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ABSTRACT

Borrelia miyamotoi is a spirochete bacterium related to Borrelia burgdorferi sensu lato, the cause of
Lyme borreliosis, and vectored by ticks. In 2014, B. miyamotoi was identified in three questing Ixodes
ricinus collected in the UK. We sought to confirm the presence of B. miyamotoi in the UK. Ticks were
collected from four locations not previously investigated for B. miyamotoi or B. burgdorferi s.l and of
which two are considered as Lyme borreliosis “hotspots” based on hospital records of the disease. We
independently confirm that B. miyamotoi is present in the UK and support the view that B. miyamotoi is
likely to have a broad geographic distribution, at low levels. Our study also adds to the existing data on
the distribution of B. burgdorferi s.I in the UK and demonstrates that although the two “hotspots” had
relatively high tick densities, they did not have the highest proportion of infected ticks.

Introduction

Ticks transmit various pathogens that cause zoonoses, one of which is Lyme borreliosis, caused
by the spirochete Borrelia burgdorferi sensu lato. In Europe, the hard tick, Ixodes ricinus is the most
common vector of this tick-borne bacterium. The B. burgdorferi s.I. complex comprises a number of
genospecies, the most important ones in the UK being B. burgdorferi sensu stricto (B. burgdorferi s.s.),
B. garinii and B. afzelii. In humans, these commonly cause erythema migrans, fever, arthralgia, myalgia
and fatigue (Dubrey et al., 2014). The number of recorded cases of Lyme borreliosis in England and
Wales has been steadily rising from 268 in 2001 to 959 in 2011, an increase of 258% (Public Health
England, 2013). There are several possible reasons which have been put forward to explain this increase
such as the increased sensitivity of diagnostic tests, the increased availability of diagnostic services and
greater awareness of Lyme borreliosis symptoms (Public Health England, 2013). It has also been
suggested that tick populations have increased as a result of increases in deer populations (Scharlemann



et al., 2008), however deer can clear B. burgdorferi s.I. from ticks and therefore this may not be
responsible for the increase in Lyme borreliosis (Roome et al., 2017). Up to 2000 cases annually are
thought to go undiagnosed (British Infection Association, 2011).

Several regions in the UK have been classed as tick and Lyme borreliosis “hotspots” based on areas
understood to have a high tick density and where many cases of the disease have been reported. These
include Exmoor, the Lake District, Thetford, New Forest, Salisbury Plain, the South Downs, West
Sussex, Surrey, West Berkshire, Wiltshire, Yorkshire moors, Scottish Highlands, Richmond Park
(London) and Bushy Park (London) (Dubrey et al., 2014). Although the tick infection prevalence in
questing ticks in some of these hotspots has been examined (Davidson et al., 1999, Kurtenbach et al.,
2001, Vollmer et al., 2011, James et al., 2013, Hansford et al., 2015), others have not been investigated.
Data on questing tick density and tick infection prevalence are necessary to identify which areas pose
most risk to individuals, rather than identifying these areas based on the number of Lyme borreliosis
cases, which is dependent on visitor numbers.

A species related to B. burgdorferi s.I., known as Borrelia miyamotoi, has been reported to cause illness
similar to Lyme borreliosis (Platonov et al., 2011). B. miyamotoi was first recorded in Japanese Ixodes
ticks in 1995 (Fukunaga et al., 1995) and has since been found in ticks collected in Russia (Platonov et
al., 2011), the USA (Ullmann et al., 2005, Hamer et al., 2014), Canada (Ogden et al., 2011, Dibernardo et
al., 2014) and parts of Europe (Wilhelmsson et al., 2010). In immunocompetent individuals, B. miyamotoi
causes influenza-like symptoms including relapsing fever, headache, nausea, fatigue, myalgia and
arthralgia (Branda and Rosenberg, 2013). Although B. miyamotoi infection is frequently referred to as a
relapsing fever, it has been argued that it should be termed “Borrelia miyamotoi disease” since the
symptoms are less severe than a tick-borne relapsing fever (Telford III et al., 2015). In
immunocompromised individuals, more severe symptoms such as meningoencephalitis have been noted
(Gugliotta et al., 2013, Hovius et al., 2013). In 2014, B. miyamotoi was recorded in three nymphal I.
ricinus ticks collected in the UK (Hansford et al., 2015) but this observation has yet to be independently
confirmed. Human infections caused by B. miyamotoi in the UK have not been reported or identified so
understanding the geographical prevalence of this organism in UK ticks can assist in assessing risk and
likelihood of infection.

