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Abstract One of the key challenges in polar middle atmosphere research is to quantify the total
forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time
scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called
medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE
ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model
(WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently
developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years)
in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to
investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd
hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone
variability of 12–24% in the mesosphere, and 5–7% in the middle and upper stratosphere. This variability
is in agreement with previously published observations. Analysis of the simulation results indicate the
importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere,
MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where winter-
time dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order
to reach more robust conclusions.

1. Introduction

Variation in solar ultraviolet (UV) radiation is considered to be the main source of solar-driven decadal variabil-
ity in the stratosphere, influencing the ozone budget and radiative heating in the middle atmosphere (Gray
et al., 2010). There is now growing evidence that solar-driven energetic particle precipitation (EPP) is another
important source for stratospheric variability (Matthes et al., 2017; Seppälä et al., 2014). Auroral electron pre-
cipitation provides direct forcing at polar thermospheric altitudes (above about 100 km), while solar proton
events (SPE) and medium-energy electron (MEE) precipitation generate excess ionization in the polar mid-
dle atmosphere (between about 30 and 80 km). This leads to significant changes in the neutral atmosphere
through the formation of odd nitrogen (NOx) and odd hydrogen (HOx) (Andersson et al., 2012; Arsenovic et al.,
2016; Funke et al., 2011; Fytterer et al., 2015; Jackman et al., 2001; Verronen et al., 2011). Enhanced production
of NOx and HOx affects stratospheric and mesospheric ozone (O3) (Andersson, Verronen, Rodger, Clilverd, &
Seppälä, 2014; Jackman et al., 2008; Seppälä et al., 2007; Verronen et al., 2006), which then has the potential
to further influence atmospheric dynamics (Baumgaertner et al., 2011; Langematz et al., 2005). Simulations
and analysis of meteorological data have given indications of chemical-dynamical coupling linking the initial
EPP-induced response to changes in the lower atmosphere, and ground level climate variations on a regional
scale (Baumgaertner et al., 2011; Lu et al., 2008; Rozanov et al., 2012; Seppälä et al., 2009, 2013). It is possible
that the impact of EPP on regional climate variability may be comparable or even exceeds the effects arising
from solar UV variations (Rozanov et al., 2005; Seppälä & Clilverd, 2014).

One of the outstanding challenges in understanding EPP impact on the atmosphere is the role of MEE in
the total EPP forcing and the related atmospheric and climate response. There has been a persistent lack of
an adequate description of MEE ionization in atmospheric simulations due to issues in the satellite-based
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precipitating flux observations (Rodger et al., 2010). We know from satellite-based OH observations that there
is a direct mesospheric response to MEE at geomagnetic latitudes between about 55 and 75∘ (Andersson
et al., 2012; Andersson, Verronen, Rodger, Clilverd, & Wang, 2014; Verronen et al., 2011; Zawedde et al., 2016).
Observations have further shown the resulting effect on mesospheric ozone, both in day-to-day changes
during MEE events and in longer-term variability (Andersson, Verronen, Rodger, Clilverd, & Seppälä, 2014;
Verronen et al., 2013).

A major open question concerns the magnitude of the EPP-driven response in stratospheric ozone over
decadal time scales (Sinnhuber et al., 2006). In order to have an impact, NOx produced in the mesosphere to
lower-thermosphere (MLT) region must be transported down to the upper stratosphere inside the polar vor-
tex during wintertime when it is not destroyed by photolysis. NOx descent has been observed during many
winters (Callis & Lambeth, 1998; Päivärinta et al., 2013; Siskind et al., 2000; Randall et al., 2009) and satellite
data analysis has shown that NOx descent occurs practically every winter, in both hemispheres, with signif-
icant interannual variability seen especially in the Northern Hemisphere (NH) (Funke, López-Puertas, Stiller,
et al., 2014; Funke, López-Puertas, Holt, et al., 2014; Seppälä et al., 2007). Capturing the observed magnitude
of the NOx descent has been difficult to simulate in models due to incomplete EPP forcing source producing
the NOx , including, perhaps most importantly, the missing MEE ionization.

On a year-to-year basis, understanding the response of stratospheric ozone to the descending NOx has been
challenging because of the relatively large overall ozone variability due to atmospheric dynamics (Päivärinta
et al., 2013). Nevertheless, from observations we know that polar upper stratospheric ozone can be depleted
locally by 40–60% during winters of exceptionally strong NOx descent (Randall et al., 1998, 2005). A recent
study using satellite data between 1979 and 2014 has revealed a long-term response of Southern Hemi-
spheric (SH) stratospheric ozone to EPP activity, with an average ozone depletion of about 10–15% at
30–45 km altitude in late winter (Damiani et al., 2016). Fytterer et al. (2015) used a shorter time period
of observations (2005–2010) and reported a 5–10% depletion of SH polar ozone at 25–50 km over the
winter months.

