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Key points: 14 

 Importance of stress history on fracture flow. 15 

 Stress dependency of fracture flow described by a power-law or cubic relationship. 16 

 Fracture flow dependent on fracture roughness, thickness of gouge material, saturation 17 

state, permeability of the host material, clay mineralogy, and the degree of shearing.  18 



Abstract: The flow of water along discontinuities, such as fractures or faults, is of paramount 19 

importance in understanding the hydromechanical response of an underground geological 20 

disposal facility for radioactive waste. This paper reports four experiments conducted on 21 

kaolinite gouge on a 30° slip-plane and on realistic fractures created in Callovo-Oxfordian 22 

mudstone (COx) from France. Test histories were conducted that initially loaded the gouge 23 

material in step changes in vertical stress, followed by unloading of the sample in similar 24 

steps. This loading-unloading history showed considerable hysteresis in hydraulic flow, with 25 

only partial recovery of fracture transmissivity. This demonstrates the importance of stress 26 

history on fracture flow; consideration of just the current stress acting upon a fracture or 27 

fault may result in inaccuracies of predicted hydraulic flow. The stress dependency of 28 

fracture flow in both kaolinite and COx can be described by a power-law or cubic 29 

relationship, which is likely to be dependent on the fracture roughness, thickness of gouge 30 

material, saturation state, permeability of the host material, and clay mineralogy (i.e. 31 

swelling potential). The observed response of fracture transmissivity to normal stress in COx 32 

is a complex superposition of mechanical response of the fracture and the swelling of clay 33 

in the fracture surface. The stress-dependency of flow was also seen to be dependent on 34 

orientation with respect to bedding. A fracture perpendicular with bedding accommodates 35 

greater compression and results in a lower transmissivity. The orientation dependence is 36 

related to the anisotropic swelling characteristics of COx.  37 
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mudstone.  40 



1. Introduction 41 

Discontinuities (fracture, faults, joints, interfaces, etc.) play a key role in controlling the 42 

movement of water and gas around an underground Geological Disposal Facility (GDF) for 43 

radioactive waste. High Level Waste (HLW), Intermediate Level Waste (ILW) and some long-44 

lived low-level radioactive waste and spent fuel are planned to be disposed of in a GDF within 45 

stable geological formations at depth (~200-800 m) by a number of countries. The disposal 46 

concept incorporates waste isolation and containment by engineered and geological barriers in 47 

such a facility. At depth the rock mass may be a naturally fractured environment, as in the case 48 

for crystalline rocks. The stress re-distribution resulting from the excavation of tunnels in both 49 

crystalline and clay-rich host rocks will result in the formation of the Engineered Disturbed 50 

Zone (EDZ), where an intricate range of discontinuity orientations are present in a complex 51 

localized stress field (Bossart et al., 2002, 2004; Rutqvist et al., 2009, Armand et al., 2014). 52 

Therefore, most current disposal concepts will include a multitude of discontinuities as part of 53 

the natural and engineered environment, which will be present for varying time-scales 54 

dependent on the host-rock; i.e. the EDZ is likely to self-seal in a clay-rich formation, whereas 55 

it will persist for extended periods in a crystalline rock type. Depending on the in situ stress 56 

conditions and whether self-sealing has resulted in fracture closure, preferential pathways for 57 

fluid movement may form along any, all, or none of these discontinuities. 58 

There are a number of potential events that may change the stress state that acts upon any 59 

fractures present in a GDF host rock. The modelling work of Barla and co-workers (Barla, 60 

1999; Bonini et al., 2001) showed that during the excavation of a tunnel the stress field is 61 

altered and the surrounding rock-mass follows a stress path. This results in changes in stress 62 

acting on existing discontinuities and, following their formation, a change in the stress acting 63 

on EDZ fractures. The process of closing a GDF is likely to be achieved by backfilling open 64 

spaces (access tunnels, etc.) with bentonite/sand mixtures or crushed host rock material 65 



(depending on disposal concept). This will result in swelling of clay-based materials on 66 

resaturation and the transmission of stress to the EDZ, resulting in a further change to the stress 67 

experienced by any discontinuities present in the host rock. Over geological timescales in 68 

certain parts of northern and northwestern Europe, there may be increased stress on the GDF 69 

as the result of glacial loading, or a reduction in stress as the result of erosion of some of the 70 

over-burden, although this is unlikely in France. Therefore, over the full history of the GDF 71 

several scenarios may occur that could result in changes in the stress acting upon discontinuities 72 

of varying time-scales. 73 

The evolution of permeability in rocks under hydrostatic stress conditions has been widely 74 

reported. The stress dependency of permeability has been reported under hydrostatic stress 75 

conditions in a number of different rock types (e.g. Zoback & Byerlee 1975; Walsh & Brace 76 

1984; Morrow et al., 1984; Neuzil et al., 1984; David et al., 1994; Dewhurst et al., 19991,2; 77 

Katsube, 2000; Katsube et al., 19961,2; Kwon et al., 2001; Zhang & Rothfuchs, 2004). 78 

However, in the field, rocks are subject to an inhomogeneous stress-field, where the vertical 79 

stress (determined by the weight of the overburden) exceeds the orthogonal maximum and 80 

minimum horizontal stresses (Holt, 1990). This has led to investigations of the sensitivity of 81 

matrix permeability to non-hydrostatic stress conditions, especially in sandstones (e.g.; Zhu & 82 

Wong, 1994; Zhu & Wong, 1997; Keaney et al., 1998). The reported permeability for intact 83 

shale, mudstones, and clay-rich rocks subjected to hydrostatic pressures varies from 10-16 m2 84 

to 10-23 m2 (Kwon et al., 2001). Many researchers have shown that the permeability of shale 85 

decreases with externally applied stress (Neuzil et al., 1984; Katsube et al., 19961,2; Dewhurst 86 

et al., 19991,2; Katsube, 2000; Kwon et al., 2001;) and decreased porosity (Schloemer & Kloss, 87 

1997; Dewhurst et al., 1998). A number of non-linear relationships have been proposed 88 

between permeability, porosity, and pressure in shale and mudstones, including exponential 89 



and power laws between permeability and pressure (Katsube et al., 1991; Dewhurst et al., 90 

19991).  91 

The permeability, or transmissivity, of discontinuities and its associated relationship with stress 92 

has not been widely reported. The Compression of the Damaged Zone (CDZ) experiment 93 

conducted at the Meuse/Haute-Marne Underground Research Laboratory (URL) at Bure, 94 

approximately 300 km east of Paris, demonstrated that the transmissivity of fractures formed 95 

around the EDZ was sensitive to the loading experienced (de La Vaissière et al., 2015). Only 96 

a small effect was seen in the transmissivity to gas, but clay/water interactions led to a decrease 97 

of water permeability of several orders of magnitude. In Opalinus Clay (OPA), the load plate 98 

experiment at the Mont Terri URL observed a fracture transmissivity decrease with increasing 99 

load pressures by up to a factor of 60 (Bühler et al., 2003). Careful experimental design proved 100 

that the decrease in transmissivity follows the stepwise increase of the load pressure and was 101 

due to mechanical compression of the fracture network. A longer-term reduction in 102 

transmissivity was also observed, which may be related to swelling and rearrangement of clay 103 

minerals. In the load plate experiment the transmissivity seen at the highest load was still 104 

greater than that for intact OPA. However, at the Meuse/Haute-Marne URL, permeability has 105 

been observed to return to that of the intact material within the uncertainty of water 106 

permeability for COx. Several laboratory experimental studies have been conducted examining 107 

fracture flow in Callovo-Oxfordian mudstone, including Davy et al. (2007), Foct et al. (2012), 108 