Besides investigating if B. miyamotoi is present in questing ticks in the UK, the aims of this study were to
compare the tick density and prevalence of tick infection with B. burgdorferi s.l. and B. miyamotoi
between two tick and Lyme borreliosis “hotspots” (Thetford Forest and West Dean), a location
understood to have a high tick density (Cirencester Park), and a location where I. ricinus have not
established despite a favourable habitat (Wytham Woods). These locations were chosen because they
have not been investigated previously and they are separated spatially by at least 45km, covering
different regions of England. Questing ticks were collected by blanket dragging at each of the four
locations during spring 2014 and screened for Borrelia by multiplex quantitative PCR. Borrelia
genospecies of positive samples were identified by DNA sequencing.

Materials & Methods

Tick Collection

Ticks were collected from 4 locations in the United Kingdom (Fig. 1): Cirencester Park, Gloucestershire
(51.713163,-2.060698) on 18" March 2014; West Dean, South Downs National Park, West Sussex
(50.939146,-0.786328) on 26™ March 2014; Kings Forest, Thetford Forest, Suffolk
(52.351393,0.676978) on 9™ April 2014, and Wytham Woods, Oxfordshire (51.774881,-1.331728) on
14™ April 2014. Weather conditions were dry with temperatures between 8-18°C. At each location, 2
woodland habitat sites and 2 ecotone habitat sites adjacent to woodland were surveyed using the blanket
dragging method (Macleod, 1932). For Thetford and West Dean, one woodland site was deciduous and
the other evergreen whereas for Cirencester and Wytham Woods both woodland sites were deciduous.



The blanket was 1.5 metres wide and 1.85 metres long (2.775m?). It was dragged 6m and then checked
for ticks. Any ticks found were placed inside a 1.5ml Eppendorf tube. This was repeated 10 times at each
site resulting in 60m total distance dragged at each site. However, for Cirencester, 5 sites were sampled
of which 3 were ecotone and 2 were woodland. The first site (A) was dragged in 20 x 6m repeats
resulting in 120m of habitat sampled. For Site B there were 5 x 6m repeats. Ticks were stored at -80°C
until DNA extraction.

DNA extraction

DNA for PCR analysis was extracted from the ticks, using an ammonium hydroxide lysis method,
adapted from Guy and Farquhar, 1991. The ticks were placed individually into the wells of a 96 well
plate. 100 pl of 1M ammonium hydroxide (Sigma Aldrich) was pipetted into each well. Negative
extraction controls were incorporated into the extraction process. The plate was sealed and placed in a
PCR thermal cycler at 99°C for 20 minutes to lyse the samples. After lysis, the plate was briefly
centrifuged at 1000rpm and the plate seal was removed. The plate was then incubated at 99°C for a
further 20 minutes to evaporate the ammonia. Approximately 50ul of solution remained. The samples
were stored at -20°C until required.

Detection of Borrelia burgdorferi sensu lato and Borrelia miyamotoi

Multiplex qPCR was used to determine which tick extracts contained B. burgdorferi s.l. and B. miyamotoi
according to the method by Hansford et al., 2015, refer to this paper for primer and probe sequences.
Each well of the PCR plate contained 20 pl comprising 400 nM B-OspA_modF primer, 400 nM B-
OspA_borAS primer, 100 nM B-OspA_mod-probe, 200 nM B-FlaB-F primer, 100 nM B-FlaB-Rc
primer, 100 nM B-FlaB-Rt primer, 200 nM B-FlaB-FAM probe, 200 nM FlabBm.motoiF primer, 200 nM
FlabB.m.motoiR primer, 200 nM FlabBm.motoiP primer, 10 pl 2x iQ multiplex Powermix (Bio-rad) and
5 ul sample. Molecular grade water was used as a negative control and B. burgdorferi s.s DNA as a
positive control. The PCR was performed using the Applied Biosystems 7500 Fast Real-time PCR
Machine. The program consisted of 5 minutes at 95°C followed by 45 cycles of 5 seconds at 94°C and 35
seconds at 60°C.

