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Abstract 

The isotope composition of seawater is an efficient method for detecting mixing between water 1 

masses. To measure long term or large scale hydrological processes at the ocean surface, it is 2 

necessary to be able to precisely compare datasets produced by different laboratories. The 3 

oxygen and hydrogen isotope (δ18O and δ2H) composition of marine waters can be measured 4 

using isotope ratio mass spectrometry (IRMS) and near-infrared laser absorption spectroscopy 5 

(LS) techniques. The IRMS and equilibration method is thought to provide results on the 6 

activity scale, while LS provides results on the concentration scale. However, the effect of 7 

dissolved seawater salts on the measurement is not sufficiently assessed and seems sometimes 8 

contradictory in the literature. For this purpose, we made artificial seawater and a pure NaCl 9 

solution from a freshwater of known isotope composition. The solutions were measured by four 10 

different laboratories allowing us to compare the two techniques. We show that minor 11 

corrections are necessary to correct seawater measurements for the salt effect and report them 12 

on the concentration scale. Interestingly, seawater measurements using LS (type Picarro) 13 

coupled to a liner are not on the concentration scale and require a correction of ~0.09‰ for 14 

δ18O, while the correction is relatively less significant for δ2H (~0.13‰). Moreover, we found 15 

for IRMS measurements that the salt effect can differ between different laboratories but seems 16 

reproducible for a given laboratory. A natural sea water sample was then analyzed by the 17 

different laboratories participating in the study. We found that applying the corrections 18 

increases the reproducibility of the isotope measurement significantly, with inter-laboratory 19 

standard deviation decreasing from 0.06 to 0.02‰ and 0.55 to 0.23‰ for δ18O and δ2H, 20 

respectively. Thus, comparing or merging sea water datasets produced in different laboratories 21 

requires that each laboratory carries out its own calibration with artificial seawater and presents 22 

measurements on the concentration scale.   23 



 

1. Introduction  24 

Since the pioneering study by Craig and Gordon (1965), the oxygen and hydrogen isotope 25 

compositions of water (δ18O and δ2H) are commonly measured to investigate the hydrological 26 

cycle.  Most of the isotope applications concern freshwater (rain, ice, snow, water vapor and 27 

river water) and the isotope variation is often considerably larger than the routine analytical 28 

precision (Dansgaard, 1964, Vimeux, 2003, Masson-Delmotte et al., 2008, Kurita, 2011, 29 

Benetti et al., 2014, 2015). Isotopes can also be used in oceanography to track formation and 30 

transport processes in the various water masses (Craig and Gordon, 1965). The isotope 31 

variations in marine waters are significantly smaller than in freshwaters (most of the ocean 32 

waters have an isotope composition between –0.5 and +1.5 ‰ for δ18O and –5 and +10‰ for 33 

δ2H). For example, the oxygen isotope composition at the Weddell Sea surface only varies by 34 

0.15‰ for δ18O and by 2‰ for δ2H, while the amplitude of the salinity range can reach a unit 35 

during summer (Weiss et al., 1979). These small variations measured off the Antarctica shelf 36 

are investigated to quantify how sea ice processes and continental glacial melt input drive deep 37 

water formation (Weiss et al., 1979, Meredith et al., 2008). In the present context of global 38 

warming, the isotope composition of marine water is being used to detect changes in the 39 

hydrological cycle, such as increasing sea ice or continental icecap melt (Benetti et al., 2016, 40 

2017).  Because a minor variation of less than 0.1‰ for δ18O or 1‰ for δ2H in a water mass 41 

could reveal a significant hydrological process change, it is necessary to obtain the best 42 

analytical accuracy for these measurements (better than 0.05‰ for δ18O and 0.5‰ for δ2H). 43 

Presently, δ18O and δ2H can be measured using two different kinds of spectrometer, 44 

based on different technologies: a) Isotope Ratio Mass Spectrometry (IRMS) and b) near-45 

infrared laser absorption spectrometry (LS). The two methods are described below: 46 

 47 



a.  Since the 1950s, the isotope composition of sea water has been traditionally measured 48 

using IRMS, using both dual inlet and continuous flow methods. The IRMS measurements can 49 

be carried out by using i. thermal conversion elemental analyser methods (TC/EA) (for δ18O 50 

and δ2H), ii. metal reduction (uranium, chromium, zinc) of water (for δ2H), or iii. gas-sample 51 

equilibration methods (for δ18O and δ2H). The first two methods (i. and ii.) are not discussed in 52 

this paper. We focus only on IRMS measurements after equilibration, which is a very common 53 

method to measure δ18O and δ2H. δ18O (δ2H) measurements are obtained by equilibration 54 

between a CO2 (H2) gas and the liquid (water) sample (cf. Epstein and Mayeda, 1953). These 55 

measurements are reported on the activity scale, which reflect the stable isotopic composition 56 

of the exchangeable water: only the free water molecules are able to exchange with the gas 57 

during the equilibration, while the water molecules forming the hydration sphere of dissolved 58 

ions do not participate in the exchange (Sofer and Gat, 1972, 1975, Skrzypek and Ford, 2014). 59 