Zhang et al. (2013), and Auvray et al. (2015). 109 

Gutierrez et al. (2000) experimentally investigated the hydromechanical behaviour of an 110 

extensional fracture in Kimmeridge Shale under normal and shear loading. At the time the 111 

fracture was created it had a higher permeability than the equivalent permeability of the intact 112 

shale. Increasing the contact normal stress across the fracture reduced the fracture permeability 113 

following an empirical exponential law. However, loading the sample to an effective normal 114 



stress twice as much as the intact rock unconfined compressive strength did not completely 115 

close the fracture, although it did reduce the permeability by an order of magnitude. Cuss et al. 116 

(2011) showed that fracture transmissivity in OPA decreased linearly with an increase in 117 

normal load over a limited stress range. This study also showed that shear movement along the 118 

fracture resulted in effective self-sealing in OPA and reduced hydraulic fracture transmissivity 119 

to similar levels to that of the intact material. A one order of magnitude reduction in fracture 120 

transmissivity of OPA just in response to re-hydration of the fracture because of the swelling 121 

of the clay minerals has been reported (Cuss et al., 2014; Cuss & Harrington, 2014). A further 122 

order of magnitude reduction was observed in response to shearing along the fracture, this may 123 

be in part due to clay smearing and mineral rearrangement and/or due to a greater number of 124 

clay minerals coming into contact with water and swelling as a result of the formation of 125 

microfractures sub-parallel to the main fracture. 126 

The objective of the current experimental program was to investigate the water flow properties 127 

of a discontinuity at 30° to changes in vertical load and to compare these observations with the 128 

recorded flow in a horizontal fracture formed in Callovo-Oxfordian mudstone (COx). This 129 

would simulate effective stress changes, such as pore-pressure variations on faults or stress 130 

changes associated with GDF closure. As stated above, the response of fracture flow to changes 131 

in normal stress are dependent on the rock-type that the fracture exists. Previous experimental 132 

work at the British Geological Survey (BGS) on fracture transmissivity in Opalinus Clay (Cuss 133 

et al., 2011; 2014; Cuss & Harrington, 2014) showed that hydraulic flow is a complex, focused, 134 

transient property that is dependent upon normal stress, shear displacement, fracture topology, 135 

fluid composition, and clay swelling characteristics. The current experimental program aimed 136 

to extend this knowledge by investigating the influence of vertical stress on water flow through 137 

gouge-filled discontinuities and in COx. The response of discontinuities has two clear 138 

components; a mechanical response to load and a response from swelling effects of clay 139 



minerals. Comparing results from two experimental geometries would allow mechanical and 140 

swelling effects to be determined. The observations from the 30°discontinuity also are relevant 141 

to non-swelling fractures, such as those seen in crystalline environments.  142 

2. Experimental setup 143 

Experiments were performed using two similar bespoke shear apparatus, designed and built at 144 

BGS. The Direct Shear Rig (DSR, Figure 1a) was designed to study fracture transmissivity in 145 

clay-rich rock samples. The Angled Shear Rig (ASR, Figure 1b) was designed to study fault 146 

flow in a generic synthetic fault gouge at varying angles to the stress field. 147 

Both the DSR and ASR are comprised of six key components: 148 

1. Rigid steel frame that had been designed to deform as little as possible during the 149 

experiment; 150 

2. Vertical load system comprising an Enerpac hydraulic ram that was controlled using a 151 

Teledyne/ISCO 260D syringe pump, a rigid loading frame and an upper thrust block (up to 152 

20 MPa normal stress, 72 kN force). The Enerpac ram had a maximum stroke of 105 mm, 153 

which meant that it could easily accommodate the vertical displacement of the top block of 154 

the ASR as it rode up the fault surface at constant vertical load. Vertical travel of the thrust 155 

block was measured by a high precision non-contact capacitance displacement transducer, 156 

which had a full range of ± 0.5 mm and an accuracy of 0.06 µm; 157 

3. Shear force actuator comprised of a modified and horizontally mounted Teledyne/ISCO 158 

500D syringe pump designed to drive shear as slow as 14 microns a day at a constant rate 159 

(equivalent to 1 mm in 69 days) or as fast as 0.5 mm per second along a low friction bearing. 160 

The movement of the bottom-block was measured using a linear variable differential 161 

transformer (LVDT), which had a full range of ± 25 mm and an accuracy of 0.5 µm; 162 



4. Pore pressure system comprising a Teledyne/ISCO 500D syringe pump that could deliver 163 

either water up to a pressure of 25.8 MPa. The syringe pump delivered water directly to the 164 

fracture surface; 165 

5. A state-of-the-art custom designed data acquisition system using National Instruments 166 

LabVIEW™ software facilitating the remote monitoring and control of all experimental 167 

parameters; 168 

6. A sample assembly, which was the main difference between the DSR and ASR. In both 169 

experimental setups, the bottom block was actively sheared and the top block was 170 

connected through a linkage system to a force gauge measuring the shear stress along the 171 

slip plane. 172 

a. DSR: two samples of 60 mm × 60 mm × ~25 mm were held by two stainless steel 173 

holders. Vertical load was applied to the rock samples by means of a steel thrust block. 174 

A 4 mm bore the same length as the upper fractured block delivered pore fluid through 175 

the top sample directly to the fracture surface.  176 

b. ASR: the sample assembly consisted of polished precision-machined 316 stainless steel 177 

top and bottom blocks (thrust blocks) with a dip of 30 degrees with respect to horizontal. 178 

Fluid was introduced through a 4 mm filter in the centre of the top block. Two additional 179 

4 mm diameter filters positioned orthogonally to each other at 15 mm from the central 180 

pore fluid inlet were connected to pore-pressure transducers in order to monitor pressure 181 

within the gouge (see Figure 1b). The lower thrust block was longer than the 60 mm × 182 

60 mm upper thrust block in order to maintain a constant contact area during shearing. 183 

Two high precision eddy current non-contact displacement transducers were located 184 

either end of the top thrust block and recorded gouge thickness directly and determined 185 



non-parallel alignment of the two thrust blocks. These submersible devices had a full 186 

range of ± 1 mm and an accuracy of 0.2 µm.  187 

2.1 Test material and experimental protocols 188 

For the tests conducted using the DSR, a sample of Callovo-Oxfordian mudstone1 (COx) was 189 

used from material extracted from the Meuse/Haute-Marne underground research laboratory at 190 

Bure in France. Yven et al. (2007) report three main mineral phases; clay minerals, quartz and 191 

calcite. Secondary mineral phases include dolomite, feldspar, pyrite, hematite and traces of 192 

siderite. Calcite and quartz represent 40 – 55% of the rock. Clay represents 20 – 55%, with 193 

secondary minerals forming less than 5%. Clay minerals include illite and illite-smectite with 194 

subordinate kaolinite and chlorite. Upon receipt of the preserved core barrels at BGS, the 195 

material was catalogued and stored under refrigerated conditions of 4°C to minimize biological 196 

and chemical degradation. The preserved core barrels consisted of a multi-layered arrangement 197 

designed to re-stress the core to in situ stress and to environmentally seal it in order to reduce 198 

chemical, biological and drying effects. Both test samples were prepared from core material 199 

from borehole OHZ1607, which was drilled horizontal to bedding with a diameter of 100 mm. 200 

Table 1 summarizes the origin of the core material and the properties of the test samples. The 201 

test samples were prepared by dry cutting an approximate 60 × 60 × 50 mm block from core 202 

barrel material. The faces were ground flat and parallel using a diamond mill so as produce a 203 

good fit into the sample holders. The starting water saturation is reported in Table 2, along with 204 

the geotechnical properties of the starting material. The samples were wrapped in cling-film 205 

and between test stages were stored in two sealed bags to reduce the possibility of drying. 206 

                                                           
1 The Callovo-Oxfordian mudstone (COx) from the Meuse/Haute-Marne URL is often referred to as the Callovo-
Oxfordian claystone. However, it does not always consist of clay minerals greater than 50 % volume and as 
such is not necessarily a true claystone. Therefore, the term mudstone is used. Please note COx is also referred 
to as Callovo-Oxfordian claystone/argillite/formation/clay rock/mudstone/argillaceous rock/shale. 