Up to now there have been few simulations including MEE in some form (Codrescu et al., 1997; Semeniuk et al.,
2011), but most recently, Arsenovic et al. (2016) examined the MEE effect on the polar atmosphere using a
chemistry-climate model. Although their MEE ionization data set restricted the simulated time period to just
8 years, they nevertheless reported substantial MEE effects on polar stratospheric ozone and subsequently
on atmospheric dynamics. However, for more general conclusions a multidecadal time series of simulations
is needed.

Here we use the Whole Atmosphere Community Climate Model (CESM1(WACCM)) to study the polar atmo-
sphere response to EPP over decadal time scales. We present an extended simulation time series of 147 years
(3×49 years ensemble of runs) which gives our results good statistical robustness. To complete the EPP forcing
over the whole time series, we introduce to WACCM the new state-of-the-art MEE precipitation model which
is part of solar forcing recommendation for the sixth phase of the Coupled Model Intercomparison Project
CMIP6 (Matthes et al., 2017; van de Kamp et al., 2016). The big open questions we wish to address concern
the magnitude and detectability (e.g., statistical robustness) of EPP-driven signals in multidecadal time series.
These signals are currently unknown because most previous MEE studies have been restricted to time peri-
ods of ∼10 years or less. Thus, our study is an important contribution to the MEE research, and EPP research
in general.

Note that we contrast our results to the simulations from the fifth phase of the Coupled Model Intercompari-
son Project (CMIP5) reported by Marsh et al. (2013), which were used for the fifth Intergovernmental Panel on
Climate Change (IPCC) Assessment Report. The CMIP5 simulations, which include no MEE forcing, are freely
available to the community and are widely used. It is very important to establish if a lack of MEE forcing in
those simulations (and simulations by other modeling groups for CMIP5) leads to an error in determining the
chemical response to external solar and geomagnetic forcing. Thus, our results have great significance for any
researcher analyzing the solar signal in the CMIP5 simulations.

2. Modeling and Analysis Methods

WACCM is a chemistry-climate general circulation model with vertical domain extending from the surface to
5.9 × 10−6 hPa (∼140 km geometric height). The standard horizontal resolution used is 1.9∘ latitude by 2.5∘
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longitude. The representation of WACCM physics in the MLT and simulations of the atmospheric response
to solar and geomagnetic forcing variations are described by Marsh et al. (2007). Details of recent
centennial-scale coupled simulations using the current version of WACCM (version 4) and an overview of the
model climate is presented by Marsh et al. (2013). The chemistry module in WACCM is interactive with the
dynamics through transport, radiative transfer and exothermic heating. Photochemistry associated with ion
species (O+, NO+, O+

2 , N+
2 , and N+) is part of the standard chemistry package. For EPP, the standard model uses

a lookup table parameterization for ionization-driven HOx production, based on the work of Solomon et al.
(1981). For NOx, it is assumed that 1.25 N atoms are produced per ion pair with branching ratios of 0.55/0.7
for N(4S)∕N(2D), respectively (Jackman et al., 2005; Porter et al., 1976).

Except for the inclusion of MEE in the EPP forcing (described in the next paragraph) the coupled model sim-
ulations presented here were set up identically to the CMIP5 simulations (for full details, see Marsh et al.,
2013). We utilize the free-running dynamics version of the model (compset “B55TRWCN”) that includes active
ocean and sea ice components at 1∘ resolution. An ensemble set of three simulations was performed with all
observed forcings between 1955 and 2005. An ensemble of three was chosen to reduce the effects from inter-
nal variability in the model in our analysis. The observed forcings include changes in surface concentrations
of radiatively active species, daily solar spectral irradiance, volcanic sulfate heating, and the quasi-biennial
oscillation (QBO). The initial conditions for 1955 for all model components were taken from a single histori-
cal simulation (1850–2005), in an identical manner to the CMIP5 simulations. Energetic particle forcing due
to solar proton events (SPE) and auroral electron (AE) precipitation was included in the original CMIP5 simu-
lations; hence, the difference between the CMIP5 and our simulations is the addition of the new MEE forcing,
as described below. The three ensemble members of simulations (49 years each) result in a total of 147 years
for our analysis.

The key feature in our simulations is that we have improved the EPP forcing in WACCM by introducing
30–1,000 keV radiation belt electron precipitation using the APEEP model of van de Kamp et al. (2016). Note
that van de Kamp et al. (2016) presents two versions of the MEE precipitation model depending on the geo-
magnetic activity index used to determine the MEE variation. Here we utilize the version driven by the Ap
index, from now on referred to as the APEEP model for “Ap-driven energetic electron precipitation.” In the
30–1,000 keV energy range, electrons provide a major ionization source at 60–90 km altitude, directly affect-
ing mesospheric chemistry. APEEP is a proxy model, driven solely by the observed geomagnetic Ap index. In
the model, Ap defines the level of magnetospheric disturbance and the location of the plasmapause, both of
which are needed to calculate precipitating electron fluxes in 16 geomagnetic latitude bins between 45∘ and
72∘ for each hemisphere. The daily zonal mean fluxes of precipitating electrons from the APEEP model were
used to calculate atmospheric MEE-driven ionization rates (see van de Kamp et al., 2016 for details) which
were then included in WACCM. The long-term ionization data sets from the APEEP model are available back to
1850 as an official part of the solar forcing recommendation for the CMIP6 simulations (Matthes et al., 2017).
The same ionization data set as described by Matthes et al. (2017) is used here.

