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Abstract 

This Report reviews the relevant properties of an idealised one-dimensional turbulent open-

channel flow, for which the 5m long recirculating flume was designed; it includes the concept of 

boundary layers and the various equations describing the mean flow conditions and shear stress 

at the bed, for various parts of the layer. 

A measurement programme was designed to evaluate the performance of the flume and measure 

quantities such as, mean velocities turbulence intensity and velocity spectra. Measured profiles 

of mean velocity, turbulence intensity and velocity spectra appear to be consistent with 

theoretical and empirical results obtained elsewhere. Measured spectra, although consistent with 

expectations over a wide range of frequencies, indicate a few unexpected features, these include 

oscillations in the velocity records (possibly, the result of small-amplitude standing surface 

waves within the flume) and the presence of some low-frequency fluctuations in the flume 

(possibly, due to fluctuations in the power supplied to the pump, or fluctuations due to the 

mechanical behaviour of the pump itself). These unexpected features were not found to have a 

significant effect on the mean quantities and low-order statistics, but they may be important in 

some applications. Shear velocity determinations (using several methods), for sandy beds, have 

indicated that the single point method of estimating u* was more consistent than the log-profile 

method (velocity gradient). 
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I. Introduction 

Artificial channels are those constructed or developed by human effort; the flume facility of the 

School of Ocean and Earth Science, University of Southampton is considered an artificial open 

channel. The hydraulic properties of such channels can be controlled either to the extent desired, 

or designed to meet certain requirements. The application of hydraulic theories to artificial 

channels will produce, therefore, results representative of natural conditions; hence, they are 

reasonably accurate for simulating and characterising natural environmental conditions. 

This report presents the results of a measurement programme designed to evaluate the 

performance of the 5m flume, located in the School of Ocean and Earth Science (SOES, 

University of Southampton), in the Southampton Oceanography Centre. A companion report 

(Paphitis and Collins, 2001) provides a comprehensive description of the flume facility, the 

associated hardware and instrumentation, the data acquisition and processing software and 

guidelines for operation. 

The 5m flume is designed to produce steady uniform flows, the mean properties of which are 

approximately independent of time (steady), independent of along-channel position (uniform) 

and independent of cross-channel position (large depth to width ratio, suggesting that the side 

boundaries can have no effect on the area of flow under investigation i.e. the centerline of the 

channel). Such flows can be considered one-dimensional, in the sense that the mean quantities 

depend only upon a single spatial coordinate (away from the boundary, vertically upwards). The 

measurement programme described here was designed to determine whether the unidirectional 

flow characteristics within the 5m flume can, in fact, be approximated to an one-dimensional 

flow, with the expected properties. The report aims to set up a framework, in terms of flow 

characteristics, for sediment investigations. Hence, a mixture of both smooth and rough 

boundary conditions is examined under slow, moderate and fast flow rates. An evaluation of 

different ways in which the shear velocity can be calculated, depending on the flow conditions, 

is also presented. The measurements described in this report were obtained with a Laser Doppler 

Anemometer (LDA) and a Streamflo impeller current meter (for more details, see Paphitis and 

Collins, 2001). 
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2. Background 

The prediction of sediment transport (initiation of movement, subsequent transport as bed-load 

or suspended-load and eventual sedimentation) by unidirectional flows requires an in-depth 

understanding of the interaction of fluid with the erodible material of its confining boundaries. 

For one-dimensional turbulent experimental flows in an open channel, such as those for which 

the 5m flume has been designed, where clear water flows over a (fixed) smooth or rough bottom 

boundary, the basic properties are well established on the basis of classical analysis (e.g. Clauser, 

1956; Coles, 1956) and experimental studies (e.g. Nezu and Rodi, 1986). An extensive literature 

is available on the characteristics of such flows (e.g. Hinze, 1975; Townsend, 1976), with less 

rigorous accounts orientated towards sedimentological applications (e.g. Komar, 1976; 

Raudkivi, 1976). This report presents a brief outline of the features of such flows, considered to 

be most relevant to the subsequent designed measurement programme. 

2.1 Conditions for One-dimensional Flows 

Steady uniform flow is the fundamental characteristics of open channel hydraulics. Open-

channel flows are said to be steady if the depth of the flow does not change, or if it can be 

assumed to be constant during the time interval under consideration; it is uniform if the depth of 

the flow is the same at every section of the channel. The mean properties of such flows are, 

therefore, approximately, independent of both time and space (along-channel). However, for the 

flow to be approximated to one-dimensional, the open channel must be both sufficiently long 

and wide; the former is to allow the vertical flow structure to fully develop from the poorly 

constrained conditions at the channel entrance, whereas the latter is to eliminate the effects of the 

side walls on the flow near the centreline. Turbulent boundary layer theory (e.g. Schlichting, 

1979) suggest that the vertical stmcture of a turbulent open-channel flow is fully developed at 

distances greater than roughly 50 water depths downstream of the channel entrance. Based upon 

laboratory measurements, Nakagawa et al. (1983) have suggested that a turbulent open-channel 

flow is independent of cross-channel position, at distances away from the channel centreline of 

less than about (/%/2)[(6/A)-4], where b is the channel width and h is the water depth. It can be 

concluded that the 5m flume can, in fact, produce a section (about 4m from the channel 

entrance) in which the flow is approximately one-dimensional near the channel centreline, 

provided that the water depth is less than about 8cm. 
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2.2 Behaviour of Open-Channel Flows 

The state or behaviour of steady one-dimensional turbulent flow in an open channel is governed 

primarily by the effects of viscosity and gravity, relative to the inertial forces of the flow. Water 

surface tension may also affect the behaviour of flow under certain circumstances, but it does not 

play a significant role in most open-channel applications that are anticipated in the 5m flume. 

Therefore, the statistical properties of such flows are determined 'in principle' completely by the 

bed shear stress (t„), the fluid density (p), the kinematic fluid viscosity (v), the gravitational 

acceleration (g), the fluid depth (h) and the bottom characteristics (e.g. ks, the grain effective 

roughness). Through the use of dimensional analysis and dynamic similarity, these variables can 

be combined to form dimensionless groups to characterise the flow; this approach is extremely 

important as it reduces the number of variables involved. Three-dimensional parameters are 

defined as follows: 

Uh 
Reynolds number: Re = (1) 

_ U 
Froude number: F = ,— (2) 

^gh 

Grain Reynolds number: Re* = —-— (3) 

where p is the critical shear velocity at sediment threshold conditions and U is the 

depth-averaged mean flow velocity which is a function of To, p, v, g, h and ks. 

2.2.1 Reynolds Number 

The Reynolds number (Re) represents the effect of viscous, relative to inertial, forces in the 

large-scale energy-containing eddies. If the Re is sufficiently small, the nature of the flow is 

stable where the water particles appear to move in definite smooth paths; this condition is termed 

laminar flow. When the Re exceeds a certain value, instability occurs and the fluid develops 

vorticity and the flow degenerates into a relatively disordered, chaotic condition termed turbulent 

flow; in this case, the water particles no longer follow straight trajectories but random 

fluctuating motions. The changeover from laminar to turbulent flow conditions occurs 

progressively, over a range of Re values, within which the flow is said to be in a mixed or 

transitional state. The transitional range in open-channel flows is not so well defined as it is for 

pipe flows (where the flow depth is taken as the characteristic length, the corresponding Re 

range is from 500 to 12500 whilst, in the cases where the diameter is used, the upper value may 
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be as high as 50000). In open-channel flow, the lower critical Re depends (to some extent) on 

channel shape, but the value varies between 500 to 600; it is generally larger than the value for 

pipe flows. For practical purposes, the transitional range of Re for open-channel flows may be 

assumed to be 500 to 2000. However, it should be noted that the upper value is arbitrary, since 

there is no definite upper limit for all flow conditions. 

2.2.2 Froude Number 

The Froude number (F) is the ratio of inertial to gravity forces; it represents the effect of gravity 

upon the state of flow. In the mechanics of water waves, the velocity is identified as the 

celerity of the small gravity waves that occur, in shallow water in channels, as a result of any 

momentary change in the local depth of the water. Such a change may be developed by 

disturbances (or obstacles) in the channel, that cause a displacement of water above and below 

the mean surface level; thus, creating a weight or gravity force. If F is equal to unity, the flow is 

said to be in a critical state. If F is less than unity, the flow is subcritical; in this state, the role 

played by gravity is pronounced, so the flow has a low velocity and is often described as tranquil 

and streaming. If F is greater than unity the flow is supercritical; in this state, the inertial forces 

become dominant, so the flow has a high velocity and is usually described as rapid, shooting and 

torrential. For the conditions assumed in this report, for the development of an one-dimensional 

turbulent open-channel flow, the Froude number does not have a significant effect on the vertical 

structure of the flow; however, it remains an important parameter for characterising the flow. 

2.2.3 Grain Reynolds Number 

The grain Reynolds number (Re*) is proportional to the ratio of the grain diameter to the 

thickness of the viscous sublayer. It has been shown (Sleath, 1984) that the shear velocity is 

related to the thickness of the viscous sublayer, through 5^ = Av/u^ , where A is a constant 

(usually taken to be 11.6). Substituting into Eq. 2, then 

Jc 
Re. = A - ^ (4) 

dv 

This ratio between grain effective roughness height ( t j and the thickness of the viscous sublayer 

( < 5 v ) , illustrates the functional importance of the grain Reynolds number, to provide an indication 

of the degree of grain protrusion through the viscous sublayer; this is important in defining 

whether turbulent eddies are produced and the nature of the boundary layer flow (see below. 

Section 2.5). If the Re* is less than about 5, the bottom roughness has no significant effect on the 
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flow, SO that the bottom is effectively smooth. If the Re* is greater than about 70, the viscous 

sublayer is completely disrupted; at such times, the viscosity has very little direct effect on the 

mean flow or the large-scale fluctuations. The progressive conversion from smooth to rough 

boundary conditions, within the range 5<Re*<70 is termed 'transitional'. These conditions were 

suggested by Colebrook and White (1937) (and, later, by Schlichting, 1979), in connection with 

flow in pipes, considered to be a good approximation for channels (see Section 2.5). 

2.2,4 Flow Regimes 

The combined effect of viscosity and gravity (Re and F, respectively) may produce any one of 

four regimes of flow in an open channel, namely: (a) Laminar-Subcritical (F<1, Re<500); (b) 

Laminar-Supercritical (F>1, Re<500); (c) Turbulent-Subcritical (F<1, Re>2000); and (d) 

Turbulent-Supercritical (F>1, Re>2000). The depth-velocity relationship for the four flow 

regimes in an open channel can be shown by a logarithmic plot (Figure 1). The heavy line for 

F=1 and the envelope for the laminar-turbulent transitional range (500<R<2000, shown by the 

two heavy lines) intersect on the graph and divide the whole area into four portions, each of 

which represents a flow regime. 

100 

10 

i 
& p 

0.1 

0.01 

Turbulent-
Subcritical • 

Turbulent-
~^->iSupercritlcal 

Laminar-
Subcritical 

Laminar 
Supercritical 

10 100 

Meati Flow Velocity (cm/s) 

1000 

Figure 1: Depth-velocity relationships for four regimes of open-channel flow (adopted from 
Robertson and Rouse, 1941). 
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2.3 Statistical Description of Turbulent Motion 

Most natural flows are characterised by irregular velocity fluctuations indicating turbulence. The 

structure of such turbulent flows has been studied by various authors (e.g. Schlichting, 1979; 

Townsend, 1976), who suggested that (in describing the flow mathematically) it is convenient to 

separate the velocity and pressure field, into mean and fluctuating parts. Using Cartesian co-

ordinates, the mean flow velocity at any one instance and at any point in the flow may be 

represented by the sum of the instantaneous local velocity components, u, v and w in the three 

respective x (downstream), y (cross-stream) and z (vertically) orthogonal directions, such as; 

U = u + v + w (5) 

Each of the instantaneous components of velocity can be represented by the sum of a temporal 

mean value and an instantaneous fluctuating component: 

u = u + u' (similarly V = V-t-v'and w = w-l-w') (6) 

and pressure, 

P = p + p' ( 7 ) 

In a steady, one-dimensional turbulent flow the time-averaged velocities in the y and z directions 

will be zero. The turbulent fluctuations of velocity represent the deviations of the instantaneous 

components from the time-averaged value; because these are both positive and negative, they 

average out to zero; when the mean is taken. Such velocity fluctuations are, therefore, the 

random portions of the turbulent flow and are found, in general, to follow a Gaussian 

distribution (Hinze, 1975). Hence, the distribution of n measurements of the fluctuating 

components of velocity, over a sufficiently long period of time may be treated statistically (e.g. 

Monin and Yaglom, 1971 and 1975; Yalin, 1972; Hinze, 1975). The time-averaged values at a 

fixed point in space, over an extended period of time (long, in comparison to the time scale of 

the turbulent fluctuations) can be obtained: 

u = l / n ^ u (8) 
1 

The spread of the values about the mean is termed the standard deviation and is defined by: 

= y { n - l ) ^ u " (9) 

1 

a is sometimes termed the root mean square (RMS) of the turbulent fluctuation component and 

is considered as a good measure of their intensity. A measure of the reliability of the estimated 

mean is given by the standard error (SE): 
SE = G/^fn (10) 
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The relative longitudinal turbulent intensity (LTI), at a point, can be derived from: 

L r / = c/iT or d/w* (11) 

The total turbulent intensity (q) is given by: 

p ) ' " (12) 

where u ' ^ , v '^and w'^ are the mean square fluctuation. The scales of the turbulent 

fluctuations may be estimated by defining an intermittency factor Y of a turbulent event (Anwar, 

1981), given by: 

total duration of turbulent events 
Y = (13) 

total record duration 

The difficulty in measuring Y from a time-series of a continuously fluctuating variable is caused 

by the ambiguity in defining an event. The kinetic energy per unit volume (E), produced by these 

fluctuations is given by: 

E - 05p (14) 

Other useful characteristics of a distribution are the skewness (Sk), which is a measure of the 

asymmetry of the distribution of a variable (zero is for normal or Gaussian distributions): 

Sk = — 
n I " " A ' 

( 1 5 ) 

and kurtosis (Kr), which is a measure of the flatness of the distribution; 

r n / \ 

Kr = -
n I " " A ' 

4 

\ 1 / y 
(16) 

For normal distributions, Kr is equal to 3; a value less than 3 indicates a flat distribution, whilst a 

value greater than 3 indicates a peaked distribution. A peaked distribution of velocity 

fluctuations is an indication of intermittency of fluctuations (Heathershaw and Simpson, 1978; 

Anwar, 1981). 