Differentiating between Borrelia species

Sequencing 5S-23S intergenic spacer

The sequence of the 5S-23S intergenic spacer for each B. burgdorferi s.I -positive sample was determined
for comparison with the results of the recA typing assay. Touch down PCR was first used to amplify the
intergenic region in the positive samples. The primers B5Sborseq and 23Sborseq are used as in the
method described by Heylen et al., 2013. Each reaction contained 5 pl 10x Platinum Taq buffer (without
MgCl,), 1 ul 10mM dNTPs, 3 ul 25mM MgCl,, 2 ul 10uM BS5Sborseq, 2 pul 10uM 23Sborseq, 0.2 pl
Platinum Taq (Invitrogen), 31.8 pl H>O and 5 pl sample. The procedure included H»>O as a negative
control and B. afzelii, B. garinii and B. burgdroferi s.s. DNA as positive controls. The PCR was
performed using an Applied Biosystems Veriti® Thermal Cycler. The PCR program consisted of a Taq
activation step at 94°C for 5 minutes followed by 94°C for 20 seconds (denaturation), 70°C for 30
seconds (annealing) and 72°C for 30 seconds (elongation) for 10 cycles, lowering by 1°C per cycle. The
program continued for 40 cycles at: 94°C for 20 seconds, 60°C for 30 seconds and 72°C for 30 seconds.
There was then a final extension step at 72°C for 7 minutes.

The products were then analysed by nucleic acid electrophoresis on a 2% TBE agarose gel. Products were
sequenced on a 3130xL Genetic Analyzer using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems). The computer program SeqTrace (Stucky, 2012) was used to create the consensus
sequences from the forward and reverse primer sequences.



Genospecies identification

The Borrelia genospecies to which the sequences belong were found by inputting the sequences into
NCBI’s BLAST program (Altschul et al., 1990) and locating the best match with the lowest E value
through multiple alignment against reference sequences.

Statistics

Tick densities and the percentage of ticks with B. burgdorferi s.l. across the locations were examined by
Two-way ANOVA using R Project (R Core Team, 2015). The chi-square test was used to compare the
proportion of ticks infected with B. burgdorferi s.l. and B. miyamotoi between life cycle stage, habitat and
location. The proportions of B. burgdorferi genospecies of infected ticks between locations were
compared using Fisher’s Exact Test. The significance level used was P<0.05. These statistical tests were
performed in JMP 11.1.1 (SAS Institute Inc.).

Results

Tick Collection

Ticks were found in all of the sites sampled. In total, 832 ticks were collected comprising 766 nymphs, 37
adult males and 29 adult females. Similar numbers of ticks were collected from each location over a
similar period of time. The exception was Wytham Woods where only 11 ticks were collected; however,
this was the first record of questing I. ricinus in Wytham Woods. Adult ticks were collected from all but
3 of the sites sampled across all locations. For comparison between sites, the data were converted to the
number of ticks per 100m? sampled (Table 1).

Mean nymph density differed significantly between locations (Two-way ANOVA, F3¢=5.209, P=0.0233)
and was significantly greater in ecotone habitats than woodland habitats (Two-way ANOVA, F9=5.183,
P=0.0488) (Fig. 2a.). The effect of habitat type on nymph density did not depend on the location (Two-
way ANOVA, F34=0.880, P=0.4873). Mean adult tick density also differed significantly between
locations (Two-way ANOVA, F34=17.687, P=0.0004) (Fig. 2b.). Thetford Forest had a significantly
higher mean adult tick density than West Dean, Cirencester and Wytham Woods (Tukey Kramer HSD
Test, P=0.0376, P=0.0045 and P=0.0003, respectively). Mean adult density was significantly greater in
ecotone habitats than woodland habitats (Two-way ANOVA, F;4=28.713, P=0.0005) (Fig. 2b.). The
effect of habitat type on tick density did not depend on the location (Two-way ANOVA, F34=0.182,
P=0.9061).

