Active retreat of a Late Weichselian marine-terminating glacier: An example from Melasveit, W-Iceland

THORBJÖRG SIGFÚSDÓTTIR, ÍVAR ÖRN BENEDIKTSSON AND EMRYS PHILLIPS

5 Sigfúsdóttir, T., Benediktsson, Í. Ö. & Phillips, E.: Active retreat of a Late Weichselian marine-terminating 6 glacier: An example from Melasveit, W-Iceland.

Large and complete glaciotectonic sequences formed by marine-terminating glaciers are rarely observed on land, hampering our understanding of the behaviour of such glaciers and the processes operating at their margins. During the Late Weichselian in West Iceland, an actively retreating marine-terminating glacier resulted in the large-scale deformation of a sequence of glaciomarine sediments. Due to isostatic rebound since the deglaciation, these formations are now exposed in the coastal cliffs of Belgsholt and Melabakkar-Ásbakkar in the Melasveit district, and provide a detailed record of past glacier dynamics and the interrelationships between glaciotectonic and sedimentary processes at the margin of this marine-terminating glacier. A comprehensive study of the sedimentology and glaciotectonic architecture of the coastal cliffs reveals a series of subaquatic moraines formed by a glacier advancing from Borgarfjörður to the north of the study area. Analyses of the style of deformation within each of the moraines demonstrate that they were primarily built up by ice-marginal/proglacial thrusting and folding of marine sediments, as well as deposition and subsequent deformation of ice-marginal subaquatic fans. The largest of the moraines exposed in the Melabakkar-Ásbakkar section is over 1.5 km wide and 30 m high and indicates the maximum extent of the Borgarfjörður glacier. Generally, the other moraines in the series become progressively younger towards the north, each designating an advance or still-stand position as the glacier oscillated during its overall northward retreat. During this active retreat, glaciomarine sediments rapidly accumulated in front of the glacier providing

material for new moraines. As the glacier finally receded from the area, the depressions between

26	the moraines were infilled by continued glaciomarine sedimentation. This study highlights the
27	dynamics of marine-terminating glaciers and may have implications for the interpretation of their
28	sedimentological and geomorphological records.
29	
30	Thorbjörg Sigfúsdóttir (<u>thorbjorg.sigfusdottir@geol.lu.se</u>), Department of Geology, Lund University,
31	Sölvegatan 12, 223 62 Lund, Sweden and Institute of Earth Sciences, University of Iceland,
32	Sturlugata 7, 101 Reykjavík, Iceland; Ívar Örn Benediktsson, Institute of Earth Sciences, University of
33	Iceland, Sturlugata 7, 101 Reykjavík, Iceland; Emrys Phillips, British Geological Survey, The Lyell
34	Centre, Research Avenue, Edinburgh, EH14 4AP, UK and Department of Geography, Queen Mary
35	University of London, Mile End Road, London, E1 4NS, UK.
36	

Page 3 of 71

 Boreas

2 3 4	37	
5 6 7	38	During the Last Glacial Maximum (LGM; c. 26.5-20 thousand years ago (cal. ka BP), Clark et al.
8 9	39	2009), major ice sheets around the globe expanded to reach the continental shelf break (Dyke <i>et al.</i>
10 11 12	40	2002; Hughes et al. 2016). During the following deglaciation, they commonly experienced multiple
12 13 14	41	phases of re-advance and retreat leaving behind a complex sequence of glacially deformed
15 16	42	(glaciotectonised) sediments and landforms (e.g. Harris et al. 1997; Williams et al. 2001; Phillips et
17 18 19	43	al. 2002; Thomas & Chiverrell 2007). The sediments and structures present within these
20 21	44	glaciotectonic landforms can often be directly related to processes occurring at the margin
22 23	45	(proglacial) and beneath (subglacial) glaciers, thus shedding light on past ice sheet dynamics (i.e.
24 25	46	Croot 1987; Bennett <i>et al.</i> 1999; Bennett 2001; Aber & Ber 2007; Benn & Evans 2010; Lee <i>et al.</i>
20 27 28	47	2013; Lee & Phillips 2013). Previous research on glaciotectonics has mostly focused on the
29 30	48	structures associated with ice sheets and glaciers terminating in terrestrial settings (e.g. Bennett
31 32	49	2001; Bennett et al. 2004; Phillips et al. 2008; Lee et al. 2013), while relatively few studies have
33 34 35	50	been performed on deformation related to marine-terminating glaciers.
36 37 38	51	Submarine landform systems formed at oscillating margins of marine-terminating glaciers have,
39 40	52	however, been described from a number of locations within recently deglaciated fjords (Boulton et
41 42	53	al. 1996, 1999; Ottesen & Dowdeswell 2006; Ottesen et al. 2008; Dowdeswell & Vásquez 2013;
43 44 45	54	Flink et al. 2015), and associated with the terminal zones of retreating Weichselian ice sheets (e.g.
45 46 47	55	Johnson & Ståhl 2010; Winkelmann <i>et al.</i> 2010; Ó Cofaigh <i>et al.</i> 2012; Johnson <i>et al.</i> 2013;
48 49	56	Rydningen et al. 2013). Such landsystems commonly comprise large terminal moraines marking the
50 51	57	maximum glacier extent, as well as streamlined landforms seperated by series of transverse ridges
52 53	58	formed during still-stands or small readvances (Ottesen & Dowdeswell 2006; Ottesen et al. 2008;
55 56 57 58	59	Winkelman et al. 2010; Flink et al. 2015). Less is known about the internal architecture of

Page 4 of 71

Boreas

60	subaquatically formed moraines and therefore the glacial processes that caused their formation.
61	The primary reason for this is the general lack of subaerial sections through moraines known to
62	have formed on the sea floor. However, available sections through individual subaqueous moraines
63	as well as published interpretations of offshore seismic data have shown that they have commonly
64	been formed as a result of glaciotectonism (Sættem 1994; Seramur et al. 1997; Bennett et al. 1999;
65	Johnson et al. 2013), and/or ice-marginal sedimentary processes such as gravity flows and the
66	outflow of subglacial meltwater (Lønne 1995; Lønne <i>et al.</i> 2001; Lønne & Nemec 2011).
67	This paper contributes to the study of glacier-induced deformation at the margins of
68	marine-terminating glaciers by examining the glaciotectonism recorded by the Late Weichselian
69	glaciomarine sediments exposed in Melasveit, lower Borgarfjörður, western Iceland (Fig. 1A, B).
70	Exposed in the coastal cliffs are a sequence of marine deposits showing evidence of deformation
71	(ductile shearing, thrusting) by ice. The stratigraphy of these sediments has previously been
72	described by Ingólfsson (1987, 1988), with the aim of reconstructing the regional glacial history.
73	The present study adopts Ingólfsson's stratigraphic framework and focuses on the internal
74	structural architecture of this well-developed submarine glaciotectonic complex. The intensity and
75	style of deformation are interpreted in terms of episodic ice-marginal folding and thrusting during
76	the active retreat of a glacier flowing from Borgarfjörður immediately to the north (Fig. 1A;
77	Ingólfsson 1987, 1988; Norðdahl <i>et al.</i> 2008; Ingólfsson <i>et al.</i> 2010).

78 The study area and its geological context

Melasveit is a lowland area situated between the fjords Hvalfjörður and Borgarfjörður (Fig. 1A, B).
To the northeast is the mountain range of Hafnarfjall and Skarðsheiði, its highest peaks rising to
over 1000 meters above sea level (m a.s.l.) (Fig. 1A). The local bedrock is mainly composed of

60

Boreas

2		
3 4	82	Neogene basaltic lava flows, which crop out in the mountains and along the coast (Franzson 1978;
5	83	Ingólfsson 1988).
о 7		
8 9	84	Evidence for glacial activity is widespread in the region (Ingólfsson 1988; Norðdahl et al.
10 11	85	2008). The mountain landscape of Hafnarfjall – Skarðsheiði is characterised by trough-shaped
12 13	86	valleys, horns and cirques formed as a result of repeated glaciations during the Pleistocene
14 15	87	(Ingólfsson 1988). Striations on exposed bedrock surfaces show that, at some point, ice flowing
16 17		
17 18	88	down Borgarfjörður, Hvalfjörður and the Svínadalur valley coalesced in the lower Borgarfjörður
19 20 21	89	region (Fig. 1A) (Ingólfsson 1988; Magnúsdóttir & Norðdahl 2000). The bedrock in Melasveit is
21 22 22	90	blanketed by at least 30 m thick, dominantly glaciomarine deposits of Late Weichselian age
23 24 25	91	(Ingólfsson 1987, 1988). This sequence is overlain by stratified sand and gravel thought to be of
26 27	92	Holocene age, and records a major marine transgression following the final deglaciation of the are
28 29	93	(Ingólfsson 1987, 1988). The most notable depositional glacial landform in the lower Borgarfiörðu
30		
31 32	94	region is the Skorholtsmelar end moraine (Fig. 1B). This is a ~6 km long arcuate landform that
33 34	95	rises ~20-40 m over its flat surroundings and has been interpreted as marking the maximum
35 36	96	position of a Late Weichselian ice advance from Borgarfjörður (Ingólfsson 1988; Hart & Roberts
37 38	07	1004: Norādahl at al. 2008: Ingélfsson at al. 2010). The exact ago of this moraine is not known, but
39	97	1994, Norodani et di. 2008, ingonsson et di. 2010). The exact age of this morane is not known, but
40 41	98	it has been suggested that it formed during the Younger Dryas (Ingólfsson 1988), late Bølling
42 43	99	(Norðdahl et al. 2008; Ingólfsson et al. 2010) or possibly both (Ingólfsson 1988). The southern side
44 45	100	of the moraine is flanked by deltaic denosits reaching up to 52 m a s L, which indicates the
46	200	
47 48	101	minimum relative sea level during, or following the moraine formation. On its northern side, i.e. at
49 50 51	102	the ice-contact slope, the surface is littered with erratic boulders (Ingólfsson 1988).
52 53	103	The lower Borgarfjörður region, including the Melasveit area, likely became ice free in early Bølling
54 55 56 57	104	after a rapid collapse of an ice shelf off the west coast of Iceland (Ingólfsson 1987; Syvitski <i>et al.</i>
58 59		

84	Evidence for glacial activity is widespread in the region (Ingólfsson 1988; Norðdahl et al.
85	2008). The mountain landscape of Hafnarfjall – Skarðsheiði is characterised by trough-shaped
86	valleys, horns and cirques formed as a result of repeated glaciations during the Pleistocene
87	(Ingólfsson 1988). Striations on exposed bedrock surfaces show that, at some point, ice flowing
88	down Borgarfjörður, Hvalfjörður and the Svínadalur valley coalesced in the lower Borgarfjörður
89	region (Fig. 1A) (Ingólfsson 1988; Magnúsdóttir & Norðdahl 2000). The bedrock in Melasveit is
90	blanketed by at least 30 m thick, dominantly glaciomarine deposits of Late Weichselian age
91	(Ingólfsson 1987, 1988). This sequence is overlain by stratified sand and gravel thought to be of
92	Holocene age, and records a major marine transgression following the final deglaciation of the area
93	(Ingólfsson 1987, 1988). The most notable depositional glacial landform in the lower Borgarfjörður
94	region is the Skorholtsmelar end moraine (Fig. 1B). This is a ~6 km long arcuate landform that
95	rises ~20-40 m over its flat surroundings and has been interpreted as marking the maximum
96	position of a Late Weichselian ice advance from Borgarfjörður (Ingólfsson 1988; Hart & Roberts
97	1994; Norðdahl <i>et al.</i> 2008; Ingólfsson <i>et al.</i> 2010). The exact age of this moraine is not known, but
98	it has been suggested that it formed during the Younger Dryas (Ingólfsson 1988), late Bølling
99	(Norðdahl et al. 2008; Ingólfsson et al. 2010) or possibly both (Ingólfsson 1988). The southern side
100	of the moraine is flanked by deltaic deposits reaching up to 52 m a.s.l., which indicates the
101	minimum relative sea level during, or following the moraine formation. On its northern side, i.e. at
102	the ice-contact slope, the surface is littered with erratic boulders (Ingólfsson 1988).
103	The lower Borgarfjörður region, including the Melasveit area, likely became ice free in early Bølling,
104	after a rapid collapse of an ice shelf off the west coast of Iceland (Ingólfsson 1987; Syvitski <i>et al.</i>

Page 6 of 71

Boreas

2		
2 3 1	105	1999; Jennings et al. 2000; Norðdahl et al. 2008; Ingólfsson et al. 2010; Norðdahl & Ingólfsson,
- 5 6	106	2015). The collapse of this marine-terminating ice mass was most probably driven by a global rise in
7 8	107	sea level resulting from the decay of other major northern hemisphere ice sheets (Ingólfsson $\&$
9 10 11	108	Norðdahl 2001; Norðdahl & Ingólfsson 2015; Patton et al. 2017).
12 13	109	The Melasveit area was submerged during most of the Late Weichselian, with the highest
14 15 16	110	relative sea level occurring in the early Bølling, immediately after the deglaciation of the West
17 18	111	Iceland shelf (Norðdahl et al. 2008; Norðdahl & Ingólfsson 2015). Raised marine shorelines,
19 20 21	112	radiocarbon dated to 14.7 cal. ka BP, show that the relative sea level in the region was up to ~150 m
21 22 23	113	higher than present (Ingólfsson & Norðdahl 2001; Norðdahl & Ingólfsson 2015). The subsequent
24 25	114	marked decrease in the volume of ice covering Iceland during the remainder of the Bølling and into
26 27 28	115	the Allerød (13.9-12.8 cal. ka BP) led to a rapid isostatic rebound and thus marine shore regression.
28 29 30	116	Glacier expansion in the Younger Dryas (12.8 -11.7 cal. ka BP) caused renewed isostatic depression
31 32	117	of the lower Borgarfjörður region and a rise in relative sea level of ~60-70 m. This led to the
33 34 25	118	development of a younger series of raised marine terraces. During the Preboreal (11.7 -10.0 cal. ka
35 36 37	119	BP), glaciers re-advanced leading to yet another isostatic depression and relative sea level rise in
38 39	120	the region, up to ~65 m a.s.l. in the innermost part of Hvalfjörður (Fig. 1A; Norðdahl <i>et al.</i> 2008;
40 41 42	121	Ingólfsson <i>et al.</i> 2010).
42 43 44	122	The locally deformed sequence of marine sediments, which are the focus of the present
45 46	123	study, are now well-exposed in coastal cliffs due to the post-glacial isostatic uplift (Ingólfsson 1987,
47 48 49	124	1988; Norðdahl & Ingólfsson 2015). This provides a rare opportunity to study the interrelationships

between glaciotectonics and sedimentation at the margin of a marine-terminating glacier. In most

places such sequences remain concealed beneath the seabed.

Boreas

Glaciotectonism observed in the coastal exposures in Melasveit has previously been
attributed to an ice advance occurring shortly after 14.0 cal. ka BP, possibly as a result of the
dynamic response of the western Iceland ice sheet following the earlier collapse of its marine-based
component (Ingólfsson & Norðdahl 2001; Norðdahl *et al.* 2008; Ingólfsson *et al.* 2010). Furthermore
Ingólfsson (1987, 1988) suggested another, more restricted, ice advance within the Younger Dryas
based on stratigraphical evidence and radiocarbon dates.