Information about velocity fluctuations at different points (or times) is given by correlation 

measurements. The correlation between two velocity fluctuations w, and is defined as w, 

and the correlation coefficient (Tritton, 1988) as: 

1/2 

R = Mj y ' ^ " 2 ^ j (17) 

where m/ and are simultaneous values of the same component of the velocity, at two 

different points separated by a distance r; the correlation coefficient depends upon the magnitude 

and direction of the separation r (Figure 2). If the correlation coefficient is zero, then there is no 
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correlation between the two points and the fluctuations will be independent of one another. 

However, complete independence, particularly for fluctuations at points relatively close to one 

another, is unlikely. In the case where velocity measurements are made at the same point, but at 

different times, then R is said to be an auto-correlated coefficient. Correlation of velocity 

measurements at two different points and times are also possible. Here, R is referred to as a 

space-time correlation, providing information on the trajectories of turbulent associated features. 

I 
1 

1 
U 

0 Distance Between Components 

Figure 2: Typical (schematic) curve showing the correlation (i?) between two velocity 
components at varying distance (r) in a turbulent flow; at large r, the velocity 
fluctuations become independent of one another and R asymptotes to 0 (i? has a 
maximum value of 1, at i^O). 

The fluctuations in velocity play an important role in sediment transport studies, especially upon 

the initiation of motion. Several definitions have been provided in the foregoing discussion, 

providing some idea of the magnitude of these fluctuations. However, in natural flows, velocity 

fluctuations constitute a complicated phenomenon, hence, an adequate approximation of them 

using some of the above coefficients, is a very considerable task. The velocity fluctuations are 

considered as a random phenomenon and, as such, it can be argued that processes (like the 

threshold of sediment motion and subsequent transport) are governed by such random effects. 

Such effects can be described in terms of probability theory, rather than by numerical and 

deterministic relationships. 
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2.4 Distribution of Shear Stress 

2.4.1. Shear Stress in Laminar Flows 

Mon 

Figure 3: Definition diagram for the analysis of the mean stress distribution in turbulent one-
dimensional open-channel flow (for details see text). 

With reference to Figure 3, the shear stress (Tq, dynes/cm^) at the boundary exerted by the 

overlying fluid, is given by: 

=pgsm{d)h (18) 

where d is the slope of the boundary. Similarly, the shear stress of the fluid, overlying some 

imaginary plane parallel to the boundary and at a variable distance above it, can be expressed by: 

T. = pgs,m{G){h-z) (19) 

and the stress at level z above the bed, in terms of To, is given by: 

T, = ^ X 1 - Z / A ) 

The shear stress varies linearly, from zero at the surface to a maximum value at the boundary 

(Eq. 18). Consequently, the viscous shear at any point in a sheared fluid is related to the velocity 

gradient (du/dz), normal to the shear surface, by: 

=pv{du/dz) (21) 

Combining Eqs 20 and 21 give an expression for the velocity gradient, in terms of the bed shear 

stress, at any level: 

du/dz = T„ - z! h)! pv (22) 
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The velocity at elevation z («%) is derived by integration of Eq. 22, with respect to z: 

u = (1 —z/2/i) + C (23) 
' p v 

Applying the 'no-slip' condition, which requires that the fluid in immediate contact with a solid 

boundary is stationary, the constant of integration (C) is found to be zero. Losing C and using the 

relationship of shear velocity m. = / p to substitute T, Eq. 23 becomes: 

u Ut z 
— = ( l - z / 2 / i ) (24) 
M. V 

Close to the boundary, where z«h, Eq. 24 reduces to: 

u. z 

t = — 

Both terms (m/m* and u* z/v) are dimensionless variables; the right hand side of Eq. 25 is the 

Reynolds number (Eq. 1, see Section 2.2.1). The above analysis applies to steady, one-

dimensional open-channel flows above smooth beds, where the bottom stress is wholly a viscous 

shear stresses. 

2.4.2 Shear Stress in Turbulent Flows 

The transport of fluid, by turbulence, generates stresses on a much larger scale than the viscous 

stresses caused by molecular interaction. The mean distribution of shear stress caused by bed 

friction, within a turbulent boundary layer, is represented adequately by Eq. 20. The shape of the 

mean velocity profile differs from that given by Eq. 24, due to the presence of turbulent stresses. 

The mean momentum flux across an arbitrary level z in one-dimensional flows, with positive 

mean velocity gradient (du/dz > 0) is p u'w' (where u' and w' are the velocity fluctuations in 

the X and z directions, respectively and the overbar denotes a mean). This turbulent shear stress is 

termed the Reynolds stress; it represents the transfer of mechanical energy from the flow to the 

turbulence, in the presence of a persistent mean velocity gradient. In reality, u'w' is negative, so 

that the mean momentum flux extracts momentum from the mean flow. Over a time period 

longer than the time-scale of the turbulent fluctuations, the average downstream momentum of 

the fluid (convected downward across the plane) will exceed that convected upwards. Figure 4 

illustrates the generation of Reynolds stress, within a mean velocity gradient. If a particle of fluid 

travels vertically upwards, then the fluctuating vertical component of velocity (v ' ) will be 

positive, whereas the fluctuating horizontal component (u ' ) will be negative. This pattern exists 
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because the particle arrives at the new location, with a velocity less than the average of its new 

surroundings. Therefore, the total mean shear stress (t^) across a sharing plane (at an arbitrary 

level z) will be the result of both the Reynolds stress (actually, a mean momentum flux due to 

turbulent velocity fluctuations, which acts like a stress) and the viscous shear stress: 

du 
Tj = p gsm(d)(h-z) = pv—-pu'w' 

Using Eq. 18 (the bed shear stress) and rearranging, Eq. 26 may be written alternatively as: 

(26) 

T„ ( L - - ) - P V — - P W ' W ' (27) 

B 
a 
g 

I <u 
E 

+v 

high 
momentum 

fluid 

plane of mean shear 

- V 

low momentum 
fluid 

Mean Velocity (cm/s) 

Figure 4: A schematic representation of the transport of momentum due to turbulent velocity 
fluctuation, in the generation of the Reynolds stress (turbulent shear stress). 

The relative contributions of the viscous and turbulent shear stress, throughout the flow depth, 

are illustrated in Figure 5. The Reynolds stress accounts for the majority of the total stress, 

throughout most of the turbulent boundary layer. Damping of vertical velocity fluctuations close 

to the boundary (the no-slip condition) means that, here, the Reynolds stresses mush also 

approach zero; thus, the viscous stress term becomes the major component close to the bed, as in 

laminar flows (Eq. 22). However, well away from the boundary (z greater than about 50V/M*), the 

viscous stress term becomes increasingly smaller, so that Eq. 27 can be approximated to: 

T„ ( l - - ) = -pM'w ' (28) 

This relationship indicates that, within this region, the Reynolds stress varies linearly with z. 

Background 5m Long Recirculating Flume-Flow Characteristics 11 



University of Southampton 
School of Ocean and Earth Science 

X/T, 

1.0 

0.8 

0 

0.6 

0.4 

0.2 

0 0 

20 40 60 80 100 120 140 
1 1 1 1 1 1 1 

Total Shear Stress x = pvdw/dz - pu'w' 

. \ y -pwV' (Reynolds Stress) 

/ N. pvdw/dz (Viscous Stress) 

0.01 0.02 0.03 0.04 0.05 0.2 0.4 0.6 0.8 1.0 1.2 

z/6 

Figure 5: Relative contributions of the viscous and turbulent shear stress components to the 
total shear stress at different heights, throughout the boundary layer (adopted from 
Tritton, 1988). 

2.5 Boundary Layer 

2.5.1 Thickness and Development of the Boundary Layer 

Assuming that the flow is laminar and of uniform velocity distribution, with no initial 

disturbances neither to the flow nor to the water surface, with an indefinitely large flow depth 

and constant roughness the velocity distribution will have a definite pattern. The velocity field 

will be diminished in a thin, downstream thickening zone, adjoining the boundary (Figure 6); 

this region is known as the boundary layer. The velocity within the boundary layer changes 

continuously normal to the boundary; at first, it increases rapidly and then more slowly. This 

change takes place as the velocity reaches 99% of the free-stream velocity at a distance away 

from the boundary, defined as 5 (the boundary layer thickness). The effect of the boundary layer 

on to the flow is equivalent to the viscous (or frictional) forces, which become increasingly 

important toward the boundary because of the no-slip condition. Such a relationship means that 

the fluid velocity in immediate conduct with the solid boundary has the same tangential 

component of velocity as the boundary itself (i.e. stationary). The boundary layer thickness 

approximates to: 

u 
= R e -1 /2 

(29) 
s J 
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where X is the distance from the starting point of boundary layer development, v is the kinematic 

viscosity, Us is the free-stream velocity and Re is the Reynolds number (using X as the 

characteristic length). The value of Re is influenced strongly by the turbulent intensity, within 

the free-stream, and by the plate roughness. Over roughened (as opposed to smooth) beds, the 

boundary layer grows more rapidly and transition from laminar to highly turbulent conditions 

occurs much sooner, as a result of the enhanced vertical diffusion of momentum. At the 

beginning, the flow is entirely laminar and a laminar boundary layer is developed along the 

boundary surface; the velocity distribution in the layer is approximately parabolic. At a critical 

distance downstream from the initial point of boundary layer development, small-scale 

fluctuations appear in the laminar flow. The fluctuations occur at a Reynolds number of -890 

(Sleath, 1984), which mark the introduction of the transitional (neither laminar nor turbulent) 

stage of the boundary layer. These small-scale fluctuations evolve very quickly into larger 

turbulent eddies, known as vortices; at the same time, the boundary layer thickens rapidly. At 

this stage, the boundary layer is said to be fully turbulent, with a Reynolds number of -5000 

(Sleath, 1984). The boundary layer continues to grow until, eventually, it extends over the whole 

of the flow field; it is then said to be 'fully developed'. Thereafter, the velocity distribution will 

have a definite pattern, which can be shown analytically to be approximately logarithmic. 

Within the upper part of the boundary layer, the Reynolds stress reduces the mean velocity 

gradient (i.e. the flow is effectively inviscid) to below that which would occur in a corresponding 

laminar flow. However, on approaching the boundary, the momentum is consumed increasingly 

by high shear resistance force, in order to maintain the 'no-slip' condition (when in contact with 

the boundary); this region is termed the viscous sublayer. 
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Figure 6: Growth of a boundary layer over a flat plate at zero incidence, suspended in a free-
stream of velocity Us', this illustrates the variation in bed shear stress with distance 
from the leading edge of the plate (adopted form Tritton, 1988). 

2.5.2 Boundary Layer Regions 

The boundary layer in turbulent flows is split usually into three regions, namely; (a) an inner 

region which is further subdivided into the laminar sublayer, viscous sublayer and buffer layer; 

(b) an overlap region, also known as the constant stress layer or the logarithmic layer; and (c) 

outer region, also known as the free stream layer. Figure 7 shows a series of velocity 

measurements made in turbulent flows in smooth pipes; this pattern is consistent with that for 

open-channel flows (Middleton and Southard, 1977). 
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Figure 7: Use of velocity measurements to illustrate the subdivision of smooth turbulent 
boundary layer (adopted from Middleton and Southard, 1977). 

Inner Region 

The flow within the laminar sublayer {zu*lv less than about 5) is laminar and follows a linear 

distribution; the velocity profile is described by Eq. 24. Although the flow within the lower part 

of the inner region is predominantly laminar, it does experience some fluctuations which are 

generally parallel to the flow. Vertical motions are negligible in the vicinity of the boundary; 

they become zero at the boundary. These fluctuations are generated by a sequence of events, 

which is known as bursting process. The upper limit of the inner region is defined by values of 

zu*lv between 30 and 70 (50 is used frequently). In the upper part of the inner region (the buffer 

layer), the velocity profile ceases to be linear and the flow is predominantly turbulent (with a 

high velocity gradient); this is despite the fact that viscous forces are still dominating the flow. 

There is an outflow of turbulent eddies from within the buffer layer, which is replaced by an 

inflow of non-turbulent fluid. The level within the buffer layer, where the viscous and turbulent 

forces are equally dominant, defines the upper limit (ZM*/V is about 11.6) of the viscous sublayer 

(6y) (see Section 2.2.3). 
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Overlap Region 

The overlap region (extending up to z=0.1-0.2(5) follows a logarithmic distribution; it is often 

termed the constant stress layer, or logarithmic layer, and the turbulent (Reynolds) stresses 

predominate in this region. Reynolds stresses work against the mean velocity gradient, to remove 

energy from the mean flow. This action provides energy for the generation of large-scale eddies 

which travel with a certain amount of momentum. As the eddies travel, they gradually give up 

their momentum in the diffusion process; this is due to the efficiency of these large-scale eddies 

in transporting momentum. The velocity gradient, within this region, is gentler. Progressive 

transfer of energy takes place from the large- to small-scale eddies, whose kinetic energy is 

dissipated, ultimately as heat by the action of viscous processes; this sequence of events is 

known as the 'energy cascade' (Tritton, 1988). The process of energy transfer involves the 

degeneration of individual large-scale eddies and is known as 'vortex amalgamation', which 

intensifies the vorticity of the small-scale eddies by the action of viscosity (Willmarth, 1975). 