Figure 1 (top) shows the time series of monthly mean APEEP ionization in the NH at about 77 km altitude
(1.7898 × 10−2 hPa). This corresponds to the altitude where HOx production in the WACCM simulations max-
imizes when APEEP is included. Overall, the APEEP ionization exhibits a considerable variability during all
five solar cycles (SC19–SC23) with the strongest and most frequent ionization increases occurring during the
declining phase of the solar cycle, in accordance with peaks in geomagnetic activity levels (not shown). In
the APEEP model the electron flux characteristics are identical in the NH and SH, so that the ionization rates
only have differences arising from different atmospheric conditions. The largest observed NH/SH differences
are related to the longitudinal distribution of fluxes (Andersson, Verronen, Rodger, Clilverd, & Wang, 2014),
due to variations in the strength in the geomagnetic field. Those longitudinal variations are not considered
when the zonal mean APEEP model is used. For the MEE energy range, these differences primarily arise dur-
ing quiet geomagnetic conditions, where weak diffusive scattering processes dominate, but the magnitude
of electron precipitation is very low (e.g., Rodger et al., 2013, Figure 4, upper panels). During disturbed con-
ditions, when the magnitudes are 1–2 orders higher, strong diffusion dominates (e.g., Horne et al., 2009) and
no significant differences are expected with longitude or hemisphere (e.g., Rodger et al., 2013, Figure 4, lower
panels). As such we expect any error in the modeling caused by using the same fluxes for NH and SH to be
small compared to the overall uncertainties in the APEEP flux model.

ANDERSSON ET AL. OZONE AND MEDIUM-ENERGY ELECTRONS 609



Journal of Geophysical Research: Atmospheres 10.1002/2017JD027605
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Figure 1. Monthly mean ionization rates at 77 km altitude and L shell range 3.25–10 (magnetic latitude 55–72∘) from
the APEEP model. The black line is the annual mean sunspot number (values given on y axis) indicating the progression
of the 11 year solar cycle. (a) Red and blue bars indicate years of high MEE (Case 2) and low MEE (Case 3) as in Table 1,
respectively. (b) Red and blue bars indicate high- and low-MEE winters in the Northern Hemisphere (see Table 2),
respectively. (c) Same as Figure 2b but for the Southern Hemisphere (see Table 2).

From now on the WACCM simulations with the APEEP ionization will be referred to as “MEE_CMIP5” to high-
light the addition of MEE forcing to simulations which are otherwise identical to the CMIP5 simulations. We
first contrast the MEE_CMIP5 with the original CMIP5 simulations (from now on called “REF_CMIP5”) and cal-
culate the difference in HOx , NOx , and O3 concentrations. The purpose of this comparison is to get an overall
picture of the impact that including the APEEP ionization has. We will focus this first part of the analysis on
the SH, with the more detailed analysis for both hemispheres in the second part. A monthly mean analysis is
made for three selected sets of years: Case 1 includes all years (147 altogether from all three 49 year ensem-
ble members), Case 2 includes only the years with high-APEEP ionization (36 years in total), Case 3 includes
only the years with low-APEEP ionization (33 years in total). The selections are based on annual mean APEEP
ionization as shown in Table 1. In Figure 1 (top), red and blue indicate Cases 2 and 3, respectively. The years
are also listed in Table 1.

In the second part of the analysis we focus on the decadal variability due to EPP from SPE, AE, and MEE during
winter (NH: December-January-February/DJF. SH: June-July-August/JJA)—this is when the EPP-driven in situ
effects are expected to be the most pronounced. We contrast winters of high- and low-EPP forcing in the
MEE_CMIP5 and REF_CMIP5 ensembles separately. The analysis is made for two selected sets of years: (1) high
wintertime (DJF/NH and JJA/SH) APEEP ionization at 77 km altitude (51 years in the NH, 48 in the SH), and
(2) low wintertime APEEP ionization at 77 km altitude (51 years in the NH, 45 in the SH), based on 3 month
averages of APEEP ionization. In Figure 1b (NH) and Figure 1c (SH), colors indicate the winter months of high-
(red) and low- (blue) APEEP ionization levels. The corresponding years are also listed in Table 2.