133 Methods

The sedimentology and structural architecture of the Belgsholt and Melabakkar-Ásbakkar cliff sections (Fig. 1B-D) have been investigated using a range of macro-scale field techniques (Krüger & Kjær 1999; Evans & Benn 2004). The exposed sections were described in detail with particular emphasis being placed on recording the type of bedding, sediment type, bed geometry and structure (both sedimentary and glaciotectonic). The sediments were grouped into eight main sedimentary units (A-H) based upon lithofacies associations and other sediment properties, as well as their stratigraphical location. The terminology used for describing the glaciotectonic structures follows that normally used in bedrock structural geological studies (Phillips et al. 2011; Phillips 2017 and references therein). The geometry of folds, sense of displacement along thrusts and faults, as well as cross-cutting relationships between different sets of structures were systematically recorded. The orientation of fold axes, bedding, faults and joints measured in the field were plotted on a series of Schmidt equal-area lower hemisphere projections, and analysed using the Stereonet 9 software (Allmendinger et al. 2012; Cardozo & Allmendinger 2013). For ease of description, the Melabakkar-Ásbakkar cliffs were divided into several sub-sections, four of which were selected for more detailed analysis: Melaleiti, Ásgil, Ás-north and Ás-south (Fig. 1B). The sections are typically

Page 8 of 71

Boreas

clean and free of surface debris due to the constant coastal erosion. As most of the cliffs are nearvertical only the lowermost parts could be accessed and examined in detail. The upper parts could
only be approached at a few locations. The upper parts of the sections are thus mainly documented
in the field using binoculars and by the detailed analysis of photomosaics and remotely sensed
(LiDAR) images.

The Melabakkar-Ásbakkar cliffs and the Belgsholt section were scanned using a terrestrial, high-resolution RIEGL VZ1000 Light Detection and Ranging (LiDAR) Scanner in May 2014. The scanning was performed as a series of overlapping images spaced at 50-100 m intervals along the cliff sections. The position of the scanner was recorded using a differential Global Navigation System (dGNSS). After each scan, the relevant section of the cliff was photographed with a high resolution digital camera mounted on top of the scanner in order to apply the right colour to each scan point. The data from the scanner were processed in the RiSCAN PRO software package supplied by RIEGL in order to align and merge the scans manually. After the scans had been trimmed and aligned the data were exported into Bentley Pointools program for visualization and measurements. Analysis of the LiDAR images and photomosaics enabled the construction of detailed cross-sections through this variably glaciotectonised sequence.

165The radiocarbon dates used in this study were previously obtained by Ingólfsson (1987) and166calibrated by Norðdahl & Ingólfsson (2015) with the Marine13 calibration curve (Reimer *et al.* 2013)167using the Radiocarbon Calibration Program (CALIB). The dates were reservoir corrected by 365±20168years ($\Delta R = 24\pm23$), which is the apparent age for living organism in the sea around Iceland169(Håkansson 1983).

Boreas

Sedimentology of the Late Weichselian to Holocene sedimentary sequence

The sediments exposed in the cliffs at Melasveit can be divided into eight major sedimentary units (A-H), which are often quite heterogeneous. In the undeformed parts of the sequence, these units typically occur in their correct stratigraphical order. However, large-scale thrusting associated with glaciotectonism has resulted in the localised repetition and/or excision of parts of this sequence. The individual sedimentary units are described below and their spatial distribution shown in Fig. 2.

177 Sediment unit A

This is the structurally and stratigraphically lowermost, and most widely exposed unit in the Belgsholt and Melabakkar-Ásbakkar cliff sections (Fig. 1B, 2). Its thickness ranges from 0 to ~25 m, measured from the base of the cliffs, but its lower contact is typically not exposed. An exception to this is at ~3000 m in the Melabakkar-Ásbakkar cliff (Fig. 2) where this unit rests directly on bedrock. The dominate facies within unit A is an extremely firm (hard), typically massive matrix-supported, greyish-brownish, silty-sandy diamicton which is locally rich in cobble-sized clasts (Fig. 3A). However, the characteristics of the diamicton vary along the cliffs. In the northern part of Melabakkar-Ásbakkar, most of the diamicton is heavily deformed, vaguely stratified and contains numerous irregular to lenticular-shaped sand intraclasts (up to several metres in length). Both the diamicton and sand intraclasts locally contain high concentrations of fragmented and occasionally intact mollusc shells (Fig. 3A). In the southern part of the Melabakkar-Ásbakkar cliff section, the unit A diamicton occurs interbedded with laterally extensive beds of poorly sorted sand, usually with irregular and gradational contacts. The sands locally contain small shell fragments.

Page 10 of 71

Boreas

2 3	191	Ingólfsson (1987) concluded that the mollusc fauna within unit A belong to the Macoma
4 5 6	192	calcarea community, indicative of deposition in a low-salinity, shallow water, boreal - mid arctic
7 8	193	fjord environment. Five radiocarbon-dated samples retrieved at different locations in the
9 10 11	194	Melabakkar-Ásbakkar cliffs yielded ages ranging between c. 13.7 – 14.5 cal. ka BP.
12 13 14	195	Unit A sediments are interpreted as having been deposited in an ice-proximal to ice-distal
15 16	196	marine setting, the sedimentary appearance most likely reflecting locally and temporally variable
17 18 10	197	proximity to the ice margin at the time of deposition. The mollusc faunal assemblage within unit A
20 21	198	is indicative of a shallow/near shore environment with a high input of freshwater or glacial
22 23	199	meltwater (Ingólfsson 1987, 1988). The massive, structureless nature of the diamicton suggests
24 25 26	200	deposition of fines from suspension with the inclusion of coarser clasts as ice-rafted debris (IRD).
20 27 28	201	Although such sediments may possess a planar lamination due to the variation in sediment input
29 30	202	over time, it may have been erased due to bioturbation by molluscs (e.g. Ó Cofaigh & Dowdeswell
31 32 33	203	2001). Furthermore the lack of distinct stratification may also have been partly caused by
33 34 35	204	homogenisation due to post-sedimentary ductile deformation and liquefaction. The occurrence of
36 37	205	interbedded sands suggests deposition in a more ice-proximal location, reflecting deposition from
38 39	206	turbidity currents discharging from meltwater channels, deltas or outwash fans, causing winnowing
40 41 42	207	of the sediments (Cowan et al. 1999; Boggs 2006). However, the locally high concentration of shells
43 44	208	within the heterogeneous part of sediment unit A suggests deposition further away from the ice-
45 46	209	margin where temperatures were higher, bioactivity also high and sediment accumulation rate
47 48 49	210	lower (Powell & Molnia 1989; Powell & Domack 1995; Jaeger & Nittrouer 1999; Ó Cofaigh &
50 51	211	Dowdeswell 2001).
52 53 54 55 56 57	212	Sediment unit B

Page 11 of 71

Boreas

2		
3	213	Unit B sediments are exposed at Belgsholt and at a few places within the Melabakkar-Ásbakkar
4 5 6	214	cliffs, most notably between ~1600-2800 and 3300-3700 m (Fig. 2). This unit has an undulating
7 8	215	geometry and its thickness is highly variable laterally with the thickest parts (>15 m) being exposed
9 10	216	at Melabakkar-Ásbakkar between ~3400-3800 m. The dominant facies comprises alternating beds
11 12 13	217	of well sorted coarse to fine sand and cobble gravel beds, as well as frequent interbeds and lenses
14 15	218	of massive fines (silt/fine sand) and silty-sandy diamicton (Fig. 3B, 3C). The diamicton layers/lenses
16 17	219	within unit B are most prominent at Ás-north (Fig. 2, ~3600-3800 m) where they are up to ~3 m
18 19 20	220	thick. The planar and trough-cross bedded sand and gravel beds are laterally discontinuous with
20 21 22	221	erosive bases, the thickness of individual beds ranging from centimetres to over a meter. Unit B
23 24	222	sediments are typically sheared, folded and faulted, except between 2600- 2800 m (Fig. 2) where
25 26	223	they form an up to 15 m thick sequence of undeformed coarse, well-stratified gravel with
27 28 29	224	subrounded to well-rounded pebble to boulder-sized clasts (Fig. 3C). Some beds contain a large
30 31	225	amount of mollusc fragments with abraded edges; no whole, un-abraded shells were detected. The
32 33	226	lower contacts of unit B are only exposed between 1600-1700 and 3500–3900 m (Fig. 2) where unit
34 35 36	227	B overlies sediment unit A, and between ~2300-2400 where it rests upon sedimentary unit D (see
37 38	228	below). The contacts of unit B with these other sediment packages frequently show evidence of
39 40	229	shearing and tectonic mixing with the structurally underlying sediment units.
41 42 43	230	The sedimentary structures, large grain sizes, sorting and roundness of clasts, as well as a
44 45	231	high content of shell fragments suggest that the sands and gravels of unit B were deposited from
46 47	232	meltwater discharge in a relatively high energy, marine environment. This type of environment

frequently occurs at the margin of marine-terminating glaciers where coarse-grained sediments are

brought into the ocean by subglacial meltwater streams (Powell & Molnia 1989; Powell & Domack

1995; Powell 2003). The massive, fine-grained sediment layers that interdigitate with the sorted

sand and gravel may represent debris flows and/or fallout from suspension, both of which are common processes in ice-contact marine systems (Powell & Molnia 1989; Lønne 1995; Powell 2003). The shell fragments are likely to be reworked and therefore do not reflect the faunal assemblage living at the time of sediment deposition. Sediment unit C Unit C sediments are exposed between ~3000 and 3500 m at Melabakkar-Ásbakkar where they range from 1-20 m thick and unconformably overlie units A and B (Fig. 2). The dominant facies comprises planar and cross-laminated fine sand interbedded with massive silt. This sand and silt sequence is unconformably overlain by a massive silty-sandy and relatively clast-poor diamicton (Fig. 3D). The sediments of unit C have been subject to both ductile and brittle deformation immediately below the diamicton. No shells or shell fragments were found in the lower interbedded part of the sequence, while small fragments were observed in the diamicton. The dominance of fine-grained laminated silts and sands with occasional outsized clasts suggests deposition in a glaciomarine setting in which the massive silt beds were deposited from suspension settling, while planar and cross laminated sand formed from turbidity currents (Powell & Molnia 1989; Ó Cofaigh & Dowdeswell 2001). The absence of in situ mollusc shells suggests a hostile environment, either due to low temperatures and/or high sedimentation rate (Ó Cofaigh &Dowdeswell 2001). The diamicton in the upper part of unit C is interpreted as a mass flow deposit (Nichols 2009; Ó Cofaigh & Dowdeswell 2001) containing reworked shell fragments. Emplacement of this mass flow is thought to have resulted in the observed disruption of the underlying silts and sands . Alternatively, the diamicton could be interpreted as a subglacial traction till deposited at the ice-bed interface. During its emplacement, the underlying unit C sediments may have been subjected to glaciotectonic deformation.

Boreas

Sediment unit D

5		
6 7	260	This sediment unit is up to ~25 m thick and was observed in the Melabakkar–Ásbakkar cliffs
, 8 9	261	between ~600-700 m, 1600 and 2600 m, as well as within the southernmost part of this section
10 11	262	between 4700-5000 m (Fig. 2) . The dominant facies is a poorly sorted, massive fine sandy silt, often
12 13	263	with bed thickness over one meter, separated by much thinner (cm scale) beds of medium to
14 15 16	264	coarse sand (Fig. 3B). Occasional pebble-sized clasts (up to a few cm) are found dispersed within the
17 18	265	silt beds. The sediments of unit D are deformed and locally appear to have been homogenised to
19 20	266	form a fine-grained, clast poor diamicton. Unit D sediments have locally been thrust over unit B
21 22 23	267	(e.g. Fig. 3B). The glaciotectonic contact between units B and D is irregular, and shows evidence of
24 25	268	both brittle faulting and ductile shearing, as well as liquefaction and mixing between these
26 27	269	sedimentary units (see below). A few small mollusc fragments (mm scale) were found, mostly in the
28 29 30	270	lowermost parts of unit D, but no whole mollusc shells or larger fragments were detected.
31 32	271	Ingólfsson (1987) has published three radiocarbon dates on shell fragments collected at ~2550 m
33 34	272	(Fig. 2) that range in age between c. 13.4-13.5 cal. ka BP. This suggests a maximum age of sediment
35 36 27	273	deposition was during the Allerød.
37 38 39	274	Sediments of unit D are interpreted as having been deposited in an ice-proximal
40 41	275	glaciomarine environment. The thick beds of massive sandy silt represent deposition by suspension
42 43 44	276	settling from buoyant meltwater plumes and the pebble intraclasts deposited by means of debris
45 46	277	rain-out from icebergs (Powell & Molnia 1989; Lønne 1995). The mollusc fragments are clearly
47 48	278	redeposited, their age only giving a maximum age of sediment deposition. The absence of whole
49 50 51	279	shells suggests a too hostile environment for mollusc fauna, possibly reflecting a high rate of
52 53 54 55	280	sediment accumulation (Ó Cofaigh & Dowdeswell 2001).