Eventually, the eddies will have given up so much momentum that their relative contribution to 

the turbulent shear stress is negligible. 

Prandtl (1904) derived an expression for the distribution of shear stress, with height above the 

bed, throughout the turbulent boundary layer (outside the inner region), by introducing the 

concept of a mixing length parameter (Z): 

T = ( 3 0 ) 

where / is the Prandtl's mixing length, corresponding with the distance traveled by an 'average' 

turbulent eddy, before it loses its integrity. The scale of the turbulent eddies increase with 

distance from the boundary and, hence, the value of I depends upon the distance above the bed, 

f = ( 3 1 ) 

where K (dimensionless) is the von Karman's constant. The value for K (equal to 0.4, for clear 

water) has been determined empirically and is used as universal value; however, there is some 

argument as to whether the value of K is affected by sediment-induced effects (suspended 

sediment). Several authors have suggested that K is reduced with increasing sediment 

concentration (e.g. Wang, 1981; Gust and Walger, 1976). However, Coleman (1981), having re-

analysed the data, rejects the concept that suspended sediment alters the value of K. The 

available evidence suggests that Coleman's view is more likely to be correct (Sleath, 1984). 
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Substituting I (using Eq. 31) and u* (using the relationship of shear velocity = - J t / p ), Eq. 30 

becomes: 

Ut = Kz{du/dz) (32) 

Integrating Eq. 32, yields a velocity distribution of the form: 

u 1 
— = —ln(z) +constant (33) 
M* K 

This expression is known as the Prandtl-von Karman equation (Prandtl, 1935; von Karman, 

1930), indicating that the velocity is a logarithmic function of z. Implicit in this derivation is that 

the shear stress is virtually constant, with height, in a 'constant stress layer' near the boundary. 

Eq. 30 has been verified experimentally (Yalin, 1972) for turbulent flows, between the lower and 

upper boundaries of the constant stress layer. Here, is the lower limit, taken at an elevation 

above the bed equal to the larger of ks (grain effective roughness height) and Sv (the thickness of 

the viscous sublayer), and z is the upper limit of the constant stress layer (0.1 - 0.2S). Integration 

of Eq. 33 between the limits [z,, • z], where u^=Uo at Zo, yields: 

(34) 

The constant z„, known as the roughness length, can be determined through experimentation; it 

consists of two parts, the skin friction which depends on the dimensions of the bed's physical 

roughness, due to the presence of the sedimentary particles, and the form drag (which expresses 

the physical roughness of the seabed, in response to the bedforms). The magnitude of Zo depends 

upon the size of (grain effective roughness), compared with the thickness & of the viscous 

sublayer. The effective grain roughness has been expressed in many different ways in the 

literature; for example, as an absolute value calculated using different percentiles of the particle 

size distributions (e.g. Sleath, 1984) or as a function of the Chezy Coefficient Q =m/(/ i / )"^ , 

where I is the water surface slope (for more details, see Van Rijn, 1982). 

A general equation (analogous to the Prandtl-von Karman Eq. 33) can be derived (see 

Schlichting, 1979; Yalin, 1972): 

1 
/ \ f \ 

"z 1 
In 

z 
= — In + 

K j 

^ = l l n 
w. K 

+ B (35) 

The quantity 5 is a dimensionless property of the flow in the vicinity of the bed; it depends upon 

the magnitudes of kj5v (their relationship is shown, schematically, in Figure 8). This ratio forms 
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a dimensionless quantitative property of the flow in the vicinity of the bed; it is a function of the 

grain Reynolds number (see Eq. 4, Section 2.2.3). Nikuradse (1933) investigated flows through 

pipes, covered uniformly with a single layer of mono-sized sand grains (involving several 

combinations of pipe and sand diameter), in an attempt to investigate the relationship between B 

and k,. This investigator derived, empirically, the variation of B with Re*; these experimental 

results are shown in Figure 9; two intersections can be identified on the B axis which are denoted 

usually by Cs and Cr. 

Free - Stream 

z = 6 
Outer Region 

z = 0.1-0.26 

Overlap Region 
Constant Stress Layer 

Buffer 
Layer 

Laminar 
Sublayer 

Viscous 
Sublayer 

Rough Boundary Smooth Boundary 

5< Re* <70 Re* <5 

Inner 
Region 

Re* >70 

Figure 8: Schematic representation of the subdivision of smooth and rough turbulent boundary 
layers (not to scale). 
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Figure 9: Experimental relationship between B and log(w*A:/v), showing the empirical 
evaluation of Cs and Cr (adopted from Nikuradse, 1933). 

The region separating the hydrodynamically smooth and rough regimes is between 5<Re*<70, 

and ks^5v\ for the transitional regime B is an unknown function of Re*. Within the transitional 

regime, the velocity profile is dependent upon both viscosity and roughness and the value of B 

cannot be determined analytically; it can be estimated for any given value of Re*, using Figure 9, 

then substituted into Eq. 35. If the roughness height is less than a certain fraction of the thickness 

of the viscous sublayer, then the surface irregularities will be small enough to be entirely 

contained within the sublayer and, hence, will have no effect on the overlying flow layers. Such 

a surface is considered to be 'hydrodynamically smooth' (ks«5v and Re*<5) and B can be 

estimated analytically through: 

s = V — 
K \ V 

+ Cc (36) 

However, if the roughness height is greater than the thickness of the viscous sublayer, then the 

surface irregularities will be of sufficient magnitude to extend their effects into the overlaying 

layers; hence, to disturb the flow (producing a fully developed turbulent flow throughout the 

water column). Such a surface is considered to be 'hydrodynamically rough' (ks»5v and 

Re*>70) and B can be expressed as: 

B = C . (37) 
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The commonly-accepted values for Cs and Cr are 5.5 and 8.5, respectively; these are indicated 

also in Figure 9. Combining Eq. 35 with Eqs 36 and 37, expressions for the mean velocity 

distribution can be defined for the hydrodynamically smooth and rough regimes, respectively; 

W. K V V 
+ Cc 

r \ z 

\^sJ 
+ Co 

(38) 

(39) 

Outer Region 

Within the outer region, referred to also as the 'wake region', the log-law does not apply. The 

mean velocity distribution can be represented through an empirical expression, as suggested by 

Coleman (1981): 

f 
Z IP f 

4- 1 - sin^ 
K u . K \ 

(40) 

where Us and z,, are the free-stream velocity and the elevation, which defines the lower limit of 

the outer region. In cases where the flow is fully developed, should be replaced with the depth 

h and Us should be taken as the maximum value of U. P is an empirical constant, which is 

related to the sediment concentration in suspension. For clear water, a value of 0.19 has been 

suggested; whereas for very heavy concentrations of sediment, P approaches 1. 

2.6 Velocity Distribution in Turbulent Flows 

2.6.1 Hydrodynamically Smooth Surfaces 

The mean velocity in a steady, one-dimensional, open-channel flow above an hydrodynamically 

smooth surface can be expressed semi-empirically (Nezu and Rodi, 1986) as; 

^ = f + W (41) 
\ V y 

where f{zu*/v) is an empirical wall function and W(z/h) is a empirical expression for the wake 

correction. 

The wake correction is much smaller than the wall function in the inner part of the flow {z/h less 

than about 0.2) and. Hence, the velocity distribution can be described adequately by the wall 

function; this is true for the wall region of any turbulent shear flow (e.g. open-channel flow, pipe 

flow, etc.) above an hydrodynamically smooth surface (Clauser, 1956). Within the viscous 
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sublayer {zu*/v less than about 5), the wall function can be approximated to zu*/v, whereas well 

outside the viscous sublayer (zu*/v greater than about 50) it is approximately logarithmic: 

/ 
I 

In 
'ZM,^ 

— — In 
V V K I V J + Cr. (42) 

where Cs (-5.5) is the empirical constant defined previously (Section 2.5.2). Reichardt (cited in 

Landahl, 1967) proposed the following empirical expression valid for all zu*/v: 

f 
V V ; 

= i ln 
K 

r 
1 + K: 

V V 
+ CC 1 - e x p 

( 

/3vJ [pv 
exp - 0 . 3 3 

ZM. 

V 
(43) 

where a and /3 are empirical constants. If the values of 7.8 and 11 are used (for a and p, 

respectively) then the second part of the right hand side of Eq. 43 is equal to 5.5; this is the most 

commonly accepted value. 

In the outer part of the flow (z/h greater than about 0.2) the wake correction (introduced by 

Coles, 1956), becomes significant. The strength of the wake correction depends upon the type of 

flow (e.g. larger in boundary layer, with zero pressure gradient, than it is in an open-channel 

flow); its shape is approximately similar for all wall-bounded turbulent shear flows. Coles 

(1956) proposed the following empirical expression: 

2 n 
— = sin^ 

^ 2/z ^ \ h ) K ^ 2/z ^ 
(44) 

where IT is an empirical parameter (the Coles parameter), which determines the strength of the 

wake correction. Nazu and Rodi (1986) found (for steady, one-dimensional, open-channel flows) 

that n depends on the Reynolds number, increasing from a value of zero for Re<500 to a 

constant value of approximately 0.2 for Re>2000. 

Neglecting the wake correction and using the approximation given by Eq. 36, the mean velocity 

profile above an hydrodynamically smooth surface, a logarithmic approximation may be 

obtained of the form: 

K \ 

+ Cr. (45) 

Eq. 45 is the same as the expression derived earlier for the overlap region (Section 2.5.2), on a 

dimensional basis (Eq. 38); it is often referred to as the 'smooth-wall law' and is valid in the 

relatively thin layer, in which z is greater than about 50V/M* but less than about 0.2h. 
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The mean velocity profile in an open-channel flow above an hydrodynamically smooth bed is 

shown in Figure 10, based upon Eqs 41, 43 and 44, for conditions similar to those encountered 

in the 5m flume (a depth h of 8cm, a shear velocity u* of 2cm/s and a kinematic viscosity v of 

O.Olcm^/s). Also shown in Figure 10 is the corresponding logarithmic approximation given by 

Eq. 45. For z less than about 0.2cm, the viscous correction to the logarithmic approximation is 

negative; for z greater than about 4cm, the wake correction to the logarithmic approximation is 

positive. The logarithmic approximation (Eq. 45) is accurate over less than 50% of the water 

column, in this particular example. 

W 0 1 

0.01 I I I t I I I I I I I • ' • ' ' 

10 20 30 40 

Mean Flow Velocity (cm/s) 

50 60 

Figure 10: Example of a velocity profile in turbulent one-dimensional open-channel flow, 
derived theoretically, for conditions similar to those encountered in the 5m flume 
(/i=8cm, M*=2cm/s and v^O.Olcm^/s). Solid line: complete profile based upon Eqs 
41, 43 and 44. Dashed line: logarithmic approximation based upon Eq. 45. 

The logarithmic approximation for the mean velocity profiles constitutes one of the most 

important results in the study of turbulent flows. Various velocity profiles, within a turbulent 

boundary layer, measured experimentally over smooth boundaries are plotted with log-linear 

coordinates in Figure 11; the corresponding equations which closely describe the various parts of 

the profile are also shown. Eq. 45 (see also Eq. 38) appears to be valid for the region zu*lv > 30-

70, whereas the profile departs from the logarithmic form when zu*lv < 30, because of the 

importance of viscosity in this region. Within the laminar sublayer, defined by zu*lv <5 , a linear 

mean velocity gradient occurs (with a logarithmic plot serving to expand this particular region) 

and is described by Eq. 25; it is evident that the experimental point corresponds closely with the 
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line, for zu*/v < ~8. The buffer layer (5 < zu*/v < 30-70) and the experimental data follows a 

smooth transition between the lines represented by Eqs. 25 and 45. The intersections of these 

two equations provide an estimate of the thickness of the viscous sublayer; this occurs when u/u* 

= zu*/v = 11.6. Hence, 

V 
<5„ — 1 1 . 6 - (46) 

which is the constant A used in Eq. 4 (see Section 2.2.3). Within the outer region of the boundary 

layer (zu*/v greater than about 500-1000, when z/5 > 0.15), the observed data points diverge 

from the logarithmic profile and can be better represented by a power law distribution such as 

Eq. A-15 (see Appendix A). 
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Figure 11: Example of a turbulent boundary layer mean velocity profile over a 
hydrodynamically smooth velocity profile, plotted on log-linear coordinates; the 
solid lines correspond to specific equations as indicated, whereas the dashed line 
shows the trend of data (adopted form Tritton, 1988). 
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2.6.2 Hydrodynamically Rough Surfaces 

Within the hydrodynamically rough turbulent regime, the roughness height (ks) is now much 

larger than the thickness of the viscous sublayer, which is no longer coherent. Eddies are shed 

and the resistance to flow is due predominantly to the form resistance of the sand grains, or other 

irregularities. If the surface is defined as being hydrodynamically rough, then the mean velocity 

distribution in a steady, one-dimensional, open-channel flow represented by Eq. 41 must be 

replaced: 

^ = / ' 
u. 

V 
+ W (47) 

In this expression, the wake correction remains unchanged, but the wall function is modified to 

incorporate the effect of bed roughness through the inclusion of ks, as the size and form of the 

roughness elements become additionally important parameters. For zu*/v greater than about 50 

and sufficiently large z/k^ (in practice, greater than approximately 1), f ' ( z / k ^ , k ^ u ^ / v ) is 

logarithmic: 

/ ' 
k, w, ^ 

kK 
: l l „ 

K 

f \ _Z 
+ Cr, (48) 

where Cr (-8.5) is the empirical constant defined previously (see Section 2.5.2). If ks u*lv is less 

than about 5, Eq. 47 matches Eq. 42; this is since the surface is hydrodynamically smooth. If ks 

u*lv is greater than about 70, then the surface is hydrodynamically rough and Eq. 48 must be 

used. Neglecting the wake correction and only considering the relatively thin region in which z/h 

is less than about 0.2, whilst z is greater than about 50v/m* (or approximately ks, whichever is the 

greater), the following commonly-used logarithmic approximation can be obtained (through the 

use of Eq. 48): 

f \ 

+ c (49) 

This expression is, once again, the same as that derived earlier (see Section 2.5.2), on 

dimensional grounds (Eq. 39); it is often referred to as the 'rough-wall law'. 

