside bacterial taxa (black) are technical factors (red) and ecological factors (purple), 595 

including soil pH, minimum and maximum soil depth, longitude, latitude and degrees from the 596 

equator. All values are variable importance from Random Forest models (see Methods) – points 597 

further to the right on the x-axis have more importance in separating studies, while points higher 598 

up on the y-axis, have more importance for community structure.  Note the non-linear axes. 599 

 600 
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Figure 3: Rarer taxa are more important for structuring communities than abundant taxa. 601 

Here we show the thousand most important bacterial taxa in community structure (A) and in 602 

separating studies (B) with respect to their average relative abundance across samples. Plotted 603 

are the ‘observed’ points (green) and ‘permuted’ points (orange) which are a null distribution 604 

from performing the same analysis on a permuted dataset (see Methods). The y-axis reports the 605 

rank variable importance in the Random Forests model of community structure (see Methods), 606 

i.e. the taxon with the greatest importance in this model is ranked 1, the second greatest 2, etc. 607 

 608 

Figure 4: The importance of bacterial taxa classified at different taxonomic ranks. Lower 609 

taxonomic rank is more important for community structure (A), while high taxonomic rank is 610 

more important for separating studies (B). For each taxon, the difference was calculated between 611 

the variable importance (see Methods) of that taxon in a Random Forests model of either 612 

community structure or separating studies and the equivalent value from an analysis performed 613 

on the permuted dataset (see Methods).  The lines and grey ribbons show the mean and standard 614 

error respectively of these values across taxa at each taxonomic r considered. 615 

 616 

Figure 5: Importance of bacterial taxa in community structure related to their occurrence 617 

in different studies. The y-axis reports the variable importance in the Random Forests model of 618 

community structure (see Methods). Green ‘observed’ points correspond to those taxa shown in 619 

Figure 1. Orange ‘permuted’ points correspond to the same analysis on a null distribution (see 620 

Methods).  Lines are general additive model (gam) smoothers. Each line is shown with a 621 

confidence interval (grey); where this is not visible it is narrower than the line it surrounds. 622 

 623 
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