- Sediment unit E

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
11	
77 15	
45	
40	
47	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

282	Unit E sediments are exposed between ~10-100 m in Belgsholt (Fig. 2) where it is up to ~6 m thick,
283	and in Melabakkar-Ásbakkar section at ~0-300 m (Fig. 2) where at Melaleiti the unit is 8 m thick.
284	The dominant facies comprises beds of well-sorted, both planar cross-bedded and planar laminated
285	medium-grained sand, alternating with beds of massive silt. Bed thicknesses are generally in the
286	cm- to dm-scale. In the lower part of unit E are occasional beds of gravel (bed thicknesses in the
287	order of centimetres) and beds of sandy silty diamicton (up to ~1 m thick); the latter containing
288	small mollusc fragments. The contacts between the beds of different facies are typically sharp and
289	erosive, with the sand beds commonly containing silt intraclasts which are lithologically similar to
290	the interbedded massive silts, indicative of localized penecontemporaneous erosion.
201	The appearance of the codiments within unit E varies along the sliff section. At Palashelt
291	The appearance of the sediments within unit L valies along the tim section. At beigsholt,
292	the sand and silt beds in the lowermost part are up to few dm thick and commonly exhibit small
293	scale synsedimentary folds and overturned flame structures. The beds become thinner and less
294	deformed upwards and in the uppermost ~3 m they contain abundant intact mollusc shells;
295	identified species are Balanus balanus, Buccinum undatum, Hiatella arctica and Macoma calcerea.
296	At the Melaleiti section there is no obvious vertical variation in bed thickness or grain size of unit E
297	sediments. Synsedimentary folds and flame structures up to 50 cm in amplitude are common (Fig.
298	3E). At Belgsholt, the contact between unit E and units A and B is tectonic, while at Melaleiti the
299	boundary between units E and A ranges from sharp to gradational.
300	The alternating planar and cross laminated sand with beds of massive silt suggests
301	deposition from turbidity currents alternating with suspension settling of fine grained sediments
302	from meltwater plumes (Ó Cofaigh & Dowdeswell 2001). The flame structures are most likely a
303	result of loading of water-saturated mud, with the resultant water-escape leading to the deflection
204	unwards of the interhedded cand layers. The presence of these water-escape features within unit E
204	apmands of the interseduce sand ayers. The presence of these water-estape reatures within unit L

Boreas

1		
2 3 4	305	is consistent with high rates of sedimentation. The loading was most likely accompanied by mass
5 6	306	movement, leading to the overturning of the load structures in the direction of emplacement of the
7 8	307	mass-flow (Boggs 2006). The diamicton beds in the lower part of unit E are thought to represent
9 10 11	308	subaqueous sediment gravity flows with their emplacement having been accompanied by localized
12 13	309	soft-sediment deformation (Lønne 1995; Boggs 2006). Together, this suggests a high energy,
14 15	310	unstable, depositional environment located close to the ice margin, while the upward fining trend,
16 17	311	as well as the marine fauna, in the upper beds of unit E at Belgsholt suggests a progressively
18 19 20	312	increasing distance from the ice front during deposition of unit E; potentially recording the retreat
20 21 22	313	of the ice front. The marine fauna observed at Belgsholt indicates shallow coastal water and the
23 24	314	presence Buccinum undatum, which is a subarctic species (Símonarson 1981), relatively warm
25 26	315	water temperatures.
27 28 29 30	316	Sediment unit F
31 32 33	317	Unit F sediments were observed in the northern part of the Melabakkar-Ásbakkar cliffs between 0 –
34 35	318	2800 m (Fig. 2). The dominant facies is a massive clast-supported gravel with sub-rounded to
36 37	319	rounded clasts and with a sandy matrix infill. Maximum particle size is generally around 0.5 m,
38 39 40	320	although occasionally larger clasts, up to ~2 m in diameter, also were found. Unit F forms a thin
40 41 42	321	(maximum thickness ~3 m) and undulating bed following the shape of the underlying topography.
43 44	322	Its lower contact is erosional, especially between 1000 - 1600 m, where the clast sizes also tend to
45 46	323	be their largest (Fig. 3F). Sediment intra-clasts which are clearly derived from underlying
47 48 49	324	sedimentary units A and D are common within unit F. The southward tilted rip-up structures show
50 51	325	palaeocurrent direction towards the south. No mollusc shells were observed in the sediment.
52 53 54	326	The clast roundness, erosional lower contacts, as well as the large particle sizes, suggest
55 56 57	327	sedimentation by running water in a high-energy environment. Massive boulder beds and lag
58 59		

> deposits similar to those of unit F which contain frequent rip-up clasts due to erosion of underlying beds have been described in glacial outburst flood (jökulhlaup) deposits in Iceland (Maizels 1997; Marren 2005). The fact that unit F follows the undulating surface topography of underlying sedimentary units suggests that it was deposited under high pressure in a confined space where the fluid flow followed the topography of the substratum instead of accumulating in depressions, as would be expected in an unconfined setting. Based on this, unit F is interpreted as having been deposited at the ice/bed interface by pressurised subglacial meltwater flows. Similar coarse-grained sediments with erosive bases, argued to be diagnostic for subglacial excavation and deposition in subglacial cavities during high-energy flow conditions have been described from Skeiðarárjökull on Iceland (Russell et al. 2006).

Sediment unit G

Unit G sediments are exposed at a few places within the Melabakkar-Ásbakkar cliff, most notably between 300-600, 900-1600 and 2500-3200 m (Fig. 2), and within the Belgsholt cliff section (between ~100-250 m; Fig. 2). It is undeformed, draping the topography of the underlying sediment units and is separated from these variably deformed sediments by a sharp contact (Fig. 3C, D, F). Although Unit G records an overall upward fining trend. The lower part of the unit mainly consists of relatively thick beds of interbedded diamicton and sand (often >1 m thick beds) as well as local occurrences of thin gravel beds (cm- or dm- scale), with erosional contacts. The silty-sandy diamicton beds are usually massive, while the sand beds show both planar and cross lamination. Evidence of soft-sediment deformation, such as convolute bedding and flame, ball and pillow structures, are commonly found within individual beds in the lower part of the unit. The upper parts of unit G commonly consist of planar laminated silt and fine sand. No mollusc shells were found within unit G.

Page 17 of 71

Boreas

2 3	351	The diamicton beds which dominate the lower part of unit G are interpreted as deposited
4 5 6	352	from high-density sediment gravity flows, common in ice-contact environments due to instable
7 8	353	slopes, high sedimentation rates and calving (Powell & Molnia 1989; Lønne 1995; Boggs 2006). The
9 10	354	interbedded planar to cross-bedded sands are thought to record traction deposition from more
11 12 13	355	diluted sediment underflows. The soft-sediment deformation structures within these beds is
14 15	356	indicative of fast sediment deposition resulting in localised liquefaction and water-escape. The
16 17	357	absence of mollusc shells may also indicate high sedimentation rates, although it is also possible
18 19 20	358	that this absence is due to unfavourable temperature conditions (Ó Cofaigh & Dowdeswell 2001;
20 21 22	359	Boggs 2006). Measured depositional rates in front of contemporary retreating glacier margins in
23 24	360	Alaska, Greenland and Svalbard are reported to be as high as several decimetres per year (Cowan et
25 26	361	al. 1999; Jaeger & Nittrouger 1999; Gilbert et al. 2002; Trusel et al. 2010). The change in lithofacies
27 28 29	362	upwards within unit G to a sequence dominated by laminated silt and fine sand suggests a
30 31	363	progressive lowering of energy levels and increased distance from the sediment source, reflecting
32 33	364	retreat of the ice margin. Sedimentation in the upper part of the sequence is thought to have been
34 35 36	365	dominated by suspension settling of fine sediments out of a buoyant sediment plume (Ó Cofaigh &
37 38	366	Dowdeswell 2001).
39 40 41	367	Sediment unit H
42 43 44	368	Unit H constitutes the stratigraphically youngest part of the sedimentary sequence and can be

traced laterally along the entire Melabakkar-Ásbakkar section, and corresponds to the uppermost

part of the succession identified by Ingólfsson (1987). Unit H ranges in thickness from ~10 m at 0-

400 m to ~1 m in most places beyond 3000 m. This sedimentary unit is generally separated from the

underlying units by a distinct unconformity (erosion surface). The dominant facies within unit H is

horizontally bedded sands and gravels which define an overall coarsening upwards sequence.

However, in detail these sediments also exhibit smaller-scale changes in grain size both vertically and laterally. For example at ~300-400 m, the unit consists of cross-bedded gravel, whereas at ~500-700 m it comprises a 6 m thick sequence of planar and cross-laminated sand with occasional load structures. No detailed examination of unit H could be performed because of inaccessibility at the top of the cliffs. Unit H sediments have previously been interpreted as comprising a complex, timetransgressive sequence of beach (littoral zone) sediments and aeolian sand which were formed during a marine regression and emergence of the landscape in the early Holocene (Ingólfsson 1987, 1988). Structural architecture of Belgsholt and Melabakkar-Ásbakkar The detailed internal structural architecture of the Belgsholt and Melabakkar-Ásbakkar sections are described below and illustrated in Fig. 2. Belgsholt The northernmost section, Belgsholt, occurs in an elongated, E-W trending ridge, situated

389 approximately 500 m north-east of the main Melabakkar-Ásbakkar cliff section (Fig. 1B). The ridge is

- 390 cut by a transverse ~250 m long, N-S oriented, 12 m high subvertical coastal cliff (Fig. 4A). The
- 391 northernmost ~100 m are clean and free from surface debris enabling a detailed examination of the
- 392 internal architecture of the ridge. The remainder of the cliff section is partly obscured by surface
 - 393 wash and debris.

Boreas

394	Structural architecture. The Belgsholt section can be divided into two parts based on the style and
395	relative intensity of deformation; (i) the northern part (0-110 m; Fig. 4A) characterised by the
396	presence of a large syncline-anticline pair affecting units B and E and (ii) the southern part (110-250
397	m; Fig. 4A), which consists of undeformed laminated sediments (unit G) overlying deformed sand
398	and diamicton (unit A and B).
399	The sediments in the northern part of the section (0-110 m) are dominated by the
400	interbedded silts and sands of unit E, resting upon the bedded sands and gravels of unit B. At this
401	locality, the base of unit E is poorly defined and deformed with the small-scale folds along this
402	boundary indicating that it has been modified by bedding-parallel shearing. The dominant
403	deformation structure in the section is a large-scale syncline-anticline pair (~50-100 m; Fig. 4A). The
404	syncline is upright with amplitude over 12 m and wavelength ~40 m with its axis plunging 4° to the
405	ESE (Fig. 4B). Bedding-parallel shearing appears to have occurred prior to the folding as the
406	tectonised contact between units E and B is folded by the syncline. The bedding within the core of
407	the fold is offset by numerous, steeply inclined reverse faults (displacement in the order of cm or
408	dm) that fan around the axis of the syncline (Fig. 4A, B). These faults have sharp planes and extend
409	outwards to deform the structurally underlying stratified sand and gravels of unit B. Although
410	deformed, primary sedimentary structures and relationships between the beds within unit E are
411	well preserved. Between 70 and 100 m, the unit B sands and gravels occur within a south-verging
412	anticline (Fig. 4A, C). Primary sedimentary features within the core of the anticline have been
413	overprinted during deformation and the sand has been homogenized by liquefaction. The limbs of
414	the anticline are cross-cut by minor faults (displacement of only mm to few cm), mainly reverse
415	faults, developed approximately orthogonal to the bedding surfaces.

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
2J 2/	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
11	
42	
43	
44 45	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
L N J	

416	The sequence exposed in the southern part of the Belgsholt section (110-250 m) is
417	composed of the massive/heterogeneous silty-sandy diamicton (unit A) overlain by stratified sand
418	and gravel (unit B). These lithofacies associations are interfingering and show evidence of soft-
419	sediment deformation; probably as a result of syn-sedimentary compaction and loading of still wet
420	sediments. Immediately adjacent to the south-verging anticline (between 90 and 110 m; Fig. 4A)
421	both units A and B show evidence of locally intense, and highly disruptive, ductile deformation and
422	associated liquefaction, and also contain a large number of intraclasts (individual clasts over 1 m in
423	diameter) of sand. Relatively undeformed beds of silt and sand (unit G) unconformably overlie the
424	deformed sequence from ~90 m southwards and the whole sequence is truncated by a horizontally
425	bedded gravel unit (unit H).
426	Structural evolution. The relatively simple internal architecture of the Belgsholt ridge is consistent
427	with lateral (sub-horizontal) compressive deformation, as a result of ice-push from the north/north-
428	east. The south-verging syncline-anticline fold pair is interpreted as recording ductile folding as the
429	ice advanced into the pre-existing marine sediments. Minor brittle faulting of the sediments within
430	units B and E occurred as the sequence accommodated further compression imposed by the
431	advancing ice.
432	The focusing of ductile deformation along the lithological boundary between unit E and the
433	structurally underlying sands and gravels of unit B may simply reflect the marked
434	lithological/rheological contrasts between these two units. This deformation probably occurred

- 435 during the onset of glaciotectonic deformation at Belgsholt (i.e. prior to folding) and possibly
- 436 records the earliest stages of shortening of the sediment wedge in response to initial ice-push. As
- 437 the ice continued to advance, this tectonised boundary was folded into the upright syncline which
- 438 dominates the northern part (Fig. 4A, B). Alternatively, this sheared boundary may represent an

Page 21 of 71

 Boreas

2		
3	439	earlier formed, bedding-parallel thrust resulting from the southerly transport of a detached slab of
4		
5	440	unit E sediments and its emplacement upon the sands and gravels of unit B.
6		
/		
0 9	441	The relative intensity and complexity of the deformation observed in the northern part of
10		
11	442	the Belgsholt section initially increases southward towards the central part of the section (~50-100
12		
13	443	m), before fading out in the remaining part of the section (Fig. 4A). The sediments deformed by the
14		
15	444	south-verging anticline and immediately south of this fold show evidence of soft-sediment
16		
17	445	deformation and liquefaction (Fig. 4A. C). The fluidised sediments were remobilized and injected
18		
19	446	upwards in the form of diapirs and clastic dykes. There is no definitive evidence that the advancing
20		
21	117	ice overrode the sequence at Belgsholt (e.g. evidence for subglacial shearing); therefore, the dianirs
23	447	The overroue the sequence at beigshold (e.g. evidence for subglacial shearing), the elopies
24	110	and elastic dykes may simply be recording the escape of prossurized meltwater from the deforming
25	448	and clastic dykes may simply be recording the escape of pressurized mentwater from the deforming
26		
27	449	sequence driven by a hydrostatic pressure gradient formed by the weight of the advancing ice.
28		
29	450	Compression of wet sediments immediately in front of the advancing ice mass would have resulted
30 21		
21 22	451	in an increase in porewater pressure leading to liquefaction and injection of the remobilized
32		
34	452	sediments. Localized faulting of the sediments observed cutting through the diapirs and clastic
35		
36	453	dykes within units A and B indicates that deformation continued after liquefaction, consistent with
37		
38	454	dewatering of the sediments prior to the termination of glaciotectonic deformation.
39		
40		
41	455	Although the Belgsholt ridge has most likely undergone some erosion since its formation,
4Z 43		
44	456	the location of the most highly deformed part of the sequence below the crest line suggests that
45		
46	457	the ridge is a morphological expression of the glaciotectonics below. This is further supported by
47		
48	458	the structural reconstructions indicating ice movement from the north, approximately
49		
50	459	perpendicular to the trend of the ridge. Based on this association between the ridge morphology
51		
5∠ 53	460	and the compressional nature of the glaciotectonics. as well as the localized nature of the
55 54		
55	461	deformation, the ridge is interpreted as an ice-shoved ridge (e.g. Aber & Ber 2007). The
56	.01	
57		
58		

Page 22 of 71

Boreas

462	deformation is mostly confined to the proximal (northern) and central part of the ridge which
463	indicates that the former ice margin was located on the northern side of the ridge.
464	Melaleiti
465	The Melaleiti structural zone occurs at the northern end of the Melabakkar-Ásbakkar coastal cliffs,
466	between 0 and 300 m (Fig. 2). At Melaleiti, the cliff is oriented NNE-SSW and rises vertically up to 30
467	m a.s.l. The cliff face is mostly dry allowing a detailed documentation of the sedimentary features
468	and glaciotectonics. Bedrock outcrops are found at sea level just north of the section and ~100-200
469	m offshore.
470	The stratigraphy at Melaleiti can be divided into three main structural units (Fig. 5A): i) The
471	deformed sequence which dominates the lowermost ~13 m of the cliff section and forms the
472	Melaleiti structural zone (units A and E); ii) an undulating gravel bed (unit F) overlain by a sequence
473	of alternating silt, sand and clast poor diamicton (unit G); and iii) the structurally higher Holocene
474	sequence of littoral sediments (unit H; Ingólfsson 1987, 1988).
475	Structural architecture. The Melaleiti structural zone consists of sub-horizontal to gently
476	northwards tilted, thrust-bound blocks comprising the silty-sandy diamicton of unit A and
477	interbedded silts and sands of unit E.
478	In the northern part of the section (~0- 80 m; Fig. 5A) the thrust blocks are separated by a
479	poorly defined, undulating shear plane. Internally, the thrust-bound blocks are pervasively
480	deformed showing evidence of homogenisation due to ductile deformation and the contacts
481	between the internal sediments (units A and E) are generally diffused. They are dissected by a
482	series of southeast dipping normal (extensional) faults, as well as some smaller scale steep,
483	northwest dipping, reverse and normal faults (Fig. 5A). These faults seem to be truncated by and