Because there is an isotope fractionation between the free water molecules and those forming 60 

the hydration sphere, the stable isotope composition reported on the activity scale differs from 61 

that reported on the concentration scale (that measures all water molecules: free and hydration 62 

sphere). The ''activity correction'' increases with increasing salinity and depends on the ionic 63 

composition of the saline solution. Notice that the two other IRMS methods (i. and ii., not 64 

discussed in this paper) are thought to give measurements reported on the concentration scale. 65 

 66 

b.         In recent years, LS has been developed. The liquid sample is first injected into a 67 

vaporizer, and then the water vapour is transferred to the analyser, containing a cavity filled 68 

with circulating laser light via multiple mirrors. The technique uses the Beer-Lambert law to 69 

calculate the concentrations of each species. Theoretically, all the water molecules analyzed 70 

(free and hydration sphere) are injected to the vaporizer and the measurement is reported on the 71 

concentration scale (Skrzypek and Ford, 2014). Presently, two commercial instruments 72 



dominate the market: Picarro - Cavity Ring Down Sprectroscopy (CRDS) and Los Gatos 73 

Research - Integrated Cavity Output Spectroscopy (ICOS) (see detailed methods in Crosson et 74 

al., (2002) and Baer et al., (2002)).  75 

 76 

Most isotope measurements reported in the literature were carried out using the traditional 77 

IRMS method. However, the new LS methods have advantages: the instruments are much 78 

smaller, they are generally less expensive, they measure δ18O and δ2H (also sometimes δ17O) 79 

simultaneously on the same sample, and they allow continuous, in-situ measurements. They are 80 

now distributed in many scientific laboratories and their use will probably increase in time. If 81 

experimental conditions are optimal, both IRMS and LS methods can report precision 82 

(reproducibility) better than ~0.05‰ for δ18O and ~1‰ for δ2H (1 SD), for freshwater and sea 83 

water samples.  The accuracy is often difficult to estimate while it is a crucial point to consider 84 

for data comparisons between different laboratories. Laboratories place their data on the 85 

VSMOW scale via normalization with internal standards, which have been previously 86 

calibrated using international reference waters supplied by the International Atomic Energy 87 

Agency (IAEA) in Vienna (Gonfiantini, 1978). Generally, clean/pure environmental 88 

freshwaters present no issue for comparing measurements between different methods. 89 

However, the presence of salt in the liquid samples has to be considered when using the IRMS 90 

(with equilibration) and CRDS techniques, primarily in part because IRMS should provide data 91 

on the activity scale, while CRDS on the concentration scale.  92 

How to inter-compare δ18O and δ2H sea water measurements based on different 93 

experimental protocols is the main purpose of this paper.  We used artificial sea water (salinities 94 

of 17.5, 35 and 70) prepared using a freshwater reference of known isotope composition 95 

(salinity is expressed in the practical salinity scale of 1978, pss-78, with no unit). The solutions 96 

were measured in four different laboratories to be able to evaluate the effect of the sea salt on 97 



the measurement using IRMS coupled with equilibration method and LS. In the following, we 98 

refer to the salt effect as the difference between the freshwater average reference values and the 99 

saline solution. A natural sea water sample of salinity of 34.9 was also measured by the same 100 

laboratories to assess the reliability of the estimated salt effect. First, we describe the present 101 

state of knowledge in the field to introduce the contribution of this study.  102 

 103 

2. Background  104 

 105 

2.1 Salt effect with IRMS 106 

Several studies have investigated the conversion from the activity to the concentration scale for 107 

brine samples (sample containing more dissolved inorganic salt than typical seawater) (Feder 108 

and Taube, 1952, Taube, 1954, Sofer and Gat, 1972, 1975, O' Neil and Truesdell, 1991, Kim et 109 

al., 2012). In these studies, four artificial single-salt solutions (NaCl, KCl, MgCl2 and CaCl2) 110 

were made by dissolving, at increasing molality, dry anhydrous salts in a freshwater of known 111 

isotope composition. All the solutions were then measured by IRMS coupled with equilibration 112 

between the liquid sample and the reference gas, to evaluate the separate effect of single salts 113 

on the measurement. The individual effect of each salt on the IRMS measurement is given in 114 

Figure 1. Sofer and Gat (1972, 1975) suggest two relationships calculated from a linear 115 

combination of single salt effects as a function of the molality of the resulting solution 116 

(Equation 1 and 2), assuming that the effects of single salts are cumulative. From Equation 1 117 

and 2, the correction for a sea water at salinity of 35 (mCl- =0.56576, mNa+ =0.48616, mMg2+ 118 

=0.05475, mCa2+= 0.01065, mK+= 0.01058) is +0.06 ‰ for δ18O and  +0.55‰ for δ2H. Using 119 

the data from Kim et al. (2012) and O' Neil and Truesdell (1991) and excluding the results from 120 

