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 8 

Estimates of peak river discharge are essential for designing and managing hydraulic 9 

infrastructure such as dams, bridges, and flood alleviation schemes. Typically these 10 

are derived for an assigned annual exceedance probability (e.g. the 1 in 100 year 11 

flood), and the provision of accurate estimates is a critical issue in engineering 12 

hydrology, affecting both financial cost and human lives. In the UK, practitioners 13 

typically apply the Flood Estimation Handbook (FEH) statistical method which 14 

estimates the design flood as the product of a relatively frequent flow estimate (the 15 

index flood, IF) and a dimensionless regional growth factor used for estimating peak 16 

flows at higher return periods. For gauged catchments the IF is usually estimated from 17 

observations as the median annual maximum flow which has a two year return period. 18 

For ungauged catchments it is computed through a multiple linear regression model 19 

based on a set of morpho-climatic indices of the basin.  20 

While the FEH IF methods provide peak flow estimates that are robust and defensible, 21 

they do not readily take into account catchment or rainfall heterogeneity (important for 22 

large catchments) or the effect of environmental change on river flows. Successful 23 

application to regions outside the UK currently requires a network of good quality, long-24 



term flow gauges to underpin the design flood method, not always present in less 25 

industrialised regions of the world. 26 

With the aim of addressing these limitations, we present and assess a methodology 27 

to estimate the IF at national scale using continuous simulation from an area-wide 28 

physically-based hydrological model (Grid-to Grid or “G2G”). The new methodology is 29 

tested across Great Britain and compares well with estimates of the IF at 550 gauging 30 

stations (R2=0.91) and similar performance simulating the annual maxima trend over 31 

time. The promising results for Great Britain support the aspiration that continuous 32 

simulation from large-scale hydrological models, supported by the increasing 33 

availability of global weather, climate and hydrological products, could be used to 34 

develop robust methods to help engineers estimate design floods in regions with 35 

limited gauge data or affected by environmental change. 36 

 37 

1. Introduction 38 

An accurate estimate of the design flood, i.e. the peak flow for an assigned probability 39 

of exceedance (NERC, 1975), is a critical requirement for reducing the social and 40 

economic impact of floods. Floods constitute 40% of worldwide natural disasters (EM-41 

DAT, 2015) and often cause fatalities and damage to houses, businesses and 42 

infrastructure. Commonly, design flows are estimated with statistical models fitted to 43 

annual maxima (AMAX) measured at a gauged site (flood frequency analysis). 44 

Unfortunately hydrological records are often unavailable at the site of interest or, when 45 

available, they are too short to allow reliable statistical analyses. To overcome this 46 

limitation a standard approach is to adopt a “regionalization” procedure which 47 

introduces data from other sites into the flood frequency analysis, chosen on the basis 48 

that they exhibit similar hydrological behaviour. The regions from which these sites 49 



can be selected are typically defined using one of several different regionalization 50 

methods such as cluster analysis, the region of influence approach, the method of 51 

residuals and canonical correlation analysis. Several authors review these 52 

regionalization methods (Blöschl et al., 2013, Srinivas et al., 2008, Hrachowitz et al., 53 

2013). The index flood method (Dalrymple, 1960) is one of the most popular 54 

regionalization procedures among engineers and practitioners (NERC, 1975; Hosking 55 

and Wallis, 2005; Institute of Hydrology, 1999). The method is based on the 56 

assumption that, for all the sites inside a “hydrologically homogeneous” region, the 57 

AMAX frequency distributions are identical apart from a local scaling factor (index 58 

flood, IF [m3 s-1]). This assumption allows the computation of any p-th quantile at any 59 

location i-th as:  60 

p

i

p

i qIFQ              (1) 61 

where iIF  is the index flood at location i and 
pq  [-] is the regional growth curve, a 62 

dimensionless quantile function assumed to be identical for all the sites in the region. 63 

Various approaches have been developed to provide reliable estimates of IF, and 64 

Bocchiola et al., (2003) provides a summary of some of the most widely used. Broadly, 65 

if the site of interest is gauged, the IF can be estimated by direct methods, i.e. from 66 

the AMAX time series, using the sample mean (Dalrymple, 1960, Hosking and Wallis, 67 