The above selections were made with the aim to simultaneously (a) contrast the extremes of the high- and
low-APEEP ionization periods in order to identify potential responses and (b) keep the number of years in the
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Table 1
Selected Sets of Years for the Analysis of the Impact Due To the APEEP Ionization

Ionization rate

selection criteria

Set (ion pairs cm−3 s−1 @77 km) Years # years

Case 1 – All years: 1957–2005 147

Case 2 Annual mean > 75 1957–1960, 1974, 1982–1984, 1989, 1991, 1994, 2003 36

Case 3 Annual mean < 40 1964–1966, 1969–1971, 1980, 1987, 1996–1998 33

Note. The selection criteria for Cases 2 and 3 are based on the annual mean ionization rate at ≈77 km altitude (1.7898 ×
10−2 hPa). This produces two groups of years that are roughly the same size but have a clear separation in average
ionization rate levels.

sets as large as possible to allow for robust statistical conclusions. Later, in section 3, we will discuss how these
selections affect our results. Note that although our selections are based on the APEEP ionization levels, using
the geomagnetic Ap index (which drives both APEEP and AE in WACCM) instead would lead to very similar
year groups. As an indicator of statistical robustness, we have included the 90% and 95% confidence levels in
the figures. These were calculated using Student’s t test. However, as pointed out, for example, by Ambaum
(2010), this is not a quantitative test of significance of our results: a low confidence level does not necessarily
imply that the results have no physical meaning.

3. Results
3.1. MEE Direct Effects in the Mesosphere
The monthly mean impact of the APEEP ionization on SH polar mesospheric HOx (OH + HO2), NOx (NO + NO2),
and O3 is shown in Figure 2 (VMR, volume mixing ratio) and Figure 3 (corresponding percent changes). In
Figure 3, the relative difference is expressed in percents of the REF_CMIP5 VMR. Both figures show results that
were averaged zonally and over the magnetic latitudes 60–90∘S. The results are shown as functions of time
(month) and altitude.

For each species, the month-altitude impact patterns are similar for the three sets of years, while the mag-
nitude of the response and the extent of the 90% and 95% confidence regions clearly depend on the level
of APEEP ionization and the number of years included in the sets. As expected, these confidence regions are
most extended for Case 1, which includes the largest number of years. For all the species, the magnitude of
the response is largest for the high-APEEP ionization years (Case 2) and smallest for the low-APEEP ioniza-
tion years (Case 3), as expected. In Case 3, there is a clearly different NOx response above 80 km during the

Table 2
Selected Sets of High- and Low-EPP Years for the Analysis of EPP-Driven Variability in Mesosphere and Stratosphere

Ionization rate

selection criteria

Set (ion pairs cm−3 s−1 @77 km) Years # years

High NH DJF > 55 1957–1960, 1972, 1974, 1981–1982, 1984–1985, 51

1988–1989, 1991–1993, 2003, 2004

High SH JJA > 50 1957–1961, 1974, 1978, 1981–1984, 48

1989–1991, 2000, 2003

Low NH DJF < 35 1961, 1964–1965, 1968–1971, 1976, 51

1979, 1986, 1990, 1995–1998, 2000–2001

Low SH JJA < 30 1964–1967, 1969, 1971, 1976, 1986–1988, 45

1995–1997, 2001–2002

Note. The selection limits are set at the median of the APEEP ionization at ≈77 km altitude (1.7898 × 10−2 hPa) over
winter season ±10 ion pairs/cm3/s, separately for the two hemispheres. For the NH, the years listed correspond to the
year of the December, for example, DJF 1974 = December 1974 to February 1975. The number of years is the total from
all ensemble members, that is, 3 times the number of years listed.
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Figure 2. Monthly mean polar SH (60–90∘S) (top row) HOx (ppbv), (middle row) NOx (ppbv), and (bottom row) O3 (ppmv) composite difference “MEE_CMIP5 −
REF_CMIP5.” The data are from all ensemble members for (left column) Case 1 (all years), (middle column) Case 2 (High-APEEP ionization), and (right column)
Case 3 (Low-APEEP ionization). The gray and white contours represent the 90% and 95% confidence levels, respectively. Note that winter months are in the
middle of the x axis.

summer months (Figure 2, middle right). However, this response is in the region of lesser statistical robustness
and thus could be caused by background variability.

For the high-APEEP ionization years (Case 2), HOx enhancements of up to 0.6 ppbv (increase of 20% from
REF_CMIP5) are seen during May–July at altitudes between 65 and 85 km. When considering Case 1 (all years)
and Case 3 (low-APEEP ionization years), the VMR response is smaller than for Case 2, but the magnitude of
the changes produced still exceeds 10%. Outside of these months, the HOx increases between 60 and 90 km,
where the largest concentrations of HOx are observed, in general, are very small. At altitudes <60 km and
>90 km, where the HOx background is very small, MEE results in a small reduction. Note that above 90 km
there would be an HOx increase, rather than decrease, if we also included atomic hydrogen in HOx (not shown).
Thus, the decrease seen in our plots at these altitudes indicates a change in HOx partitioning toward H, caused
by the extra production of atomic oxygen by MEE and reactions such as O + OH → O2 + H.
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Figure 3. Same as Figure 2 but relative to the REF_CMIP5 results (percent change).