Sofer and Gat (1972), we applied the same method to formulate Equation 3. The subsequent 121 

correction for typical sea water S=35 is +0.06‰ for δ18O, which is in agreement with Sofer and 122 



Gat (1972). The two linear combinations consider there is no effect from NaCl on the δ18O 123 

measurement. 124 

δଶH ൌ 	െ0.4݉ே௔஼௟ െ 5.1݉ெ௚஼௟ଶ െ 6.1݉஼௔஼௟ଶ െ 2.4݉௄஼௟   (1) 125 

δଵ଼O ൌ 	1.11݉ெ௚஼௟ଶ ൅ 0.476.1݉஼௔஼௟ଶ െ 0.16݉௄஼௟  (2) 126 

δଵ଼O ൌ 	1.05݉ெ௚஼௟ଶ ൅ 0.416.1݉஼௔஼௟ଶ െ 0.27݉௄஼௟   (3) 127 

 128 

While these studies are very careful to ensure the removal of the salt effect observed for 129 

brine measurements, they are not appropriate to estimate with accuracy (within the normal 130 

isotope measurement error) the salt effect for typical sea water. These studies reveal that the 131 

salt effect for seawater measurement should be small (~0.06‰ for δ18O and ~0.55‰ for δ2H) 132 

and close to the optimal precision of mass spectrometers. In particular, the studies with most 133 

data (Sofer and Gat, 1972; 1975) report an experimental precision of ±0.10 to 0.14‰ for δ18O 134 

and ±3‰ for δ2H which is not good enough to evaluate the small difference the salt effect makes 135 

at salinities around 35. Moreover, most of the time the first artificial saline sample is 136 

significantly different from the molality of seawater (the molality for each single salt in sea 137 

water at S=35 is given in Figure 1 by the black dashed line), and the estimation of the salt effect 138 

for typical seawater results from a linear extrapolation at zero salinity. Notice that while four 139 

studies are available for δ18O and allow comparisons, only Sofer and Gat (1975) measured the 140 

four single salt effects, necessary to convert δ2H sea water measurements into the concentration 141 

scale. 142 

Three other studies have been undertaken with the aim of providing artificial saline 143 

solutions with lower salinities in order to evaluate the salt effect especially for sea water 144 

(Lecuyer et al., 2009, Martineau et al., 2012, Bourg et al., 2001). Lecuyer et al. (2009) and 145 

Martineau et al. (2012) found a salt effect at salinities around 35 of –0.15‰ for δ18O and –2‰ 146 

for δ2H. They used salt from the sea salt marsh of Guerande (France), as representative of sea 147 



water. However, the chemical composition given in their Table 1 indicates that this commercial 148 

table salt is mainly composed of NaCl and is therefore not similar to typical sea water 149 

composition. In addition to the table salt from Guerande, Martineau et al. (2012) also measured 150 

the single NaCl effect by dissolving a pure reagent-grade NaCl salt in distilled water. The 151 

estimated salt effect was found to be approximately the same for both solutions (not shown 152 

here). In Figure 1, we show the δ18O results based on the sea salt marsh of Guerande (no pure 153 

NaCl solution available), while for δ2H we show the results from the pure NaCl solution. In the 154 

following, we consider the results from Lecuyer et al. (2009), as being the approximate effect 155 

on the single salt NaCl. Figure 1 shows that while the different experiments are rather consistent 156 

for the single salts KCl, MgCl2 and CaCl2, there is a strong disagreement for the NaCl effect on 157 

δ18O and δ2H between the different studies. ONeil (1991) and Kim et al. (2012) found no effect 158 

of NaCl on δ18O (consistent with Sofer and Gat, 1972, but this result is not shown in their study), 159 

while Lecuyer et al. (2009) found a significant offset between the measurement of the 160 

freshwater and the NaCl solution. For the NaCl effect on δ2H, the two available studies of Sofer 161 

and Gat (1975) and Martineau et al. (2012) also provide rather differing results (albeit with a 162 

large scatter).  163 

Bourg et al. (2001) evaluated the sea-salt effect using a solution composed of a mixture of 164 

the different marine salts with a chemical composition proportional to seawater. They prepared 165 

solutions with 0.5, 1 and 2 times the concentration of seawater (0.5SW, SW and 2SW). 166 

Measurements were carried out using an equilibration device coupled to a Finnigan MAT252 167 

mass spectrometer, and they reported reproducibility of 0.03‰ for δ18O and 0.4‰ for δ2H. For 168 

seawater, they found no effect on δ18O over this range of concentration (up to 2SW) and a salt 169 

effect of –1.7 ‰ for δ2H at SW. These proposed corrections for δ18O and δ2H are different from 170 

those described by Sofer and Gat (1972, 1975).  171 

 172 



2.2 Salt effect with LS 173 

The LS measurements are considered to be on the concentration scale and only a few 174 

studies have investigated the salt effect on the oxygen and hydrogen isotope composition of sea 175 

water (Skrzypek and Ford, 2014, Walker et al., 2016). However, measurement of saline 176 

solutions using LS could be affected by: (1) an incomplete extraction/evaporation of water 177 

within the vaporizer, and (2) a memory effect due to the water absorption on accumulated salt 178 