1993, NERC, 1975), the sample median (Robson and Reed, 1999), or using peak over 68 

threshold analysis (Chow et al., 1988, Robson and Reed, 1999). If the site of interest 69 

is ungauged, a variety of “indirect” methods have been proposed to estimate IF. The 70 

most commonly used are empirical methods (Hirsch et al., 1992; Meigh et al., 1997; 71 

Kjeldsen and Jones, 2009) that relate the IF evaluated by AMAX measurements to a 72 

set of morpho-climatic catchment descriptors such as area, slope, average annual 73 

rainfall, land use, etc. These methods include coefficients that are usually estimated 74 



by least squares (e.g. Stedinger and Tasker, 1985), maximum-likelihood (e.g. Kjeldsen 75 

et al., 2008), and Bayesian methods (e.g. Haddad et al., 2012).The uncertainty in the 76 

IF estimate attributable to the data used in the regression model calibration was 77 

quantified by Jaafar, W., Zurina and Han, (2012). Other indirect approaches for 78 

estimating IF and flow quantiles are based on on the use of artificial neural networks 79 

(e.g. Hall et al., 2002; Shu and Burn, 2004; Dawson et al., 2006) or on the connection 80 

between stochastic rainfall models and lumped flow routing models (Cordova and 81 

Rodriguez Iturbe, 1983; Brath et al., 1992; Calver et al., 2005; Kjeldsen et al., 2005; 82 

Rigon et al., 2011). Limitations of the latter modelling approach are: i) the simplified 83 

assumptions for the hydrological model component; ii) the requirement of catchment 84 

initial moisture conditions; iii) the assumption of high simplified and uniform rainfall 85 

storms in catchment.  86 

Indirect estimation of IF based on continuous physically-based hydrological model 87 

simulations has also been explored in recent years. The advantages of such an 88 

approach include: i) taking into account catchment heterogeneity, ii) accommodation 89 

of temporal and spatial rainfall variability, and iii) ability to provide a consistent IF 90 

estimate for multiple points on the river network. Demonstrations of the use of 91 

continuous, physically-based model simulations for flood frequency analysis are 92 

provided for various catchments by Cameron et al., (2000), Calver et al., (2005), 93 

Moretti and Montanari, (2008), and Viviroli et al., (2009)., but to our knowledge, only 94 

Ravazzani et al., 2015 used continuous hydrological model simulation for estimating 95 

the IF. They applied the model FEST-WB (Montaldo et al. 2007, Rabuffetti et al. 2008) 96 

to reconstruct river flows for an alpine basin in the north part of Italy and to predict the 97 

IF.  98 



For a gauged location, an estimate of the IF recommended by the FEH, is the median 99 

of the observed AMAX. This corresponds to the 2 year return period flow which is 100 

considered a good estimate of the bankfull river discharge. If less than 14 years of 101 

AMAX are available, the FEH suggests use of peak over threshold data. For ungauged 102 

sites, the Environment Agency Flood Estimation Guidelines 2012 recommends use of 103 

the regression model of Kjeldsen et al. (2008) to estimate the IF. Practitioners are also 104 

advised that data transfer from donor catchments to the site of interest can improve 105 

the accuracy of IF estimates (Kjeldsen and Jones, 2007). The “donors” are gauged 106 

catchments hydrologically similar to the site of interest (i.e. located upstream or 107 

downstream on the same river, or possessing similar size and land use). 108 

Here we present a general methodology to estimate the IF at national scale using 109 

continuous hydrological simulation (Section 2). This approach aims to: i) integrate the 110 

indirect methods for IF estimation and address their limitations for larger and spatially 111 

heterogeneous catchments, and ii) provide effective tools for IF estimation in 112 

ungauged or poorly gauged catchments. The methodology is tested in Great Britain 113 

(Section 3) and assessed (Section 4) by comparison with estimates of the IF at 550 114 

gauging stations.  115 

 116 

2. Methodology 117 

The area-wide physically-based hydrological model Grid-to-Grid (G2G, Bell et al., 118 

2007a,b; 2009) has been used to estimate the IF at national scale. The G2G typically 119 

operates at a 1km2 resolution across Britain and has been configured to represent 120 

spatial variability in catchment response. The model uses landscape information 121 

provided by gridded spatial datasets of elevation, soil and geology in preference to the 122 

identification of model parameters through catchment calibration, and for the 123 



application discussed here, a single model configuration and set of parameters is 124 

applied across Britain (i.e. with no catchment calibration). G2G model configuration 125 

and inputs are discussed in subsection 2.1.  Model output consisting of river flow time 126 

series at each 1km2 river grid-cell are used to construct maps of AMAX across Britain 127 

and to estimate the IF following the FEH methodology (Institute of Hydrology, 1999). 128 