For NOx , the APEEP-driven VMR increase peaks at 80–100 km, where it is seen throughout all seasons. This
is consistent with the APEEP ionization typically peaking around 90 km (van de Kamp et al., 2016). For the
years of high-APEEP ionization (Case 2), the VMR response reaches 200 ppbv in June–July and is smallest in
December–January (20–50 ppbv). At lower altitudes, there is a clear seasonal cycle with a 20–30% increase
down to stratopause level focused on winter months when NOx is descending inside the polar vortex. Above
100 km, NOx decreases but relatively this effect is very small and not statistically significant. These effects are
similar for the other sets of years, albeit smaller in magnitude especially for low-APEEP ionization (Case 3).

As seen in Figure 3, the NOx percentage response patterns are quite different from those of VMR shown in
Figure 2. The relative increase is largest during the summer due to the lower natural NOx background values,
exceeding 200% for Case 2. During midwinter, when NOx is already enhanced due to AE and descent, the
APEEP ionization leads to an increase of over 20% in the average mesospheric NOx .

For O3, the VMR response pattern below 85 km is similar to that of HOx inverted (so that high HOx corre-
lates with low O3) but shifted to lower altitudes and covering a wider range of altitudes. From March to
September, ozone decreases at 60–80 km by up to 0.2–0.3 ppmv depending on the case, with strongest and
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Figure 4. Monthly mean (top row) NOx and (bottom row) O3 response to the ionization from the APEEP model, calculated as percent of the composite
difference “MEE_CMIP5 − REF_CMIP5.” The data are from the SH, averaged over latitudinal range 60–90∘S and over all ensemble members for (left column)
Case 1 (all years), (middle column) Case 2 (high-APEEP ionization), and (right column) Case 3 (low-APEEP ionization). The gray and white contours represent the
90% and 95% confidence levels, respectively.

most extended response seen for years of high-APEEP ionization (Case 2). Around its secondary maximum
(at 90–100 km), ozone has a response which during spring and autumn months reaches magnitudes similar
to those seen at lower altitudes. However, in the context of total Ox (O + O3), the magnitude of the effect is
small because at these altitudes atomic oxygen concentration is several orders of magnitude larger than that
of ozone. In fact, if we plotted Ox instead of ozone, we would see an increase rather than a decrease at the
secondary maximum. This is caused by extra atomic oxygen production by MEE. Thus, the decrease seen in
ozone indicates a change in the Ox partitioning toward O. In percentage, the mesospheric O3 response is seen
during all but the midsummer months and it is strongest in spring and autumn periods, varying between 10%
and 30% in February–October in Case 2. The equinox pattern does not coincide with the HOx increase, indi-
cating that the NOx enhancements could have an additional effect on HOx partitioning and ozone depletion
(Verronen & Lehmann, 2015) and could modulate the formation of the tertiary ozone maximum (Sofieva et al.,
2009). On the other hand, during midwinter the polar night covers a larger area over the polar cap. Thus, the
effect of ozone-depleting catalytic cycles, which depend on solar illumination, should be diminished leading
to a smaller MEE response. The percentage difference is also affected by the background amount of ozone,
which is generally higher during winter and results in a smaller relative response.

Although not shown, the magnitude of the NH response of mesospheric HOx and ozone is very similar to
that presented for the SH. For NOx , the maximum wintertime enhancement is somewhat smaller and less
pronounced than in the SH, which corresponds to larger dynamical variability in the NH, including the more
frequent occurrence of sudden stratospheric warming events (Päivärinta et al., 2013). For all the species, the
month-altitude response patterns in the NH are very similar to those in the SH, except that the maximum
percentage change in ozone peaks in the midwinter instead of the autumn months, possibly an indication of
the earlier formation of the polar vortex in the SH.

3.2. MEE Indirect Effects in the Stratosphere
Figure 4 shows the monthly mean APEEP impact on NOx and O3 in the SH polar stratosphere and lower meso-
sphere (15–65 km) as percent change (like Figure 3, but lower altitude range). The electron energy range
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Figure 5. SH winter (June–August) zonal mean O3 response to the ionization from the APEEP model, calculated as
difference between the MEE_CMIP5 and REF_CMIP5 simulations. The data were averaged over the latitudinal range
60–90∘S and over all ensemble members. Horizontal bars indicate the standard error of the mean (SEM) of the
difference (see text for details).

used in the APEEP ionization model provides direct forcing only at altitudes above 60 km, so the stratospheric
response is entirely due to (a) transport of APEEP-NOx from above, (b) chemical-dynamical coupling, or (c)
combination of (a) and (b). A tongue-like structure of excess APEEP-NOx descends from the lower mesosphere
starting in autumn, causing an ozone decrease in the stratosphere. The magnitude of the response is largest
for the years of high-APEEP ionization (Case 2) and smallest for the low-APEEP years (Case 3). Because there is
no direct MEE effect in the stratosphere, the early winter increase around 30 km must be related to descend-
ing NOx , some of which remains over the summer months. Note that a similar early winter EPP effect also
appears to be present in NOx experimental observations (Funke, López-Puertas, Stiller, et al., 2014, Figure 9).