A fracture was created in the cubic sample by shearing in the DSR apparatus. As the sample 207 

was rigidly held by two steel holders, the shearing action resulted in a realistic fracture being 208 

formed at the junction between the two holders. This created two samples of approximately 25 209 

mm thickness. A bore of 4 mm diameter was drilled in the top fracture sample in order to 210 

accommodate the pore injection pipe of the upper thrust block. During fluid injection a 211 

chemically balanced synthetic pore fluid was used similar to that found at Bure (Gaucher et al., 212 

2007). This was manufactured at BGS with the following composition: 227 mg l-1 Ca2+, 125 213 

mg l-1 Mg2+, 1012 mg l-1 Na+, 35.7 mg l-1 K+, 1240 mg l-1 Cl-, 1266 mg l-1 SO4
2-, 4.59 mg l-1 214 

Si, 9.83 mg l-1 SiO2, 13.5 mg l-1 Sr, 423 mg l-1 total S, and 0.941 mg l-1 total Fe. 215 

Following fracture creation, the two fracture surfaces were scanned using a NextEngine 3D 216 

Scanner HD. This produces a 3D mesh model of the fracture surface accurate within an error 217 

of ± 65 microns. Algorithms inbuilt within the data acquisition ScanStudio HD software 218 

produced clean surface data which were used in subsequent empirical and statistical analysis. 219 

Fracture roughness and other standard measurements were made using TrueMap 5.0 surface 220 

topography software. A small quantity of disaggregated clay may have been lost during the 221 

scanning process, although this was minimal, with only a few milligrams of clay dislodged 222 

from the fracture surface. The fracture surfaces were exposed to air for a maximum of five 223 

minutes during scanning and were placed in sealed sample bags at all other times. This was to 224 

reduce moisture loss, which over this short period of time is assumed to be negligible. 225 

For tests conducted using the ASR, a gouge material for the experiments was prepared from 226 

powdered kaolinite (Supreme Powder); 16 ± 0.1 g of de-ionized water was added to 20 ± 0.1 g 227 

of kaolinite powder. The water and kaolinite were then stirred for five minutes giving a 228 

kaolinite paste with a gravimetric water content of 80 ± 1%, or a saturation state close to 100% 229 

(see Table 2). The paste was smeared uniformly onto the surface of the top block, which was 230 

then carefully lowered onto the bottom block thus forming a kaolinite paste gouge. The initial 231 



thickness of the gouge was determined to be of the order of one millimetre. However, as no 232 

lateral confinement was made of the clay gouge, thickness decreased to approximately 70 ± 10 233 

µm with loading and clay was squeezed from between the thrust blocks. The apparatus was 234 

designed without lateral gouge confinement as this would require sealing elements that would 235 

have a high frictional component along the fault surface compared with the low frictional 236 

properties of kaolinite. Initial loading resulted in excess clay being squeezed out from the fault 237 

surface; this excess material prevented water from the shear bath entering the fault gouge or 238 

from causing sloughing. 239 

In the ASR, a constant pore pressure of approximately 1 MPa was created carefully once a 240 

small vertical stress had been imposed on the fracture surface. Care was taken to ensure that 241 

kaolinite was not eroded from the slip plane by limiting flowrate to sub-100 µl h-1. At low 242 

normal stresses, the fractures in COx could not be limited to 100 µl h-1 at such a high pore-243 

pressure. For test DSR_COx_01, pore pressure was slowly increased in steps from 120 kPa to 244 

500 kPa during the hydration stage, with 750 kPa used during the flow test. At all steps flow 245 

was kept below sub-500 µl h-1. For test DSR_COx_02 an initial flow rate of 100 µl h-1 was 246 

imposed until a pore pressure of 150 kPa was achieved, all further testing was then undertaken 247 

at a constant pore pressure of 150 kPa. All measures were taken to limit erosion of clay from 248 

the fracture surfaces in all tests. Once stable flow had been achieved, the vertical stress was 249 

increased (or decreased) in regular steps. The flow rate of the injection system was monitored 250 

and used to determine fracture transmissivity. 251 

2.2 Data reduction 252 

Fracture transmissivity was calculated assuming radial flow from the injection hole given the 253 

steady state fluid flow rate Q and the pressure head H at the injection point. Steady flow in a 254 

cylindrical geometry is given by: 255 
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where T is the transmissivity, hi is the head on the inner surface with radius ri, and ho is the 257 

head on the outer surface at radius ro (Gutierrez et al., 2000). For the experimental setup r0 = 258 

30 mm, ri = 1.96 mm, h0 = 0.05 m and hi ~ 100 m. Substituting these constants into equation 1 259 

gives transmissivity (m2 s-1): 260 

pP

Q
T 1210183.1   [2] 261 

if the fluid flux (Q in µl h-1) and pore pressure (Pp in kPa) are known. This relationship was 262 

used to calculate the transmissivity of the fracture throughout the experiment. It should be noted 263 

that Equation 1 relates to a circular sample, whereas the fracture is created in a cubic sample. 264 

Therefore, it is assumed that the shortest distance between the injection point and the edge of 265 

the sample is the controlling factor. It should also be noted that as the fracture is sheared the 266 

contact area between the top and bottom face of the fracture reduces. As a result, the shortest 267 

distance to the edge of the sample (ro) effectively reduces. Scoping calculations showed this 268 

had a negligible effect on the overall calculation. 269 

3.0 Experimental results for Angled Shear Rig (Kaolinite gouge) 270 

Two load-unload experiments were conducted using the ASR apparatus with water as the 271 

injection fluid, both on a 30° slip-plane (Table 2). Figure 2 shows an example of the data 272 

recorded during hydraulic flow for test ASR_Tau05_30wLU plotted against time, whereas data 273 

plotted against vertical stress are shown in Figure 3. Vertical stress was sequentially increased 274 

in stages of 0.2 MPa per day from an initial 0.2 MPa to a maximum vertical stress of 2.6 MPa 275 

(Figure 2b). The pore fluid injection pressure was maintained at a constant value of 1 MPa. 276 

Although no horizontal stress was applied, the increase in horizontal stress as a consequence 277 



of vertical stress increase was logged throughout the duration of the experiment. During the 278 

unloading stage, the vertical stress was decreased in steps of 0.2 MPa from 2.6 MPa to 0.2 279 

MPa. Temperature remained uniform at 20.5 ± 0.1°C throughout the entire duration of the 280 

experiment (Figure 2a). The flow rate decreased an order of magnitude from 50 µl h-1 to 5 µl 281 

h-1 during loading from 0 to 2.6 MPa. During unloading from 2.6 to 0.2 MPa, flow rate doubled 282 

from 5 µl h-1 to 10 µl h-1. From 2.6 MPa to 1.0 MPa vertical stress, the flow rate remained 283 

constant at 5 µl.h-1 irrespective of the significant reduction in vertical load (Figure 2c, Figure 284 

3a). Pore pressure within the slip plane recorded much lower pressures (50 – 80 kPa and 5 – 285 