Within the boundary layer (where the wake correction can be neglected) a more general 

expression (logarithmic approximation) can be derived, which applies to both smooth and rough 

surfaces: 
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M, . 
= —In 

' K 

/ \ z 
(50) 

where z„ is the bed roughness (Section 2.5.2) and can be obtained through: 

z. =• K 
30 

1 - e x p 
- w./:, 

27v 
+ -

9 w. 
(51) 

This relationship was suggested by Christoffersen and Jonsson (1985), who used the 

experimental results of Nikuradse (1933) to derive the expression; this is one of several 

expressions which can be found in the literature (for example, Zo being equal to kj'il.62). 

Plotting the height above the bed (elevation, z) against the corresponding velocities on a 

logarithmic scale, using Eq. 50, a linear relationship may be obtained. Assuming that JS3=0.4, and 

changing the logarithmic expression from natural logarithm to a logarithm to the base 10 (log), 

Eq. 50 becomes: 

= -^ln( lO) log 
z 

\^o y 
(52) 

Eq. 52 was derived on the assumption that the shear velocity within the boundary layer is 

constant; hence, the shear velocity (M*=(V'p)'̂ ^) can be obtained from the slope of the velocity 

profile, 

K 
w, = • 

In(lO) 
(53) 

(logZj - logZi ) 

Ideally, in order to minimise the errors in the calculations, three simultaneous velocity 

measurements should be made for each estimation (Sternberg, 1972; Heathershaw and 

Langhome, 1988). Using the value of the intercept on the elevation axis, an estimate for the 

roughness length can be obtained. There are several techniques available, recognised widely, by 

which the T„ can be estimated (indirectly or directly) depending upon the flow conditions; some 

of these methods are described briefly in the Appendix. 

2.7 Water Depth: A Note 

The water depth is of considerable importance, when undertaking experiments in laboratory 

flumes, because of its relationship to the bottom friction velocity. An increase in water depth 

implies an increase in the bottom friction velocity. Laboratory flumes differ from natural 

conditions, in that the flume width is fixed. Considering the small depths used in laboratory 

studied, where the relative increase in depth is much greater than in environmental flows, it is 
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apparent that Ihe bottom shear stress in natural flows is much less affected by changes in water 

depth than in the laboratory flumes. As the effect of any increase in the depth of the flow is more 

pronounced under laboratory conditions, the results of flume experiments deviate from the field 

data. The absence of field studies with the aim of understanding the direct influence of water 

depth on the magnitude of the secondary effects, in relation to incipient motion, such as the 

turbulent velocity fluctuations, reinforces the questionable reliability of laboratory 

measurements. 
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3. Experimental Procedure 

3.1 Flow Characterisation Experiments 

A number of experimental tests were undertaken, to establish both the cross-sectional nature of 

the flow (examining the side-wall effects) and the nature of the velocity profile, at a variety of 

flow rates (slow, moderate and fast). The experimental procedure and adopted methodology are 

outlined below. Both smooth (the bed of the flume) and rough (the artificial aluminium bed) 

surfaces were used as boundaries, examining the differences in the flow behaviour. A single 

grain thickness layer of sand (grain diameter of Z)=0.0651cm) was glued to the top aluminium 

plate of the bed (the recess section was excluded from these experiments, to allow for a uniform 

surface along the whole length of the flume). 

The water depth used during the experiments depended upon the nature of each of the 

experimental tests, ranging from as shallow as 5cm up to 20cm. During the experiments, water 

depths and temperature were monitored. The bulk of the flow measurements were undertaken at 

the potential position of a sediment recess section, approximately 3.5m downstream of the flume 

channel entrance. The LDA and the Streamflo unit were used in combination, positioned in the 

appropriate locations within the flume, relating to the individual experiments. The Streamflo was 

used for the collection of data across the flume, because the mounting system of the LDA 

(designed on the basis of safety and accurate alignment) was only capable of obtaining 

measurements at the channel's centreline. 

3.2 Observations and Data Acquisition 

The data generated from each experimental run fall into four groups, namely: descriptive, visual, 

analogue and digital. Descriptive experimental data were in the form of: notes produced 

regarding the experimental arrangements; depth of flow velocity measurements; water depth and 

temperature; the operational frequency of the LDA and Streamflo; and any malfunctions of the 

equipment which may have occurred. The visual data took the form of descriptive notes. The 

analogue output data sets, from both the current meters, was in the form of a continuous DC 

voltage signal; these were recorded simultaneously onto two channels, on the computer, during 

an experimental run. The digital type represented the numerical data, derived from the analogue 

signals. The quality of the numerical data depends upon the relationship between the conversion 

resolution and the nature of the raw signal, in terms of amplitude and frequency. Estimates of the 

means and standard deviations of the turbulent fluctuations could be improved, by increasing the 
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sampling rate and/or the duration of the record; however, this would increase considerably the 

volume of the data set obtained. Sampling at 25Hz resulted in 1500 data points being collected, 

for every minute of recording duration; hence, the data records were confined to between 5 to 8 

minutes, depending upon the experiment. 

3.3 Experimental Errors 

The accuracy and the inherent errors of each instrument have been discussed in a companion 

report (Paphitis and Collins, 2001). As the main instrument used in the experiments was the 

LDA, the errors were analysed statistically. In addition to the instrumental accuracy, a further 

error was introduced due to random electrical fluctuations; however, these may be assumed to be 

normally-distributed, about a mean value. The difference between the true and calculated 

standard deviations (cr) of one experimental run (f/=28.63cm/s), was found to be 0.0268cm/s 

(-1.43%, with the true <7 and calculated cr being equal to 1.8556cnVs and 1.8824cm/s, 

respectively). This difference was considered to be relatively insignificant, with respect to the 

variation experienced between the experimental runs. The accuracy of the digital output from the 

Streamflo current meter varied with the velocity, ranging between ±1 to 5% (generally, 

decreasing with increasing flow velocity). However, this error was decreased when the temporal 

mean values were calculated. 
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4. Results and Discussion 

The measurement programme was designed with the intention of producing enough evidence to 

determine whether the 5m flume can, indeed, produce flows comparable to the idealised flow 

characteristics described in Section 2. During the whole of the measurement programme, the 

water was being maintained almost free of suspended sediment (a certain quantity of particles in 

suspension was desired for the effective operation of the LDA) and at a temperature of 15°C 

(±2°C). Under these fixed conditions the density was taken to be 0.999g/cm^ and the kinematic 

viscosity 0.0114cm^/s; these values are used in all the forthcoming calculations. 

4.1 Accuracy of the Mean Velocity Measurements 

The accuracy of the derived mean velocities, together with the subsequent statistical analyses, 

may be influenced by a variety of factors, the most important of which are: (a) sampling errors; 

(b) the flow measurements at different elevations not being synchronised; (c) positional error of 

the LDA and Streamflo current meters; and (d) the possible non-uniformity of flow, in the 

downstream direction. An appreciation of the factors discussed above is necessary for the 

subsequent interpretation of the results. In particular, these factors may be called to account for 

any discrepancies between the trends of the data from the present investigation, in comparison 

with the idealised trends proposed (Section 2). 

4.1.1 Sampling Errors 

Differences between the 'observed' and 'true' values of the flow velocity (wj, at a given 

location, may occur due to the limited accuracy of the LDA and Streamflo current meters. These 

errors, in relation to the LDA system, have been discussed previously (Section 4.3) and have 

been shown to be 'self-cancelling', with respect to the mean velocity derivations. Similarly, 

standard deviations are overestimated by an insignificant amount (<5%). 

4.1.2 Synchronicity of Flow Measurements at Different Levels 

On the basis of obtaining measurements with a single LDA system and one Streamflo current 

meter, the velocity measurements for both the velocity profiles and the cross-sectional 

experiments were not undertaken simultaneously. Low-frequency fluctuations in the flow should 

be included in the mean velocity calculations, measured over a period of time. However, 

variation in the flow rate, during successive sampling periods, will result in an ambiguity when 

the calculated mean velocities are used to describe a single event (in time). Considering that the 
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water discharge in the flume remains (effectively) constant, then the duration of the longest 

period fluctuation (T) will be a function of the mean flow velocity (U) and a length scale (L); 

these characterise the largest dimension of the flow (T=L/U). Different length scale can be used 

in these calculations. Using the channel width (30cm), at velocities of 10, 20, 30 and 40cm/s, the 

fluctuations would have periods of 3, 1.5, 1 and 0.75s (i.e. frequencies of 0.33, 0.67, 1 and 

1.33Hz), respectively. If the distance from the leading edge of the flume, to the experimental test 

section, is used (350cm) then the same velocities would relate to periods of 35, 17.5, 11.67 and 

8.75s (i.e. frequencies of 0.029, 0.057, 0.086 and 0.1 MHz), respectively. The latter would result 

in fluctuating periods of slightly over eleven times as long as those indicated using the first 

length scale. Hence, by using the original length scales, the period can be decreased, but the 

frequency fluctuation would be considerably increased; this, in turn, may not be detectable with 

the available instrumentation. Conversely, by increasing the length scale, the periods can be 

increased and the frequency fluctuations decreased. Using a length scale of 350cm, fluctuations 

of periods greater than 35s only arise if the flow is less than lOcm/s. However, all the 

experiments described here exceed this flow velocity. The influence of long-period fluctuations 

in the flow rate was estimated to be approximately of the order of ±0.5cm/s. Such fluctuations of 

the mean-velocity may be the result of long-term variations in the flume pump discharge rate. 

Variations of this order of magnitude may give rise to any irregularities observed in the mean 

velocity calculations. 

4.1.3 Positional Error of the LDA and Streamflo 

The LDA velocity measurements result from an integration over a vertical distance of 0.03cm 

(Paphitis and Collins, 2001). Using a vertical depth scale, the LDA measuring volume could be 

positioned to within ±0.005cm, with respect to the bed. However, the definition of z=0 (at the 

bed) for a rough boundary is somewhat ambiguous; this is due to the presence of the single grain 

layer (grains ranging from 0.0595 to 0.0707cm sieve diameter), which results in a positional 

uncertainty of ±0.0056cm. In terms of profile interpretation, such an error is only significant 

close to the bed, in areas of high mean-velocity gradients. 

The positioning error of the Streamflo was slightly greater than that of the LDA, lying within 

the ±0.01cm error range. At high velocities, the Streamflo was observed to be displaced in the 

direction of the flow; these deviation in the horizontal (flow direction) were difficult to assess. 

Since consecutive measurements were made at vertical intervals of at least 2cm (for the cross-

sectional experiments), this displacement error was considered to be insignificant. 
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4.1.4 Non-uniformity of Flow in the Downstream Direction 

The flume channel was levelled to an accuracy of ±0.05° and maintained in an horizontal 

position throughout the experiments. Any (even slight) slope in the flume bed would have 

resulted in a small, but progressive, downstream variation in the shape of the boundary layer. 

Similarly, the roughened surface would lead to a progressive adjustment of the boundary layer, 

downstream of the leading edge. If the flow was allowed to encounter, at first, the smooth 

surface of the flume bed and then the roughened surface of the grains, then the temporal mean 

velocity profile (at a point downstream from the leading edge of the roughened surface) would 

have been observed to have two inflections; their relative position in the vertical would depend 

upon the flow characteristics. In order to achieve individuality in the velocity profile, when using 

the rough boundary, the leading edge of the roughened bed was made to coincide with the 

leading edge of the flume; in this way, the boundary encountered by the flow (upon its 

introduction into the working section of the flume) was either smooth or rough. 

This investigation is concerned with one-dimensional, steady, uniform, open-channel flows 

which are considered as the fundamental type of flows in open channel hydraulics. In defining 

the flow within the flume as steady and uniform, the depth and discharge must remain constant, 

both in terms of time and distance. Flows generated in the flume were found to experience slight 

deviations from steady uniform flow conditions; these were related, most probably, to the 

pumping action which was found to give rise to a standing wave and introduce additional 

turbulence into the flow. Therefore, it was necessary to examine the nature and development of 

the flow, after its introduction into the open channel section of the flume. Spherical polystyrene 

particles of different diameters (permitting them to settle at different depths) were introduced 

into the flow; these were observed, visually, to establish the extent to which the different 

techniques were 'dumping' the excess turbulence and removing the standing wave from the 

system. A honeycomb-like structure was designed resembling those used in air tunnels, with the 

use of plastic tubes of 1cm internal diameter; this was introduced at the leading edge of the flow 

channel. It was found to remove the standing wave within the channel; at the same time, 

reducing the turbulence down to the tube diameter scale. Although this imposed certain 

limitations, it was concluded, on the basis of the visual investigation, that the introduction of the 

honeycomb-like structure was beneficial; overall, it appeared to improve the flow organisation 

and, hence, was maintained in its use throughout the study. 
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4.2 Preliminary Experiments 

The preliminary experiments include a variety of tests designed to examine certain aspects of the 

5m flume and the flows which it can produce. These tests form a necessary first step towards 

obtaining consistent results in the main experiments of the measurement programme. 

4.2.1 Flow Development 

Mean velocity profiles (shown on Figure 12) obtained at the centre of the channel, and at various 

distances (0.5, 1.5, 2.5 3.5 and 4.5m) from the entrance to the working section of the flume, 

indicate that the vertical structure of the flow is fully developed within about 3.5m or 45 water 

depths (-8cm) from the entrance, roughly as anticipated (Section 2.1). The scope of the 

logarithmic region of the velocity profile does not change appreciable between 3.5m and 4.5m. 