Page 23 of 71

59 60 Boreas

1					
2 3 4	484	therefore predate the shear plane. The displacement on both sets of faults is generally in the order			
5 6	485	of centimetres or decimetres. Most of the faults are undulating and commonly infilled/lined by			
7 8 9	486	6 massive, fine-grained sediments which suggests that they acted as fluid pathways.			
10 11 12	487	The middle part of the section (80-110 m; Fig. 5A) exhibits the most complicated			
12 13 14	488	deformation in the Melaleiti zone. The most notable structures in this part are a number of			
15 16	489	southeast dipping shear planes which break up the thrust blocks of units A and E into a series of			
17 18	490	northward dipping fault blocks. The fault blocks and the shear planes are cross-cut by undulating			
19 20 21	491	open, southward dipping fractures that are infilled by massive sand-rich sediments. The shear			
22 23	492	planes are poorly defined and are frequently lined by deformed, fine-grained sediments. Although			
24 25	493	hard to estimate, the offset of internal bedding within unit E suggests that the displacement might			
26 27 28	494	be a few meters towards the southeast.			
29 30 21	495	The southern part of the Melaleiti section (110-250 m; Fig. 5A) exhibits somewhat simpler			
32 33	496	and less penetrative deformation than the northern part. A gently northward dipping discrete shear			
34 35	497	plane divides the sequence into two thrust blocks, each containing both units A and E. Although			
36 37	498	deformed, internal sediment features within unit E in both upper and lower thrust block are easily			
38 39 40	499	recognizable and can be traced throughout a large part of this structural unit. However, the			
41 42	500	sediments immediately below the shear plane show evidence of intense ductile deformation			
43 44	501	(shearing and folding) which decreases in intensity and depth of penetration towards south (Fig.			
45 46 47	502	5A-D). The sediments in the footwall of this shear plane are cut by numerous reverse and normal			
47 48 49	503	faults (Fig. 5C, D). The dominant fault type varies laterally; in particular most of the faults between			
50 51	504	100 and 150 m are north-dipping reverse (compressional) faults, whereas between ~180 and 300 m			
52 53	505	the faults are mainly extensional (normal) dipping both towards southwest and northeast (Fig. 5A).			
54 55 56 57 58	506	Most of these faults only cut through the footwall although a few cross-cut and therefore postdate			

Page 24 of 71

the thrust boundary and extend upwards into the hanging wall (Fig. 5A, D). Some of the faults are infilled by sand suggesting that these may have acted as fluid pathways (hydrofractures) (Rijsdijk et al. 1999; Phillips & Merritt 2008; van der Meer et al. 2009; Phillips & Hughes 2014). The upper block forms a large boudinage structure between 170 and 250 m (Fig. 5A, C). Structural evolution. The overall structural architecture of the Melaleiti section indicates a thrust zone where blocks composed of the marine diamicton of unit A and interbedded sands and silts of unit E have been thrusted and stacked as a result of sub-horizontal compressional deformation (Fig. 6). Such thrust-stack sequences generally form in an ice-marginal or proglacial position due to gravity spreading and compression from the rear by the forward movement of the ice (e.g. Aber et al. 1989; Bennett et al. 1999; Boulton et al. 1999; Bennett 2001; Pedersen 2005; Phillips et al. 2008, 2017; Benediktsson et al. 2010, 2015; Benn & Evans 2010). Based on the configuration of these thrust blocks and orientation of faults, this deformation was caused by an ice-push from the northwest (Fig. 5A). The overall decrease in strain from north to south can therefore be explained by decreasing amount of stress transferred from the source of tectonic pressure, i.e. an advancing ice margin, towards the foreland. Shear zones like the one separating the thrust-blocks at the southern part of Melaleiti are

523 commonly found below glacially transported sediment rafts where the displacement is facilitated

524 by a thin water-lubricated detachment (e.g. Benediktsson *et al.* 2008; Phillips & Merritt 2008).

525 Vaughan-Hirsch *et al.* (2013) argue that elevated porewater pressures during glaciotectonism can

526 lead to liquefaction of the sediments within the shear zone, lowering their cohesive strength and

527 thereby aiding forward movement of the overriding thrust block. Therefore, based on the nature of

528 contacts, the detachment and transportation of the thrust sheets at Melaleiti is thought to have

529 been facilitated by elevated porewater pressures during glaciotectonism. The tectonic thickening

Page 25 of 71

Boreas

2 3	530	may have caused a build-up of porewater pressures within the developing thrust stacks leading to
4 5	531	hydrofracturing when the pressure exceeded the cohesive strength of the sediments and the
6 7 8	532	depressurization of the lubricated detachments (Rijsdijk et al. 1999; Phillips & Merritt 2008; Rijsdijk
9 10	533	et al. 2010). Subsequently the forward movement of the thrust sheets was accommodated by
11 12	534	extensional deformation in the lower thrust sheet causing the formation of normal faults. The
13 14 15	535	sediments became increasingly well drained towards the distal (south) part of the moraine
16 17	536	reflected by the better defined fault/fracture planes towards the south. Similar pattern of the
18 19	537	continuing brittle deformation after a fall in porewater pressures are known from both modern and
20 21 22	538	past glacial environments (e.g. Benediktsson <i>et al.</i> 2008, 2010; Phillips & Merritt 2008). The thrust
22 23 24	539	blocks are draped by the subglacial gravel of unit F showing that the zone was overridden by a
25 26	540	glacier after the ridge was formed. This may have resulted in further extensional deformation of the
27 28 20	541	thrust stacks, such as the boudinage structure of the upper thrust block (between 150 and 250m;
30 31	542	Fig. 2) and a set of extensional faults dissecting the thrust blocks and the boundary between (Fig.
32 33	543	6).
34 35		
36 37	544	Fúla Bay
38 39 40	545	The Fúla Bay comprises several sub-zones occurring between 400 and 2000 m (Fig. 2). The overall
40 41 42	546	architecture of these zones is only briefly described because a detailed investigation was hampered
43 44	547	by overhangs and frequent rock falls as well as water and thin debris cover on the cliff face.
45 46		
47 48	548	Structural architecture. The structural zones in Fúla are mostly composed of the deformed
49 50	549	sediments of units A, B and D. The deformed units A and D as well as local occurrences of unit B in
51 52	550	between form a small number of ridges, the two largest of which are up to 30 m high (at 600-900
53 54 55	551	and 1300-2000 m; Fig. 2). The architecture of the ridge at 600-900 m indicates that it comprises
55 56 57 58	552	stacked, thrust blocks dipping into the northwest (ranging 276-316°; Fig. 7). Numerous normal
59		

faults with a down-throw to the south (ranging 156-216°; Fig. 7) were identified in the lowermost parts of the ridge (Fig. 2). However, it was typically not possible to determine the amount of fault displacement or how far up the sequence the faults extended. The ridge between 1300-2000 m mainly consists of apparently subhorizontally bedded unit D resting upon heavily deformed units A and B. The most part of unit D, however, is only weakly deformed although the lower contacts are sheared, folded and dissected by numerous compressional and extensional faults (Fig. 2).

The coarse gravel and boulder bed of unit F, interpreted as a subglacial deposit that caps the deformational zone at Melaleiti, can also be traced along the entire Fúla zone (Fig. 2, 3F). The gravel follows the ridge-like topography of the deformed unit A below and is equally thick on the ridge crests as in swales between the ridges.

Structural evolution. The zone located between 600 and 900 m comprises a thrust-stack sequence indicating that it was formed by a sub-horizontal, compressional deformation in an ice-marginal or proglacial position (Bennett et al. 1999; Boulton et al. 1999; Bennett 2001; Phillips et al. 2008, 2017; Benn & Evans 2010). The orientations of the thrust sheets and faults suggest an ice-flow from the northwest (Fig. 7). The lower contacts of unit D within the structural zone between 1300-2000 m is interpreted as a thrust boundary based on the shearing and folding concentrated along the contacts. Although no structural measurements could be carried out in this part of the cliffs, it is likely, that the glaciotectonic stress direction was also from the north/northwest. Between 1600-2000 m the cliff is orientated E-W, approximately perpendicular to the main glaciotectonic stress direction, making the beds to appear horizontal in the cliff wall. The presence of the subglacial gravel of unit F on top of all the ridges in the Fúla Bay indicates that they were overridden and perhaps also eroded and reshaped by a glacier after the thrust stacks were formed. The southward

Boreas

2 3 4	575	dipping faults detected within the Fúla structural zone (Fig. 7) might have been developed in		
5 6 7	576	response to this subglacial modification.		
, 8 9 10	577	Ásgil		
11 12	578	The Ásgil structural zone is located in the central part of the Melabakkar-Ásbakkar cliffs, north of		
13 14 15	579	the Ásgil gully, between ~2250 and 2600 m (Fig. 2, 8A). The cliff face at this site is sub-vertical and		
16 17	580	oriented northwest-southeast. The southern part of the section is mostly clean and well exposed		
18 19	581	allowing detailed documentation of deformation structures, whereas the northern part (2250-2400		
20 21 22	582	m; Fig. 8A) is partially concealed by surface wash and debris.		
23 24 25	583	Ásgil can be divided into three main structural units: i) the deformed zone comprising		
26 27	584	stratified gravel of unit B and interbedded silts and sands of unit D. These deformed sediments rest		
28 29	585	on unit A which is not exposed in the cliffs but can be seen on the foreshore at low tide; ii) The		
30 31	586	interbedded unit G, which overlaps the underlying deformed units; and iii) the uppermost Holocene		
32 33 34	587	sequence of littoral gravels (unit H).		
35 36 37	588	The Ásgil deformed zone is divided into two parts based on the style of deformation; (i) the		
38 39	589	northern part (2250-2400 m, Fig. 8A), which is dominated by large-scale folds and (ii) the southern		
40 41 42	590	part (~2400-2700 m, Fig. 8A), which is characterized by stacked, northward dipping thrust blocks.		
43 44 45	591	Ásgil north - structural architecture. The northern part of the Ásgil section (2250-2400 m; Fig. 8A) is		
46 47	592	characterized by a few upright to gently northward verging folds which become progressively		
48 49	593	tighter towards the southeast with amplitudes of up to about 20 m and deform the ice-marginal		
50 51 52	594	sand and gravel of unit B and the silts and sands of unit D.		
53 54 55	595	The northernmost fold is an open syncline (2300-2330 m; Fig. 8A), followed by a closed		
55 56 57 58 59 60	596	anticline at 2330-2350 m (Fig. 8A). They both appear to have fold axes trending approximately		

Page 28 of 71

Boreas

597	southwest-northeast based on measurements from the southeastwards dipping fold limb. Two or
598	three tight/isoclinal folds are also found at ~2350 m (Fig. 8A). Despite being deformed, primary
599	sedimentary structures (e.g. bedding) are usually well-preserved within the sands and gravels of
600	unit B. The folds are dissected by a number of fractures and minor faults (displacement in the order
601	of mm to cm), many of which seem to radiate from the centre of the folds (Fig 8A; ~2300-2350 m).
602	Based on the stratigraphy and the proximity to the southernmost thrust zone at Fúla Bay (1300-
603	2000 m; Fig. 2) these are interpreted to be part of the same structural zone.

Ásqil north-structural evolution. The large folds present in the northern part of the section (at ~2250-2400 m; Fig. 8A) most likely post-date the southern-part as it doesn't show any indications of being overprinted by stress from the northwest (high relief and a lack of overturning) and the sediments affected by the folding appear to structurally overly the deformation zone at Ásgil-south. The folds might be glaciotectonic, possibly representing proglacial deformation formed as the ice was forming the thrust stacks observed south of the zone at Fúla Bay (1300-2000 m; Fig. 2). Alternatively, they could have formed during slumping in response to large-scale gravity flows as the glacier retreated from the area (Boggs 2006). The radiating geometry of most of the faults dissecting the folds suggests that these were developed in response to horizontal shortening of the sediment as it was folded.

Ásgil south - structural architecture. The most notable large-scale structures at the southern part of
Ásgil (2400-2650 m; Fig. 2) are a number of stacked, convex upward thrust-bound blocks of the silts
and sands of unit D (Fig. 8A). Measurement of the lowermost block shows that it dips towards the
north (Fig. 8A). Internally unit D exhibits deformation structures indicative of shearing, apparently
from a northerly direction (e.g. folds and augen structures; Fig. 8B).

Page 29 of 71

Boreas

2 3	621	The lowermost thrust block rests on the sub-horizontally bedded sands and gravels of unit
4 5	622	B. The level of internal deformation within unit B changes laterally. Between 2450 and 2550 m (Fig.
6 7 8	623	8A), unit B is heavily folded and the boundaries between units B and D are interfingering and
9 10	624	diffused. A number of fractures and minor faults, with a displacement usually in the order of
11 12	625	millimetres or centimetres, cross-cut the silts and sands (unit D), and the sands and gravels of unit B
13 14 15	626	(Fig. 8A, B). The deformation gradually becomes less penetrative southward and at the
16 17	627	southernmost part of the section most of the sands and gravels of unit B show little or no evidence
18 19	628	of deformation. However, in this area the boundaries between unit B and D are defined by a thin
20 21 22	629	and highly distorted zone (~50 cm) of layered clay, silt and gravels (Fig. 8C). This zone is locally
23 24	630	offset by both small and large-scale faults and fractures (Fig. 8A, D), including a set of steeply
25 26	631	inclined, southeast dipping open fractures consistent with water-escape structures/hydrofractures
27 28 29	632	formed by the escape of pressurized water under or in front of ice margins (Rijsdijk et al. 1999; Kjær
30 31	633	et al. 2006; Benediktsson et al. 2008; van der Meer et al. 2009). These hydrofractures extend
32 33	634	upward into unit D. They are up to a few meters long and their widths are in the order of
34 35 36	635	centimetres and are infilled by massive and sorted sediments, mainly sand and fine gravel (Fig. 8D).
37 38	636	The sediment infillings of some of these fractures exhibit various sedimentary structures typical of
39 40	637	fluid transport, such as planar parallel-bedding and cross-bedding.
41 42	638	The stratified sand and gravel (unit B) continues at the other side of the Ásgil gully. It is
43 44 45	639	unconformably overlain by a coarse gravel and together they form up to 15 m high and 200 m long
46 47	640	multi-crested pile of well-bedded, sorted sand, gravel and boulder gravel of unit B (Fig. 2, 3C). The
48 49	641	inclined bedding (foresets) within the unit is consistent with apparent palaeoflow direction towards
50 51 52	642	the southeast. Primary sedimentary structures such as planar- and trough-cross beddings are intact
53 54	643	and there are no or signs of glaciotectonic deformation.
55 56 57	644	

Page 30 of 71

Boreas

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
25	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
50	
5/	
58	
59	
60	