Detection of Borrelia burgdorferi sensu lato and Borrelia miyamotoi

Of the 832 ticks collected, 825 ticks were analysed (7 samples from West Dean were lost during
ammonium hydroxide extraction). Multiplex qPCRs were used to detect samples containing B.
burgdorferi s.I and/or B. miyamotoi (Table 2). In total, 26 ticks (25 of which were nymphs) were PCR
positive for B. burgdorferi s.I. (3.15%, 95% confidence interval (CI) 2.16-4.58). From Cirencester, 15
ticks (5.62%, 95% CI 3.43-9.06) were PCR positive for B. burgdorferi s.l. along with 5 ticks (1.93%,
95% CI 0.83-4.44) from West Dean and 6 ticks (2.08%, 95% CI 0.96-4.47) from Thetford. Only one
adult was positive for B. burgdorferi s.1. (1.52%, 95% CI 0.27-8.10). There was no significant difference
in the proportions of nymphs and adults with B. burgdorferi s.I. (Chi-Square, ¥*=0.6316, P=0.4268).

No ticks were found to contain B. burgdorferi s.l. in Wytham Woods. However, the sample sizes of each
site for Wytham Woods were relatively small and so the results may not be representative given that, if
the infection rates at the other locations were the same for Wytham, we could expect less than 1 infected
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tick of the total 11 ticks collected there. Excluding Wytham Woods, the mean percentage of ticks
harbouring B. burgdorferi s.1. across sites differed between Cirencester, West Dean and Thetford (Two-
way ANOVA, F,7=9.2086, P=0.0110), however habitat had no effect (Two-way ANOVA, F,7=2.4653,
P=0.1604). There was no interaction between location and habitat on the mean percentage of ticks with B.
burgdorferi s.l. (Two-way ANOVA, F,;=2.8579, P=0.1238). The mean percentage of ticks with B.
burgdorferi s.l. across sites was significantly greater in Cirencester than either Thetford Forest or West
Dean (Tukey-Kramer, P=0.0126 and P=0.0350). There was no correlation between tick density and the
proportion of ticks infected with B. burgdorferi s.l.. (Linear Regression, P=0.8277) and therefore
locations with a high tick density cannot be predicted to have a higher proportion of infected ticks.

There were 6 ticks (4 nymphs and 2 adults) PCR positive for B. miyamotoi (0.73%, 95% CI 0.33-1.58;
Table 2). A larger proportion of adults were infected with B. miyamotoi (3.03%) compared to nymphs
(0.53%) (Chi-Square, ¥*=5.2604, P=0.022). One tick from Cirencester was positive for both B.
burgdorferi s.I. and B. miyamotoi. The data indicates that there was no difference in the proportion of
ticks containing B. miyamotoi between the different locations or between ecotone and woodland habitat.
However, further studies using a larger sample size are required to confirm this observation.

Differentiating between Borrelia genospecies

Sequencing 5S-23S intergenic spacer

Of the 26 B. burgdorferi s.l. positive samples sequenced, 23 were successfully sequenced in the 5S-23S
intergenic spacer region. The B. burgdorferi s.s, B. garinii and B. afzelii positive controls were sequenced
successfully and no sequence was generated for the no template control. When the consensus sequences
generated from the forward and reverse primers by SeqTrace (Stucky, 2012) were analysed through
BLAST (Altschul et al., 1990), they were identified as 4 B. afzelii positives from Thetford Forest and also
identified that of the remaining sequences, 12 were B. garinii and 7 were B. valaisiana.

Genospecies Identification

There were 3 samples which were not successfully sequenced. Therefore, for the statistical analysis, these
samples were grouped as unconfirmed samples since the genospecies could not be identified (Table 2).
The proportions of the Borrelia burgdorferi s.l. genospecies significantly differed between infected ticks
of the different locations (Fisher’s Exact Test, P=0.0025) (Fig. 3). Thetford Forest was the only location
with ticks infected with B. afzelii. The overall percentage of ticks infected with Borrelia species in
Cirencester was more than double that of Thetford and West Dean. Cirencester had the largest proportion
of ticks infected with B. garinii, B. valaisiana and B. miyamotoi.

