Spatio-temporal fusion for daily Sentinel-2 images

Wang, Qunming; Atkinson, Peter M.. 2018 Spatio-temporal fusion for daily Sentinel-2 images. Remote Sensing of Environment, 204. 31-42.

Full text not available from this repository.


Sentinel-2 and Sentinel-3 are two newly launched satellites for global monitoring. The Sentinel-2 Multispectral Imager (MSI) and Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors have very different spatial and temporal resolutions (Sentinel-2 MSI sensor 10 m, 20 m and 60 m, 10 days, albeit 5 days with 2 sensors, conditional upon clear skies; Sentinel-3 OLCI sensor 300 m, < 1.4 days with 2 sensors). For local monitoring (e.g., the growing cycle of plants) one either has the desired spatial or temporal resolution, but not both. In this paper, spatio-temporal fusion is considered to fuse Sentinel-2 with Sentinel-3 images to create nearly daily Sentinel-2 images. A challenging issue in spatio-temporal fusion is that there can be very few cloud-free fine spatial resolution images temporally close to the prediction time, or even available, strong temporal (i.e., seasonal) changes may exist. To this end, a three-step method consisting of regression model fitting (RM fitting), spatial filtering (SF) and residual compensation (RC) is proposed, which is abbreviated as Fit-FC. The Fit-FC method can be performed using only one Sentinel-3–Sentinel-2 pair and is advantageous for cases involving strong temporal changes (i.e., mathematically, the correlation between the two Sentinel-3 images is small). The effectiveness of the method was validated using two datasets. The created nearly daily Sentinel-2 time-series images have great potential for timely monitoring of highly dynamic environmental, agricultural or ecological phenomena.

Item Type: Publication - Article
Digital Object Identifier (DOI):
UKCEH and CEH Sections/Science Areas: Unaffiliated
ISSN: 0034-4257
Additional Keywords: Sentinel-2, Sentinel-3, image fusion, downscaling
NORA Subject Terms: Earth Sciences
Date made live: 11 Jan 2018 15:16 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...