These results indicate that measurements, undertaken in subsequent experiments, should be 

carried out at least 3.5m downstream from the entrance to the working section. 
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Figure 12: Profiles of mean velocity at various distances along the channel, obtained in the 
preliminary measurement programme. All measurements were taken along the 
centreline. The distance from the entrance to the working section is given by x. 
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4.2.2 Mean Velocity Estimations 

In order to identify, in a simple way, the time required to produce estimates of mean velocities 

that are within a few percent of the 'true' mean (taken as the mean of the total record), a long 

record of the velocity at 2cm above the bottom was generated. From a 30min long data record, 

the running average was computed, as defined by 

1 '} 
uit^) = —jw(r) dt (54) 

+ 0 

as a function of the averaging time ?+. Figure 13 shows the results of this calculation, in the form 

of a departure of the running average from the mean of the total record, normalised by the mean 

of the total record. Figure 13 indicates fluctuations of the order of 2% to 3%, for averaging times 

less than about 150s, and fluctuations that are an order of magnitude smaller for averaging times 

greater than about 150s. These results suggest that an averaging time of 5min is sufficient to 

produce stable mean velocities (that are within a few percent of the 'true' mean). 
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Figure 13: Running average «(?+), as defined by Eq. 54, as a function of the averaging time t+. 

The vertical axis is the departure of the running average from the mean of the total 
record, normalised by the mean of the total record. 
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4.2.3 Depth-Averaged Velocities 

The depth-averaged flow velocity, using the profile measurements made for the study of the 

vertical structure of mean velocity, was determined by averaging all the velocities measured at 

the pre-specified elevations within the flow. The derived depth-averaged velocity of the flow 

was compared then with all the measured velocities of the vertical profiles; this was to identify at 

which elevation the velocity measurement best represented the estimated depth-averaged flow 

velocity. The identified elevation was converted into a percentage of the total flow depth. These 

experiments revealed that reliable estimates of depth-averaged flow velocity can be obtained at a 

level of 0.6 of the depth below the free surface (see also Chow 1959). Maximum velocities were 

observed to be closer to the free surface, at levels between 0.2 and 0.3 of the depth below the 

surface. 

4.2.4 Maximum Velocities 

A series of experiments were undertaken to evaluate the maximum velocities capable of being 

generated in the flume, for different water depths. The control pump was completely opened 

(theoretically, pumping 0.03m"Vs) and, by gradually varying the flow depth in steps of 1cm at a 

time, velocity measurements were obtained at an elevation from the bed equal to 60% of the total 

flow depth. Measurements at this level were found to provide good estimates of the depth 

average velocities for the generated flows (see above). The measured velocities are shown in 

Figure 14; these can be used as an indication of the levels of achievable velocities, with respect 

to depth, within the 5m flume. The velocity increases with decreasing flow depth; hence, 

velocities in excess of 2m/s are possible at flow depths below 5cm. For the safe operation of the 

flume, it should be noted that, by increasing the discharge whilst maintaining the ta i l g a t e at 

the same level, caution must be taken not to over-top the flume; water depth increases with 

velocity, as the amount of water flowing over the tail gate increases. 
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Figure 14: Possible flow velocities, that can be generated in the flume, at different water depths. 

4.2.5 Streamflo Positioning 

A series of tests were carried out to investigate the influence of the Streamflo sensor upon the 

LDA, when located above it, at a variety of positions. The LDA was placed at a height of 0.5cm 

above the bed and the Streamflo at a variety of elevations (z) (1, 2, 3, 4, 5, and 6cm). The 

velocity disturbances experienced by the LDA are shown in Figure 15, in the form of differences 

between the velocity measurement made prior to the introduction of the Streamflo, compared 

with those made after its introduction at the respective elevations. The positioning of the 

Streamflo within the flow produces turbulent eddies, which appear to increase the flow in the 

vicinity of the LDA (at least up to a height difference of 3.5cm). The mean velocity differences 

decrease, from 1.54cm/s to 0.04cm/s, between a height difference of 0.5cm and 3.5cm, 

respectively. At a height difference of 4.5cm (and 5.5cm), the mean velocity measurements 

(before and after) appear to be similar. 
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Figure 15: Diagram illustrating Streamflo positional effect on the recorded LDA velocity 
measurements. 

4.3 Cross-sectional Character of the Flow 

In response to the presence of a free (water) surface and to friction acting along the glass side-

walls, the velocities in the flume are not distributed uniformly across the working section. A 

series of tests were undertaken to establish the cross-sectional character of the flow and, at the 

same time, the extent of the influence of the side-walls. Forming a grid sampling system (Figure 

16), the pattern of the flow velocity distribution within the working section of the flume was 

obtained; the measurements were carried out at a position located 3.5m downstream from the 

leading edge of the flume. The LDA was used for obtaining the velocity measurements over the 

central part of the flume (axial line), in steps of 1cm, varying between 1cm and 19cm above the 

bed. All the other measurements were undertaken using the Streamflo current meter at the 

following distances (y, in cm) across the flume, with reference to the centreline: 

- 1 4 , - 1 3 , - 1 1 . 5 , - 1 0 , - 8 . 5 , - 6 . 5 , - 5 , - 2 . 5 , ( 0 ) , 2 . 5 , 5 , 6 . 5 , 8 . 5 , 1 0 , 1 1 . 5 , 1 3 , 1 4 

(where positive indicates the right hand-side (RHS) and negative the left hand-side (LHS) of the 

flume, looking in the downstream direction). The Streamflo measurements were made at a 

variety of elevations (z) within the flume, in 2cm steps, between 2cm and 18cm. The water depth 

was maintained at 20cm, with a mean (cross-sectional) flow velocity of ~20cm/s. 
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Figure 16: Cross-sectional diagram of the flume (looking downstream) showing the grid 
sampling system. 

The lateral mean velocity (Uy) variations, across the flume, at various elevations (z) above the 

bed, are illustrated in Figure 17. Maximum velocities occur in the middle region (y=±7cm), with 

minimal variation. In approaching the side walls (from about ±8cm), Uy starts to decrease; this is 

due to the frictional effects, in order to satisfy the no-slip condition of zero velocities at the 

boundaries. In these regions, closer to the side boundaries, a general shift (of up to 1.54cm/s) can 

be observed, where the velocities on the LHS of the flume have been found to be higher. The 

gradient (dw/dy) of these lateral profiles is observed to increase towards the bottom boundary. 

The larger changes in momentum experienced in this region (z<4cm) may be attributed to the 

combined influence of the bottom and side boundaries of the channel (flume). 

Results and Discussion 5m Long Recirculating Flume-Flow Characteristics 38 



University of Southampton 
School of Ocean and Earth Science 

z"-- 2 2 

20 

O IK 

> 
16 16 

14 

z = 2cm z = 12cm 

10 12 14 16 10 12 14 16 

2 2 

B 
2 0 

18 
u 
> 

16 

14 

z - 4cm z = 14cm 

10 12 14 16 0 2 4 6 10 12 14 16 

22 r 

B 
20 n 

o 18 -

0) 
> 

16 -16 -

14 L 

Z = 6cm z = 16cm 

10 12 14 16 10 12 14 16 

10 

= 8cm 

12 14 16 

z = 10cm 

0 2 4 6 8 10 12 14 16 

Lateral Distance Across the Flume (cm) 

22 

20 

18 

16 

14 

z = 18cm 

0 2 4 6 8 10 12 14 16 

Lateral Distance Across the Flume (cm) 

Figure 17: Lateral variations in the mean velocity (u, cm/s), with distance (y, cm) across the 
flume, z is the elevation above the bed, • RHS and o LHS (looking in a downstream 
direction). 
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Vertical mean velocity (wj variations at positions across the flume (y) are shown in Figure 18. 

Approaching the side boundaries, higher values are observed on the LHS of the flume. 

Maximum velocities occur at some depth below the free surface. In smooth channels elsewhere 

(Schlichting, 1979), it has been observed that the flow at the free surface was not one-

dimensional for narrow rectangular channels; likewise, that maximum velocities occurred below 

the free surface. Chow (1959) has indicated that maximum velocities occur at a level of 0.05 to 

0.25 of the depth below the free surface; as the side walls are approached, the occurrence of the 

maximum velocity becomes deeper. In the present investigation, maximum velocities have been 

found to occur between 5.5cm to 6.5cm below the free surface (corresponding to an average 0.35 

of the depth below the surface). However, a series of secondary maxima can also be identified, 

in certain cases, occurring between 15cm to 16cm below the surface; this suggests the presence 

of a high velocity cell of fluid close to the bed. It has been suggested elsewhere (Kennedy and 

Fulton, 1961) that, at least initially, two secondary currents on either side of the centreline may 

develop in flumes. The presence of these currents has the effect of delivering high velocity fluid 

particles to the bottom side-wall corners; similarly, to displace high velocity 'filaments' away 

from the bottom along the centreline and from the surface side-wall comers. With increasing 

flow and water depth in flumes, additional secondary currents may form, irrespective of the 

nature of the bed and side-walls (smooth, rough, or combinations of both surfaces) (Chow, 

1 9 5 9 ) . 
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Figure 18: Vertical variations in the mean velocity (u, cm/s), with elevation (z, cm), y is the 
distance across the flume, • RHS and o LHS (looking in a downstream direction). 
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The flow pattern appears to be highly disturbed and complicated towards the side boundaries 

(±11.5cm outwards, from the centreline); this illustrates the increased disturbance of the velocity 

profile, as the side walls are approached. The extent of the complexity observed in these profiles, 

closest to the side boundaries, may be the result of the inability of the Streamflo current meter to 

measure accurately the velocity in these regions very close to the side panels. 

The mean velocities have been found to increase continuously towards the central portion of the 

flume, as well as with elevation above the bed (Figures 17 and 18). The effects of the side and 

bottom boundaries are, therefore, at a minimum nearer to the water surface and towards the 

centre line of the flume. Figure 19 illustrates the general pattern of velocity distribution at the 

flume's cross-section; the contours represent equal velocities in the channel section. For the 

selected flow conditions (used elsewhere for threshold determinations, see Paphitis et al, in 

press), with a mean velocity of 20cm/s, it can be concluded that the influences of the side walls 

extend to a distance of, at least, 6cm across the flume. Consequently, these results suggest that 

the central 15cm of the flow can be considered independent of cross-stream position; however, 

this will experience a gradual decrease, with increasing flow velocity. 

-5 0 5 

D i s t a n c e a c r o s s the f l u m e ( c m ) 

Figure 19: The general pattern of velocity distribution within the flume; the contours represent 
equal velocities in the channel section. 
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Using the cross-sectional mean velocity (~20cm/s) and the hydraulic radius (defined as 

bh/{h+2h), where b is the channel width and h is the water depth), a Reynolds number of 1.7x10'^ 

was derived (see Eq. 2; in this the hydraulic radius was used instead of h as the characteristic 

length); this indicates that the flow was turbulent. In most open channels (and, indeed, in the 

natural environment), laminar flow occurs very rarely. The fact that the surface of the flow, in 

the above experiments, appeared smooth and glassy is by no means an indication that the flow 

was laminar; most probably, it indicates that the surface velocity was lower than that required for 

capillary waves to form. Laminar open-channel flows do occur, with the exceptions being flows 

of fluids of very high viscosity, or a thin sheet of water flow (Chow, 1959; Douglas et al, 1979). 

4.4 Vertical Flow Velocity Profiles 

In order to investigate, in detail, the vertical structure of the mean velocity and turbulence 

intensity, three flow regimes (namely 'slow', 'moderate' and 'fast'), were selected for 

investigation at a fixed nominal depth of 12cm. In all cases, the measurement station was on the 

centreline of the flume, at a position 3.5m from the leading edge. Each vertical profile had 30 to 

32 measurement stations and the record length at each station was 5min, as utilised in the 

preliminary experiments (see Section 4.2.2). The experiments were carried out over both rough 

(an artificially-prepared sandy bed) and smooth (flume's bed) surfaces. The derived velocity 

profiles are plotted on linear and semi-logarithmic scales in Figures 20 and 21, respectively. The 

identification given to the profiles is related to the flow regime (S-'slow'; M-'moderate'; and F-

'fast') and the boundary condition (R-'rough' and S-'smooth'). 

The profiles (Figures 20 and 21) illustrate an increase in the velocity gradient (dw/dz), with 

increasing flow; the velocity gradient decreases with increasing elevation above the bed. The 

maximum velocity gradient occurs within the lower 1cm of the flow. The mean velocity 

gradients (dw/dz) of the individual profiles tend to decrease, progressively away from the bed; 

this is indicated by the general 'concave upwards' shape of all the (linear) profiles. A partially-

developed boundary layer would be indicated if the velocity gradient was zero, at any part of the 

profile. With the exception of those profiles measured at the slow flow regime (z>5cm), all the 

other profiles indicate fully-developed boundary layers, as there are no regions of zero velocity 

gradient within these profiles. 

Results and Discussion 5ni Long Recirculating Flume-Flow Characteristics 43 



University of Southampton 
School of Ocean and Earth Science 

c 
0 

1 
s 

s u 
a 
o 
-a cd > 

W 

10 12 

Mean Veloci ty (cm/s) 

10 12 14 16 18 2 0 2 2 2 4 2 6 

Mean Veloc i ty (cm/s) 

a 
o 
-a 

( 5 3 p> 
0) 
w 

14 16 18 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 

Mean Veloci ty (cm/s) 

Figure 20: Mean velocity (u, cm/s) variations with elevation (z, cm) for the various flow rates. 
The identification given to the profiles is such that S (slow), M (moderate) and F 
(fast) relate to the flow rate, whereas R (rough) and S (smooth) relate to the 
boundary state (i.e. MRl is the first profile under moderate flow rate over a rough 
boundary). 
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Figure 21: Mean velocity (w, cm/s) variations with elevation {z, cm) for the various flow rates, 
plotted on a semi-logarithmic scale. 