Annual maxima in the UK are taken as the highest flow value recorded in a water year, 129 

which runs from October to September. 130 

G2G modelled IFs were compared to measured IFs for 550 gauged sites using 131 

observations obtained from the National River Flow Archive (NRFA). Modelled and 132 

measured IFs were compared using a linear regression, together with an analysis of 133 

the sensitivity of model performance to morpho-climatic catchment descriptors. The 134 

agreement between the G2G-derived and the measured IF was evaluated by: i) 135 

quantifying the coefficient of determination, and ii) assessing the uncertainty in IF 136 

estimate using the factorial standard error (Kjeldsen, 2014). Maps of model residuals 137 

(differences between modelled and measured IF) provide additional information on 138 

regions and types of catchment where the model performs best (and worst). Finally 139 

the temporal trends of modelled and measured AMAX were compared to assess the 140 

model capability in detecting observed long term trends.  141 

 142 

2.1 Grid-to-Grid model set-up and input data 143 

The Grid-to-Grid Model (Bell et al., 2007a) is a grid-based hydrological model that 144 

simulates surface and sub-surface runoff, lateral movement of soil-moisture, and flow-145 

routing along rivers. Over Britain it is typically applied at a 1km2 grid resolution and a 146 

15-minute time-step, and is configured using spatial datasets of topography, soil, and 147 

land cover. Applications include flood forecasting (e.g. Cole and Moore, 2009) and 148 



assessment of climate change impacts on floods and snowmelt (i.e. Bell et al., 2007b; 149 

Bell et al., 2009; Bell et al., 2016). The most recent version of the model as presented 150 

in Bell et al., (2016) was tested over the Great Britain for the period 1960-2011. Driving 151 

data consist of daily precipitation observations on a 1 km2 grid, (CEH GEAR: Keller et 152 

al., 2015), monthly PE estimates on a 40 km2 grid (MORECS: Hough and Jones, 153 

1997), and daily minimum and maximum temperature observations on a 5km2 grid for 154 

1960–2014 (Perry et al., 2009) which were applied through the day using a sine curve 155 

and downscaled to 1 km2 using a lapse rate and elevation data (Morris and Flavin, 156 

1990). Model output consisting of 15 minutes river flows were used to provide AMAX 157 

values for 1km2 river grid-cells across Britain.  158 

 159 

3. Study Area and Data Availability 160 

The study region includes 550 catchments from England, Scotland, and Wales. They 161 

are part of the United Kingdom peak flow dataset (version v4.1) obtained from “The 162 

National River Flow Archive” (NRFA, 2008; Dixon et al., 2013) and available at 163 

http://nrfa.ceh.ac.uk/. For the purposes of this analysis we used the instantaneous 164 

peak flow AMAX values and a set of catchment descriptors  consisting of: the 165 

catchment area (AREA [km2]); the average annual rainfall (SAAR, [mm]) for the period 166 

1961-1990; the base flow index based on the Hydrology Of Soil Types classification 167 

presented in Boorman et al., 1995 (BFIHOST [-]), which reflects the geology of the site 168 

and has typical values that ranges from below 0.2 (highly impermeable) to above 0.8 169 

(highly permeable); the mean distance between each pixel of the basin and the outlet 170 

(mean drainage path length, DPLBAR, [km]), and the extent of urban and suburban 171 

land cover during the year 2000 (URBEXT2000, [-]). Table 1 summarises these 172 

catchment properties in terms of the mean, minimum, maximum, and standard 173 

http://nrfa.ceh.ac.uk/


deviation value over the chosen set of 550 catchments. Of the 810 catchments for 174 

which peak flow data are available in Great Britain, 260 have been excluded for various 175 

reasons, including catchment size, and how well the gauged flows are thought to 176 

represent actual flows. Specifically, 225 catchments where DPLBAR<10 km and Area 177 