(Skrzypek and Ford, 2014). Skrzypek and Ford (2014) show that (2) does not affect 179 

significantly the measurements when the total load of salt in the vaporizer is below ~38.5 mg 180 

(equivalent to ~100 sea water samples). Thus, this  present study focuses on (1), providing that 181 

the vaporizer is clean enough to run the measurements. Skrzypek and Ford (2014) measured 182 

artificial sea water from a freshwater reference of known isotope composition, with 183 

concentration of SW and 2SW. They found a δ18O difference between the reference freshwater 184 

and the saline solution of 0.09‰ for SW and 0.15‰ for 2SW and for δ2H a difference of 1‰ 185 

for SW and 0.20‰ for 2SW. They conclude that for their set up (a Picarro Ltd. Analyzer L1115-186 

I with vaporizer V1102-I operating at 140°C) this effect is within the uncertainties of the 187 

measurement (the precision reported by the manufacturer for this version is 0.10‰ for δ18O and 188 

1‰ for δ2H). 189 

 190 

2.3 The added value of this study 191 

The previous sections suggest that the salinity effect for both IRMS (with equilibration) and 192 

LS measurements should be small for typical seawater at salinity 35, with a magnitude close to 193 

the actual precision of the spectrometers (except the strongest effect of –1.7 ‰ on δ2H observed 194 

by Bourg et al., 2001). This makes this question sensitive, but not meaningless in ocean 195 

sciences, where isotope variations can be very small. Data from the literature suggests that the 196 

salt effect is sometimes not sufficiently assessed for typical seawater (e.g. precision not optimal, 197 



range of salinity not relevant) and reveals contradictories in current literature (for sea salt as 198 

well as for NaCl) (see previous sections). For these reasons, we decided to evaluate the salt 199 

effect for δ18O and δ2H in four different laboratories, using either IRMS with equilibration or 200 

LS techniques (Table 1). Note that only one laboratory provided δ2H measurements using IRMS 201 

with equilibration. We evaluate the salt effect for an appropriate range of salinities: we made 202 

up artificial seawater at salinities of half normal salinity (0.5SW), normal salinity (SW) and 203 

twice normal salinities (2SW). These solutions combine together the different salts present in 204 

seawater (see section 3.1) and do not use the assumption of a cumulative effect of each single 205 

salt (as assumed in the other studies, except in Bourg et al. (2001) and Skrzypek and Ford 206 

(2014)). We also used a pure NaCl solution to investigate this single salt effect, due to 207 

contradictons in the current literature (see Figure 1). The different solutions were then measured 208 

using three different IRMS (and equilibration) and one LS instruments. For LS, the 209 

measurement in the cavity requires the removal of the salt from the seawater because the sample 210 

is analyzed in the vapor phase via a vaporizer. We tested three different protocols of LS 211 

measurements: a direct injection of the seawater sample into the vaporizer, an injection through 212 

a liner inserted in the vaporizer inlet, and a distillation of the saline sample prior to the 213 

measurement, which is then injected to the vaporizer (see the supplementary material for a 214 

detailed description of the distillation protocol). We also distributed a natural sea water sample 215 

(salinity 34.9) to the different laboratories to assess the reliability of the estimated salt effect 216 

correction from the artificial seawater (SW).  217 

 218 

3. Methods 219 

 220 

The four laboratories who participated in this inter-comparison exercise were: Institute of 221 

Earth Sciences (IES) in Reykjavik (Iceland), British Geological Survey (BGS) in Keyworh 222 



(UK), the Earth Sciences Research Group at the Vrije Universiteit Brussel (VUB) in Brussels 223 

(Belgium) and the Laboratoire d’Oceanographie et du Climat, Experimentation et Approches 224 

Numeriques (LOCEAN) in Paris (France). The BGS and IES laboratories participated in the 225 

WICO 2016 International Water Isotope Inter-Comparison Test. The small difference with 226 

freshwater δ18O measurements from IAEA laboratories (less than 0.05‰) reveal the high 227 

precision routinely obtained at the BGS and IES laboratories. The methods of measurements 228 

are given in Table 1 and are described for each laboratory in sections 3.2 to 3.5. The artificial 229 

saline solutions and the natural seawater sample used in this study are described in section 3.1. 230 

The protocol elaborated to evaluate the salt effect is described in section 3.6. 231 