The upper part of the profiles measured under fast flow regimes exhibit slight deviations from 

the expected theoretical logarithmic distribution (Figure 21). These deviations may be due to 

experimental uncertainty; the positional uncertainty of the LDA may account for some of the 

observed deviations particularly for data points lying close to the bed. Recirculating eddy 

motion, generated by secondary circulation effects, can cause major deviation in the mean 

velocity profiles; this cannot be inferred conclusively, because the magnitude of the error caused 

by such disturbances was not adequately quantified. Furthermore, the fact that individual 

velocity measurements at different elevations were not carried out simultaneously, may also 

account for some of the observed deviation. In most cases, such small deviations can be 

attributed to the averaging effect on the sharp mean velocity fluctuations near the boundary. 

However, the small measuring volume of the LDA reduces significantly such a possibility, 

suggesting that the deviations are likely to be a real phenomenon; this may be due to either 

certain flow conditions, or the presence of secondary roughness elements within the flume. The 

experimental runs were undertaken over a smooth boundary and a uniform surface of a single 

grain layer of sandy sediment; in both cases, the artificial bed was utilised, the presence of which 

might have created a certain roughness within the working section (and, hence, the small 

deviations from the theoretical distribution). 
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4.4.1 Standard Deviation 

The velocity measurements carried out in these experiments were averaged over a sufficiently 

long period (5min); this provides a much more consistent result, for the mean flow, than the 

instantaneous measurements (this is so when turbulence is not being investigated). The random 

velocity fluctuations indicating turbulence are averaged out, with time, and the steady mean flow 

can be distinguished. Instantaneous local velocity measurements of the LDA, which only 

distinguishes the u component of velocity in the x direction (for one-dimensional flows produced 

in the flume, v and w are zero) can be expressed, therefore, as u = u + u' (see Eq. 6, Section 

2.3). When the mean values of the fluctuations are taken over a sufficiently long time interval, 

they average out to zero. 

The standard deviation (a, see Eq. 9) in the velocity measurements can be used as an indication 

of the magnitude of the velocity fluctuations; the estimated values of the standard deviation are 

plotted, as vertical profiles, in Figure 22. The standard deviation is observed to decreases away 

from the bed (with the exception of the slow regime, smooth bed profiles); this illustrates the 

increasing importance of the presence of the boundary, on turbulence. The standard deviations in 

the velocity measurements experience an increase, as the flow rate increases from 'slow' to 

'fast'. Under the examined flow rates, the smooth bed appears to have less influence on the flow, 

than the rough bed. At 'moderate' and 'fast' flow conditions, the smooth bed profiles appear to 

have a more pronounced reduction of the standard deviation, with elevation, when compared to 

the rough bed profiles. The influence of the roughened bed, upon turbulence, is affective to 

elevations of at least 8-10cm. 
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Figure 22: Standard deviation (cr, cm/s) variations, with elevation (z, cm), for the various flow 
rates (plotted on a semi-logarithmic scale). 
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4.4,2 Longitudinal Turbulence Intensity (LTI) 

The effect of roughness elements upon the magnitude of the velocity fluctuations in the flow 

may be expressed in terms of the relative Longitudinal Turbulence Intensity (LTl=a/u). 

Observations on the LTI near the bed have shown that, in the vicinity of a rough bed, the 

turbulent intensity increases towards the bed; it is influenced by the arrangement, size and shape 

of the roughness elements (Lyres and Woodruff, 1972). LTI values are plotted against elevation, 

on a semi-logarithmic scale, in Figure 23. The LTI values appear to be lower for smooth rather 

than rough boundary conditions, particularly close to the bed and up to an elevation of about 

2cm. 

LTI scales directly with mean velocity measurements, since they are related statistically; 

minimum turbulent intensity values coincide with maximum velocities (e.g. Mehta, 1979). LTI 

variation, with respect to elevation (z) and scaled to flow depth (h), are presented in Figure 24. 

With reference to the variety of flow regimes presented on Figure 24, the LTI can be seen to 

increase as the bed is approached (corresponding to the decrease of mean velocities). 

The slow flow rate profiles emphasise the difference between the smooth and rough beds; an 

increase of the order 44% has been estimated at z/h=0.l and a 18% increase at z/h=O.S. Similar 

results have been obtained elsewhere (McQuivey and Richardson, 1969), with 50% and 20% 

increases in LTI over a rough bed, at z/h=0.\ and 0.8, respectively. This pattern demonstrates 

that the divergence is not merely due to differing water depths. For the 'moderate' and 'fast' 

rough bed profiles, an increase in LTI of approximately 25% to 30% at z/h=0.l and 11% to 14% 

at z/h=O.S occurs, when compared to the smooth bed profiles. These differences are not as 

extensive as those observed between the corresponding slow flow rate profiles. Such variation is 

likely to be either due to the flow in the smooth 'moderate' and 'fast' profiles not being 

hydraulically smooth, or to an experimental error (Section 3.3). 

The presence of roughness elements on the boundary creates additional turbulent intensity and, 

hence, in the near-bed region the LTI increases with increasing bed roughness. Bayazit (1976) 

attributes this reduction in LTI to: (a) the conversion of a part of the flow energy, into heat, in 

the separation zones between the roughness elements; and (b) the dampening of turbulence in the 

region away from the roughness elements, as a substantial part of the available energy of the 

mean flow is converted into turbulence in the separation zones. The available data are not 

sufficient, however, to make any firm conclusions about LTI reductions close to rough beds. 
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Figure 23: LTI variations, with elevation (z, cm), for the various flow rates (plotted on a semi-
logarithmic scale). 
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Figure 24: LTI variations, with elevation (z, cm), scaled to flow depth (h, cm) for the various 
flow rates (plotted on a linear scale). 
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4.5 Determination of Shear Velocity 

In order to facilitate comparisons between the data of the various investigators, it is customary to 

summarise the experimental variability in terms of a limited number of independent variables 

(p.v, p, V, h and T,„ as defined in Section 2.2). Of these variables, the most difficult to measure is 

the bed shear stress, t„. Various methods of determining shear velocity {u*) and, thereby T„, 

using mean velocity profiles are described in Section 2. The application of particular equations is 

dependent upon the prevailing flow regime (smooth, transitional or rough); this is a function of 

the grain Reynolds number. Re* ( / V , see Section 2.2.3). 

Unless u* is known (or estimated). Re* and the corresponding type of flow regime will remain 

unknown. Therefore, it is not possible to predict which form of the logarithmic law should be 

used, in order to determine u* from mean velocity measurements. Provided velocity 

measurements are made within the constant stress layer, where there is a logarithmic profile, this 

problem may be overcome by using the velocity gradient method (Eq. 51), which can be derived 

from both the smooth- and rough-wall logarithmic laws (Eqs. 44 and 48, respectively); this 

method is discussed below. Alternatively, u* may be calculated from both equations, using 

individual pairs of velocity (w,) and elevation (z) values. In such a procedure the problems arises 

as to which points (if not all), within the boundary layer profile, should be used; likewise, to that 

effect, the equation that best describes the prevailing flow conditions. In terms of the latter, the 

equation which produces the more realistic or consistent estimates of u* may then be preferred. 

The corresponding values of Re* (which can then be calculated using the estimates of u*) may 

indicate the prevalent flow regime, at the time of the experimentation. Unfortunately, these 

methods of estimating shear velocity are not without problems; some of these are outlined 

below. 

4.5.1 Problems with Shear Velocity Determinations 

The determination of Re* will indicate which flow regime prevails. Unfortunately, when the flow 

regime is transitional (5 < Re* < 70), between smooth and rough, no simple empirical formula 

exists to predict the form of the boundary layer velocity profile. At such times, neither viscosity 

nor the bed roughness are insignificant, in terms of their influence on the near-bed flow. In this 

region flows can, at best, be approximated either by the smooth- or rough-wall laws, depending 

upon whether they are more nearly 'hydraulically smooth' or 'fully turbulent'. 
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The logarithmic laws are strictly only valid within the constant stress layer (Section 2.5.2). The 

lower limit of this region, for smooth turbulent flows, is given variously as 30 < zu*/v < 70. 

Consequently, it is only possible to determine whether a particular measurement of was made 

below the constant stress layer, after u* has first been estimated. If the zu*/v computation 

indicates that any of the velocity measurements, used in the u* determination, were made below 

the constant stress layer, then these estimates should be considered unreliable (and, hence, 

ignored) and an estimate must be made using velocities measured farther away from the bed. The 

upper limit lies within the interval 0.1 < z/5 < 0.2. The estimation of 5 (Eq. 28), the boundary 

layer thickness, involves a measurement of the free-stream velocity and relies upon fitting curves 

to experimental data; such a procedure is highly sensitive to experimental error. Alternatively, 

assuming that the boundary layer extends to the free water surface, then 5 = h and values above 

z/h = 0.2 can be excluded (as deviation from the logarithmic equations occurs above this level). 

Determining the extent of the constant stress layer is important in deciding whether reliable 

estimates of u* can be derived, using the logarithmic laws, from experimental measurements of 

'h-

Experimental error is the third problem impairing the determination of u*, from mean-velocity 

measurements. The true mean-velocity profile will be composed of a number of curves, 

corresponding to the inner, overlap and outer regions of the boundary layer (Figures 7 and 8) 

and, possibly, the free stream, if the boundary layer is only partially developed. Downstream 

variation in the profile or roughness of the bed may introduce further complexities. Furthermore, 

in smooth or transitional flows, the inner region will be further subdivided into the buffer layer 

and the viscous and laminar sublayers (Section 2.5.2). Within each of the layer, the mean-

velocity data will follow a different curve. The general dimensionless form of the curves has 

been established here by a large number of individual measurements, which display some degree 

of scatter (see Figures 9 and 10). In order to establish the detailed form of a particular velocity 

profile, it is still necessary to make a number of observations for each component curve. 

4.5.2 The Log-Profile Method 

It is common practice, in both the marine environment (Sternberg, 1972) and in the laboratory 

(Sumer and Deigaard, 1981) to plot velocity profiles on semi-logarithmic axes; in such 

representations logarithmic relationships follow straight lines. Theoretically, it requires only two 

Mj. measurements to show the form of the relationship, which is expected to be logarithmic. 
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However, in practice and in order lo reduce experimental errors, the velocities at three or more 

points are measured. Curve-fitting is performed by regressing the mean velocity against log(z), in 

order to estimate the shear velocity (from the slope of the relationship). The acceptance, or 

rejection, of a relationship will then depend upon the magnitude of the scatter about the 

regression line, as given by a correlation coefficient. 

The profiles plotted in Figure 21 do not reveal any well-defined linear trends. Similarly, it is 

extremely difficult to decide to what extent the complexities of the measured profiles are due to 

the actual velocity profile, as opposed to experimental uncertainty. Least-squares linear 

regressions were performed on these profiles to yield the best straight line fit. This approach is 

equivalent to fitting linear equations to log(z), u* pairs, of the form: 

u,=a + b\og{z) (55) 

Eq. 55 may be combined with Eq. 53, to produce an estimate of u*. Consider the form of Eq. 55, 

when z takes the values 1 and 10, 

Mjo =a+b 

Wj — CI 

and Eq. 53 reduces to. 

("lO ~ " i ) 

and by substitution: 

In(lO) 

An observed logarithmic relationship, of the form represented by Eq. 55, does not necessarily 

imply that the data approximate to either form of the logarithmic profile law. The closeness of 

the approximation to the smooth-wall law may be determined as outlined below. Assume that 

Eqs. 45 and 55 define the same curve. 

a + b\og(z) = —In 
K V 

+ Uif 

Ut 
M, Cg - a -t-61og(z) - — l n ( 1 0 ) l o g 

using Eq. 56, 

V V 

^ u ^ 
- a+blog{z)-b log—4-log(z) 

V \ 
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Cs = — 
w. 

a-blog 
V ; 

substituting u* from Eq.56, 

In(lO) 

Kb 
a-blog 

Kb 
( 5 7 ) 

ln(10)v 

Hence, if Kand v are known, Cs may be determined given Eq. 55. If the value of Cs is close to 

the empirical value of 5.5, then the data indicate a smooth turbulent velocity profile. 

A similar procedure can be followed to show the approximation to the value of the constant CR, 

from the rough turbulent profile law. Assume Eqs. 49 and 55 define the same curve: 

a + b\ogiz) = — I n 
K 

f \ 
+ w . C e 

u, Q = a + 6 log(z) - (ln(z) - In(t 

substituting b from Eq. 56, 

Q - a + -\n(z) + hi(k^)) 

substituting u* from Eq. 56, 

Cr = 

aln(lO) ^ ln(A:J 

Kb K 
( 5 8 ) 

Eq. 58 may be determined if is known (or estimated). For the regression analysis, it is assumed 

(initially) that the measured regression line indicates a similar velocity profile to either the 

smooth or rough profiles; then the estimates of Cs and Cr enable a comparison with the 

respective empirical values of 5.5 and 8.5 (Nikuradse, 1932 and 1933), for the definition of the 

flow conditions. This procedure requires several arbitrary assumptions to be made, in relation to: 

(a) which values of y/5 and zu*/v should be used to define the limits of the constant-stress layer; 

and (b) what are the acceptable limits CS and CR. This method for determining shear velocity, 

herein referred to as the 'log-profile method', will be evaluated using the velocity profiles which 

where described previously in Section 4.4. 

Results and Discussion 5m Long Recirculating Flume-Flow Characteristics 54 



University of Southampton 
School of Ocean and Earth Science 

4.5.3 The Log-Profile Method: An Evaluation 

Regressions were performed on the vertical velocity profiles presented in Section 4.4. One 

profile was selected from each flow regime (slow, moderate and fast); these were treated 

separately, with respect to smooth or rough boundary conditions. The resulting u* estimates were 

subjected to several restrictions. 

The boundary layer thickness (<^ could not be determined, with any certainty, from the shape of 

the profiles; therefore, it was assumed that <5 was equal to h. The restriction of permissible 

values, to below the upper limit of the constant stress layer (z<0.26), required that values 

measured above the level z/h=0.2, were not considered; this excluded data from elevations of 

2.5cm and above. For the smooth-wall law, the lower limit of the constant stress layer may be 

defined by zu*/v<30. Shear velocity estimates, which indicated that observations made below 

this level were used in their calculation, were rejected for being below the constant stress layer. 