<50 km2 have been excluded from the comparison of simulated and observed peak 178 

flows as modelled flows for these relatively small catchments were most likely to be 179 

adversely affected (underestimated) by the use of daily mean rainfall. These 180 

catchments have a faster hydrological response and probably the use of hourly rainfall 181 

data would be more appropriate to mimic the instantaneous peak flows. A modest 182 

number of catchments (35) were excluded due to strong anthropogenic influences 183 

including: i) the presence of an artificial channel that modifies the natural flow-paths; 184 

ii) unreliable rating curves due to the lack of high flow measures; and iii) strong 185 

influence of reservoirs or groundwater abstraction on the flow regime. Figure 1 186 

presents a map of the study area, the location of the gauges selected for the analysis 187 

(black points), and the excluded gauges (white points). 188 

 189 

4 Results and Discussion 190 

4.1 Model Verification and Index Flood Map Estimation 191 

A linear regression model was fitted to the measured and modelled log-transformed 192 

IF values for 550 catchments. The G2G model was executed for the whole simulation 193 

period (1960-2014) and the modelled IF in a given gauged station was computed using 194 

the modelled AMAX values corresponding to the period for which the measurements 195 

were available. Figure 2-a shows a scatterplot of 550 G2G and observation-derived 196 

IFs in logarithm scale, together with the derived linear regression model plot, and 197 

Table 2 shows the summary statistics of the linear regression model. The high values 198 



of the t-ratio, computed as the coefficient estimated value divided by its estimated 199 

standard deviation, give an indication that the estimated coefficients are statistically 200 

different from 0. The coefficient of determination R2=0.91 summarizes the goodness 201 

of fit. Following Kjeldsen (2014), given the large number of catchments for which the 202 

model was evaluated (550) it is reasonable to assume that the prediction variance can 203 

be approximated by the variance of the regression model residuals, s=0.15. Under this 204 

assumption it is possible to evaluate the factorial standard error of the model 205 

FSE=1.47. The latter defines the 68% and 95% confidence intervals for the regression 206 

model as [q∙ FSE-1; q∙ FSE] and [q∙ FSE-2; q∙ FSE2] respectively (Kjeldsen, 2014), 207 

where q indicates given discharge value. In our case q corresponds to the median of 208 

the AMAX. The FSE presented in this study is comparable with the FSE values of the 209 

regression models currently used in FEH which are based on the AMAX 210 

measurements of 600 gauging stations. The original FEH index flood regression model 211 

reported an FSE value of 1.56 (Robson and  Reed, 1999) and the revised model 212 

lowered it to 1.431 (by assuming that the correlation between model errors is a function 213 

of the geographical distances between gauging stations (Kjeldsen et al., 2008)).   214 

Figure 2-b presents a map of the residuals between modelled and measured IF using 215 

a logarithmic scale. The residuals are close to zero across most of Britain, with a 216 

modest underestimation in central and south west England, and a similarly modest 217 

overestimation in the South East. A significant factor contributing to the 218 

underestimation is the contribution of short-duration intense rainfall events to peak 219 

river flows in central and southern Britain, which will be poorly represented by daily 220 

gridded rainfall observations, while the overestimation in southern and eastern Britain 221 

can, for many groundwater-dominated catchments, be attributed to the effects of 222 

artificial abstractions which are not currently included in the G2G model formulation. 223 



Figure 3-a presents a map of the modelled index flood (m3s-1) on a logarithmic scale, 224 

for the period 1960 to 2014. The IF is typically higher in the north and west of Britain, 225 

and in major rivers. The use of continuous G2G model simulation provides a consistent 226 

spatial and temporal dataset to explore whether there has been a significant change 227 

in the IF over the last 50 years. Figure 3-b presents a map of the change in the derived 228 

index floods between two periods: 1960 to 1986 and 1987 to 2014. The changes range 229 

from an increase in the IF of up to 45 m3s-1 (predominantly in the north and west) to a 230 

decrease of -40 m3s-1 in parts of Southeast Britain. This regional split is broadly in line 231 

with the increased trends detected in measured mean daily flows since the early 1960s 232 

in Scotland and, to a lesser extent, Wales and western England (Hannford and Marsh, 233 

2008). However, the authors noted that the analysis of trends in some areas was 234 

limited by the available length of record. 235 

The use of continous model simulation provides a method of estimating the IF with a 236 

91% agreement with observation-derived estimates for 550 catchments across Britain. 237 