 232 

Laboratory Method Measurements 

IES IRMS continuous flow–equilibration with 

CO2 

δ18O 

IRMS continuous flow–equilibration with H2 δ2H 

BGS IRMS dual inlet–equilibration with CO2 δ18O 

VUB IRMS continuous flow–equilibration with 

CO2 

δ18O 

LOCEAN PICARRO CRDS L2130-I + Distillation δ18O,δ2H 

PICARRO CRDS L2130-I + Liner δ18O,δ2H 

PICARRO CRDS L2130-I + Direct injection δ18O,δ2H 

Table 1: Methods and measurements for the four participating laboratories. Each laboratory 233 

received the initial freshwater reference, the three artificial seawater (0.5SW, SW, 2SW), the 234 



three pure NaCl solutions (17.5, 35 and 70 g/l) and the natural seawater sample of 235 

salinity=34.9. 236 

 237 

3.1 The saline solutions 238 

Artificial NaCl and seawater solutions were made from the LOCEAN freshwater internal 239 

reference KONA II (with values on the VSMOW scale pre-measured by LOCEAN of 240 

δ18O=+0.51‰ and δ2H =+1.85‰). This reference is stored in a steel bottle with a slight 241 

overpressure of dry nitrogen to avoid evaporation and exchange with ambient air humidity. The 242 

saline solutions were prepared by adding weighted amounts of solid salts (reagent grade purity) 243 

to measured volumes of KONA II water (Table 2) to attain target concentrations. Solid salts 244 

were weighed on a scale (precision of ± 0.1 mg) and dissolved in KONA II using a magnetic 245 

stirrer. In the case of the artificial seawater, salts were dissolved successively. The salinity of 246 

the artificial seawater solutions was measured with a salinometer (precision of ± 0.2‰) yielding 247 

salinities equal to 17.35, 33.80 and 65.17 for the 0.5SW, SW and 2SW samples, respectively. 248 

The difference between the target and obtained salinity is due mostly to the error in the final 249 

volume of the solution. Therefore, the ions within the artificial SW solutions are in the same 250 

proportions as in natural seawater. 250 ml of each SW solution and 100 ml of each pure NaCl 251 

solution were made and the solutions were subsampled into individual 25 ml tinted glass bottles 252 

(GRAVIS).  253 

The natural sample of sea water (salinity 34.9) was collected from the Icelandic shelf, off 254 

Reykjavik around 64.2 °N/22.5 °W (November 2015). About three liters of this water were 255 

collected and subsampled into 30 ml glass bottles (GRAVIS).  256 

 257 

Salinity NaCl MgCl2 MgSO4 CaCl2 KCl NaHCO3

Solution 

density 
Volume 



g/kgSW g g G g g g kg/litreSW liters 

17.5 13.516 1.247 1.685 0.582 0.37 0.103 1.01 0.248

35 27.03 2.494 3.369 1.163 0.739 0.206 1.023 0.244

70 54.06 4.988 6.738 2.326 1.478 0.412 1.05 0.238

NaCl 

(g/kgsol) 

Density 

(kg/litre) 

Volume 

sol. (litres) 
NaCl (g)

  

18 1.013 0.1 1.772

35 1.024 0.1 3.583

70 1.046 0.1 7.322

   

Table 2: Calculations of the weighted amounts of solid salts and volumes of KONA II. 258 

 259 

3.2 IES (δ18O and δ2H) laboratory 260 

A Delta V Advantage IRMS coupled with a Gasbench II (continuous flow mode) was used 261 

for the δ18O and δ2H measurements. 200µl of sample water were loaded into 12 ml exetainers 262 

(Labco Limited, UK), the vials were sealed with septa and all air is removed from the sample 263 

vials by an automated, autosampler-assisted flushing procedure which uses a mixture of either 264 

H2 (for δ2H) or CO2 (for δ18O) in He. The H2 or CO2 in the flushing He stream was used as the 265 

equilibration gas. The equilibration time was ~21°C at 24 hours for δ18O (+ 24 hours for the 266 

last sample) and 1 hour for δ2H using a Platinum catalyzer (+7 hours for the last sample). After 267 

equilibration, the gas sampling system includes a two port needle which adds a gentle flow of 268 

He into the sample vial, thus diluting and displacing sample gas. Water is removed from the 269 

sample gas through diffusion traps.  270 

 271 

3.3 BGS (δ18O) laboratory 272 



An Isoprime100 IRMS coupled with the AquaPrep system (dual inlet mode) was used for 273 

the anlaysis of δ18O. 200µl of sample water were loaded into Labco Limited 3.7ml exetainers, 274 

the exetainers were then evacuated (by expansion before pumping) to remove atmosphere then 275 

flushed with CO2. The equilibration time was at least 12 hours (+25 hours for the last sample) 276 

at ~40°C. Each individual gas sample was then admitted to the cryogenic water trap to remove 277 

any water vapour. The dry sample gas was then expanded into the dual inlet where it was 278 

measured on the transducer before being expanded in the dual inlet bellows. Ionvantage 279 

software then balanced the reference bellows relative to this volume and gases were admitted 280 

to the IRMS. The sample and reference CO2 gases enter alternatively into the mass spectrometer 281 

through the dual changeover valve for isotope ratio measurement.  282 

 283 

3.4 VUB (δ18O) laboratory 284 

A Nu Instrument perspective IRMS coupled with a Gasbensh (Nu Instrument, Wrexham, 285 