Discussion

There is comparatively little data on B. miyamotoi in the UK. In 2014, B. miyamotoi was identified in
ticks from the New Forest, Salisbury and Dartmoor and it was suggested that the species had a
widespread distribution (Hansford et al., 2015). However, B. miyamotoi was only detected in 3 nymphs
through multiplex qPCR (the amplified glpQ and p66 genes of one isolate were sequenced), each from 3
different locations, one of which was collected from 2009 and two from 2013 (Hansford et al., 2015).
Hence it was important to confirm the presence of B. miyamotoi. Our data substantiate the previous
findings that B. miyamotoi is present in I. ricinus in England as 6 ticks were PCR positive for B.
miyamotoi. We report B. miyamotoi from ticks collected in Cirencester and the South Downs, supporting
the observation of Hansford et al. (2015) that B. miyamotoi is widespread in Southern and South western



England but this study also extends that range to the east of England (Thetford Forest). As PCR as a
technique is prone to contamination it is noteworthy that the work was performed in a laboratory that had
not previously handled B. miyamotoi DNA providing further confidence in the results. Negative
extraction controls performed during processing also remained negative.

The percentage of ticks infected with B. miyamotoi (0.73%) was slightly greater than the infection
prevalence found by Hansford et al. (2015) (0.3%) but generally lower than that found in other European
countries. Studies have reported the average percentage of I. ricinus ticks infected with B. miyamotoi to
be 1.8% in Germany (Crowder et al., 2014, Eshoo et al., 2014), 3% in France (Cosson et al., 2014), 3.1%
in the Netherlands (Fonville et al., 2014), 1.26% in Norway (Kjelland et al., 2015), 0.9% in Estonia
(Geller et al., 2012) and 0.3-2% in Poland (Sytykiewicz et al., 2015, Kiewra et al., 2014). Previous
studies have documented a 10 fold lower proportion of ticks infected with B. miyamotoi compared to B.
burgdorferi s.I (Hansford et al., 2015, Barbour et al., 2009). Our study found a 4-fold difference between
the two. Therefore, the risk of human Borrelia miyamotoi infection is likely to be lower than the risk of
Borrelia burgdorferi s.l. infection in the UK. To date, there have been no recorded cases of B. miyamotoi
infection in the UK, although it remains to be determined if this is because clinical cases are either not
differentiated or not detected by existing diagnostic tests, or if there are no clinical infections associated
with exposure to infected ticks in the UK.

Tick density differed between the different locations in our study and therefore the risk of being bitten by
a tick is higher in some locations than others. Climatic factors such as temperature and relative humidity
are known to effect tick distribution. High humidity has been associated with higher tick densities
(Medlock et al., 2008). This is likely to be because I. ricinus require a relative ground humidity above
80% to avoid desiccation (Milne, 1950). However, higher humidity also enables ticks to quest for longer
(Piesman and Gern, 2004). Therefore, at low humidities, there may be fewer ticks questing which are
picked up by the blanket than are present in the habitat compared to areas of high humidity. Another
possibility is differences in the host species population between the locations. There is a correlation
between deer abundance and tick density (James et al., 2013, Ruiz-Fons and Gilbert, 2010). It is known
that Thetford Forest has a notably high population of approximately 14,000 Red, Roe and Muntjac deer
(Britten, 2009) which may explain why it had the highest tick density of the four locations.

Within each location, ticks were more prevalent in the ecotone between the woodland and the trail
compared to within the woodland, as is consistent with previous studies (Kantsg et al., 2010). The
woodland habitats sampled (with the exception of Thetford Forest Site B) had little ground vegetation,
comprising mosses, pine needles and dead leaves. The ground vegetation of ecotone habitats supports a
relatively high humidity and has a higher prevalence of small mammal hosts, providing a more suitable
habitat for I. ricinus (Lindstrom and Jaenson, 2003).

