

GIC at mid-latitudes under extreme Dst scenarios

Gemma Kelly¹, Ari Viljanen², Ciaran Beggan¹, Alan Thomson¹, Alexis Ruffenach³

British Geological Survey

© NERC All rights reserved

Introduction

- Study of GIC in Europe
- Higher profile of Space Weather at government level
- Initial investigation of GIC in the UK and French power grids
- Building on previous work as part of the EURISGIC project and work with National Grid
- Range of hypothetical electrojet and historical scenarios simulating extreme events

Study Methodology

- Constructed models of
 - Magnetic field variations across each country
 - Sub-surface electrical conductivity
 - Surface electric field ('thin sheet model')
 - Transmission system electrical properties (line and earth resistances)

Conductivity models

- Constant land and sea
- UK surface layer map based on EURISGIC
- EURISGIC conductivity model in Europe

	50
1	Block 37
depth [km]	ho [ohmm]
0-0.8	10
0.8–6.8	1500
6.8–14.8	70000
14.8-69.8	10000
69.8–	80

Conductance in the UK based on the EURISGIC conductance map

Network grids

- GB transmission system based on the 2008 system reports (SYS2008)
- EURISGIC grid

Dst - Establishing hypothetical scenarios

- Estimated H component at UK observatories for 3 hypothetical Dst Values: -800nT, -1700nT and -2500nT (Siscoe et al. 2006, Vasyliunas 2011)
- 2 methods:
 - Extrapolation from the three largest storms in digital record

Dst	H component variation (nT)				
	Hartland	Lerwick			
-800	1900	3350			
-1700	3000	4750			
-2500	3900	5600			

Dst - Establishing hypothetical scenarios

- Estimated H component at UK observatories for 3 hypothetical Dst Values: -800nT, -1700nT and -2500nT
- Two methods:
 - Extrapolation from the three largest storms in digital record
 - 2. Use simple ring current model
 - Assuming ring current contributes ~10% of total H at Lerwick.

Dst	Contribution to H from Dst (nT)		otal H (nT)
-800	367		3700	
-1700	781		7800	
-2500	1150		11500	

Establishing hypothetical scenarios

• Model with a tapered cosine in several locations

Hypothetical storms - France

 Location of nodes with largest GIC moves with electrojet position

White circles indicate nodes outside of France

Hypothetical storms - UK

Location of nodes with largest GIC
MorthUK
MorthUK
MorthUK
Middluk

Sensitivity analysis - UK

- Conductivity:
 - Locations of most affected nodes change very little
 - ~1.5x change in total GIC
- Network Grid:
 - ~2x change in total GIC
 - Locations also quite different

Conductivity	Network	Location of Electrojet			
model	grid model	Channel UK	Middle UK	North UK	
Constant	2008 grid	18341 (689)	27385 (1061)	12662 (720)	
land and sea	EURISGIC	34314 (1349)	45606 (1412)	25684 (724)	
	2008 grid	29118 (1093)	32310 (1252)	20101 (1144)	
EURISUIC	EURISGIC	54475 (2143)	52392 (1551)	49047 (1791)	

Total GIC (max GIC) in the grid for each scenario with H=7800nT

Historical scenarios

- Observatory measurements of historical storms interpolated using SECS (Amm, 1997; Amm & Viljanen, 1999)
 - 29th-31st Oct 2003 (Halloween)
 - 13th-14th March 1989
 - 20th Nov 2003

Historical scenarios - France

- Sum GIC for March 1989
- Largest GIC seen along the north coast and small area in the south-east.

Historical scenarios - UK

- Sum GIC throughout the storm follows ΔB
- Locations of the Largest 20 GIC Affected nodes change over ullet60 13 Mar course of the storm 14 Mar 58 Sum |GIC| in all nodes during the March 1989 storm 8000 56 7000 6000 54 5000 000 [A] GIC [A] 3000 52 2000 1000 50 -12 00:00 14-Mar 18:00 00:00 06:00 12:00 18:00 06:00 12:00 -10-8 -6 -2 13-Mar 1989 Time

Historical events

- GIC peaks at ~43A in France (March 1989) and ~212A in the UK (March1989)
- Assuming a linear scaling based on Dst then extreme values would be:

Extreme Dst (nT)	Max Dst in historical	Scale factor	Max GIC for extreme Dst value	
	data		43 (Fra)	(UK)
-800	-589	1.4	60	297
-1700	-589	2.9	125	615
-2500	-589	4.2	181	890

Sensitivity analysis...

- Conductivity model:
 - Constant conductivity slightly bigger at peak
- Network grid:
 - EURISGIC ~2x bigger (as for electrojet scenarios)
- Source field model:
 - No change in top 20 nodes
 - Fine scale details of total GIC very similar

Summary

- Coastal substations generally more susceptible to GIC
- Geomagnetic variations are typically largest to the north, therefore northern substations are more regularly susceptible, but total GIC across a grid can be larger for more central electrojets
- Hypothetical electrojets: GIC peaks of many hundreds (>1000 in UK) of Amps possible at many sites for extreme scenarios
- Historical events: GIC peaks in hundreds of Amps, and locations of max GIC changes throughout the storm.
- Conductivity model and network configuration make a notable difference (~2x) to GIC – important to take this into account

Extras

Summary

- Historical data (*real* data)
 - GIC peaks at ~43A (La Martyre, March 1989)
 - But need to apply Dst scale factors: 1.4 to 6.5
 - Leads to Hundreds of Amps possible at many sites for extreme space weather events (i.e. Dst>800)
- Hypothetical data
 - GIC peaks in the many hundreds of Amps (300-800A)

Extreme Event Scenarios (1)

Exponential scaling model – hypothetical electrojet

Final Report to EDF Energy: London, 23rd September 2015

Extreme Event Scenarios (1)

Ring-current scaling model

Dst (nT)	H component variation (nT)					
	Hartland		Lerwick			
	Measured	RC model	Ratio (%)	Measured	RC model	Ratio (%)
589	1510	350	23	2800	285	10
383	920	230	25	2500	185	7.4
220	780	130	16	1750	105	6

Dst value	H component in total at Lerwick (nT)	
800	367	3700
1700	781	7800
2500	1150	11500

Sensitivity analysis

- Removing top 5 to 10 nodes
 - Large scale picture relatively unaffected (total GIC)

ENERGY

Locations which see largest GIC move