UK) (continuous flow mode) was used for δ18O. 12 ml exetainers (Labco Limited, UK) were 286 

first flushed with He gas  and capped with a rubber septum and aluminum seal. 500 µl of sample 287 

was injected followed by an injection of 200 to 300 µl of CO2. The equilibration time was at 288 

least 24 hours (+11h30 for the last sample) at ~21°C, while the sample is being shaken.  289 

 290 

3.5 LOCEAN (δ18O and δ2H) laboratory 291 

A PICARRO CRDS L2130-I Isotopic H2O was used for δ18O and δ2H analysis. The 292 

analyses were performed by running at least 6 injections per sample. The first 3 injections were 293 

ignored to eliminate potential memory effects between samples and the remaining  injections 294 

were averaged. We used a 10 µl syringe from SGE (10F-CTC-5/0.47C). Here, we used three 295 

different methods prior to CRDS measurements: 296 

 297 



a. Sea water samples were distilled (see protocol in Appendix A). We elaborated this 298 

method because over the long term, measuring freshwater samples decreases maintenance 299 

problems, such as salt accumulation in the vaporizer of the PICARRO system and its potential 300 

effect on the measurements (Skrzypek and Ford, 2014). Moreover, freshwater measurements 301 

considerably increase the lifetime of the syringe, compared to seawater measurements.  302 

b. The analyses uses a wire mesh inserted in the vaporizer inlet to trap about 80% of the 303 

sea water salt (the liner was provided by Dave Hodell, University of Cambridge). The amount 304 

of trapped salt was estimated by weighting the liner before and after the use. The life time of 305 

the syringe is shorter than (a).   306 

c.   We directly inject sea water samples in the vaporiser. This method makes it necessary 307 

to clean the vaporiser regularly to remove salt deposit within the vaporiser (after ~100 308 

seawater samples, Skrzypek and Ford (2014)).  The life time of the syringe is shorter than (a).  309 

 310 

3.6 Protocol of salt effect evaluation 311 

 312 

To evaluate the sea-salt effect, each laboratory measured the initial freshwater reference and 313 

the three artificial seawaters (0.5SW, SW, 2SW). An accurate analytical precision was achieved 314 

by repeating the measurements several times (more than one run) (except for the sole CRDS 315 

measurement by direct injection at LOCEAN). The references used by the different laboratories 316 

to convert the measurements to the VSMOW scale are given in Table 3. No significant 317 

instrumental drift was evident during the IES, BGS and LOCEAN measurements and therefore 318 

no drift correction was applied. For the VUB measurements, the instrumental drift of each run 319 

was corrected using the internal standards, regularly inserted within the run. Then, the salt effect 320 

was evaluated by subtracting the VSMOW value of the saline solution to the value of the initial 321 

freshwater reference. In this manner, the salt effect corresponds to the correction needed to 322 



convert the measurement into the concentration scale. This protocol has been similarly applied 323 

for evaluating the NaCl effect.  324 

Each laboratory also measured the natural seawater sample of salinity=34.9 (see section 325 

3.1) to assess the corrections proposed from the artificial solutions. The same references (see 326 

Table 3) have been used to convert the measurements to the VSMOW scale.  327 

 328 

Laboratories Reference δ 18O (‰) δ2H (‰) 

IES KONA 

MIX 

EDP 

–0.05 

–3.26 

–6.61 

+0.46 

–21.32 

–44.3 

BGS CA-HI 

CA-LO 

–7.30 

–39.30 

 

 

VUB DO1 

NDO1 

NDO2 

+6.91 

–0.79 

–7.38 

 

LOCEAN Same  as IES 

 329 

Table 3: Isotope composition of the references used by the different laboratories to 330 

convert the measurements onto the VSMOW scale. 331 

 332 

4. Results 333 

 334 

4.1 Effect of sea salts on IRMS measurements (gas-sample equilibration method)  335 

We tested the sea-salt effect on the IRMS measurements by analyzing the artificial 336 

seawater solutions at salinity 17.5, 35 and 70 at IES, BGS and VUB. In each run, the freshwater 337 



reference KONA II was also measured several times and the salt effect defined as the difference 338 

between the freshwater reference average values and the saline solution. The results are given 339 

in Table 4 and Figure 2. We also present in Figure 2 the results from the study of Bourg et al. 340 

(2001), as well as the extrapolated linear correction from Sofer and Gat (1972, 1975). All three 341 

laboratories show a salt effect for δ18O with the amplitude of the effect increasing with salinity 342 