25 kPa) than the injection pressure (1 MPa) (Figure 2d). During loading, fracture transmissivity 286 

decreased from 5 × 10-14 m2 s-1 to 0.6 × 10-14 m2 s-1. However, during unloading transmissivity 287 

recovered to only 1.1 × 10-14 m2 s-1. The thickness of the kaolinite gouge decreased with loading 288 

from 54 µm at a vertical stress of 0.2 MPa to 42 µm at a vertical stress of 2.6 MPa. During 289 

unloading, the slip plane width continued to decrease further to 40 µm before finally recovering 290 

to 43 µm after full unloading (Figure 2e, Figure 3b). Vertical displacement was seen to reduce 291 

by nearly 350 µm during the loading stage, with a hysteretic recovery during unload (Figure 292 

2f, Figure 3c). No significant differences were seen between tests ASR_Tau05_30wLU and 293 

test ASR_Tau01_30wLU, as shown in Cuss et al. (2013). 294 

Figure 4 shows the results of flow achieved for the two tests conducted injecting water into a 295 

30° discontinuity during loading from 0.1 to 2.6 MPa and unloading from 2.6 to 0.2 MPa. As 296 

can be seen, the starting flow rates of the two tests were different by nearly a factor of 2. Both 297 

tests were setup in identical ways using the same pre-mixed weight of kaolinite and deionised 298 

water. The difference is likely to be related to differences in gouge thickness. As normal load 299 

was increased in steps, the flow along the slip plane steadily reduced. In both experiments, 300 

although starting from dissimilar flow rates, a flow rate of approximately 6 µl h-1 at a vertical 301 

stress of 2.6 MPa was achieved. As both experiments resulted in a similar flow, it is suggested 302 



that the final gouge thickness was similar for both tests following expulsion of excess clay 303 

during loading. The difference may also be due to variation in starting saturation of the kaolinite 304 

gouge, although every care was taken to produce gouge material that was identical. As reported 305 

in Cuss et al. (2013), shear is seen to be an effective self-sealing mechanism in kaolinite gouge, 306 

significantly reducing flow. Therefore, differences in starting transmissivity may also be 307 

related to the degree of shearing experienced during the setting up of the experiment. On 308 

unloading, this flow rate did not significantly alter until a vertical load of approximately 0.75 309 

MPa was reached. 310 

3.1 Experimental results for Direct Shear Rig (COx) 311 

Two experiments were conducted using the DSR on samples of COx, as described in Table 2. 312 

The first test (DSR_COx_01) was a simple loading history in order to describe the stress 313 

dependency of fracture transmissivity. The second test (DSR_COx_02) was a more detailed 314 

load-unload-reload test history. It should be noted that the orientation of the two tests were 315 

different, with test DSR_COx_01 fractured parallel to bedding, while DSR_COx_02 was 316 

fractured perpendicular to bedding. 317 

The results from the first test that was performed are shown in Figure 5. The test history is 318 

shown as two separate tests due to the behaviour recorded. Previous testing conducted in 319 

Opalinus Clay (e.g. Cuss et al., 2011) showed that the injection of pore fluid or the change in 320 

normal load resulted in a transient response in fracture transmissivity that would equilibrate 321 

within a few days. As shown in Figure 5e, the initial test step showed a short transient, giving 322 

an average flow rate of 99 µl h-1 at 2.07 MPa after 72 hours. Normal load was increased to 2.5 323 

MPa and a considerable transient was observed. As clearly seen, a full asymptote of the flow 324 

rate had not been achieved after 1,512 hours (2 months). As well as a continually changing 325 

response for flow, a small component of normal displacement was seen that similarly had not 326 



reached equilibrium (Figure 5g). It was not feasible to continue the experiment at such a slow 327 

rate and the decision was taken to begin a new phase of experimentation with step changes in 328 

normal load being conducted on 24-hour periods. This was deemed sufficient to allow the 329 

transient associated with a change in normal load to equilibrate and to be a good representation 330 

of the mechanical change in flow properties without the influence of long-term changes in flow 331 

properties associated with clay swelling. This phase of experimentation is shown in Figure 332 

5b,d,f,h. Results shown in Figure 5b are affected by the air conditioning in the laboratory, 333 

which was not stable at the time these results were collected due to an intermittent fault (this 334 

fault affected no other experiments). Overall, air conditioning issues did not have a detrimental 335 

influence on flow in relation to results shown in Figure 5f, although a short-term variation is 336 

seen. It was still possible to determine an average flow for each normal load step. During the 337 

full duration of the experiment, flow reduced from 100 µl h-1 at 2.07 MPa to 40 µl h-1 at 3.85 338 

MPa. Figure 8 shows that a good relationship was observed with a decreasing fracture 339 

transmissivity from 1.6 × 10-13 m2 s-1 to 4.2 × 10-14 m2 s-1 as normal load increased from 2 to 340 

3.85 MPa. 341 

Figure 6 shows the data recorded during hydraulic flow test DSR_COx_02 during a load-342 

unload-reload (LUR) history plotted against time, data plotted against normal stress is shown 343 

in Figure 7. Normal stress was sequentially increased in steps of 0.15 or 0.4 MPa from an initial 344 

0.54 MPa to a maximum normal stress of 1.67 MPa (Figure 6b). Each step was conducted until 345 

flow rate stabilized and ranged in duration from 1 to 24 hours. Due to high flow rates seen at 346 

low normal stresses, the pore fluid injection pressure was maintained at constant values of 347 

between 0.15 and 0.25 MPa, as shown in Figure 6b. During the unloading stage, the normal 348 

stress was decreased in steps of 0.25 or 0.45 MPa from 1.67 MPa to 0.53 MPa. The reload 349 

stage saw normal stress increased in steps of between 0.2 and 0.45 MPa from 0.53 MPa to a 350 



new maximum normal stress of 3.42 MPa. Temperature remained uniform at 21.25 ± 0.1 °C 351 

throughout the entire duration of the experiment (Figure 6a).  352 

The early flow rate history was very complex (Figure 6c, Figure 7a). The observations stated 353 

above for tests conducted on kaolinite gouge showed a distinct hysteresis during unloading; 354 

therefore, it was vital that normal load was increased from a starting low normal stress. This 355 

was complicated by issues related to erosion along the fracture surface and the necessity to 356 

ensure that excessive flow rates were not sustained. This resulted in variations in pore injection 357 

pressure and duration of stages. Post experiment examination of the sample did not highlight 358 

any features of erosion on the fracture surface. The initial stage had a high flow rate of 1,600 359 

µl h-1 at 0.54 MPa, which reduced to 142 µl h-1 at 1.67 MPa. During the unloading stage there 360 

was a partial recovery of flow to 257 µl h-1 as normal stress was reduced to 0.53 MPa. During 361 

reloading to the previous maximum normal stress of 1.67 MPa the flow reduced to 120 µl h-1, 362 

which is similar to the flow rate that was recorded at the end of the initial loading phase. As 363 

normal stress was increased to the new maximum of 3.42 MPa the flow rate reduced to 7.3 µl 364 

h-1. Therefore, during the duration of the experiment the fracture transmissivity reduced from 365 

1.3 × 10-11 m2 s-1 to 5.7 × 10-14 m2 s-1. Figure 6d and Figure 7b show the results for normal 366 

displacement. As shown, a near linear reduction in normal displacement was observed during 367 

loading, with a small degree of hysteresis seen on unloading. Only 0.25 mm of normal 368 

displacement was seen during the full test history. 369 

4 Discussion 370 

The current study has utilized both kaolinite gouge as an analogue fracture and a shear fracture 371 

created in COx. The use of a kaolinite gouge was in order to reduce the number of variables in 372 

the experiments by effectively eliminating fracture roughness and the presence of asperities. 373 