645	Ásgil south - Structural evolution. The structural architecture of the southern part of the Ásgil
646	section comprising northward dipping thrust stacks is consistent with its formation in response to
647	thrusting and compressional deformation (Fig. 9) (i.e. Bennett 2001; Benediktsson et al. 2008, 2015;
648	Pedersen 2014; Phillips et al. 2017). Based on this, the Ásgil zone is interpreted as an ice-
649	marginal/proglacial moraine deposited by a glacier advancing from the north (Boulton et al. 1999;
650	Bennett 2001). This was accompanied by release of glacial meltwater and the deposition of the ice-
651	marginal sands and gravels of unit B both before and after the termination of the glacial advance.
652	The highly deformed boundary between units B and D (Fig 8A; ~2450-2600m) provides
653	evidence for displacement of the lowermost block along this interface indicating that the thrust
654	blocks of unit D partially overrode the ice-marginal sediments of unit B. This would have caused
655	elevated porewater pressures in the ice marginal sands and gravels in response to the thickening of
656	the thrust stack causing liquefaction, hydrofracturing and injection of sand and gravel into the base
657	of the lowermost thrust block (Rijsdijk <i>et al.</i> 1999; Kjær <i>et al.</i> 2006; Benediktsson <i>et al.</i> 2008; van
658	der Meer et al. 2009). The localized faulting of the sediments further indicates that some minor
659	deformation continued after the sediments had been drained.
660	The large accumulation of coarse sand and gravels of unit B, at the southern (distal) end of
661	the zone show very little signs of deformation. These sands and gravels are interpreted as
662	subaquatic fan and were most likely formed as the ice margin stood still after the cessation of the
663	advance (Fig. 9). As it is undeformed it shows that the area did not experience further glacial
664	pushing or overriding after the moraine was formed.
665	
666	Ás

Page 31 of 71

Boreas

2 3	667	The Ás structural zone is located in the Melabakkar-Ásbakkar cliffs between ~3400 and 5000 m (Fig.
4 5 6	668	2), which makes it the largest of the structural zones in the entire cliff section and the only
7 8	669	structural zone that does have a clear morphological expression. A detailed analysis was carried out
9 10 11	670	in two separate parts of the Ás structural zone; the northern part at 3500-3700 m (Fig. 2) and the
12 13	671	southern part at 4500-5000 m (Fig. 2). These parts are called Ás-north and Ás-south, respectively.
14 15	672	The cliff face between these two parts (at 3800-4500 m; Fig. 2) was largely obscured due to surface
16 17 18	673	wash and debris cover. However, large-scale folds and northward dipping thrusts could be
19 20	674	identified through the surface wash, clearly showing that this part of the cliff is also deformed.
21 22 23	675	Ás-north - structural architecture. The cliff face at Ás-north is sub-vertical and is oriented NW-SE
24 25	676	(326°-146°). The northern part of the section is ~23 m high, mostly clean and well-exposed, allowing
26 27 28	677	a detailed examination whereas the lowermost ~10 m of the southern part (3575-3680 m; Fig. 10A)
28 29 30	678	is covered in surface wash and debris.
31 32 33	679	The stratigraphy at Ásgil can be divided into three main structural units: i) the deformed
34 35	680	zone comprising the silty-sandy diamicton of unit A and the stratified sands and gravels of unit B; ii)
36 37	681	laminated sand and silt of unit C overlain by the bedded sand and diamicton of unit G; and iii) the
38 39 40	682	uppermost Holocene sequence of littoral gravel with erosional lower contacts (unit H).
41 42 42	683	The most prominent structure is an asymmetrical ridge-like feature at around 3550 m (Fig.
43 44 45	684	10A, B). This feature comprises a series of folded and thrusted sediments including a large-scale
46 47	685	(amplitude at least 30 m and wavelength ~15m), southwest verging, overturned, tight anticlinal fold
48 49 50	686	affecting the silty-sandy diamicton of unit A and stratified sand and gravel of unit B. This fold
50 51 52	687	overlies a smaller, overturned anticline consisting entirely of unit A. The ridge is deformed by a
53 54	688	large number of faults that cut through the sediments on both sides of this feature. These faults are
55 56 57 58	689	generally curved with a displacement ranging from a few cm to several dm. Most of the faults
59		

> cutting through the lower limb of the large anticline are normal faults dipping either to the southeast or the northeast whereas both reverse and normal faults are prominent in the upper parts. The convex upper surface of the ridge is capped by an up to 20 m thick unit of diamictons and stratified sand and gravel of unit B. Internally these gravel and sand beds are undulating and often folded and boudinaged (e.g. at around 3600 m). These beds and the diamicton of unit A can be followed to about 3800 m in the cliff where they have an apparent northward dip with slightly convex upward configuration (Fig. 2). These beds are internally deformed by a number of small faults, mainly normal faults. A number of measurements on faults planes in the lowermost unit (unit A) showed that the faults dip both to the northwest or the southeast (Fig. 10A). An

> 700 approximately 0.5 m thick layer of deformed (ductile) sediment mélange of folded and layered silt,

sand and gravel, which appears to be mostly originated from unit B, separates the stratified sand

and gravel from the undeformed laminated silt and sand of unit G above.

Ás-north – structural evolution. The Ás-north zone is, similar to the Belgsholt, Melaleiti and Ásgil zones, mainly characterized by compressive deformation as a result of pressure from a glacier advancing from the north (northeast-northwest) based on the southwest-verging anticlinal folds and the overall northward dip of the thrusted sediment blocks (Fig. 11; e.g. Bennett 2001; Benediktsson et al. 2008; Pedersen 2014). The large anticline can be interpreted as recording ductile folding as the ice pushed into the sequence (Fig. 11). Continued ice-push stacked up the sediments above it and in front (south) of this fold, and led to the overturning of this anticline. Thrust faults developed in the upper limb and extensional faults in the lower limb of the anticline formed in response to the overturning and subsequent extension of the fold (Fig. 11).

Boreas

713	Comparably to Ásgil, the advance was accompanied an ice-marginal deposition of sands and
714	gravels of unit B, which were subsequently deformed (faulted and boudinaged) possibly in response
715	to continued ice sheet advance. Together with the overturning of the fold this indicates that the
716	moraine underwent subglacial modification (Fig. 11; Aber et al. 1989; Pedersen 2000; van der
717	Wateren 2000; McCarroll & Rijsdijk 2003). However, some of the small normal faults within the
718	gravel (unit B) might have formed by gravity collapse. The sediment mélange capping unit B can be
719	interpreted as a glaciotectonite formed by subglacial shearing of the pre-existing sediments (Evans
720	et al. 2006; Benn & Evans, 2010; Ó Cofaigh et al. 2011). Alternatively, the mélange can be
721	interpreted as a gravity flow deposited as the ice retreated from the moraine.
722	
723	Ás-south - structural architecture. Ás-south is the southernmost part of the Ás structural zone
724	(4500-5000 m; Fig. 2, 12). The section wall is 12-20 m high, steeply inclined and oriented NW-SE.
725	Most of the section was visible and easily accessible, which enabled detailed mapping and
726	measurements of sediments and structures.
777	As south can be divided into three main structural units; i) the folded and faulted zone
121	As-south can be divided into three main structural units. If the folded and faulted zone
728	comprising the stratified sand and gravel of unit B and stratified silty-sandy diamicton of unit A; ii) a
729	deformed silts and sands of unit D with erosive lower contacts which overlies the northern end of
730	unit 1; and iii) the uppermost Holocene sequence of littoral gravels (unit H).
731	This section comprises a folded and thrusted sequence composed of unit A and B that is
732	cross-cut by open fractures and numerous faults with sharp fault planes. The folds usually become
733	smaller in amplitude towards south. Between ~4800 and 4950 m (Fig. 12A) they are overlain by an
734	indistinctively bedded, silts and sands of unit D, which exhibits ductile deformation structures such

Page 34 of 71

Boreas

as boudins and augen structures. The faults found in the lower units (A and B) usually do not
extend upwards into unit D indicating that the faulting predates the deposition of unit D.

Most of the faults form a conjugate set of SE-NW dipping normal faults. The displacement along the planes is commonly in the range of a few cm to a few dm although some have an offset over a meter. This fault pattern is most conspicuous between 4500-4650 m (Fig. 12A) where the faults cross-cut a large, anticlinal open fold with an approximately N-S trending fold axis (Fig. 12A, B), and also in the southernmost part of the cliff between 4800-5000 m (Fig. 12A, C).

In the middle part of the section (4650-4850 m; Fig. 12A), the sequence exhibits a more complex deformation history. Units A and B are folded, thrust repeated and dissected by a number of normal (extensional) and reverse (compressional) faults. These faults cut the sequence at various angles: the normal faults mostly dip to the NW or the SE but thrust faults mainly have a SE dip (Fig. 12A). The fault offsets range from several cm to a few m. A few open fractures infilled by diamicton cut through units A and B in this part of the section. The complicated nature of the deformation in this area made it very hard to trace laterally the individual structural units especially between 4750 and 4800 m (Fig. 12A) where the deformation was most intense.

As-south – structural evolution. The large folds indicate that the sequence experienced shortening due to subhorizontal compression consistent with deformation in an ice-marginal or proglacial setting (e.g. Boulton *et al.* 1999; Benediktsson *et al.* 2010). The orientations of the large anticline between 4500-4650 m and the small syncline at around 4980 m (Fig. 12A) could indicate glaciotectonic stress from either the northwest or southeast. The same applies to the system of the conjugate normal faults. The sense of offset along the thrust faults in the central part of the section (~4700-4750 m; Fig. 12A) that cross-cut unit A and B, indicates that these units were affected by a

757 northwestwards directed stress. This is in contrast with all other evidence from the cliffs indicating

Boreas

2 3 4	758	ice flow from the north. However, these thrust faults are small, they are only seen in a restricted
5 6	759	part of the section and the cliff section probably only reveals part of the glaciotectonic zone due to
7 8	760	the erosive base of units G and H; hence, they could simply be backthrusts formed in response to
9 10 11	761	localized stress (Boulton et al. 1999; Benediktsson et al. 2010). Many of the faults and fractures,
12 13	762	which cross-cut the folds, were open and infilled by typically massive, coarse sediment indicating
14 15	763	extension and subsequent infilling of these fractures. The geometry of the conjugate fault system
16 17 18	764	implies that it was formed by ice-push in association with the folding (Fig. 12A).
19 20	765	There are no unequivocal structural or sedimentological evidence that can tell if the
21 22 23	766	deformation of the sequence was induced by stress from the northwest or southeast. However, as
24 25	767	this zone appears to be linked to the tectonic zone at Ás-north (see Fig. 2), pressure from the
26 27 28	768	northwest seems most plausible. In addition, the decreasing amplitude of the folds towards the
29 30	769	southeast suggests a decreasing stress in that direction and corresponds to multi-crested end
31 32	770	moraine complexes described from modern (e.g. Boulton et al. 1999; Benediktsson et al. 2010) and
33 34 35	771	Late Weichselian (Phillips et al. 2017) glacier environments. This zone is therefore interpreted to
36 37	772	represent proglacial folding and faulting of the sediment package in front (south) of the Ás-north
38 39 40	773	thrust zone (Fig. 11).
41 42 42	774	
43 44 45 46 47	775	Discussion
48 49	776	The overall configuration and the internal architecture of the structural zones in the coastal cliffs in
50 51 52	777	Melasveit indicate a series of subaquatic moraines formed during the interplay between
52 53 54	778	glaciotectonic deformation and ice-marginal sedimentation. After the glacier retreated from the

- area these moraines were covered by glaciomarine, marine and littoral sediments; consequently,

Page 36 of 71

Boreas

> the ridges have no or very little topographical expression on the modern land surface. Below we propose a model for the formation of the structural zones/moraines seen in the coastal cliffs in Melasveit and discuss their implications for the regional ice dynamics and glaciotectonic processes below marine-terminating glaciers (Fig. 13, 14). Direction of ice flow Directional elements measured in this study, such as large-scale faults, thrusts, fold axes and fold vergence indicate that the glaciotectonic stress was applied from the northwest and north/northeast. Thus, the glacier responsible for the glaciotectonics most likely advanced from Borgarfjörður, which agrees with previous research on the glacial geology and glacial history of this area (Fig. 1A) (e.g. Ingólfsson 1987, 1988; Hart 1994; Ingólfsson & Norðdahl 2001; Norðdahl & Pétursson 2005; Norðdahl et al. 2008; Ingólfsson et al. 2010; Norðdahl & Ingólfsson 2015). Based on the predominant southeast-ward sense of shearing the lobate-shaped glacier might have been locally flowing from the fjord (Fig. 14). Hart (1994) and Hart & Roberts (1994) proposed that the deformation in the southernmost part of Melabakkar-Ásbakkar (~4400-5000 m; Fig. 2) was caused by a glacier moving from the south. Although our study revealed a few southward dipping thrust faults at As-south (Fig. 12A; ~4700-4750 m), which could support Hart's hypothesis, these were only found at one location and are small-scale compared to the overall deformation observed in the Melabakkar-Ásbakkar cliffs. Also, As–south is structurally connected to As-north where the glaciotectonic stress direction is most definitely from the north/northwest. Therefore, we suggest that the entire deformation was induced by a glacier flowing southwards from Borgarfjörður.

 Boreas

2 3 4	803	The formation of the Belgsholt and Melabakkar-Ásbakkar structural zones – a sequential
5 6 7	804	model
8 9	805	The internal architecture of the structural zones/moraines is dominated by thrusting and stacking
10 11 12	806	of detached thrust blocks with varying degrees of folding, ductile shearing and brittle faulting
12 13 14	807	(extensional and compressional). Thus, each zone/moraine was formed in the compressional
15 16	808	regime of the glacier in an ice-marginal and/or proglacial position and are thus interpreted as
17 18 19	809	moraines formed during advances or still-stands during an overall stepwise northward retreat (e.g.
20 21	810	Bennett <i>et al.</i> 1999; Bennett 2001; Boulton <i>et al.</i> 1999; Phillips <i>et al.</i> 2002, 2008, 2017;
22 23	811	Benediktsson <i>et al.</i> 2010; Benn & Evans 2010; Johnson <i>et al.</i> 2013). The moraines are thought to
24 25 26	812	reflect periods where the glacier was grounded transmitting shear stress into the sediments.
27 28	813	Between the moraines are zones with no or negligible evidence of glaciotectonic deformation
29 30 21	814	possibly reflecting periods of retreat and lifting of the glacier from the sea bed.
32 33	815	As south combined) is thought to represent the maximum extent of the glacier. The location of the
34 35	010	As south combined is thought to represent the maximum extent of the glaciet. The location of the
36 37 38	818	structures and its subtle morphological expression suggest that this moraine system represents a
39 40	819	lateral extension of the Skorholtsmelar end-moraine complex further inland (see Fig. 1A) as
41 42	820	suggested by Ingólfsson (1988). However, the lack of exposures and obvious morphological
43 44 45	821	expressions of the moraine in the area between the coast and the Skorholtsmelar moraine means
46 47	822	that this correlation remains tentative. A sequential glaciotectonic model is proposed for the
48 49 50	823	formation of the moraines/structural zones at Melabakkar-Ásbakkar and Belgsholt associated with
50 51 52	824	the active retreat of a glacier back to Borgarfjörður (Fig. 13, 14). The model is described in twelve
53 54	825	separate stages below:
55 56 57		