(except for BGS measurements for salinity 70) which is in contrast to Bourg et al. (2001) who 343 

detected no salt effect up to salinity 70. Interestingly, the salt effect for δ18O measured by BGS 344 

is in the opposite direction to the other laboratories for salinities of 35. For δ2H, the trend is 345 

quite similar between IES and Bourg et al. (2001) but differs from the Sofer and Gat (1975) 346 

results.  347 

Due to the current disagreement on the single salt NaCl effect (see Figure 1), we also 348 

measured pure NaCl solution at concentrations 17.5, 35 and 70. As for the sea-salt effect, results 349 

are presented in Table 4 and Figure 3.  We also present the earlier results available over this 350 

range of salinity in Figure 3. For δ18O, the same trends were observed (decreasing at increasing 351 

NaCl concentration) but with different slopes for BGS, IES, VUB and Lecuyer et al. (2009). 352 

However, no effect was observed by Kim et al. (2012). For δ2H, similar trends were observed 353 

(decreasing at increasing NaCl concentration) between IES and Martineau et al. (2012), even if 354 

the dispersion can be strong for some δ2H measurements. 355 

 356 

 IES BGS VUB 

δ18O (‰) δ2H (‰) δ18O (‰) δ18O (‰) 

Samples n Mean 1SD n Mean 1SD n Mean 1SD n Mean 1SD 

S
W

 17.5 12 +0.04 0.03 9 –0.45 0.99 3 +0.01 0.02 8 -0.03 0.06 



35 12 +0.07 0.04 9 –1.17 1.45 9 –0.07 0.04 8 +0.02 0.03 

70 12 +0.11 0.05 9 –2.73 1.39 3 –0.05 0.03 8 +0.09 0.07 

N
aC

l 

17.5 5 –0.03 0.05 3 +0.20 1.82 3 –0.05 0.02 8 -0.02 0.05 

35 8 –0.10 0.04 4 –0.05 0.73 9 –0.14 0.04 8 -0.03 0.06 

70 5 –0.16 0.06 3 –1.71 0.73 3 –0.19 0.01 8 –0.07 0.06 

 357 

Table 4: Number of vials (n), mean salt effect and one standard deviation (1SD) for each 358 

saline solution and each IRMS method. The salt effect is presented in ‰ as the difference 359 

between the freshwater reference and the saline solution.  360 

4.2 Effect of sea salts of the CRDS measurements  361 

The sea salt effect was tested on the three different CRDS measurement methods 362 

(distillation, liner or direct injection). The NaCl effect has only been measured for 363 

measurements using the distillation method. 364 

  
Distillation 

δ18O (‰) δ2H (‰) 

Samples n Mean 1SD  N Mean 1SD 

S
W

 

17.5 7 +0.06 0.05 7 +0.30 0.26 

35 8 +0.14 0.04 8 +0.57 0.12 

70 9 +0.23 0.04 9 +0.87 0.15 

N
aC

l 

17.5 2 +0.03 0.01 2 +0.08 0.04 

35 2 +0.03 0.02 2 +0.22 0.11 

70 2 +0.02 0.03 2 +0.22 0.09 



    Liner 

    δ18O (‰) δ2H (‰) 

    n Mean 1SD  N Mean 1SD 

S
W

 

17.5 4 +0.02 0.03 4 –0.10 0.04 

35 4 +0.09 0.03 4 +0.12 0.11 

70 3 +0.12 0.02 4 +0.39 0.23 

    Direct injection 

    δ18O (‰) δ2H (‰) 

    n Mean 1SD  N Mean 1SD 

S
W

 

17.5 1 +0.01  - 1 –0.07  - 

35 1 +0.07  - 1 +0.15 - 

 365 

Table 5: Number of vials  (n), average salt effect and standard deviation for each salt 366 

solution and each CRDS method. Notice that there is only one measurement available for the 367 

direct injection method in order to avoid salt accumulation in the vaporiser. 368 

 369 

Figure 4A shows that there is no effect of the distillation on the pure NaCl solutions for 370 

δ18O and δ2H, even at high concentration, while there is a near-proportional effect for the sea 371 

salt solution with increasing salinity for both isotopes. The sea salt effect at salinity 35 for 372 

CRDS measurements after our distillation method is +0.14‰ for δ18O and +0.57‰ for δ2H. 373 

Moreover, the experiments show a sea salt effect, increasing with salinity, using the liner or by 374 

direct injection of sea water into the vaporizer (Figure 4B). The sea salt effect at salinity 35 for 375 

CRDS measurements by direction injection or using a liner is +0.07 to +0.09‰ for δ18O and 376 

+0.12 to +0.15‰ for δ2H.  377 

 378 



5.Discussion 379 

5.1. Sea salts effect and corrections 380 

For IRMS measurement using the gas-sample equilibration method, our results suggest 381 

that the salt effect (1)  is not insignificant even at salinity 35 and (2) could vary between 382 

different laboratories (Figure 2). For CRDS measurements coupled with distillation, it is likely 383 

that the sea salts left behind in the distillation process are partly hydrated with water isotopically 384 

more positive than the distilled water. This statement is consistent with the fact that we do not 385 

observe an effect with NaCl, an anhydrous salt in which no water molecule is left behind in the 386 

solid phase during distillation (see Figure 4). When using a liner or direct injection with the 387 