The selection of kaolinite was determined by the low swelling capacity of the clay, facilitating 374 



quicker experiments and the study of a greater number of features of fracture flow. The limited 375 

swelling capacity also means that the fluid flow behaviour is dominated by the mechanical 376 

response of flow to loading. In contrast, COx has a high content of swelling clay (illite and 377 

illite-smectite), which means that observations listed above are a combination of the 378 

mechanical response of loading and the swelling response of the clay minerals on the fracture 379 

surface. However, comparisons can still be made in the behaviour observed in both kaolinite 380 

and COx fractures, with the kaolinite results aiding the separation of mechanical and swelling 381 

responses in COx. Figure 8 shows that when viewed in log vertical stress versus log fracture 382 

transmissivity space, linear regions of the data are clearly defined, signifying a power-law 383 

relationship between stress and fracture transmissivity for all the current tests. 384 

As seen in Figure 8, the only exception to the power-law behaviour is test DSR_COx_02, 385 

although this discrepancy can be explained. As stated earlier, the initial test history was 386 

dominated by the need to minimize flow through the fracture and to ensure that erosion of the 387 

fracture surface did not occur. The created fracture would have had mismatch between the 388 

fracture surfaces, resulting in asperities and a higher transmissivity than for a perfectly matched 389 

fracture surface. As vertical stress was increased in the experiment, these asperities became 390 

less dominant and flow reduced, and during this phase of the test history a linear relationship 391 

can be used to describe the dependence of transmissivity on stress. During this period of the 392 

test, swelling would also have been a dominant process and the necessity to keep test stages 393 

short meant that full equilibration per stage had not been reached. However, at approximately 394 

1.7 MPa vertical stress, the behaviour changed: at this stress level the asperities have closed 395 

and the fracture began to show a power-law relationship between stress and flow. This 396 

transition was not seen in test DSR_COx_01 for two reasons. Firstly, the minimum stress 397 

exceeded 2 MPa, therefore asperities created by mismatch may have closed. Secondly, the first 398 



stage of the test resulted in a prolonged period of rehydration and swelling on the fracture 399 

surface may have caused the mismatch to have been sealed.  400 

Close examination of test data for DSR_COx_02 suggests that a further change in behaviour 401 

may have happened at around 2.75 MPa. This can be interpreted as a slip event on the fracture 402 

surface. The increasing vertical stress has become sufficient that the mismatch has resulted in 403 

a small movement along the fracture. Shear has been shown to be an effective self-sealing 404 

mechanism in fracture experiments (e.g. Cuss et al., 2011; 2013; 2014) and this would result 405 

in a decrease in fracture transmissivity. Close examination of all recorded data is not conclusive 406 

on whether movement occurred or not. However, a decline in shear stress around this time 407 

suggests movement did occur. Therefore, the alternative power-law fit shown in Figure 8a and 408 

Table 3 is more representative of the relationship between stress and flow. It has to be 409 

acknowledged that true steady-state conditions were not achieved in all test stages and that as 410 

well as the mechanical closure of the fracture there is an ongoing reduction in flow related to 411 

self-sealing and swelling of clay minerals. These observations are in contradiction to the CDZ 412 

field test (de La Vaissière et al., 2015). 413 

Berkowitz (2002) extensively reviewed flow though fractures and fractured rocks. Several 414 

models of relationships of fracture flow with increasing normal stress exist, based on linear, 415 

cubic, exponential and power-laws. During the current study, no appraisal has been made of 416 

the validity of the available models. However, as shown in Figure 9 and Table 4, the data from 417 

the current study have been fitted using a range of empirical relationships between flow and 418 

vertical stress. In Table 4 the highlighted values represent the relationships that have the highest 419 

value of R2 and therefore are statistically the best fit to the data, although this approach does 420 

not necessarily represent the best fit to the data in a physical sense. All relationships (power-421 

law, exponential, logarithmic and cubic) offer a good approximation of the data, although the 422 

linear relationship is poor in most tests. It can be seen that a cubic relationship offers the best 423 



fits to the loading data, although good fits are achieved with power-law, exponential and 424 

logarithmic relationships. Both cubic and power-law relationships offer good descriptions of 425 

the flow behaviour during unloading. Table 4 suggests that a cubic relationship best describes 426 

the flow properties of fractures during loading and unloading. 427 

Figure 9c shows data from the CDZ (Compression of the Damaged Zone) in situ experiment 428 

conducted at the Meuse/Haute-Marne URL (de La Vaissière et al., 2015). Data is shown for 429 

boreholes CDZ1305 and CDZ1306, which were behind a hydraulic loading plate installed  in 430 

the GET drift. The hydraulic ram loaded the walls of the tunnel and resulted in the closure of 431 

the damage zone around the tunnel. As shown, data for conductivity at different loading 432 

stresses are also well described by a cubic law. These data are not well described by a power-433 

law relationship. Therefore, a cubic law describes the relationship between loading and flow 434 

seen in Callovo-Oxfordian mudstone. 435 

The current study has highlighted the significance of stress history with the non- or partial-436 

recovery of flow during unloading. In all tests that included unloading stages, irrespective of 437 

whether gouge or fractured rock was used, a memory of the maximum load experienced was 438 

retained. This is evidenced by considerable hysteresis on the unloading cycle of the test history 439 

(Figure 4, Figure 7, Figure 8b). The unloading response can also be seen to be described by a 440 

power-law or cubic relationship. For COx, a power-law of 18.5 n
-0.6 is observed. The situation 441 

for kaolinite gouge is somewhat different. Initially there is no recovery of flow, until at a 442 

threshold vertical stress the flow recovers as described by a power-law. However, a cubic 443 

relationship adequately describes the full unload response. Similar hysteresis has been noted in 444 

Opalinus clay (Cuss et al., 2011; 2014). The unload history of three tests are shown in Figure 445 

10. The data for Opalinus clay (Cuss et al., 2011) were not originally reported in terms of 446 

hysteresis. However, a reinterpretation of the data shows the initial testing state was to increase 447 



vertical stress to a maximum value and measure flow during unloading steps. As shown, little 448 

recovery of flow was experienced. Figure 10 also shows hydraulic flow data measured on 449 

fractured COx within an isotropically loaded test configuration (COx_4; Harrington et al., 450 

2017). This dataset was also measured from a maximum stress state in lowered stress steps and 451 

can be defined by a power-law relationship. The observation of such behaviour in tests 452 

conducted in isotropic and shear test configurations demonstrates that the power-law unloading 453 

response is not purely an artefact of the test geometry used.  454 

The observation of hystersis can be explained using classical soil mechanics. The loading stage 455 

of the fracture follows the virgin consolidation line (VCL) with the change in flow described 456 

by a power-law relationship. Unloading follows the rebound reconsolidation line (RRL), with 457 

a partial recovery of flow properties, due mainly to a recovery in void ratio in response to a 458 

lowering of stress. However, in all tests described there are considerable differences seen at 459 

stress levels depending on whether observed during a loading or unloading stress state. This 460 

illustrates the importance of stress history on predicting flow along discontinuities and has been 461 

used to explain the non-applicability of the critical stress approach in its simple form for a UK 462 

site (Sathar et al., 2012). Other processes, such as surface charge of clay minerals opposing 463 

recovery of porosity on unloading and non-recovery of flow related to clay swelling in response 464 

to increasing stress changes, may also be contributing to the observed hysteresis; these 465 

processes require further investigation. Therefore, stress history is an important control on 466 

fracture flow and consideration only of the current stress state may lead to inaccuracies in the 467 

prediction of flow in fractured mudrocks. 468 

Figure 8 shows that a power-law can describe the relationship between flow and vertical stress 469 

for COx. Different slopes are noted, as are different intercepts. For instance, at 3 MPa vertical 470 

stress the fracture transmissivity is 6.8 × 10-14 m2 s-1 for test DSR_COx_01 compared to 1.9 × 471 

10-14 m2 s-1 for test DSR_COx_2. This difference can be attributed to the orientation of the test 472 



samples, or may be due to the difference in durations of test stages in the two experiments. Test 473 