The proportions of ticks apparently infected with the different genospecies differed between locations.
Interestingly, B. afzelii was only found in Thetford Forest where it was more prevalent than both B.
garinii and B. valaisiana. This genospecies is common in Scotland but has also been found in ticks from
Southern, South-western, South-eastern and Northern England (Bettridge et al., 2013, Hansford et al.,
2015, Vollmer et al., 2011). Vollmer and colleagues (2011) reported a 1.9% prevalence of B. afzelii in
ticks from Inverness, Scotland, 1.1% in ticks from Exmoor and 0.7% in ticks from the New Forest.
Contrary to this, B. afzelii was not present in ticks from Cirencester or the South Downs; both B. garinii
and B. valaisiana dominate in these locations. Our study demonstrates the presence of B. afzelii in ticks
from Eastern England.

The different proportions of genospecies in the different locations indicates differing host species
communities. The reservoir species for B. afzelii are rodents and for B. garinii and B. valaisiana, the
reservoir species are birds especially pheasants and songbirds (Kurtenbach et al., 1998). Since the
different Borrelia genotypes are associated with different disease symptoms, it could be suggested that
people visiting different locations should be particularly aware of certain symptoms. Infection by B.
afzelii causes erythema migrans in 70-90% of cases however B. garinii only causes the symptom in 10-
20% of cases (Strle and Stanek, 2009). Neuroborreliosis is also more likely during B. garinii infection



compared to B. afzelii (Strle and Stanek, 2009). Since erythema migrans is a very noticeable early
symptom and neuroborreliosis is a late symptom which can be confused with other conditions, there
could be more Lyme disease cases diagnosed in areas where B. afzelii is prominent compared to those in
which B. garnii dominate. Unlike these two Borrelia species, it is still unclear if B. valaisiana is
associated with human disease even though this species is more prevalent than B. afzelii in England
(Bettridge et al., 2013, Vollmer et al., 2011). Although previously thought to be non-pathogenic, it has
been detected in patients with erythema migrans and B. valaisiana DNA has been identified in the
cerebrospinal fluid of a patient with probable neuroborreliosis (Rijpkema et al., 1997, Diza et al., 2004).

Of the tick life cycle stages, nymphs pose the greatest threat to humans. Although there was no difference
in the proportions of adults and nymphs with B. burgdorferi s.l., nymphs are involved in a greater number
of tick bites than adults (Robertson et al., 2000); they are present at a higher density and are less often
noticed and removed from the body compared to adults since they are smaller and located more often at
the body extremities (Wilhelmsson et al., 2013). To analyse the risk to individuals of being bitten by an
infected tick at each location, both tick density and the proportion of ticks infected need to be taken into
account. The data show that although the tick density of Cirencester was lower than both the South
Downs and Thetford, there was a significantly higher proportion of infected ticks compared with the
other locations visited. The risk to individuals at each location can be calculated in terms of infected tick
density, the number of infected ticks per 100m* (Dobson et al., 2011). In Cirencester, there are 1.63
infected ticks per 100m?, in the South Downs there are 0.75 infected ticks/100m? and in Thetford Forest
there are 0.9 infected ticks/100m?. Therefore, there is a greater risk to people in Cirencester compared to
the two “hotspots”. The high number of Lyme Disease cases in “hotspots” do not provide an accurate
indication of individual risk.

There are limitations to this study and it is important to note that ticks were sampled from each location
only once. Tick populations fluctuate throughout the year and according to the weather (Randolph, 2004).
Therefore, comparisons based on samples collected at one time in the year between the locations may not
be of great use in predicting future population densities. The 2013/2014 winter was abnormally wet with
higher than average rainfall and the winter and spring were also warmer than average (Met Office, 2014a,
2014b). Therefore, this could have contributed to greater tick numbers that year than previously.
However, the tick densities recorded in the 4 locations are lower than those recorded for the New Forest
at the same time of year in 2008 and 2009 (Dobson et al., 2011).

In conclusion, our findings provide data on questing tick density and the proportion of ticks infected with
B. burgdorferi s.I. for locations in the UK which have not been previously tested including Thetford
Forest and an area within the South Downs National Park.