38

1			
2			
3	826		
4			
5	827	1.	The first stage commenced with the advance of the glacier out of Borgarfiörður into the bay
6			
7	010		(Fig. 1A) Once out of the fierd, the ice spread laterally, extending southward to its proposed
8	020		(ing. 1A). Once out of the ijord, the ice spread laterally, extending southward to its proposed
9			
10	829		maximum limit in the As area where it deformed marine sediments of Bølling age (unit A)
11			
12	830		(Ingólfsson 1988; Ingólfsson et al. 2010) to form a prominent, multi-crested thrust moraine
13			
14	831		(~3500-5000 m; Fig 2). The penecontemporaneous deposition of the ice-marginal sediments
15			
10	832		of unit B occurred during this advance with the earlier deposited parts of this sequence also
17	002		
10	022		being deformed as the glacier continued to advance. The structural architecture of the ice
19 20	033		being deformed as the glacier continued to advance. The structural architecture of the ice-
20			
21	834		proximal part of the moraine (As-north) is dominated by thrust stacks and overturned folds
23			
24	835		whereas the ice-distal part of the moraine (Ás-south) comprises open folding of the marine
25			
26	836		and ice-marginal sediments (units A and B), which are also cross cut by both extensional and
27			
28	837		compressional faults. These folds observed at As-south are thought to have formed at, or
29			
30	000		some distance in front (proglacial) of the advancing ice margin as a result of the propagation
31	020		some distance in nont (progracial) of the advancing ice margin as a result of the propagation
32			
33	839		of stress into the forefield.
34			
35	840	2.	The glacier retreated northwards to an unknown position north of As and the laminated silts
36			
3/	841		and sands of unit C were deposited.
38			
39 40	842	3.	The glacier re-advanced resulting in an erosion and deformation of the uppermost part of
40 41			
41	8/13		unit C (seen in Áshakkar hetween ~3100-3300 m (Fig. 2)). There is no constructional
43	045		ante (seen in Asbakkar between "5100 5500 in (ing. 2)). There is no constructional
44	044		landform visible in the differentian of this place but only on exercise contact with mainly
45	844		landform visible in the cliff section at this place but only an erosive contact with mainly
46			
47	845		ductile deformation below. Therefore this remains uncertain.
48			
49	846	4.	The glacier retreated and the silts and sands of unit D were deposited.
50			
51	847	5.	The stage 4 retreat was followed by another re-advance causing a thrust stacking at the ice-
52			
53	848		margin and the formation of a moraine at Ásgil-south (~2600 m· Fig. 2, 8A). This advance
54	0.0		
55	040		was accompanied by a deposition of the ice marginal outwash sodiments of unit D at Ásail
56	049		was accompanied by a deposition of the ice-marginal outwash sediments of unit B at Asgli
57			
58			

Boreas

1			
2 3 4	850		(Fig. 8A, B) that were subsequently deformed by the ice-push. The subaqueous fan was
5 6	851		deposited at the ice margin when the glacier had reached a still-stand position (between
7 8	852		2600-2800 m; Fig. 2, 3B). This fan is undeformed indicating that it was not overridden after
9 10 11	853		it had been deposited. The depression between the ice margin (at Ásgil-south) and the
12 13	854		deformation zone at Ásbakkar was gradually infilled by the bedded sediments of unit G.
14 15	855	6.	The glacier retreated further north and the silts and sands of unit D found north of Ásgil
16 17	856		were deposited.
18 19 20	857	7.	Re-advances or oscillations of the ice margin resulted in ice marginal thrusting and folding of
21 22	858		Units A, B and D, and the development of the recessional thrust moraines at Fúla around
23 24	859		600-900 m and possibly other smaller ridges in Fúla Bay.
25 26 27	860	8.	The glacier retreated to the north of the Melabakkar-Ásbakkar coastal cliffs and deposited
27 28 29	861		the interbedded silts and sands of unit E exposed at Melaleiti.
30 31	862	9.	The glacier re-advanced causing the thrust stacking and brittle faulting of lithofacies A and E
32 33	863		observed at Melaleiti at around 0-300 m (Fig. 2).
34 35 36	864	10.	. The glacier advanced to a position somewhere around 2000 m, overriding the thrust-block
37 38	865		moraine at Melaleiti and the recessional thrust moraines at Fúla Bay (0-2000 m; Fig. 2). This
39 40	866		resulted in a subglacial, extensional deformation, erosion and deposition of subglacial
41 42 42	867		gravels and boulders of unit F on-lapping the thrust-block moraine at Melaleiti and the
43 44 45	868		moraines at Fúla Bay. A moraine composed of imbricated thrust stacked blocks and a
46 47	869		subaquatic fan of unit B (between 1500-2000 m; Fig. 2) was formed at the ice margin at
48 49	870		Ásgil-north. The folds seen at Ásgil-north (~2250-2400; Fig. 2) most likely represent
50 51 52	871		proglacial folding of the distal (southern) side of the moraine fan. Alternatively, these folds
53 54	872		could have been formed due to slumping on the unstable slopes of the moraines at Ásgil or
55 56	873		Fúla.
57 58 59			

Page 40 of 71

Boreas

874	11. The glacier retreated and the depressions between the moraines were rapidly infilled by the
875	upward fining sequence of the bedded marine sediments of unit G (Fig. 2). The lithofacies of
876	unit G are undeformed and overlap the recessional moraines in the Fúla Bay and the thrust-
877	block moraine at Melaleiti with little or no discernible lateral variation in grain size. This
878	indicates concurrent sediment deposition and rapid glacier retreat from Ásgil-north without
879	the formation of ice marginal fans or deformation of the bedded glaciomarine sedimentary
880	infill between the ridges. The glacier retreated to some place north of the study area and
881	the upward fining sequence of unit E exposed at Belgsholt was deposited.
882	12. This stage occurred following a further phase of retreat and is characterized by the ice-
883	marginal to proglacial folding and thrusting observed at Belgsholt, which is the
884	northernmost and youngest structural zone/-moraine exposed in the coastal cliffs of
885	Melasveit.
886	Timing of the glacier advances
887	The exact age of the glacial advances in Melasveit is unknown. Ten radiocarbon dates have been
888	published from the deformed sediments (Units A and D) within the Melaleiti, Ásgil and Ás structural
889	zones ranging between c. 13.4 and 14.6 cal. ka BP (Ingólfsson 1987, 1988; Ingólfsson et al. 2010;
890	Norðdahl & Ingólfsson 2015). These dates only record the maximum ages of deformation events.
891	Due to lack of <i>in situ</i> fossils within the undeformed sediments separating the ridges it has not been
892	possible to determine the minimum age for these events. Ingólfsson (1988) suggested two separate
893	advances based on radiocarbon dates and the stratigraphy of the cliff sections; the first occurring in
894	late Bølling or Allerød (just after c. 14.0 cal. ka BP) and the second during the Younger Dryas.
895	However, our model involves a highly dynamic glacier which advanced and retreated multiple
896	times, possibly during a single overall phase of retreat. Our data also indicate that the glaciomarine

Boreas

897	sediments rapidly accumulated in front of the oscillating glacier continuously providing material for
898	the construction of new moraines. Although it is hard to estimate how rapid this deposition was,
899	studies have shown that deposition rates of ice-proximal sediments similar to the bedded
900	glaciomarine sediments within and between the Melasveit ridges, can be in the order of decimetre
901	or even meters per year (Eyles <i>et al.</i> 1985; Cowan <i>et al.</i> 1999; Jaeger & Nittrouger 1999; Gilbert <i>et</i>
902	<i>al.</i> 2002; Trusel <i>et al.</i> 2010).
903	Based on our model and the age of the sediments in the Melabakkar-Ásbakkar cliffs
904	(Ingólfsson 1988; Ingólfsson et al. 2010), the formation of all the moraines may have occurred after
905	c. 13.4 cal. ka BP, or most likely during the Younger Dryas chronozone (c . 12.8 – 11.7 cal. ka BP).
906	During that time, glaciers in Iceland are known to have expanded considerably and the regional
907	relative sea level was high enough to allow the deposition of the up to 30 m thick marine sediments
908	between and stratigraphically on top of the deformed moraine ridges (Norðdahl et al. 2008;
909	Ingólfsson <i>et al.</i> 2010).
910	
911	Conclusions
912	We have constructed a model of an active retreat of a Late Weichselian, marine-terminating glacier
913	based on a detailed mapping of stratigraphy and glaciotectonics exposed in the coastal cliffs of
914	Belgsholt and Melabakkar-Ásbakkar in Melasveit, lower Borgarfjörður.
915	• The glaciotectonics reveal a series of well-preserved moraines formed by a marine-
916	terminating glacier advancing from the Borgarfjörður fjord, north of the study area.
917	• Each moraine marks a former ice-marginal position. Their internal structures are dominated
918	by large-scale thrusting and stacking of detached blocks of marine sediments with varying

Page 42 of 71

Boreas

•		
2	919	degrees of folding, ductile shearing and brittle faulting. This deformation was accompanied
4 5	920	by the deposition of ice-marginal subaquatic fans that were largely deformed by continued
6 7	024	
8 9	921	ice-push and integrated into the glaciotectonics.
10 11	922	• The southernmost and largest structural zone exposed in the Melabakkar-Ásbakkar coastal
12 13	923	cliffs is a multi-crested terminal moraine indicating the maximum extent of the
14 15	924	Borgarfjörður glacier. The other moraines in the series generally become younger towards
16 17 18	925	the north representing oscillatory advances during an overall northward retreat.
19 20	926	• During this active retreat, glaciomarine sediments were continuously deposited in front of
21 22	927	the glacier as source material for new moraines. As the glacier receded, the depressions
23 24 25	928	between the ridges were rapidly infilled by glaciomarine sediments and later, after the
25 26 27	929	isostatic rebound of the area, covered by littoral and aeolian sediments.
28 29	930	• Although the exact age of the glacial advances in Melasveit is unknown, previously obtained
30 31	931	radiocarbon ages of marine shells within the deformed marine sediments suggest that these
32 33 34	932	advances most likely occurred during the Younger Dryas chronozone.
35 36	933	This case study exemplifies glaciotectonic and depositional processes occurring in ice-
37 38	934	marginal/proglacial marine environments. It highlights the dynamic nature of marine-
39 40 41	935	terminating glaciers and may aid in the understanding and interpretation of their
41 42 43	936	sedimentological and geomorphological records.
44 45	937	
46 47	938	Acknowledgements. This project is funded by the Icelandic Research Fund (grant no. 141002-051 to
48 49 50	939	Í.Ö. Benediktsson), the Royal Physiographic Society in Lund (grants to Th. Sigfúsdóttir and Í.Ö.
50 51 52	940	Benediktsson), with support from the British Geological Survey (to E. Phillips, M. Kirkham, E.
53 54	941	Haslam). The LiDAR scanning and photographing of the Melabakkar-Ásbakkar coastal cliffs by
55 56	942	Matthew Kirkham and Ed Haslam is gratefully acknowledged. We would like to thank Sandrine Roy,

 Boreas

-		
2 3	943	Heimir Ingimarsson and Kim Teilmann for their invaluable assistance and discussions in the field,
4 5 6	944	and Ólafur Ingólfsson and Hreggviður Norðdahl for fruitful discussions on the glacial history of the
7 8	945	area. Furthermore, we also thank Per Möller for his useful comments on the manuscript and James
9 10	946	Aber and Matthew Bennett for constructive reviews that helped us improve this paper. E. Phillips
11 12 13	947	publishes with the permission of the Executive Director of the British Geological Survey, NERC.
14 15	0.4.9	Poforoncoc
16 17	948	References
18 19	949	Aber, J. S. & Ber, A. 2007: Glaciotectonism. 256 pp. Developments in Quaternary Science 6. Elsevier,
20 21 22	950	Amsterdam.
23 24	951	Aber, J. S., Croot, D. G. & Fenton, M. M. 1989: Glaciotectonic landforms and structures. 200 pp.
25 26 27	952	Glaciology and Quaternary Geology Series. Kluwer Academic Publishers, Dordrecht.
28 29 30	953	Allmendinger, R. W., Cardozo, N. C. & Fisher, D. M. 2012: Structural Geology Algorithms: Vectors
31 32 22	954	and Tensors. 302 pp. Cambridge University Press, Cambridge.
34 35	955	Benediktsson, Í. Ö., Möller, P., Ingólfsson, Ó., van der Meer, J. J. M., Kjær, K. H. & Krüger, K. 2008:
36 37	956	Instantaneous end moraine and sediment wedge formation during the 1890 surge of Brúarjökull,
38 39 40	957	Iceland. Quaternary Science Reviews 27, 209-234.
41 42 43	958	Benediktsson, Í. Ö., Schomacker, A., Lokrantz, H. & Ingólfsson, Ó. 2010: The 1890 surge end
44 45	959	moraine at Eyjabakkajökull, Iceland: a re-assessment of a classic glaciotectonic locality. Quaternary
46 47 48	960	<i>Science Reviews 29,</i> 484-506.
49 50	961	Benediktsson, Í. Ö., Schomacker, A., Johnson, M. D., Geiger, A.J., Ingólfsson, Ó. & Guðmundsdóttir,
52 53	962	E. R. 2015: Architecture and structural evolution of an early Little Ice Age terminal moraine at the
54 55 56 57 58	963	surge-type glacier Múlajökull, Iceland. <i>Journal of Geophysical Research 120</i> , 1895-1910.

Page 44 of 71

		44
g	64	Benn, D. I. & Evans, D. J. A. 2010: Glaciers and Glaciation. 802 pp. Hodder education, London.
9	65	Bennett, M. R. 2001. The morphology, structural evolution and significance of push moraines.
g	66	Earth-Science Reviews 53, 197-236.
9	67	Bennett, M. R., Hambrey, M. J., Huddart, D., Glasser, N. F. & Crawford, K. 1999: The landform and
9	68	sediment assemblage produced by a tidewater glacier surge in Kongsfjorden, Svalbard. Quaternary
9	69	<i>Science Reviews 18,</i> 1213-1246.
g	70	Bennett, M. R., Huddart, D., Waller, R. I., Cassidy, N., Tomio, A., Zukowskyj, P., Midgley, N. G., Cook,
9	71	S. J., Gonzalez, S. & Glasser, N. F. 2004: Sedimentary and tectonic architecture of a large push
g	72	moraine: a case study from Hagafellsjökull - Eystri, Iceland. Sedimentary Geology 172, 269-292.
g	73	Boggs, S. 2006: Principles of Sedimentology and Stratigraphy. 662 pp. Pearson Prentice Hall, Upper
9	74	Saddle River.
9	75	Boulton, G. S., van der Meer, J. J. M., Beets, D. J., Hart., J. K. & Ruegg, G. H. J. 1999: The sedimentary
9	76	and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen.
9	77	Quaternary Science Reviews 18, 339-371.
9	78	Boulton, G. S., van der Meer, J. J. M., Hart, J, Beets, D., Ruegg, G. H. J., van der Wateren, F. M. &
9	79	Jarvis, J. 1996: Till and moraine emplacement in a deforming bed surge - an example from a marine
9	80	environment. Quaternary Science Reviews 15, 691-987.
9	81	Cardozo, N. & Allmendinger, R. W. 2013: Spherical projections with OSXStereonet. Computers and
9	82	<i>Geosciences</i> 51, 193-205.
9	83	Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W. &
9	84	McCabe, A. M. 2009: The last glacial maximum. Science 325, 710-714.