The descending APEEP-NOx reaches altitudes as low as 30 km by November with the maximum increase being
10–20% depending on the case. Corresponding ozone decreases of 5–8% are seen at altitudes between 30
and 50 km in all cases. For Cases 1 and 2, part of the stratospheric ozone response (a decrease) is within the
90–95% significance region. In Case 3, none of the ozone responses below 50 km is statistically robust, which
may indicate a larger variation in percentages for Case 3, probably due to the lower background ionization
in this case. Nevertheless, stratospheric NOx and ozone are affected in years of low-APEEP ionization even
though the direct APEEP forcing is restricted to altitudes above 60 km. Above 55 km, the direct effect of the
ozone response (see previous section) is influenced by both HOx and NOx increases.

To consider the robustness of the ozone response in the middle atmosphere, Figure 5 shows a statistical anal-
ysis of the wintertime APEEP impact on ozone, both in VMR and percentages, as a function of altitude. The
responses were averaged over SH polar latitudes of 60–90∘, and over the months of June to August in the
ensembles. The month selection covers the period of strongest, most robust ozone response in the strato-
sphere (as seen in Figure 4). The graphs also include the standard error of the mean (SEM) of the difference,
calculated as

SEM =

√
STD2

1 + STD2
2

n
(1)

where STD1 and STD2 are yearly standard deviations of the MEE_CMIP5 and REF_CMIP5 simulations, respec-
tively, and n is the number of years.

At mesospheric altitudes, ozone loss is connected directly to APEEP ionization and the resulting HOx increase,
and this response is generally very robust. This is demonstrated through the SEM being clearly smaller than the
magnitude of the response. In the stratosphere, the decrease in ozone is caused by the descent of APEEP-NOx

and is strongly affected by dynamical variability. At 30–50 km, the SEM becomes comparable to the magni-
tude of the response. The SEM increases with decreasing number of included years, thus the ozone response
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Figure 6. NH winter (December-January-February) “High EPP − Low EPP” composite (a, b) HOx and (c, d) O3 percent
differences for the MEE_CMIP5 simulation (Figures 6a and 6c) and REF_CMIP5 simulation (Figures 6b and 6d) in the
upper mesosphere at 70–80 km altitude. The gray and white contours represent the 90% and 95% confidence levels,
respectively. For list of years in each composite group, see Table 2.

is clearly most robust for Case 1, which includes all years. For years of high- and low-APEEP ionization, the
response exceeds the SEM above 40 km and at 30–40 km, respectively.

3.3. Decadal Variability Due To EPP in Mesosphere and Stratosphere
In this section, we will investigate the variability of HOx , NOx , and ozone by analyzing the differences between
the responses for high- and low-EPP ionization winters as listed in Table 2. Figures 6 and 7 present the
wintertime HOx and ozone variability at altitudes between 70 and 80 km for the NH and the SH, respectively.

Results from MEE_CMIP5 (Figures 6a, 7a and 6c, 7c), show clear differences between high-EPP and low-EPP
winters in both hemispheres. At geomagnetic latitudes directly affected by radiation belt electrons (55–72∘),
there is up to 15% more HOx in high-EPP winters (Figures 6a and 7a). The zonal asymmetry seen in the HOx

distribution is caused by different illumination conditions over the affected geomagnetic latitudes; that is,
at lower geographic latitudes the higher level of solar-driven water vapor photodissociation leads to higher
amounts of background HOx and smaller EPP response in relative terms. The strongest ozone variation
coincides with the largest HOx variation, with ozone decreases of about 8% in the NH and 10% in the SH.

On the other hand, the results from REF_CMIP5 (Figures 6b, 7b and Figures 6d, 7d), which do not include
direct APEEP ionization in the mesosphere, are clearly different. Here the NH HOx and ozone generally lack a
clear correlation pattern. In the SH in the REF_CMIP5, around 10% increase in HOx is seen at high geomag-
netic latitudes, higher than the outer radiation belt latitudes (Figure 7b), during high-EPP winters. This is likely
caused by a combination of production due to SPEs and changes in HOx partitioning due to increased NOx
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Figure 7. As in Figure 6 but for SH winter (June-July-August).

(Verronen & Lehmann, 2015). In this case the corresponding ozone decrease is less than 5% and is outside of
the 90% confidence limit (Figure 7d).