In order to investigate whether this agreement is influenced by catchment properties 238 

a series of analyses relating model fit with properties such as area, drainage path 239 

length, urban extent and baseflow index were undertaken. For each catchment 240 

property, the catchment values were divided into deciles (i.e. the nine values that 241 

divide the sorted data into ten equally sized subsamples) and measured and modelled 242 

IF for each catchment property subgroup were compared. Figure 4 presents 10 243 

scatterplots and the coefficient of determination (R2) of linear models fitted to the 244 

results for the catchment property: AREA. The title of each scatterplot specifies the 245 

AREA range [km2] of each classes, for example the first plot is for catchments which 246 

range in area from 53 to 80 km2, the second from 80 to 110 km2, etc. Similar results 247 

are presented for percentage of urban extent (URBEXT2000) in Figure 5, and for 248 



baseflow index (BFIHOST), and drainage path length (DPLBAR) in Figure A1 and A2 249 

in Appendix 1. The model fit is robust in the sense that is not strongly affected by the 250 

catchment properties. The decile range in R2 is 0.82-0.90 for AREA, 0.78-0.92 for 251 

URBEXT2000, 0.81-0.93 for BFIHOST, and 0.84-0.91 for DPLBAR. These figures 252 

indicate relatively high levels of agreement between modelled and measured IF 253 

estimates, suggesting that the quality of the G2G estimated IF is relatively unaffected 254 

by different catchment properties and can provide estimates of consistent quality 255 

across various types of catchment (e.g. small, steep, or urbanized catchments).  256 

 257 

4.2 Annual Maxima Trend Analysis 258 

In the previous section we assessed whether AMAX output from a G2G continuous 259 

simulation could be used to estimate the measured IF by comparing the median of 260 

observed and simulated AMAXs over several decades. Typically, however, climate, 261 

anthropogenic or natural changes at the catchment scale can lead to long-term trends 262 

in observed annual maxima. For this reason it is important to ensure that if AMAX from 263 

continuous hydrological simulation are used in place of observed AMAX, they can also 264 

reproduce observed trends in river flows. This trend analysis has now been 265 

undertaken on 285 catchments, selected from the original 550, for which at least 40 266 

year of measured flow data are available and the Mann Kendall test (MK, Kendall, 267 

1975) with permutations provides a measure of the significance of potential trends in 268 

time. This method is presented in detail by Kundzewicz and Robson (2000) and has 269 

been used in several applications (i.e. Hannaford and Marsh, 2008, Hannaford and 270 

Marsh, 2006). The procedure is as follows: i) randomly re-order the AMAX time series 271 

to provide a large number of samples with no replacement; ii) perform Mann-Kendall 272 

trend test to each sample; iii) rank the trend test results; iv) compute the trend test for 273 



the original time series. If the derived trend for the original series falls outside the [0.05, 274 

0.95] percentile range of the ranked values, it is deemed to be significant at the 95% 275 

confidence level, indicating a change in the magnitude of the AMAX over the 40-year 276 

period. The statistical tests have been performed on both measured and modelled 277 

AMAX providing test values (including the direction of the trend) and significance 278 

assessments for a trend in both the measured and modelled series. Results have been 279 

compared for the 69 catchments where the trend for the measured AMAX presented 280 

a significant test at the 95% significance level and are shown in Figure 6.  No results 281 

are available for Scotland because the two criteria of at least 40 year of measured flow 282 

data are available and trend with a 95% significance level were not matched. 283 

Figure 6 shows that: i) for 59 catchments positive trends were detected in both 284 

modelled and measured AMAX and ii) for 10 catchments the trend in the modelled 285 

series is not in agreement with the direction of the trend in the measured AMAXs 286 

series. These catchments are predominantly located in the south east part of England 287 

and for all of them the NRFA archive suggests that the runoff is affected by at least 288 

one of these reasons: a) reservoir in the catchment, b) presence of industrial or 289 

agricultural abstraction, and c) presence of water supply and groundwater 290 

abstractions.  This anthropogenic influence which is not modelled in the current 291 

version of G2G may potentially explain the differences between measured and 292 

modelled AMAX trend in time for those basins. 293 

    294 

Conclusions 295 

In this paper we demonstrate how use of continuous flow simulation by a national-296 

scale distributed hydrological model (such as G2G) can be used to estimate key 297 

parameters such as the index flood (IF) required for flood estimation methods. The 298 



comparison between index floods estimated from current (FEH) and continuous 299 

simulation methods for 550 catchments throughout Great Britain indicates a good 300 

correlation between the two methods (R2=0.91, factorial standard error FSE=1.47). 301 