DSR_COx_01 was orientated with a fracture parallel to the bedding, whilst test DSR_COx_02 474 

was fractured perpendicular to bedding. These differences are also noted in the vertical 475 

displacement (dilation/contraction of the fracture) seen during the experiment. For test 476 

DSR_COx_01, a total of 0.07 mm of displacement was noted, whereas nearly 0.25 mm was 477 

seen in test DSR_COx_02. This suggests that a fracture perpendicular with bedding 478 

accommodates greater compression and explains why a lower fracture transmissivity is 479 

observed. The swelling characteristics are also dissimilar between the tests. As stated earlier, 480 

test DSR_COx_01 showed a considerable time-dependent response early in the test history, 481 

suggesting that a fracture parallel to bedding exhibits greater time-dependent swelling 482 

compared with a fracture oriented perpendicularly. Test DSR_COx_02 would be expected to 483 

show greater swelling characteristics given a lower starting saturation of the test sample. These 484 

results show that fracture orientation with respect to bedding may play a role on the flow 485 

properties, both magnitude and stress sensitivity of flow. However, it has to be acknowledged 486 

that the test histories of the two experiments are considerably different and the super-position 487 

of mechanical and swelling responses may be the cause of these observations. 488 

Comparisons can be made between the current experiments and those conducted on fractures 489 

in Opalinus Clay (OPA). Cuss et al. (2009; 2011) describe the variation of fracture flow 490 

dependence on normal stress for an idealized planed fracture in OPA. A hydraulic 491 

transmissivity of approximately 5 × 10-14 m2 s-1 was observed, which is comparable with the 492 

0.5 – 6 × 10-14 m2 s-1 seen in the current study for kaolinite and 0.8 – 16 × 10-14 m2 s-1 seen in 493 

COx.  494 

The current study has shown that hydraulic flow along fractures within the engineering 495 

disturbed zone (EDZ) surrounding an underground geological disposal facility for radioactive 496 

waste in Callovo-Oxfordian mudstone will have a stress-dependent response. This can be 497 



defined by a cubic-law relationship for either individual fractures, as determined from 498 

laboratory experiments, or for the bulk rock mass, as determined from in situ experiments. 499 

Fracture flow reduces as the stress acting across a fracture increases. Therefore, swelling of 500 

Callovo-Oxfordian mudstone or engineered sealing components will result in a reduction in 501 

flow and if sufficient, this will reduce to that seen in the intact rock. This study also showed 502 

that the flow along EDZ fractures will have a stress-memory and will be similar to the 503 

maximum stress that has been experienced by the rock. This hysteresis means that future 504 

reductions in loading of the rock will not resort in significant recovery of enhanced flow. 505 

5. Conclusions 506 

This paper describes an experimental study of four loading-unloading experiments conducted 507 

on kaolinite gouge on a 30° slip-plane and shear fractures created in COx. The main 508 

conclusions of the study are: 509 

a. The observed response of fracture transmissivity to normal stress in COx is a complex 510 

superposition of mechanical response of the fracture and the swelling of clay in the fracture 511 

surface; 512 

b. During a loading (vertical stress) and unloading cycle, hysteresis in flow was observed 513 

signifying the importance of stress history on fracture flow. Consideration of just the 514 

current stress acting upon a fracture, and not a history of stress variation, may therefore 515 

result in an inaccurate prediction of hydraulic flow;  516 

c. The stress dependency of fracture flow in both kaolinite and COx can be described by a 517 

power-law or cubic relationship. Sufficient data are not yet available to fully understand 518 

the physical controls on the parameters of the relationship observed; 519 



d. During unloading stages only partial recovery of flow was observed in kaolinite and COx. 520 

This partial recovery of flow has been observed in isotropically-loaded samples and shows 521 

that the behaviour is not a simple artefact of the test geometry; 522 

e. COx showed a considerable time-dependent behaviour, indicating that it has a good self-523 

sealing potential as clay minerals swell once they are hydrated; 524 

f. Fracture orientation with respect to bedding may play a role on flow properties, both 525 

magnitude and stress sensitivity of flow. A fracture parallel with bedding accommodates 526 

greater compression and results in a lower transmissivity; 527 

g. Observations of flow within a clay-filled gouge showed a consistent behaviour to the 528 

mechanical response seen for COx, showing that the simplified experimental geometry 529 

effectively replicated the flow observed in real fractures. However, the addition of swelling 530 

in COx gives a more complex stress-dependent flow. 531 

Acknowledgements 532 

The study was undertaken by staff of the Minerals and Waste Program of the BGS using the 533 

experimental facilities of the Transport Properties Research Laboratory (TPRL). Funding for 534 

the study was provided by Agence Nationale pour la Gestion des Déchets Radioactifs (Andra), 535 

the Nuclear Decommissioning Authority – Radioactive Waste Management Directorate (NDA-536 

RWMD; now the Radioactive Waste Management Limited, RWM), the European Union 537 

(FORGE Project; Grant Agreement no230357) and the British Geological Survey. The authors 538 

would like to thank the skilled staff of the Research & Development Workshops at the BGS, 539 

in particular Humphrey Wallis, for their design and construction of the experimental apparatus. 540 

This paper is published with the permission of the Director, British Geological Survey (NERC). 541 

The data from this paper are available from BGS. 542 

References  543 



Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A., Jaeggi, D., Landrein, 544 
P., and Righini, C. (2014) Geometry and properties of the excavation-induced fractures at the 545 
Meuse/Haute-Marne URL drifts. Rock Mech Rock Eng 2014; 47(1): pp.21–41. 546 

Auvray, C., Morlot, C., Fourreau, E. and Talandier, J. (2015) X-Ray Tomography Applied to 547 
Self-Healing Experiments on Argillites. In 13th ISRM International Congress of Rock 548 

Mechanics. International Society for Rock Mechanics. 549 

Barla, M. (1999) Tunnels in swelling ground: Simulation of 3-D triaxial tests by triaxial 550 
laboratory testing. PhD Thesis, Technical University of Turin, Italy, 179p. 551 

Berkowitz, B. (2002) Characterizing flow and transport in fractured geological media: A 552 
review. Advances in water resources, 25(8), pp.861-884. 553 

Bonini, M. Barla, M. and Barla, G. (2001) Flac applications to the analysis of swelling 554 

behaviour in tunnels. 2nd Flac Symposium on Numerical Modeling in Geomechanics, Lione, 555 

29-31 October, 2001 556 

Bossart, P., Meier, P. M., Moeri, A., Trick, T., and Mayor, J.-C. (2002) Geological and 557 
hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont 558 
Terri Rock Laboratory. Engineering Geology, 66 (1-2), pp. 19-38. 559 

Bossart, P., Trick, T., Meier, P.M. and Mayor, J.C. (2004) Structural and hydrogeological 560 

characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, 561 

Switzerland). Applied clay science, 26(1), pp.429-448. 562 

Bühler, C., Heitz, D., Trick, T., and Frieg, B. (2003) In-Situ Self-Sealing of the EDZ as a 563 
Consequence of Loading. In: Davies, C and Bernier, F. (Eds.) Impact of the Excavation 564 

Disturbed or Damaged Zone (EDZ) on the Performance of Radioactive Waste Geological 565 

Repositories. Proceedings of a European Commission CLUSTER Conference and Workshop 566 
Luxembourg, 3 to 5 November 2003. EUR 21028 EN pp.281-286. 567 

Cuss, R.J. and Harrington, J.F. (2014) Experimental observations of the flow of water and gas 568 

along fractures in Opalinus Clay. Extended abstract We07. Fourth EAGE Shale Workshop, 569 
6-9 April 2014, Porto, Portugal. 570 