Figures 8 and 9 present the NOx and ozone variability (%) in the stratosphere to lower mesosphere at high
polar latitudes in the NH (≥70∘) and SH (≥60∘), respectively. In the NH, a smaller latitude range was used
because the area of the polar vortex (which we wanted to cover in wintertime) is typically smaller there than
in the SH. Note, however, that the results for 70–90∘N (shown in Figure 8) are very similar to those for 60–90∘N
(not shown). Both Figures 8 and 9 display the full 12 month progression, with winter months placed in the
middle of the x axis to ease comparison.

In the NH (Figure 8) the dynamical variability is much stronger than in the SH and includes sudden strato-
spheric warmings (Päivärinta et al., 2013). As a result the response to MEE is less pronounced than that in
the SH (Figure 9) (Funke, López-Puertas, Stiller, et al., 2014; Funke, López-Puertas, Holt, et al., 2014). Although
individual winters may show strong NOx descent, the signal becomes less clear when averaged over decadal
time scales, even when APEEP ionization is included. As a result of the dominating dynamical variability in the
NH, the timing of the descent can also vary from year to year much more than in the SH, which easily leads
to smearing of the signal when averaging. We note that the early winter NOx enhancement signal in both
experiments is due to the so-called Halloween SPEs in 2003.

In the SH (Figure 9), the NOx difference between high- and low-EPP winters is clear in both MEE_CMIP5 and
REF_CMIP5 simulations. The difference shows a pattern of descending NOx from early winter (April) to early
summer (December) with and without the APEEP ionization. The inclusion of the APEEP ionization signifi-
cantly adds to this NOx variability—the highest variability goes from 50% to 70%. For the MEE_CMIP5 results
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Figure 8. Monthly mean NH polar (70∘ –90∘N) EPP-driven (a, b) NOx and (c, d) ozone variability: “High EPP − Low EPP”
(shown as percent difference). MEE_CMIP5 simulation (Figures 8a and 8c).REF_CMIP5 simulation (Figures 8b and 8d). The
gray and white contours represent the 90% and 95% confidence levels, respectively. For list of years in each composite
group, see Table 2. Note that winter months are in the middle of the x axis to ease comparison with Figure 9.

in Figure 9a, the NOx increase during high-EPP forcing at 30–50 km is between 40 and 70%. The corre-
sponding REF_CMIP5 signature (Figure 9b), which is due to the descent of AE-produced NOx , is between 30%
and 50%.

Stratospheric ozone loss coincides with the NOx descent in both Figures 9c and 9d. During high EPP and from
early winter (April) to early summer (December), there is up to 7% and 2% less ozone at 25–50 km with and
without APEEP, respectively. Although the response patterns are similar, in the MEE_CMIP5 results the effect is
much stronger and statistically significant. As a clear pattern in both simulations, the ozone depletion persists
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Figure 9. As in Figure 8 but for the SH (60∘ –90∘S). For the list of years in each composite group, see Table 2.
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throughout the summer, descending in altitude and decreasing in magnitude with time, with final remnants
seen until early next winter at about 25 km. The fact that the late summer signal seems to be more robust in
the REF_CMIP5 simulation could be simply caused by internal model variability. The increase of ozone peaking
at about 30 km in August–October, is caused by the enhanced NOx converting active chlorine and bromine
to their reservoir species, which leads to less ozone loss by catalytic reactions (Jackman et al., 2009).

When considering the difference between high- and low-EPP years in the MEE_CMIP5 simulation, in the meso-
sphere the HOx and ozone signal is strong and only weakly dependent on the number of years included in
the analysis (not shown). By using stricter selection criteria, leading to a smaller number of winters with larger
differences in EPP forcing, the HOx and ozone response gets consistently stronger for the latitudes affected
by outer radiation belt electrons. However, this is not the case when considering the stratospheric difference.
The selection criteria are much more a critical issue, for example, as reducing the number of years results in
an ozone response, which is not necessarily stronger but quickly becomes statistically less robust (i.e., does
not reach the 95% confidence level). For example, this happens in the SH when the total number of years is
reduced from 50 to about 30. This indicates that a time series of considerable length, extending over several
decades, is needed to robustly identify the signal.

In our analysis, we are implicitly assuming the 147 individual years as samples of the same population. If the
response is not invariant over the time series, it would add to the variance and lead to an underestimate of the
statistical significance of the response to MEE and EPP in general. And if there are any large trends, we could be
overestimating the background variability, which would in fact make the response harder to detect. The fact
that we still see a statistical significant response implies that the signal is probably stronger and more robust
rather than the other way around. It also shows that the signal could be detectable in a real, observational
time series rather than in an idealized constant forcing scenario, for example.

4. Discussion

Our results can be compared to previous studies although it should be carefully noted that these typically con-
sider only a portion of our 147 year (3 × 49 year ensemble) time series due to, for example, limited availability
of experimental data and/or forcing data for atmospheric simulations. Overall, there is a qualitative agree-
ment with previous simulation studies and satellite-based observations which suggested a clear EPP-driven
impact and an important role for MEE in the polar middle atmosphere.