Depending upon the nature of the boundary conditions being smooth or rough, regressions which 

implied Cs and C/? values outside the arbitrary ranges 4<Q<7 and 7< C/?<10, respectively, were 

rejected. The nearest empirical values to 5.5 and 8.5 were accepted, as being the closest to the 

smooth- and rough-wall law, respectively. 

The purpose of the procedure adopted for the regression analysis was to determine which points 

(if not all) within the boundary layer profile can be used, with confidence, for shear velocity 

estimations. Consequently, regressions were performed on 3 or more adjacent points along the 

profile. Commencing at the lowest point, a line of best fit was calculated incorporating the point 

itself and the points located immediately above it. From the 13 pairs of and log(z) 

measurements (all those below 2.5cm, see above), it is possible to calculate 11 regressions of 

on log(z), involving 3 adjacent points of z; 10 regressions involving 4 adjacent points of z; 9 

regressions involving 5 adjacent points of z; and so on, until the line of 'best fit' was calculated 

involving all 13 points. In total, there are 66 different possible groupings of 3 or more adjacent 

points. The resultant regression of each group were used to calculate u* values, using Eq. 56 and 

CS and CR values from Eq. 57 and 58, respectively. 
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Smooth Boundary 

A plot of U* 'isovels' calculated from Eq. 45 with K=OA, CS=5.5 and v=0.0114cmVs, is shown as 

Figure 25. Also plotted are the curves representing equal zu*/v values, of 11.6, 30 and 70. Using 

the u* estimates from the regressions, zu*/v values were calculated; these was to reject the 

estimates that included measurements which were obtained below zu*/v<30 (where z is the 

minimum elevation used in each regression). The calculated Cs values (Eq. 57) formed a further 

criterion for accepting or rejecting a u* estimate, from the regressions. Finally, u* estimates were 

rejected if the correlation coefficient and the associated p-value of the regression was below the 

minimum acceptable level. 

0.3 0.4 0.5 0.6 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 
10 r 

6 o 
c 
o 
-a (SJ > 
u 

s 

0.1 

X MS 

10 15 20 25 30 

Mean Velocity (cm/s) 

35 40 

Figure 25: Mean velocity (w, cm/s) variations with elevation (z, cm) for the various flow rates 
over the smooth boundary. The Figure shows the u* isovels for the smooth-wall law 
and zu*/v contours (plotted on a semi-logarithmic scale); u* isovels calculated from 
Eq. 45, with ?c=0.4, Q=5.5 and v=0.0114cm^/s. 

Calculations of the zu*/v values have indicated that measurements made below 0.8cm, 0.3cm 

and 0.2cm for the slow, moderate and fast flow regime, respectively, were below the lower limit 

of the constant stress layer. Observations of the zu*/v=30 isovel, as shown in Figure 25, confirms 

the identified levels on the basis of the multiple regression analysis. 

Within the interval 0.8 to 2.5cm, which provided the optimum regression for the slow flow 

regime, the data points show a close approximation to the local trend of the isovels. The 

optimum u* value of 0.49cm/s agrees also with the value of the isovels and the derived Cs value 
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was found to be 5.52. This particular regression was associated with a correlation coefficient of 

0.975, with an insignificantly small p-value; this suggests a very strong relationship. In the 

majority of regressions, the derived Cs values were outside the acceptable (arbitrary) range of the 

C.V values. For the moderate flow regime, the optimal regression was provided within the interval 

1 to 2.2cm, resulting in a u* value of l . l lcm/s and a Cs value of 4.59 (with a correlation 

coefficient of 0.981 and a p-value«0.001). In the case of the fast flow regime, the interval 1.3 to 

2.5cm was found to offer the optimum regression (0.955 correlation coefficient and a p-

value<0.004), which provided a u* value of 1.76cm/s and a Cs value of 4.17. 

The process outlined above, by which an optimum regression was obtained using the three 

profiles, entailed a highly subjective method of selecting criteria for acceptance or rejection of 

the results obtained. Application of the criteria resulted in the rejection of all but three 

regressions for the slow and moderate flow regime and only a single regression for the fast flow 

regime; this was due to violation of acceptable zu*/v and Cs limits and low correlation 

coefficients. Nonetheless, the regressions which were accepted offered good estimates of u* and 

Cs values; these correspond closely to the isovels and the empirical values, respectively. 

Rough Boundary 

The plots of shear velocity isovels, calculated according to Eq. 49, are shown in Figure 26. The 

value of ks was taken as 0.065cm; this corresponds to the (mean) diameter of the sand grains, 

constituting the roughened surface. The u* estimates, derived using the rough-wall law, were 

accepted or rejecting on the basis of the calculated CR values being within the acceptable 

(arbitrary) range and the resulting correlation coefficients. However, the presence of a rough 

boundary does not necessarily suggest hydrodynamically rough boundary conditions and, hence, 

the results of the multiple regression analysis were treated in the same manner as for the smooth 

boundary; shear velocity isovels, calculated according to Eq. 45, are also included. This 

procedure was adopted because initial indications suggested that the grain Reynolds number 

defines the hydrodynamically smooth and transitional flow regimes. 
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Figure 26: Mean velocity (M, cm/s) variations with elevation {z, cm) for the various flow rates 
over the rough boundary, illustrating the u* isovels for both the smooth-wall law 
(dashed lines, with italic labels) and the rough-wall law (solid lines, with normal 
labels), plotted on a semi-logarithmic scale, u* isovels calculated from Eqs 45 and 
49, respectively, with K^O.4, CS-5.5, ^^=0.0651cm, Cs=8.5 and v=0.0114cm^/s. 

The profile data obtained from the slow (flow) regime correspond closely to the trend of the u* 

isovels between 0.4 and 0.5cm/s. This observation is in agreement with the u* estimates provided 

by the accepted regressions, which were between 0.43 and 0.51cm/s. The optimal regression 

(within the interval 1 to 2.5cm, with a correlation coefficient 0.956 and a p-value<0.008) of the 

slow flow regime resulted in a U* value of 0.43 and a CR value of 9.04. The optimal regression 

(0.993 correlation coefficient and p-value<0.008) of the moderate flow regime, within the 

interval 0.8 to 1.6cm, provided a u* value of 1.05 and a CR value of 8.37. With the fast flow 

regime, the optimal regression (correlation coefficient 0.962 and p-value<0.03) was within the 

interval 1.3 to 2.2cm, providing an estimate for u* of 1.75 and for Cr of 9.19. 

Applying the smooth-wall law on these rough boundary profiles yields slightly different 

estimates. The optimum regression for the slow flow regime was provided within the interval 1.3 

to 2.5cm; the data points also approximate closely to the local trend of the corresponding isovels. 

The optimum u* value was estimated at 0.47cm/s (accepted regressions ranging between 0.43 

and 0.48cm/s), with a corresponding Cs value of 5.27 (this regression offered a correlation 

coefficient of 0.979 and a p-value<0.001). Within the interval 0.6 to 1.9cm/s, which provided the 

Results and Discussion 5m Long Recirculating Flume-Flow Characteristics 58 



University of Southampton 
School of Ocean and Earth Science 

optimal regression for the moderate flow regime, a u* value of 0.98cm/s and a Cs value of 5.13 

were calculated (with a correlation coefficient of 0.971 and a p-value<0.004). The interval 1 to 

2.2cm was found to offer the optimum regression for the fast flow regime (with a 0.966 

correlation coefficient and a p-value<0.005), resulting in a u* value of 1.57cm/s and a Cs value 

of 5.71. 

The estimated values of u*, from the optimal regressions in conjunction with ks (0.0651cm), 

together with the 5 and 70 Re* isovels are shown in Figure 27. Using all the u* estimates from 

the multiple regression analysis (resulting from both the smooth- and rough-wall laws), Re* 

values were calculated and found to range between 1.5<Re*<6.5, 4<Re*<9.5, 4<Re*<19 for the 

slow, moderate and fast flow regimes, respectively. In the present investigation. Re* never 

exceeded 20; thus, fully-turbulent flows were not encountered. It can be seen from these 

calculations, together with the observation on Figure 27, that the generated flows were in the 

hydrodynamically smooth turbulent regime and the lower Re* region of the transitional flow 

regime. Therefore, it might be reasonable to accept the u* estimates provided by the smooth-wall 

law, as they may represent a better prediction of the mean velocity profile. 
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Figure 27: Shear velocity (M*, cm/s), as a function of the grain effective roughness (ks, cm). Re* 
(u*kjv) isovels (at 15°C) are also included, indicating the surface classification 
limits (Re*=3.42 isovel, at 15°C is also included). 
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It may be shown easily that the smooth- and rough-wall laws (Eqs 45 and 49} describe the same 

curve, when the following equality is satisfied: 

^ (59) 

With the values of CS, CR and K assumed for this investigation (5.5, 8.5 and 0.4 respectively), 

this equation reduces to: 

Re . = = 3.42 (60) 

This line is included in Figure 27 showing the combinations of u* and ks for which Eqs. 45 and 

49 will both define the same mean velocity profile. 

4.5.4 Shear Velocity Estimates using the Single Point Method 

From a single measurement of U* may be derived from Eq. 49, by simply inserting values of 

w,, z and k^. The derivation of u* from Eq. 45, for the same values of and z, may be undertaken 

graphically, or by successive approximation. The latter method was employed in a reiterative 

computer program, in this study. Graphical estimation may be carried out using plots of u* 

isovels for a fixed value of v, as in Figure 26. When Re* exceeds 3.42, the deviation between the 

values of u* predicted by the different equations increases with the values of and u*. Figure 28 

shows the range of u*, given by Eq. 49 (for ^^=0.0651cm) and by Eq. 45, for a single value of 

at levels of 0.5 and 2.5cm. Also shown are the u* estimates of all the profiles at these levels and 

the common Re* value of 3.42, where the two equations intersect. The deviations between u* 

estimates given by the same equation, using the experimental measurements of uqj and M2.j, 

appears to be less than the differences resulting from the use of the different equations, for a 

given observation of uqj and W2.5. However, in general the variation between the estimates of u* 

given by the different equations, at the same elevation, decreases with (as long as Re* exceeds 

3.42). 
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Figure 28: A comparison of u* estimates derived from the smooth- (dashed line) and rough-

(solid line) wall laws (Eqs 45 and 49, respectively), based upon uqj and M2.5 (?c=0.4, 

Cs=5.5, ^v=0.0651cm, Cs=8.5 and v=0.0114cmVs). 

Estimates of u*, based upon the single observation method and using Eqs. 45 and 49, were 

calculated for each measurement of u{, they are plotted for each profile in Figures 29(a) and 

29(b), for the smooth and rough boundaries, respectively. These Figures show, in a different 

manner, the relationships between the individual data points and the u* isovels, which are 

exhibited in Figures 26 and 27. Also plotted in Figure 29, are the one-point estimates of u*, 

calculated reiteratively from the seventh power law (Eq. A-15). There is a very good agreement 

between these values and those determined using Eq. 45 (Figures 29(a) and 29(b)). Such 

agreement is not surprising, as both equations are based on the same variables and are 

represented by coinciding curves over the constant stress layer (Figure 11). A good agreement 

appears also to exist between Eqs 45, A-15 and 49, for the slow flow regime. Having the 

moderate and fast flows being described by the transitional flow regime probably explains, at 

least partially, the difference in the u* derivations. On the basis of the evidence presented, the 

single point method appears to produce more consistent and less subjective estimates of u*, than 

the multiple regression method. 
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Figure 29: u* profiles derived from the single observation method according to various 
relationships ((+) Eq. 45; (x) Eq. A-15; and (-) Eq.49): (a) over the smooth 
boundary; and (b) over the rough boundary. 
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Table 1: Comparative results between the different methods for estimating shear velocity. 

u* Estimation Method u* (Range) (cm/s) u* (Range) (cm/s) u* (Range) (cm/s) 

Eq. 45 
Eq. A-15 

Log-Profile Method 
(Smooth-Wall Law) 

Eq. 45 
Eq. 49 

Eq. A-15 
Log-Profile Method 
(Smooth-Wall Law) 
Log-Profile Method 
(Rough-Wall Law) 

SS MS FS 
Eq. 45 

Eq. A-15 
Log-Profile Method 
(Smooth-Wall Law) 

Eq. 45 
Eq. 49 

Eq. A-15 
Log-Profile Method 
(Smooth-Wall Law) 
Log-Profile Method 
(Rough-Wall Law) 

0.46 (0.41-0.50) 
0.46 (0.36-0.50) 
0.49 (0.28-0.89) 

1.01 (0.90-1.06) 
1.01 (0.83-1.07) 
1.10 (0.83-1.60) 

1.58 (1.33-1.58) 
1.56 (1.25-1.67) 
1.75 (1.13-2.61) 

Eq. 45 
Eq. A-15 

Log-Profile Method 
(Smooth-Wall Law) 

Eq. 45 
Eq. 49 

Eq. A-15 
Log-Profile Method 
(Smooth-Wall Law) 
Log-Profile Method 
(Rough-Wall Law) 

SR MR FR 

Eq. 45 
Eq. A-15 

Log-Profile Method 
(Smooth-Wall Law) 

Eq. 45 
Eq. 49 

Eq. A-15 
Log-Profile Method 
(Smooth-Wall Law) 
Log-Profile Method 
(Rough-Wall Law) 

0.42 (0.32-0.46) 
0.40 (0.27-0.45) 
0.41 (0.26-0.47) 
0.47 (0.26-1.06) 

0.43 (0.26-1.11) 

0.94 (0.79-0.98) 
1.00 (0.85-1.06) 
0.93 (0.72-0.99) 
0.98 (0.73-1.32) 

1.05 (0.73-1.59) 

1.52 (1.24-1.59) 
1.73 (1.45-1.84) 
1.50 (1.17-1.61) 
1.57 (0.72-2.61) 

1.75 (0.72-3.30) 

4.5.5 Detailed Analysis of Mean Velocity Profiles 

In order to resolve the differences between the estimates of the shear velocity, based upon the 

log-profile method and the one point estimates (and the seventh power law), a somewhat more 

sophisticated analysis of the mean velocity profile was employed. The procedure involved fitting 

mean velocity measurements within the entire water column to Eqs 41 and 47 (Section 2.6) for 

the hydrodynamically smooth and rough boundary conditions, respectively, with the wall 

function f(zu*/v) (given by Eqs 43 and 48 for smooth and rough, respectively) and the wake 

correction W(z/h) (Eq. 44). Having established that the velocity profiles over the rough boundary 

were, most probably, in the hydrodynamically smooth turbulent and transitional flow regimes, 

the fitting procedure was performed for Eq. 41, as well as for Eq. 47. 