Cuss, R.J., Graham, C.C., Wiseall, A.C, and Harrington, J.F. (2016) Cyclic loading of an 571 
idealized clay-filled fault; comparing hydraulic flow in two clay gouges. Geofluids, 16, 572 
pp.552-564. DOI: 10.1111/gfl.12175. 573 

Cuss, R.J., Harrington, J.F., Milodowski, A.E., and Wiseall, A.C. (2014). Experimental study 574 
of gas flow along an induced fracture in Opalinus Clay. British Geological Survey 575 
Commissioned Report, CR/14/051. 79pp. 576 

Cuss, R.J., Milodowski, A., and Harrington, J.F. (2011) Fracture transmissivity as a function 577 
of normal and shear stress: first results in Opalinus clay. Physics and Chemistry of the Earth. 578 

36, pp. 1960-1971. 579 

Cuss, R.J., Milodowski, A.E., Harrington, J.F. and Noy, D.J. (2009) Fracture transmissivity 580 

test of an idealised fracture in Opalinus Clay. British Geological Survey Commissioned 581 
Report, CR/09/163. 74pp. 582 

Cuss, R.J., Sathar, S., and Harrington, J.F. (2012) Fracture transmissivity test in Opalinus Clay; 583 

test conducted on a realistic fracture. British Geological Survey Commissioned Report, 584 
CR/12/132. 52pp. 585 

Cuss, R.J., Sathar, S., and Harrington, J.F. (2013) Final Report of FORGE WP4.1.2: Validation 586 
of critical stress theory applied to repository concepts. British Geological Survey 587 

Commissioned Report, CR/13/001. 96pp. 588 

David, C., Wong, T.F., Zhu, W., and Zhang, J. (1994) Laboratory measurement of compaction-589 
induced permeability change in porous rocks; implications for the generation and 590 



maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, 143, pp. 425-591 
456. 592 

Davy, C.A., Skoczylas, F., Barnichon, J.D. and Lebon, P. (2007) Permeability of macro-593 
cracked argillite under confinement: gas and water testing. Physics and Chemistry of the 594 
Earth, Parts A/B/C, 32(8), pp.667-680. 595 

de La Vaissière, R., Armand, G., and Talandier, J. (2015) Gas and water flow in an excavation-596 
induced fracture network around an underground drift: A case study for a radioactive waste 597 
repository in clay rock. Journal of Hydrology, 521, pp.141-156. 598 
doi:10.1016/j.jhydrol.2014.11.067 599 

Dewhurst, D.N., Aplin, A.C., and Sarda, J.-P. (19991) Influence of clay fraction on pore-scale 600 

properties and hydraulic conductivity of experimentally compacted mudstones. Journal of 601 

Geophysical Research, 104, pp. 29,261-29,274. 602 

Dewhurst, D.N., Aplin, A.C., Sarda, J.-P., and Yang, Y. (1998) Compaction-driven evolution 603 
of porosity and permeability in natural mudstones: An experimental study. Journal of 604 
Geophysical Research, 103, pp. 651-661. 605 

Dewhurst, D.N., Yang, Y., and Aplin, A.C. (19992) Permeability and fluid flow in natural 606 
mudstones. In: Aplin, A.C., Fleet, A.J., and Macquaker, J.H.S., eds., Mud and Mudstones: 607 

Physical and Fluid Flow Properties, Geological Society of London, Special Publications, 158, 608 

pp. 23-43.  609 

Foct, F., Semete, P., Desgree, P., Imbert, C. and Talandier, J. (2012) Hydraulic sealing of 610 
fractured argillaceous rocks. Clays in Natural and Engineered Barriers for Radioactive Waste 611 

Confinement. 5th International Meeting. Montpellier, October 22nd – 25th, 2012. 612 

Gaucher, E.C., Lerouge, C., Blanc, P., and Tournassat, C. (2007) Caractérisation géochimique 613 
des forages PAC et nouvelles modélisations THERMOAR. BRGM. RP-54416-FR. 614 

Gutierrez, M., Øino, L.E. and Nygard, R. (2000) Stress-dependent permeability of a de-615 

mineralised fracture in shale. Marine and Petroleum Geology, 17, pp.895–907. 616 

Harrington, J.F., Cuss, R.C. and Talandier, J. (2017) Gas transport properties through intact 617 

and fractured Callovo-Oxfordian mudstones. In: Rutter, E.H., Mecklenburgh, J. & Taylor, 618 
K.G. (eds) Geomechanical and Petrophysical Properties of Mudrocks. Geological Society, 619 
London, Special Publications, 454. https://doi.org/10.1144/SP454.7 620 

Holt, RM (1990) Permeability reduction induced by a non-hydrostatic stress field. SPE 621 
Formation Evaluation, Dec 1990, pp. 444–448.  622 

Katsube, T.J. (2000) Shale permeability and pore-structure evolution characteristics. 623 

Geological Survey of Canada. Ottawa, ON, Canada. Pages: 9. 624 

Katsube, T.J., Boitnott, G.N., Lindsay, P.J., and Williamson, M. (1996) Pore structure 625 

evolution of compacting muds from the seafloor, offshore Nova Scotia. In: Anonymous, ed., 626 
Eastern Canada and national and general programs. Current Research - Geological Survey of 627 

Canada, pp. 17-26. 628 

Katsube, T.J., Issler, D.R., and Coyner, K. (1996) Petrophysical characteristics of shale from 629 
the Beaufort-Mackenzie Basin, northern Canada; permeability, formation factor, and porosity 630 

versus pressure, Interior plains and Arctic Canada. Current Research - Geological Survey of 631 
Canada. pp. 45-50. 632 

Katsube, T.J., Mudford, B.S., and Best, M.E. (1991) Petrophysical characteristics of shales 633 
from the Scotian shelf. Geophysics, 56, pp.1681-1689. 634 

Keaney, G.M.J., Meredith, P.G., and Murrell, S.A.F. (1998) Laboratory study of permeability 635 
evolution in a 'tight' sandstone under non-hydrostatic stress conditions. Rock Mechanics in 636 

https://doi.org/10.1144/SP454.7


Petroleum Engineering, 1 8-10 July 1998, Trondheim, Norway, Society of Petroleum 637 
Engineers, SPE/ISRM 47265, pp. 329-335. 638 

Kwon, O., Kronenberg, A.K., Gangi, A.F., and Johnson, B. (2001) Permeability of Wilcox 639 
Shale and its effective pressure law. Journal of Geophysical Research, B, Solid Earth and 640 
Planets, 106, pp. 19,339-19,353. 641 

Morrow, C., Shi, L.Q., and Byerlee, J.D. (1984) Permeability of fault gouge under confining 642 
pressure and shear stress. Journal of Geophysics Research, 89, pp. 3193-3200.  643 

Neuzil, C.E., Bredehoeft, J.D. and Wolff, R.G. (1984) Leakage and fracture permeability in the 644 
Cretaceous shales confining the Dakota aquifer in South Dakota. In: Proceedings of First C.V. 645 
Theis Conference on Geohydrology in Dublin, Ohio. Jorgensen, D.G. and Signor, D.C. (eds.). 646 

National Water Well Association. pp.113-120. 647 

Rutqvist, J., Börgesson, L., Chijimatsu, M., Hernelind, J., Jing, L., Kobayashi, A., and Nguyen, 648 

S. (2009) Modeling of damage, permeability changes and pressure responses during 649 
excavation of the TSX tunnel in granitic rock at URL, Canada. Environmental Geology, 57 650 
(6), pp. 1263-1274. 651 

Sathar, S., Reeves, H.J., Cuss, R.J., and Harrington, H.J. (2012) Critical stress theory applied 652 
to repository concepts; the importance of stress tensor and stress history in fracture flow. 653 