Boreas

1		
2 3 4	985	Cowan, E. A, Seramur, K. C., Cai, J. & Powell., R. D. 1999: Cyclic sedimentation produced by
5 6	986	fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord.
7 8 9	987	Sedimentology 46, 1109-1126.
10 11	988	Croot, D. G. 1987: Glacio-tectonic structures: a mesoscale model of thin-skinned thrust sheets?
12 13 14	989	Journal of Structural Geology 9, 797-808.
15 16 17	990	Dowdeswell, J. A. & Vásquez, M. 2013: Submarine landforms in the fjords of southern Chile:
18 19	991	implications for glacimarine processes and sedimentation in a mild glacier-influenced environment.
20 21 22	992	Quaternary Science Reviews 64, 1-19.
23 24 25	993	Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J. & Veillette, J. J. 2002:
25 26 27	994	The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science
28 29 30	995	Reviews 21, 9-31.
31 32	996	Evans, D. J. A. & Benn, D. I. 2004: A Practical Guide to the Study of Glacial Sediments. 266 pp.
33 34 35	997	Arnold, London.
36 37	998	Evans, D. J. A., Phillips, E. R, Hiemstra, J. F. & Auton, C. A. 2006: Subglacial till: Formation,
38 39 40	999	sedimentary characteristics and classification. <i>Earth-Science Reviews 78</i> , 115-176.
41 42 43	1000	Flink, A. E., Noormets, R., Kirchner, N., Benn, D. I., Luckman, A. & Lovell., H. 2015: The evolution of a
44 45	1001	submarine landform record following recent and multiple surges of Tunabreen glacier, Svalbard.
46 47 48	1002	Quaternary Science Reviews 108, 37-50.
49 50 51	1003	Franzson, H. 1978: Structures and petrochemistry of the Hafnarfjall-Skarðsheiði central volcano and
52 53 54 55	1004	the surrounding basalt succession, W-Iceland. Ph.D. thesis, University of Edinburgh, 264 pp.
56 57 58		
59		

Page 46 of 71

Boreas

1005	Gilbert, R., Nielsen, N., Möller, H., Desloges, J.R. & Rasch, M. 2002: Glacimarine sedimentation in
1006	Kangerdluk (Disko Fjord), West Greenland, in response to a surging glacier. Marine Geology 191, 1-
1007	18.
1008	Harris, C., Williams, G., Brabham, P., Eaton, G. & McCarroll, D. 1997: Glaciotectonized Quaternary
1009	sediments at Dinas Dinlle, Gwynedd, North Wales, and their bearing on the style of deglaciation in
1010	the Eastern Irish Sea. Quaternary Science Reviews 16, 109-127.
1011	Hart, J. K. 1994: Proglacial glaciotectonic deformation at Melabakkar- Asbakkar, west Iceland.
1012	Boreas 23, 112-121.
1013	Hart, J. K. & Roberts, D. H. 1994: Criteria to distinguish between subglacial glaciotectonic and
1014	glaciomarine sedimentation, I. Deformation styles and sedimentology. Sedimentary Geology 91,
1015	191-213.
1016	Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. 2016: The last Eurasian
1017	ice sheets – a chronological database and time-slice reconstruction, DATED-1. <i>Boreas</i> , 45, 1-45.
1018	Håkansson, S. 1983: A reservoir age for the coastal waters of Iceland. GFF 105, 65–68.
1019	
1020	Ingólfsson, Ó. 1987: The Late Weichselian glacial geology of the Melabakkar- Ásbakkar coastal cliffs,
1021	Borgarfjörður, W-Iceland. <i>Jökull 37</i> , 57-81.
1022	
1023	Ingólfsson, Ó. 1988: Glacial history of the lower Borgarfjörður area, western Iceland. GFF 110, 293-
1024	309.
1025	Ingólfsson, Ó., Norðdahl, H. & Schomacker, A. 2010: Deglaciation and Holocene Glacial History of
1026	Iceland. Developments in Quaternary Sciences 13, 51-68.

Boreas

1		
2 3 4	1027	Ingólfsson, Ó. & Norðdahl, H. 2001: High relative sea level during the Bølling interstadial in Western
5 6	1028	Iceland: a reflection of ice-shelf collapse and extremely rapid glacial unloading. Arctic, Antarctic,
7 8	1029	and Alpine Research 33, 231-243.
9 10 11 12	1030	Jaeger, J. M. & Nittrouer, C. A. 1999: Marine record of surge-induced outburst floods from the
12 13 14	1031	Bering Glacier, Alaska. Geology 27, 847-850.
15 16 17	1032	Jennings, A., Syvitski, J., Gerson, L., Grönvold, K., Geirsdóttir, Á., Harðardóttir, J., Andrews, J. &
18 19	1033	Hagen, S. 2000: Chronology and paleoenvironments during the late Weichselian deglaciation of the
20 21 22	1034	southwest Iceland shelf. <i>Boreas 29,</i> 167-183.
23 24 25	1035	Johnson, M.D., Benediktsson, Í, Ö. & Björklund, L. 2013: The Ledsjö end moraine – a subaquatic
25 26 27	1036	push moraine composed of glaciomarine clay in central Sweden. Proceedings of the Geologists
28 29 30	1037	Association 124, 738-752.
31 32	1038	Johnson, M.D. & Ståhl, Y. 2010: Stratigraphy, sedimentology, age and palaeoenvironment of marine
33 34 35	1039	varved clay in the Middle Swedish end-moraine zone. <i>Boreas 39</i> , 199-214.
36 37	1040	Kjær, K. H., Larsen, E., van der Meer, J. J .M., Ingólfsson, Ó., Krüger, J., Benediktsson, Í. Ö., Knudsen,
38 39 40	1041	C. G. & Schomacker, A. 2006: Subglacial decoupling at the sediment/bedrock interface: a new
41 42 43	1042	mechanism for rapid flowing ice. Quaternary Science Reviews 25, 2704-2712.
44 45	1043	Krüger, J. & Kjær, K. H. 1999: A data chart for field description and genetic interpretation of glacial
46 47	1044	diamicts and associated sediments - with examples from Greenland, Iceland, and Denmark. Boreas
48 49 50	1045	<i>28,</i> 386- 402.
51 52 53	1046	Lee, J. R. & Phillips, E. 2013: Glaciotectonics-a key approach to examining ice dynamics, substrate
54 55 56 57 58 59	1047	rheology and ice-bed coupling. <i>Proceedings of the Geologists' Association 124</i> , 731-737.

2		
3 4	1048	Lee, J. R., Phillips, E., Booth, S. J., Rose, J., Jordan, H. M., Pawley, S. M., Warren, M. & Lawley, R. S.
5 6	1049	2013: A polyphase glacitectonic model for ice-marginal retreat and terminal moraine development:
7 8	1050	the Middle Pleistocene British Ice Sheet, northern Norfolk, UK. Proceedings of the Geologists'
9 10 11	1051	Association 124, 753-777.
12 13 14	1052	Lønne, I. 1995: Sedimentary facies and depositional architecture of ice-contact glaciomarine
15 16	1053	systems. Sedimentary Geology 98, 13-43.
17 18 19	1054	Lønne, I. & Nemec, W. 2011: The kinematics of ancient tidewater ice margins: Criteria for
20 21	1055	recognition from grounding-line moraines. Geological Society of London Special Publications 354,
22 23 24	1056	57-75.
25 26 27	1057	Lønne, I., Nemec, W., Blikra, L.H. & Lauritsen, T. 2001: Sedimentary architecture and dynamic
28 29	1058	stratigraphy of a marine ice-contact system. <i>Journal of Sedimentary Research</i> 71, 922-943.
30 31 32	1059	Magnúsdóttir, M. & Norðdahl, H. 2000: Aldur hvalbeins og fornra fjörumarka í Akrafjalli (English
33 34	1060	summary: Re-examination of the deglaciation history of the area around Akrafjall in South-western
35 36 37	1061	Iceland). Náttúrufræðingurinn 69, 177-188.
38 39 40	1062	Maizels, J. 1997: Jökulhlaup deposits in proglacial areas. Quaternary Science Reviews 16, 793-819.
41 42 43	1063	Marren, P. M. 2005: Magnitude and frequency in proglacial rivers: a geomorphological and
44 45 46	1064	sedimentological perspective. Earth-Science Reviews 70, 203-251.
47 48	1065	van der Meer, J.J.M., Kjær, K.H., Krüger, J., Rabassa, J. & Kilfeather, A.A. 2009: Under pressure:
49 50 51	1066	clastic dykes in glacial settings. Quaternary Science Reviews 28, 708-720.
52 53 54	1067	McCarroll, D. & Rijsdijk, K. F. 2003: Deformation styles as a key for interpreting glacial depositional
55 56 57 58 59	1068	environments. Journal of Quaternary Science 18, 473-489.

Boreas

1		
2 3	1069	Nichols, G. 2009: Sedimentology and Stratigraphy, 432 pp. Wiley-Blackwell, Oxford.
4		
5 6 7	1070	Norðdahl, H. & Ingólfsson, Ó. 2015: Collapse of the Icelandic ice sheet controlled by sea-level rise?
8 9	1071	Arktos 1, 13.
10 11 12	1072	Norðdahl, H., Ingólfsson, Ó., Pétursson, H. G. & Hallsdóttir, M. 2008: Late Weichselian and Holocene
13 14 15	1073	environmental history of Iceland. <i>Jökull 58</i> , 343-364.
16 17	1074	Norðdahl, H. & Pétursson, H. G. 2005: Relative sea level changes in Iceland: New aspects of the
19 20	1075	Weichselian deglaciation of Iceland. In: Iceland-Modern Processes and Past Environments. Eds.
21 22	1076	Caseldine, C., Russel, A., Harðardóttir, J. & Knudsen, Ó. Developments in Quaternary Science 5, 25-
23 24 25	1077	78.
25 26 27	1078	Ottesen, D. & Dowdeswell, J. A. 2006: Assemblages of submarine landforms produced by tidewater
28 29 30	1079	glaciers in Svalbard. Journal of Geophysical Research 111, F01016. doi: 10.1029/2005JF000330.
31 32	1080	Ottesen, D., Dowdeswell J. A., Benn, D. I., Kristensen, L., Christiansen, H. H., Christensen. O.,
33 34 35	1081	Hansen, L., Lebesbye, E., Forwick, M. & Vorren, T.O. 2008: Submarine landforms characteristics of
36 37 38	1082	glacier surges in two Spitsbergen fjords. Quaternary Science Reviews 27, 1583-1599.
39 40	1083	Ó Cofaigh, C. & Dowdeswell, J. A. 2001: Laminated sediments in a glacimarine environments:
41 42 43	1084	diagnostic criteria for their interpretation. Quaternary Science Reviews 20, 1411-1436.
44 45 46	1085	Ó Cofaigh, C., Dunlop, P. & Benetti, S. 2012: Marine geophysical evidence for Late Pleistocene ice
47 48	1086	sheet extent and recession off northwest Ireland. Quaternary Science Reviews 44, 147-159.
50 51	1087	Ó Cofaigh, C., Evans, D. J. A. & Hiemstra, J. F. 2011: Formation of a stratified subglacial 'till'
52 53 54	1088	assemblage by ice-marginal thrusting and glacier overriding. Boreas 40, 1-14.
55 56 57 58		
50 59		

Page 50 of 71

Boreas

2 3	1089	Patton, H., Hubbard, A., Bradwell, T. & Schomacker, A. 2017: The configuration, sensitivity and rapid
4 5 6	1090	retreat of the Late-Weichselian Icelandic ice sheet. Earth Science Reviews 166, 223-245.
7 8 9	1091	Pedersen, S.A.S. 2000. Superimposed deformation in glaciotectonics. Bulletin of Geological Society
10 11 12	1092	of Denmark 46, 125-46.
13 14	1093	Pedersen, S. A. S. 2005: Structural analysis of the Rubjerg Knude glaciotectonic complex,
15 16 17	1094	Vendsyssel, northern Denmark. Geological Survey of Denmark and Greenland, Bulletin 8, 192 pp.
18 19 20	1095	Pedersen, S. A. S. 2014: Architecture of Glaciotectonic Complexes. <i>Geosciences 4</i> , 269-296.
21 22 23	1096	Phillips, E. R, Evans, D. J. A. & Auton, C.A. 2002: Polyphase deformation at an oscillating ice margin
24 25 26	1097	following the Loch Lomond Readvance, central Scotland, UK. Sedimentary Geology 149, 157-182.
27 28	1098	Phillips, E., Lee, J. R. & Burke, H. 2008: Progressive proglacial to subglacial deformation and
29 30	1099	syntectonic sedimentation at the margins of the Mid-Pleistocene British Ice Sheets: evidence from
31 32 33	1100	north Norfolk, UK. Quaternary Science Reviews 27, 1848-1871.
34 35 36	1101	Phillips, E., Lee, J. R. & Evans, H. M. 2011: Glacitectonics - Field Guide. Quaternary Research
37 38 39	1102	Association, Pontypool.
40 41	1103	Phillips, E. & Merritt, J. 2008: Evidence for multiphase water-escape during rafting of shelly marine
42 43 44	1104	sediments at Clava, Inverness-shire, NE Scotland. Quaternary Science Reviews 27, 988-1011.
45 46 47	1105	Phillips, E. & Hughes, L. 2014. Hydrofracturing in response to the development of an
48 49	1106	overpressurised subglacial meltwater system during drumlin formation: an example from Anglesey,
50 51 52	1107	NW Wales. Proceedings of the Geologists' Association 125, 269-311.
53 54	1108	Phillips, E. 2017: Glacitectonics. In Menzies, J. & van der Meer, J. J .M. (eds.): Past Glacial
55 56 57 58 59	1109	Environments, 467-502. Elsevier, Amsterdam, Oxford, Cambridge MA.

1		
2 3 4	1110	Phillips, E., Cotterill, C., Johnson, K., Crombie, K., James, L., Carr, S., Ruiter, A. 2017: Large-scale
5 6	1111	glaciotectonic deformation in response to active ice sheet retreat across Dogger Bank, (southern
7 8 9	1112	central North Sea) during the Last Glacial Maximum. Quaternary Science Reviews 179, 24-47.
10 11	1113	Powell, R. D. 2003: Subaquatic land systems: fjords. In Evans, D.J.A. (ed.): Glacial Landsystems, 313-
12 13 14	1114	347. Arnold, London.
15 16 17	1115	Powell, R. D. & Domack, E. W. 1995: Modern glaciomarine environment: In Menzies, J. (ed.):
18 19	1116	Modern Glacial Environments: Processes, Dynamics, and Sediments; Glacial Environments 1, 445-
20 21 22	1117	486. Oxford, Butterworth-Heinmann.
23 24	1118	Powell, R. D. & Molnia, B. F. 1989: Glacimarine sedimentary processes, lithofacies and morphology
25 26 27	1119	of the south-southeast Alaska shelf and fjords. <i>Marine Geology 85</i> , 359-390.
28 29 30	1120	Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk, Ramsey, C., Buck, C. E., Cheng,
31 32	1121	H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté,
33 34 25	1122	C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S.
35 36 37	1123	W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. &
38 39	1124	van der Plicht, J. 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years
40 41 42	1125	cal BP. <i>Radiocarbon 55</i> , 1869-1887.
43 44	1126	Rijsdijk, K. F., Warren, W. P. & van der Meer, J. J. M. 2010: The glacial sequence at Killiney, SE
45 46 47	1127	Ireland: terrestrial deglaciation and polyphase glacitectonic deformation. Quaternary Science
48 49 50	1128	Reviews 29, 696-719.
50 51 52	1129	Rijsdijk, K. F., Owen, G., Warren, W. P., McCarroll, D. & van der Meer, JJ. M. 1999: Clastic dykes in
53 54	1130	over-consolidated tills: evidence for subglacial hydrofracturing at Killiney Bay, eastern Ireland.
55 56 57 58 59 60	1131	Sedimentary Geology 129, 111-126.