Our evidence also supports the conclusions of a recent paper which first reported the presence of B.
miyamotoi in England (Hansford et al., 2015). Further genomic analysis to examine how the UK strains
of B. miyamotoi compare to strains circulating in other countries will be informative in understanding the
biology of this organism. Identifying the presence of B. miyamotoi infection in humans is needed to
determine if this organism poses an actual disease risk in the UK. A more comprehensive study of B.
burgdorferi s.I and B. miyamotoi in tick populations should be carried out over multiple years throughout
the UK. This would better inform the public and public health policy makers to the importance and risk
factors associated with Lyme borreliosis and B. miyamotoi infection in the UK.
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Tables and Figures

Figure 1
The 4 locations sampled
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Table 1

Comparisons of numbers of ticks and tick density/100m? in each location

Location/Site Nymph Adult Male Adult Female Adult Adult+Nymph
Number Density Number Density Number Density Number Density Number Density
Cirencester
Site A (E) 75 22.5 2 0.6 3 0.9 5 1.5 80 24
Site B (E) 14 16.8 1 1.2 0 0 1 1.2 15 18
Site C (W) 37 22.2 0 0 1 0.6 1 0.6 38 22.8
Site D (E) 98 58.9 4 2.4 4 2.4 8 4.8 106 63.7
Site E (W) 28 16.8 0 0 0 0 0 0 28 16.8
Total/Mean 252 27.4 7 0.8 8 0.8 15 1.6 267 29.1
West Dean
Site A (E) 121 72.7 2 1.2 3 1.8 5 3 126 75.7
Site B (W) 36 21.6 2 1.2 0 0 2 1.2 38 22.8
Site C (E) 62 37.2 3 1.8 3 1.8 6 3.6 68 40.8
Site D (W) 33 19.8 0 0 1 0.6 1 0.6 34 20.4
Total/Mean 252 37.8 7 1.1 7 1.1 14 2.1 266 39.9
Thetford Forest
Site A (E) 79 47.4 7 4.2 7 4.2 14 8.4 93 55.9
Site B (W) 69 41.4 6 3.6 0 0 6 3.6 75 45
Site C (E) 81 48.6 7 4.2 4 2.4 11 6.6 92 55.3
Site D (W) 24 14.4 3 1.8 1 0.6 4 2.4 28 16.8
Total/Mean 253 38 23 35 12 1.8 35 5.3 288 433
Wytham Woods
Site A (E) 1 0.6 0 0 1 0.6 1 0.6 2 1.2
Site B (W) 2 1.2 0 0 0 0 0 0 2 1.2
Site C (E) 4 2.4 0 0 1 0.6 1 0.6 5 3
Site D (W) 2 1.2 0 0 0 0 0 0 2 1.2
Total/Mean 9 1.4 0 0 2 0.3 2 0.3 11 1.7

"E=Ecotone habitat, W=Woodland habitat
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Fig. 2.
Comparison of mean tick densities in ecotone and woodland habitats between different locations. The
bars represent 1 standard error from the mean. a., nymphs; b., adults.
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Table 2

Number and proportion (%) of PCR positive ticks collected at each location

Location B. afzelii B. garinii B. burgdorferi sensu B. valaisiana Unconfirmed B. miyamotoi
stricto genospecies
Number Proportion | Number Proportion | Number Proportion | Number Proportion | Number Proportion Number Proportion

Cirencester 0 0 8 3.00 0 0 6 2.25 1 0.38 3 1.12
(1.53-5.80) (1.03-4.82) (0.07-2.09) (0.38-3.25)

West Dean 0 0 3 1.16 0 0 1 0.39 1 0.39 2 0.77
(0.39-3.35) (0.07-2.15) (0.07-2.15) (0.21-2.77)

Thetford 4 1.39 1 0.35 0 0 0 0 1 0.35 1 0.35

Forest (0.54-3.52)" (0.06-1.94) (0.06-1.94) (0.06-1.94)

Wytham 0 0 0 0 0 0 0 0 0 0 0 0

Woods

195% confidence interval
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Fig. 3.
Proportion of ticks containing the different B. burgdorferi genospecies and B. miyamotoi in each location
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