Mineralogical Magazine. December 2012, 76 (8), pp. 3165-3177. 654 

Schloemer, S., and Krooss, B.M. (1997) Experimental characterisation of the hydrocarbon 655 
sealing efficiency of cap rocks. Marine and Petroleum Geology, 14, pp. 565-580. 656 

Walsh, J.B., and Brace, W.F. (1984) The effect of pressure on porosity and the transport 657 

properties of rock. Journal of Geophysical Research. B, 89, pp. 9425-9431.  658 

Yven, B., Sammartino, S., Géraud, Y., Homand, F., and Villiéras, F. (2007) Mineralogy, 659 
texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region 660 
(eastern Paris Basin). Mémoires de la Société géologique de France, 178, pp.73–90. 661 

Zhang, C.-l., Czaikowski, O., Rothfuchs, T., and Wieczorek, K. (2013) Thermo-Hydro-662 
Mechanical Processes in the Nearfield around a HLW Repository in Argillaceous Formations; 663 

Volume I: Laboratory Investigations May 2007 to May 2013. GRS report, GRS-312, 342pp., 664 
ISBN 978-3-939355-91-5 665 

Zhang, C. and Rothfuchs, T. (2004) Experimental study of the hydro-mechanical behaviour of 666 

the Callovo-Oxfordian argillite. Applied Clay Science, 26(1), pp.325-336. 667 

Zhu, W., and Wong, T.f. (1994) Permeability evolution related to the brittle-ductile transition 668 
in Berea Sandstone. In: Anonymous, ed., AGU 1994 fall meeting., 75; 44 Suppl.: Eos, 669 

Transactions, American Geophysical Union. pp. 638. 670 

Zhu, W., and Wong, T.-f. (1997) The transition from brittle faulting to cataclastic flow; 671 

permeability evolution. Journal of Geophysical Research, B, Solid Earth and Planets, 102, 672 
pp. 3027-3041. 673 

Zoback, M.D., and Byerlee, J.D. (1975) The effect of microcrack dilatancy on the permeability 674 
of Westerly Granite. Journal of Geophysics Research, 80, pp. 752-755.  675 



a.  676 

b.  677 

Figure 1  Schematic of the (a) Direct Shear Rig and (b) Angled Shear Rig experimental 678 

apparatus.  679 



a. b.  680 

c. d.  681 

e.  f.  682 

Figure 2 Example results from a hydraulic test conducted on a kaolinite gouge plotted against 683 

time (ASR_Tau05_30wLU): a) Temperature; b) Vertical and horizontal stress; c) Hydraulic 684 

flow; d) Pore pressures within the slip plane; e) Fracture width; f) Normal displacement.  685 



a. b.  686 

c.   687 

Figure 3 Example results from a hydraulic test conducted on a kaolinite gouge plotted against 688 

vertical stress (ASR_Tau05_30wLU): a) Hydraulic flow; b) Fracture width; c) Normal 689 

displacement.  690 



 691 

Figure 4 Comparison of two tests conducted on kaolinite gouge showing hysteresis in 692 

hydraulic flow during loading/unloading experiments on a 30° slip-plane.  693 



a.  b.  694 

c.  d.   695 

e. f.   696 

g.  h.  697 

Figure 5 Results from hydraulic test DSR_COx_01 conducted on COx plotted against time: a-698 

b) Temperature; c-d) Normal stress; e-f) Hydraulic flow; g-h) Normal displacement. Figure a, 699 

c, e and f represent stage 1 of the test, whilst b, d, f, h represent stage 2.  700 



a. b.  701 

c. d.  702 

Figure 6 Results from hydraulic test DSR_COx_02 conducted on COx plotted against time: a) 703 

Temperature; b) Normal stress and pore pressure; c) Hydraulic flow; d) Normal displacement. 704 

705 



  706 

a.  707 

b.  708 

Figure 7 Results from two hydraulic tests conducted on fractured COx against vertical stress: 709 

a) Hydraulic flow; b) Normal displacement (Note: test DSR_COx_02 only).  710 



a.  711 

b.  712 

Figure 8 Results for relationship of fracture transmissivity with vertical stress in fractured 713 

COx: a) loading response; b) unloading. 714 

 715 



a.  716 

b.  717 

c.  718 

Figure 9 Comparing five best-fit relationships to the experimental data; a) test ASR_Tau05, 719 

b) DSR_COx_02. The power-law fit is seen to best describe the data, especially at the initial 720 



loading stage at low vertical stress, c) Cubic-law fit to test data from the in situ Compression 721 

of the Damage Zone (CDZ) test conducted at the Meuse/Haute-Marne URL (de La Vaissière 722 

et al., 2015). 723 

 724 

Figure 10 Flow history observed during unload testing of fractures in COx and Opalinus Clay.  725 



 DSR_COx_01 DSR_COx_02 

Borehole OHZ1607 OHZ1607 

Sample number EST44339 EST44342 

Borehole depth 8.37 – 8.67 m 9.08 – 9.38 m 

Date drilled 21/10/11 21/10/11 

Drilling direction Horizontal Horizontal 

Sample preparation 5/11/13 10/11/14 

Sample orientation with 
respect to bedding 

Perpendicular Parallel 

Sample dimensions (mm) 59.9 × 60.1 × 54.3 60.0 × 59.9 × 50.2 

Weight (g) 470.6 426.1 

Volume (cc) 195.5 181.1 

Density (g/cc) 2.43 2.37 

Porosity (%) 14.9 17.7 

Saturation 0.935 0.80 

Table 1 Properties of core and sample material for shear tests conducted on COx.  726 



Experiment Start date 
Sample 
Material 

Water 
saturation (%) 

Fault 
orientation 

ASR_Tau01_30wLU 09-Nov-10 Kaolinite 98 30° 

ASR_Tau05_30wLU 27-May-11 Kaolinite 98 30° 

DSR_COx_01 6-Nov-13 COx 93.5 0° 

DSR_COx_02 10-Nov-14 COx 92.0 0° 

Table 2 List of experiments described in the current study. ASR = Angled Shear Rig; DSR = 727 

Direct Shear Rig; w = hydraulic test; LU = Load-unload experiment; COx = Callovo-Oxfordian 728 

mudstone.  729 



Experiment Loading Unloading 

ASR_Tau01_30wLU 6.0 n
-1.2 1.0 n

 -0.5 

ASR_Tau05_30wLU 1.5 n
 -1.0 0.5 n

 -0.4 

DSR_COx_01 56 n
 -1.9 - 

DSR_COx_02 53 n
 -3.4 18.5 n

 -0.6 

DSR_COx_02 (alternative) 23 n
 -2.3 - 

Table 3 Power-law relationships derived for loading and unloading sections of the 730 

experimental data. Note: fit to flow (l h-1) data.731 



Experiment  Power-law Exponential Logarithmic Linear Cubic 

ASR_Tau01_30wLU 
L 0.99 0.97 0.94 0.76 0.99 

U 0.94 0.63 0.86 0.50 0.99 

ASR_Tau05_30wLU 
L 0.99 0.97 0.98 0.83 0.99 

U 0.73 0.41 0.71 0.39 0.98 

DSR_COx_01 L 0.94 0.92 0.86 0.80 0.95 

DSR_COx_02 

L 0.86 0.94 0.96 0.99  

L 0.97 0.99 0.98 0.95 0.91 

U 0.94 0.91 0.95 0.89 0.99 

Average  0.92 0.84 0.90 0.77 0.97 

Average load L 0.97 0.96 0.94 0.84 0.96 

Average unload U 0.87 0.65 0.84 0.59 0.99 

Table 4 Comparison of R2 values for best-fit relationships for loading (L) and unloading (U) 732 

sections of the experimental data. 733 