1		
2 3 4	1132	Russell, A. J., Roberts, M. J., Fay, H., Marren, P. M., Cassidy, N. J., Tweed, F. S. & Harris, T. 2006:
5 6	1133	Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and
7 8 9	1134	geomorphology. <i>Geomorphology 75,</i> 33-64.
10 11	1135	Rydningen, T. A., Vorren, T. O., Laberg, J. S. & Kolstad, V, 2013: The marine-based NW
12 13 14	1136	Fennoscandian ice sheet: glacial and deglacial dynamics as reconstructed from submarine
15 16 17	1137	landforms. Quaternary Science Reviews 68, 126-141.
18 19	1138	Seramur, K. C., Powell, R. D. & Carlson, P. R. 1997: Evaluation of conditions along the grounding line
20 21	1139	of temperate marine glaciers: an example from Muir Inlet, Glacier Bay, Alaska. Marine Geology 140,
22 23 24	1140	307-327.
25 26 27	1141	Símonarson, L. 1981: Upper Pleistocene and Holocene marine deposits and faunas on the north
28 29	1142	coast of Nugssuaq, West Greenland. Grønlands geologiske undersøgelse 140, 1-107.
30 31 32	1143	Syvitski, J. P., Jennings, A. E. & Andrews, J. T. 1999: High-resolution seismic evidence for multiple
33 34 35	1144	glaciation across the southwest Iceland Shelf. Arctic, Antarctic, and Alpine Research 31, 50-57.
36 37	1145	Sættem, J. 1994: Glaciotectonic structures along the southern Barents shelf margin. In Warren,
38 39 40	1146	W.P. & Croot, D.G. (eds.): Formation and deformation of glacial deposits, 95-113. A.A. Balkema,
41 42	1147	Rotterdam.
43 44 45	1148	Thomas, G. S. P. & Chiverrell, R. C. 2007: Structural and depositional evidence for repeated ice-
46 47	1149	marginal oscillation along the eastern margin of the Late Devensian Irish Sea Ice Stream.
48 49 50 51	1150	Quaternary Science Reviews 26, 2375-2405.
52 53		
54 55		
57		
58 59		
60		

1		
2 3 4	1151	Trusel, L. D., Powell, R. D., Cumpston, R. M. & Brigham-Grette, J. 2010: Modern glacimarine
5 6	1152	processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater
7 8 9	1153	glaciers, Kongsfjorden, Svalbard. The Geological Society of London, Special Publications 344, 89-102.
10 11 12	1154	Vaughan - Hirsch, D. P., Phillips, E., Lee, J. R. & Hart, J. 2013: Micromorphological analysis of poly-
12 13 14	1155	phase deformation associated with the transport and emplacement of glaciotectonic rafts at West
15 16 17	1156	Runton, north Norfolk, UK. <i>Boreas 42</i> , 376-394.
18 19	1157	van der Wateren, F. M., Kluiving, S. J. & Bartek, L. R. 2000: Kinematic indicators of subglacial
20 21	1158	shearing. In Maltman, A. J., Hubbard, B. & Hambrey, M. J. (eds.): Deformation of Glacial Materials,
22 23 24	1159	259-278. Geological Society of London, Special Publications 176.
25 26 27	1160	Williams, G. D., Brabham, P. J., Eaton, G. P. & Harris, C. 2001: Late Devensian glaciotectonic
28 29	1161	deformation at St Bees, Cumbria: a critical wedge model. Journal of the Geological Society 158, 125-
30 31 32	1162	135.
33 34	1163	Winkelmann, D., Jokat, W., Jensen, L. & Schenke, H-W. 2010: Submarine end moraines on the
35 36 27	1164	continental shelf off NE Greenland- Implications for Late Glacial dynamics. Quaternary Science
38 39	1165	Reviews 29, 1069-1077.
40 41 42 43	1166	
44 45 46	1167	List of Figure captions:
47 48	1168	Figure 1. A. The Melasveit study area (red box) and the surrounding regions. Arrows indicate
49 50	1169	the ice flow into the region during the Weichselian glaciation according to Ingólfsson (1988).
51 52 53	1170	B. A map of Melasveit. Thick black lines indicate the Belgsholt and Melabakkar-Ásbakkar
55 54 55 56	1171	coastal sections and blue lines the structural zones which were studied in detail in this paper.
57 58		
59 60		

Page 54 of 71

Boreas

1		
2 3	1172	C. The northern part of the Melabakkar coastal cliff. D. The Belgsholt coastal section. Note the
4		
5 6 7	1173	ridge-like shape of the landform that contains the section.
7 8 9	1174	Figure 2. Overview diagrams of the coastal cliffs from Belgsholt in the north throughout
10 11	1175	Melabakkar-Ásbakkar. The diagrams where drawn on the basis of terrestrial LiDAR images,
12 13 14	1176	except at ~400-2000 and 3900-4500 m, where photographs were used. The diagram is
15 16	1177	vertically exaggerated (2x). Shaded areas represent sections covered by water and debris that
17 18 10	1178	prevented detailed investigation of both structures and stratigraphy.
20 21	1179	Figure 3. Examples of sediment composition and contact configuration within some of the
22 23 24	1180	eight (A-H) identified sediment units within the Melabakkar-Ásbakkar coastal cliffs. A. Close-
25 26	1181	up view of the silty-sandy diamicton of unit A (Melaleiti at ~100 m, Fig. 2). Note the embedded
27 28	1182	unbroken Chlamys islandica shell. B. Unit D silts and sands of overlaying unit B stratified sand
29 30 31	1183	and gravel. The contact between the sediment units is sheared and folded and is cross cut by
32 33	1184	a number of small faults. On top in unit H beach-face sediment. Cliff section at around 2550 m
34 35 36	1185	(Fig. 2). C. Unit B locally upward coarsening beds of stratified sand and gravel; the gravel is
37 38	1186	mostly undeformed and forms a ~15 m thick sediment pile, in turn overlain by undeformed
39 40	1187	unit G interbedded diamicton and sand. Cliff section at about 2650 m (Fig. 2). D. Unit C
41 42 43	1188	horizontally laminated silt and sand grading upwards into a heterogeneous diamicton. The
44 45	1189	basal sediment sequence is conformably overlain by unit G sandy beds which at this location
46 47 48	1190	alp towards north. The unit A sity-sandy diamicton can be seen at beach level. Cliff section
49 50	1191	diamicton trusted on ton. Melaleiti cliff section at ~250 m (Fig.2). E. Unit A silty-sandy
51 52	1102	diamicton coverlain by a 2 m thick hed of massive gravel and houlders (unit E) with erosive
53 54 55 56 57	1173	dameton, overlain by a 2 m the bed of massive graver and boulders (dnit 1 / with elosive

- 58 59 60

Boreas

1		
2 3	1194	contact in between. Stratified and undeformed unit G drape the unit F gravel. Cliff section
4 5 6	1195	at ~1300-1350 m (Fig. 2).
7 8 9	1196	Figure 4. The structural ridge at Belgsholt. A. A scale diagram of the Belgsholt section above a
10 11	1197	LiDAR image of the section. Directional data are plotted on lower hemisphere stereographic
12 13 14	1198	projections and the blue bars indicate the orientation of the section. The white squares
15 16	1199	indicate the area covered by photos 4B and C. B. A large syncline at ~70 m. C: An overturned,
17 18	1200	southward verging anticline at ~90 m. Note the big boulder (1 m in diameter) approximately in
19 20 21	1201	the core of the anticline.
22 23	1202	Figure 5. A. A scale diagram and a LiDAR image of the Melaleiti structural zone. Directional
24 25 26	1203	data are plotted on lower hemisphere stereographic projections and the blue bars indicate
27 28	1204	the orientation of the section. The white squares indicate the area covered by photos 5B-D. B.
29 30	1205	Stacked rafts of unit A silty-sandy diamicton separated by deformed unit E interbedded silt
31 32 33	1206	and sand. Note the person for scale C. Boudinaged raft of silty-sandy diamicton of unit A with
34 35	1207	faulted unit E bedded sediments below. D. A close-up view of faults cutting through unit E
36 37 38	1208	sediments. Spade for scale.
39 40 41	1209	Figure 6. A sequential model showing the formation of the Melaleiti structural zone.
42 43	1210	Figure 7. A photo of the Fúla bay thrust zone at \sim 730m (Fig. 2). Directional data are plotted on
44 45 46	1211	lower hemisphere stereographic projections and the blue bars indicate the orientation of the
47 48 49	1212	section.
50 51	1213	Figure 8. A. A scale diagram and a LiDAR image of the Ásgil section. Directional data are
52 53	1214	plotted on lower hemisphere stereographic projections and the blue bars indicate the
54 55 56 57 58 59	1215	orientation of the section. The black squares on the Lidar image indicate locations of photos

Page 56 of 71

Boreas

1		
2 3	1216	7B–D. B. Imbricated thrust blocks of unit D at ~2475 m. The lower thrust block is folded and
4 5 6	1217	dissected by normal faults with a southwest dip. C. Shear zone separating the silts and sands
7 8	1218	of unit D above and the stratified sand and gravel of unit B below. D. A hydrofracture
9 10 11	1219	dissecting a bed of massive sandy-silt belonging to unit D, infilled with sorted coarse sand
12 13	1220	from unit B below.
14 15 16	1221	Figure. 9. A sequential model explaining the formation of the southern part of the Ásgil
17 18	1222	structural zone.
19 20 21	1223	Figure 10. A. A scale diagram and a LiDAR image of the Ás-north section. Directional data are
22 23 24	1224	plotted on a lower hemisphere stereographic projection and the blue bars indicate the
24 25 26	1225	orientation of the section. The black box indicates the location of photograph 8B. B. A large
27 28	1226	overturned, southwestward verging and deformed anticlinal fold affecting lithofacies 1 and 4.
29 30 31	1227	It is truncated by a number of shear planes with an apparent sense of displacement towards
32 33	1228	the south and dissected by a number of both extensional and compressional faults.
34 35 36	1229	Figure 11. A sequential model showing the formation of the As structural zone (north and
37 38	1230	south).
39 40 41	1231	Figure 12. A. A scale diagram and a LiDAR image of the Ás-south section. Directional data are
42 43	1232	plotted on a lower hemisphere stereographic projection and the blue bar indicates the
44 45 46	1233	orientation of the section. The white squares indicate the locations of photographs 9B and 9C.
47 48	1234	B. The northern limb of an open anticlinal fold affecting the stratified diamicton of unit A. The
49 50 51	1235	fold is dissected by numerous normal faults. C. Faulted sediments of units A and B overlain by
52 53	1236	sheared and deformed diamicton of unit D.
54 55		
56 57		
58		
59 60		
60		

Boreas

2			
3	1237	Figure 13. A conceptual sequential model demonstrating the formation of the glaciotectonic	
4 5	1238	moraines exposed in the coastal cliffs of Belgsholt and Melabakkar-Ásbakkar. The sequence of	
6			
7 8	1239	events is described in the Discussion section. Black arrows indicate displacement and blue	
9 10	1240	arrows indicate water flow. Brown: pre-existing fossilifereous silty-sandy glaciomarine	
11			
12 13	1241	diamicton (unit A), green: ice-marginal/sub-glacial fluvial sediments (units B and F), yellow:	
14 15	1242	deformed laminated/bedded glaciomarine sediments (units C, D and E), and grey:	
16			
17	1243	undeformed, bedded glaciomarine sediments (unit G).	
18			
19			
20	1244	Figure 14. A hillshade map of the study area showing the location of the moraines exposed in	
21			
22	1245	the coastal cliffs (red lines) and the configuration of the moraines based on structural	
23			
24	12/6	data from this study (black solid lines). Note that the configuration of the youngest moraine at	
25	1240	data-noin this study (black solid lines). Note that the configuration of the youngest moralle at	
26			
27	1247	Belgsholt was formed by glaciotectonic stress from the north while the stress forming all the	
28			
29	1248	older moraines was, at least locally, applied from the northwest. Black dashed lines are an	
30			
31	12/10	approximation of the configuration of the ice margin during each advance, partly based on the	
32	1249	approximation of the configuration of the ice margin during each advance, party based on the	
33			
34	1250	correlation between the Skorholtsmelar moraine and the As structural zone. The numbers	
35			
36	1251	refer to the relative timing of advances (see Fig. 13).	
37			
38			
39	1252		
40			
41			
42	1253		
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			

183x128mm (300 x 300 DPI)

176x147mm (300 x 300 DPI)

166x157mm (300 x 300 DPI)

s

250 m

1 2 3 4 5 6 7	A		
8 9			
10		1 150	200
11	BC		
12			
13	Legend Sediment units Structures	В	and the second second
15	A Silty-sandy diamicton		
16	E Interbedded silt and sand Shear plane	and a	×
1/ 18	G Interbedded silt, sand and diamict Cicconformity	1000	
19	H Horizontally bedded sand and gravel Bedding		
20	Bed planes Syncline Faults through (~30-40 m) (~70 m) syncline(~70 m)	С	
21			1
22 23	Fold axis: Trend: 132°		Che and
24	Plunge: 4°	The second second	action of
25			
26 27			
27 28	168v100mm (2	200 v 200 v 20)	
29	108/100/111 (5	500 X 500 DFI)	
30			
31 22			
33			
34			
35			
36 37			
38			
39			
40			
41 42			
43			
44			
45			
40 47			
48			
49			
50			
51 52			
53			
54			
55			

172x126mm (300 x 300 DPI)

177x112mm (300 x 300 DPI)

96x56mm (300 x 300 DPI)

1	
י כ	
2	
3	
4	
5	
6	1.20 NW
7	A som NW SE
8	10- The of VITY III II III III III III III IIII II
9	4500 4550 4600 4650 4700 4750 4800 4850 4900 4950 5000 m
10	
11	N
12	Legend (~4990 m) All faults (~4990 m)
13	Sediment units Structures
14	B Stratified sand and gravel
15	D Silt and sand Displacement G Interbedded silt, sand and diamicton — Unconformity Normal auts N Anticine N
16	H Horizontally bedded sand and gravelBedding 4750 m
17	
18	
19	
20	
21	222x77mm (300 x 300 DPI)
22	
 23	
23	
25	
26	
20	
27	
20	
29	
21	
ו כ כי	
22 22	
33	
34 35	
35	
30 27	
37	
38	
39	
т∪ //1	
וד גע	
7∠ /2	
 15	
т.) Лб	
+0 17	
+/ /Q	
40 40	
47 50	
50	
51 52	
52	
55 F 4	
54 55	
55	
50	
5/	
58	
59	
60	

- 58 59
- 60

200x236mm (300 x 300 DPI)

94x76mm (300 x 300 DPI)