Eqs 41 and 47 were fitted to the measured mean velocity profiles, through the use of least-

squares regression, using the shear velocity («*) and the Coles parameter (fl). The Coles 

parameter was used as a fitting parameter, because its value is not well established for open-

channel flows, and, likewise, because Nezu and Rodi (1986) found that it may depend upon the 

Reynolds number. The non-linear regression problem was solved by using an iterative 

procedure, in which the problem was linearised in relation to estimates of the fitting parameters; 

it was then solved, repeatedly, updating the fitting parameter estimates at each iteration. This 

method of shear velocity determination was termed the 'profile-fitting method'. Table 2 shows 

the shear velocity estimates, based upon the profile fitting method; these appear to be consistent 

with the estimates based upon the log-profile method (using the smooth-wall law) and Eqs 45 

and A-15 (Table 1). 

Results and Discussion 5m Long Recirculating Flume-Flow Characteristics 63 



University of Southampton 
School of Ocean and Earth Science 

Table 2; Shear velocity estimations, using the 'profile-fitting method'. 

Estimation Method u* (Range) (cm/s) u* (Range) (cm/s) U-* (Range) (cm/s) 
SS MS FS 

Eq. 41 0.49 (0.47-0.50) 1.04 (1.01-1.07) 1.59 (1.54-1.61) 
SR MR FR 

Eq. 41 0.44 (0.43-0.46) 0.97 (0.95-0.99) 1.53 (1.48-1.57) 
Eq.47 0.40 (0.34-0.43) 1.03 (0.97-1.05) 1.75 (1.69-1.81) 

The measured mean velocity profiles over a smooth boundary and the fitted curves, based upon 

Eq. (41), are shown in Figure 30. Figures 31(a) and (b) show the measured mean velocity 

profiles over a rough boundary and the fitted curves, based upon Eqs (41) and (47), respectively. 

It is evident from the results shown in Figure 31, that Eq. 41 describes better the rough boundary 

velocity profiles. Thus, suggesting that the flows (MR and FR) which were characterised, 

initially, as transitional, may be better defined from equations (such as Eq. 41) used for 

hydrodynamically smooth surfaces. Curves constructed in this manner compare reasonably well 

with the measurements of mean flow velocity, especially at lower flow speeds (Figures 30 and 

31). At higher flow velocities (especially for the FR velocity profile) the measurements appear to 

diverge from the calculated semi-empirical values; this is more pronounced close to the 

boundary (Figure 31(a)). A possible explanation as to why the measured mean velocities depart 

from the calculated semi-empirical values very near the bottom and at higher flow speeds, may 

be the potential presence of weak secondary mean flows in the } and z directions; this may 

transfer momentum vertically and, thus, change the turbulent transfer of momentum. A second 

possible explanation may be the interference of the bed with the light beams from the laser. In 

the absence of measurements of the z component of the mean velocity, the presence of weak 

secondary mean (flow) motions cannot be confirmed conclusively. Elsewhere, the measurements 

obtained by Nezu and Rodi (1986) are insufficient to address this particular question, in detail. 

These particular investigators did not measure the z component of the velocity at points lower 

than 14mm above the bottom; here, the differences between the measured and calculated values 

appear to exist. 
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Figure 30: Mean velocity profiles for the various flow rates over the smooth boundary. Solid 
line: semi-empirical expression based upon Eqs 41,43 and 44. 
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Figure 31: Mean velocity profiles for the various flow rates over the rough boundary. Solid line: 
semi-empirical expression based upon: (a) the hydrodynamically smooth boundary 
equations (Eqs 41, 43 and 44); and (b) the hydrodynamically rough boundary 
equations (Eqs. 47, 48 and 44). 
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5. Summary and Conclusions 

In this Report, some of the important properties of one-dimensional turbulent open-channel flow 

have been summarised, based upon existing theoretical analyses and previous laboratory 

measurements undertaken (Section 2). A measurement programme carried out in the 5m flume 

was designed to determine the extent to which the flow characteristics are consistent, with 

expectations based upon the theoretical analysis of one-dimensional open-channel flows and the 

extent to which vertical mean velocity profiles are independent of along-channel and cross-

channel positions. Using the generated vertical mean velocity profiles, different shear velocity 

determination methods have been evaluated, in order to identify which method was providing 

'consistent' estimates of shear velocity. In addition, several simple experiments were set up and 

performed, in an attempt to test the performance and capabilities of the 5m flume, together with 

the use of associated equipment and instrumentation. 

Unexpected oscillations were observed to be present in the velocity records; these may have 

been caused by small-amplitude standing surface waves. Although they do not seem to have an 

important effect on the derived mean quantities, they may be important if the low-frequency part 

of the spectrum is of particular interest, in some applications. The effect of these oscillations was 

reduced to an almost insignificant level by the introduction of the 'honeycomb-like' structure at 

the entrance of the working section. Some unexpected low-frequency fluctuations were observed 

also to be present in the flume. With the measurements which were performed, the results 

described in this report could not identify conclusively the cause of such fluctuations. However, 

it is reasonable to assume that they may have been caused by small fluctuations in the 

performance of the pump, due possibly to fluctuations in the power supplied to the pump (or 

fluctuations due to the mechanical behaviour of the pump itself). These low-frequency 

fluctuations were not found to have an important effect on the mean flow quantities and low-

order statistics, except for the fact that somewhat longer record lengths (than expected) may be 

required, in order to obtain accurate estimates of the mean values. The installation of the 

'honeycomb-like' structure and the head tank, at the entrance of the flume, have almost 

eliminated these low frequency fluctuations; these effectively insulated the flow from the 

fluctuations in the pump performance. 

From the cross-sectional investigation of flow (Section 4.3) undertaken it was identified that the 

corner and wall regions influence the flow across the flume; these extends to distances of ±6cm 
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and Lip, to an elevation, of (at least) 4cm. The velocity distributions within the central portion of 

the flume (+6cm<z<-6cm) appear to be undisturbed by the presence of the boundaries. Such a 

result suggests that, in sediment investigations, the recess section should be located within the 

central part of the flume (if it is to be undisturbed by the side walls and corner regions of the 

flume). 

The 5m flume appears to be able to produce a flow that is relatively one-dimensional, in which 

the mean velocity and turbulent intensity have (approximately) the expected structure. The LDA, 

as presently configured, appears to be able to produce accurate measurements of the mean (flow) 

velocity and the turbulent intensity. From the experiments undertaken on vertical flow velocity 

profiles, it has been established that the mean velocities are partly logarithmic, over the three 

flow rates and above both smooth and rough boundaries. The derived Re* values have indicated 

that the tests were conducted under either the hydraulically smooth or transitional flow regimes. 

Increasing bed roughness was found to have an increasing effect on the turbulent character of the 

flow (as illustrated by the mean velocity and the LTI profiles). 

The evaluation of the several methods available for the shear velocity determinations have 

indicated that the single-point method of estimating u*, have proved to be more consistent than 

the log-profile method (i.e. utilisation velocity gradient). This observation is important in 

sediment investigations where only a single or two velocity measurements are usually carried out 

above the bed, at pre-specified elevations. 

On the basis of the identified influence of the Streamflo on the LDA, the former must be 

positioned at least 4.5cm away from the LDA; this relates to applications where simultaneous 

velocity measurements are required at (two) different elevations. 
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Appendix: Other Methods of Estimating Shear Stress 

Quadratic Stress Law 

Experimental evidence, provided originally by Sternberg (1972), has shown that the boundary 

shear stress in a turbulent flow is proportional to the fluid density and the square of the mean 

velocity; thus, by introducing a proportionality coefficient, 

to 

where Co is the drag coefficient. For practical purposes and, in most cases, the equation allows 

the bed shear stress to be evaluated from a single velocity measurement at a particular level 

above the bed. The drag coefficient is a function of the bed roughness {Zo) and can be calculated 

from (Soulsby, 1983): 

Reynolds Stress or Eddy Correlation 

The Reynolds stress method makes use of instantaneous velocity fluctuations (used as averages, 

over a suitable time increment), in a three-dimensional flow; hence, the bed shear stress is given 

by 

+ (A-3) 

The direction of mean stress with respect to the u component of the horizontal current is. 

9, = tan ' 
V w 

yU W y 
(A-4) 

This method is not used very extensively, because it requires more sophisticated measurements 

and analytical procedures. Laboratory experiments have confirmed, extensively and elsewhere, 

that the theory that the Reynolds stresses are constant within the boundary layer (Nece and 

Smith, 1970; see Dyer 1986); however, measurements in the sea do not always show that 

(Bowden and Fairbairn, 1956; see Bohlen, 1977). 

Inertial-Dissipation Method 

The inertial-dissipation method makes use of the spectra of turbulent fluctuations, which are 

measured within the constant stress layer. Assuming that advection and diffusion of turbulent 

kinetic energy are negligible, then, at the boundary of turbulent flow, the dissipation of the 

kinetic energy by viscosity is equal to the energy production by velocity shear (Heathershaw, 

1979), 
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£ --u'w'(du/dz) (A-5) 

where e is the rate of energy dissipation, by viscosity, and the product of u' and W is the 

kinematic Reynolds Stress. At the boundary, the mean shear velocity is given by Eq. 31 and, 

hence, by substituting into Eq. 56, 

u,u'w' = eKz (A-6) 

An expression relating the bed shear stress to the energy dissipation can be obtained, by 

assuming a constant-stress layer (i.e. u ' w ' = ), such as: 

M, = (6rz)"3 (A-?) 

Huntley (1988) suggested a modification that extends the inertial-dissipation method so that it 

could be applied under combined waves and currents. Xu et al. (1994) tested the applicability of 

this method in the field, for estimating the temporal and spatial variability of bed shear stress in 

large estuaries; these investigators concluded that a reasonable agreement is obtained between 

the estimated values using the inertia-dissipation method. 

Water Surface and Energy Slope 

The tilting of a particular channel section (i.e. bathymetric variations), as well as shear induced 

on the bed surface, will cause a slope in the free water surface. In order to model the effect of the 

water slope on the bed shear stress the study will consider a simple case. A layer of water of 

constant thickness is flowing down an inclined channel of known dimensions; steady state is 

assumed and that the system operates under uniform atmospheric pressure. At one instant along 

the channel a water unit is considered (Figure A-1). 

Figure A-1: Definition sketch for the surface water slope associated with bed shear stress. 
Key to symbols: is the upstream hydrostatic force, Fd is the downstream 
hydrostatic force, W is the resultant gravitational force, L is the selected unit length, 
Yf is the specific gravity of water, % is the specific gravity of air, A is the cross-
sectional area, a is the angle of slope and is the bed shear stress. 
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According to Newton's first law there must be a balance of forces and therefore; 

F„ + Wsina = F, + T„ PL (A.9) 

where P is the wetted perimeter. Having considered conditions of steady state and a water of 

constant thickness, the hydrostatic forces will balance (F„ = F J . The resultant gravitational force 

(W) is given by: 

W = Ay A L (A-10) 

where Ay is the difference in specific gravity between air and water. Substituting into (18): 

Ay A sin a 
T„ = • (A.11) 

where A/P can be replaced by R the hydraulic radius and sin(fl) can be replaced by I the slope of 

the surface, and so Eq.21 becomes: 

T„ = Ay R I (A-12) 

The case that was considered here was for a uniform flow under conditions of steady state, but 

non-uniform, environmental flows will almost certainly result in different water slopes. 

For the energy head concept reference is made to Halliwell and O'Connor (1968). These 

investigators have identified the difficulties arising in the measurements of surface slope and 

they used the energy slope to calculate the bed shear stresses. Figure A-2 illustrates the basic 

concept of this method. 

Horizontal 

Energy 

Water surface 

Seabed 

Figure A-2: Definition sketch for the energy head associated with bed shear stress. 
Key to symbols: hy kinetic head (=[VA^/2g] where Va is the kinematic viscosity and 
g is the acceleration due to gravity), D + Z add to give the potential head (where D 
is the density slope and Z the seabed slope). 
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The absolute head at A it is estimated using: 

H ^ = D + Z + h^ (A-13) 

But in the specific study by Halliwell and O'Connor (1968) the bed shear stress ( T j was 

calculated using the energy head (S) given by: 

S = I - D + Ai + F, (A-14) 

where I is the water surface slope, A/ is the inertial slope (determined from cross-sectional mean 

velocities at surface and near bed) and F/ is the kinetic energy slope. 

Seventh Power-Law 

Another method of predicting the turbulent boundary layer and free surface flows is to use a 

simple power-law relationship, of the form: 

u 
— = 8.74 
w. 

(A-15) 
V V ; 

This formula can be regarded only as an approximation, since the exponent has been found to 

vary with the total flow Reynolds number (from 1/5 to 1/10), the smaller value being for the 

larger Reynolds numbers. The expression provides a reasonable description of the mean velocity 

distribution to the part of the inner region, where overlap takes place between the log-laws and 

the laminar distributions and the outer region {zu*/v is greater than about 100 -1000). 
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