Our results on the APEEP ionization impact on mesospheric HOx and O3 are in very good agreement with
satellite observations. The magnitude of our simulated HOx responses (0.3–0.6 ppmv) as well as their spatial
distributions are similar to the results based on satellite data analysis (Andersson, Verronen, Rodger, Clilverd,
& Wang, 2014; Zawedde et al., 2016). Also, the magnitude of our simulated mesospheric ozone variability
over decadal time scales agrees well with observations (Andersson, Verronen, Rodger, Clilverd, & Seppälä,
2014). This seems to indicate that the level of the APEEP forcing, which directly affects the mesosphere in our
simulations, is reasonable—at least in the middle and upper mesosphere where the APEEP ionization peaks.

In the SH upper stratosphere we found an EPP-driven decadal variability of up to 70% in NOx and up to 7%
in ozone. The magnitude of the ozone response is within but at lower end of the 5–15% range of response
obtained from satellite data analysis (Damiani et al., 2016; Fytterer et al., 2015) and the 3–20% range from
previous simulations (Baumgaertner et al., 2011; Rozanov et al., 2012; Semeniuk et al., 2011). Compared to
previous work, our study uses fully time-dependent EPP forcing and provides the longest analyzed time
series so far, extending almost five solar cycles, giving us better statistical robustness and allowing for more
general conclusions.

The MEE ionization, which directly affects the polar mesosphere, has been a major source of uncertainty in the
EPP forcing used in earlier simulations. As our results now indicate, simulations using the APEEP model gen-
erally agree better with the observed ozone response, in both the mesosphere and the stratosphere. As the
comparison to the earlier CMIP5 simulations (without MEE) shows, the decadal polar ozone response depends
very much on MEE, and any analysis based on those CMIP5 simulations will significantly underestimate the
EPP signal. In the forthcoming CMIP6 simulations, it is likely that the situation will drastically improve as the
APEEP model is part of the official solar forcing recommendation.

The amount of the descending EPP-NOx is clearly important for the magnitude of the stratospheric ozone
response. In WACCM, underestimation of polar mesospheric NOx has been reported, likely caused by some
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combination of missing in situ production by EPP and also weak transport of NOx from the lower thermo-
sphere (Randall et al., 2015). Further model development is needed to better simulate dynamically perturbed
winters and improve the mesosphere-to-stratosphere descent in high-top models such as WACCM (Funke
et al., 2017). MEE is included in our simulations through the APEEP model. This work is therefore a signifi-
cant contribution toward understanding the importance of the missing MEE. It is likely that the production
and transport of lower thermospheric NOx is the primary remaining issue leading to any NOx underestima-
tion. It should be noted that in the WACCM simulations of Randall et al. (2015) and Funke et al. (2017) the
model dynamics were nudged to the MERRA reanalysis data, and these studies considered just two individ-
ual, highly disturbed NH winters. Therefore, as we are using WACCM with free-running dynamics and consider
a time series of 147 years for both hemispheres, those previously reported NOx issues should not be criti-
cally affecting our results. Additional adjustment of EPP-NOx may also be achieved by including the lower
ionospheric (D region) chemistry which is shown to increase the production in the mesosphere (Andersson
et al., 2016). One might also consider the inclusion of relativistic electron precipitation (>1 MeV), which
would be expected to directly impact stratopause altitudes. Finally, enhanced eddy diffusion in the meso-
sphere to lower-thermosphere region would increase the transport of auroral NOx into the mesosphere
and below, and seems to yield better agreement with observations (Meraner & Schmidt, 2016; Matthes
et al., 2017, Figure 13).

5. Conclusions

Here we have introduced long-term MEE forcing to the Whole Atmosphere Community Climate Model
(CESM/WACCM). We simulated EPP-driven variability, including the new MEE forcing, in polar ozone over a
period of 147 years (three-member ensemble of 49 year simulations). The results were compared with those
from the CMIP5 climate simulations in order to study the contribution of the additional MEE forcing. The main
results can be summarized as follows.

1. EPP-driven variability in mesospheric HOx and ozone is clear in both hemispheres: the ozone difference
between high- and low-EPP winters varies from 8% to 10% at 70–80 km (less ozone when EPP is high).

2. Stratospheric ozone response is distinct in the SH: EPP-driven ozone variability of 2–7% is seen down to
about 25–35 km.

3. The contribution of MEE is very important to the total EPP-driven response. In the mesosphere, there is
either a small or no clear response in HOx and ozone without the inclusion of direct ionization by MEE. In
the stratosphere, inclusion of MEE enhances the response in NOx and ozone by a factor of about 2.

4. Our study indicates that in order to assess the indirect EPP effect in the stratosphere in a robust way,
multidecadal simulations are needed to overcome the levels of dynamical variability in the model.
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