We have also demonstrated that AMAX from continuous hydrological simulation can 302 

reproduce observed trends the measured annual maxima (agreement in 90% of the 303 

analysed catchments), indicating the potential utility of the methodology for conditions 304 

of non-stationarity. 305 

This initial assessment of continuous simulation from a national-scale hydrological 306 

model (G2G) for estimating the IF is encouraging and demonstrates the new method 307 

can potentially overcome current methodological limitations such as the assumption 308 

of spatially homogeneous rainfall over the catchment and climate non-stationarity. 309 

Other benefits of the proposed new method include estimation of index floods in 310 

catchments subject to anthropogenic change, which at present can only be estimated 311 

using observed flows in naturalised catchments and require a correction to take into 312 

account the extent of urbanisation. Here, the accuracy of IF estimates from G2G 313 

continuous simulation is shown to be relatively unaffected by catchment properties 314 

such as area and urban extent, indicating that the methodology is robust for a variety 315 

of catchment types, so long as the continuous hydrological simulation is able to take 316 

into account the many factors (natural and anthropogenic) affecting river flows.  317 

Countries such as Britain, for which an extensive network of flow and raingauges can 318 

support existing observation-based FEH methods, provide ideal test conditions for 319 

assessing the ability of alternative model-based flood estimation methods, such as 320 

continuous simulation from large-scale hydrological models, to underpin methods for 321 

flood estimation in data-sparse regions. It is to be hoped that the increasing availability 322 

and accuracy of global weather, climate and hydrological products can be used to 323 



develop a robust methodology to help engineers estimate design floods in regions with 324 

limited gauge data or affected by environmental change, potentially saving many lives. 325 
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Figures 524 

 525 

 526 

Figure 1: Location of the 550 catchments used in this study 527 

 528 

 529 

 530 

0

1300

Elevation (m)

Selected stations

Removed stations

500 Km



 531 

Figure 2: Linear regression model (a) and residual error in logarithm scale (b) for measured and 532 

modelled index floods for the 550 analysed catchments. 533 
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 546 

 547 

Figure 3: Maps of Britain showing, on a logarithmic scale: (a) Modelled index flood (m3s-1) for the 548 

period 1961-2011 (b) Change in the derived index flood (m3s-1) between 1961-1985 and 1986-2011. 549 
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 553 

Figure 4: Scatterplots and coefficients of determination for modelled and measured index flood 554 

grouped by AREA classes. 555 

 556 
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 570 

Figure 5: Scatterplots and determination coefficients for modelled and measured index flood grouped 571 

by URBEXT2000 classes. 572 

 573 

 574 

 575 

 576 



 577 

Figure 6: Comparison between the measured and modelled AMAX trend with time with a 95% 578 

significance. The catchments where both model and data agree are represented by blue triangles 579 

(positive); the points where they disagree are represented by black points.   580 
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Tables 593 

 594 

Table 1: Summary statistics (minimum, median, maximum, and standard deviation value) for the 595 

selected set of catchments indicators: AREA, SAAR, BFIHOST, DPLBAR, and URBEXT2000 596 

 AREA [km2] SAAR [mm] BFIHOST [-] DPLBAR [km] URBEXT2000 [-] 

Minimum 55 558 0.24 10 0 

Median 203 962 0.47 19 0.009 

Maximum 9931 2913 0.96 140 0.592 

Stand. Dev. 935 401 0.14 18 0.085 

  597 

 598 

Table 2: Summary of the linear regression model linking the measured and modelled index floods 599 

 Intercept 

T-Stat 

intercept 

Scaling exponent 

T-Stat 

Scaling exponent 

Residual  

Stand. Dev 

R2 

 0.41 8.995 0.99 76.681 0.386 0.910 

 600 

 601 
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 605 

Appendix 1 606 

 607 



 608 

Figure A1: Scatterplots and determination coefficients for modelled and measured index flood 609 

grouped by BFIHOST classes. 610 
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 626 

Figure A2: Scatterplots and determination coefficients for modelled and measured index flood 627 

grouped by DPLBAR classes. 628 
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