CRDS, it is likely that this effect is due to the incomplete extraction/evaporation of water from 388 

the seawater samples into the vaporizer (heavier molecules stay preferentially to the hydrated 389 

salt compared to the vapor). The same effect found for the two methods (liner or direct injection) 390 

is consistent because there is the same amount of salt formation during vaporization of the 391 

seawater samples. The only difference is about 80% of the salt can be easily removed by 392 

changing the liner (estimated by weight difference, data not shown). In Figure 4B, we also 393 

present data from Skrzypek and Ford (2014) who made two artificial sea waters at salinities of 394 

35 and 70 and measured them by direct injection into a Picarro vaporizer/analyzer. The standard 395 

deviation is 0.10‰ for δ18O and 1‰ for δ2H, higher than in our study because they used an 396 

earlier version of the Picarro CRDS analyzer (the precision has since been improved by a factor 397 

2 according to the manufacturer). They found a similar corrections for δ18O at salinities of 35 398 

and 70 and for δ2H at salinity 70, while their proposed correction at salinity 35 for δ2H is higher 399 

than the one we propose. Nevertheless, the difference remains included in their estimated 400 

uncertainties. 401 

 402 



The correction needed to remove the sea salt effect at salinity 35 from the isotope 403 

measurements for each of the methods discussed here are summarized in Table 6 (results from 404 

Table 3 and 4 for salinity 35). The correction is the difference between the initial freshwater 405 

and the saline solution at salinity 35.  We decided not to interpolate the correction using 406 

measurements at salinity 17.5, 35 and 70, as we cannot evaluate  if the correction is linear. 407 

Nevertheless, the measurements at 17.5 and 70 can be used to have an idea of the trend of the 408 

correction. 409 

 410 

 Laboratory δ18O (‰) δ2H (‰) 

IRMS IES +0.07 –1.17 

BGS –0.07 NA 

VUB +0.02 NA 

PICARRO Distillation +0.14 +0.57 

Liner +0.09 +0.12 

Direct injection +0.07 +0.15 

Table 6: Estimated correction in ‰ for a seawater sample at salinity 35. NA = not available. 411 

5.2 Assessment of corrections with a natural seawater sample  412 

To check the consistency of the evaluated corrections, a natural sample of sea water of 413 

salinity 34.9 was measured several times by each laboratory according to the different methods. 414 

The results are presented in Figure 5.  All the measurements are on the VSMOW scale, black 415 

dots corresponding to measurements without the correction and red dots to measurements using 416 

the correction factors derived in this study (Table 6). For δ18O and δ2H, the dispersion is 417 

significantly smaller after correction. For δ18O, the standard deviation of the 6 measurements is 418 



0.06‰ without correction and 0.02‰ with correction. For δ2H, the standard deviation of the 4 419 

measurements is 0.55‰ without correction and 0.23‰ with correction. Thus, this test supports 420 

the corrections estimated from the artificial seawater and the efficiency of the corrections to 421 

improve inter-comparison amongst laboratories. 422 

 423 

5.3 Recommendations 424 

 425 

To facilitate the comparison of δ18O andδ2H seawater measurements carried out using 426 

different analytical methods, we suggest that the isotope values are presented on the 427 

concentration scale. We recommend that all laboratories measuring the isotope composition of 428 

seawater, using LS or IRMS using equilibration method, should evaluate the salt effect on the 429 

measurement by preparing an artificial seawater at a salinity in the same range as in their 430 

samples (see section 3.1). Then, the artificial solution should be measured in the same runs as 431 

the initial freshwater reference. The salt correction can be estimated as the difference between 432 

the freshwater reference and the saline solution measurement values. The measurements should 433 

be repeated regularly thorughout the lifetime of the instrumentation to assess the long-term 434 

validity of the correction. The detailed procedure used in this study is described in the methods 435 

section. We also recommend full descriptions be given of  measurement methods, including 436 

any correction that were applied. There is a shared interest in the marine geochemical 437 

community to report δ18O-δ2H seawater values in a consistent and comparable manner. An 438 

effort in this direction would lead to merged marine δ18O-δ2H datasets of greater value. 439 

 440 

6. Conclusions  441 

 442 



 Thanks to the improvements in instrumentation, the analytical precision of seawater δ18O-δ2H 443 

measurements has increased since the 1950s. Here we show that minor corrections are 444 

necessary to remove the salt effect from measurements carried out with IRMS (and 445 

equilibration) and from measurements carried out with LS.  446 

 Our data reveal that the correction associated to measurements carried out with IRMS (and 447 

equilibration) can differ between laboratories. These differences possibly result from slightly 448 

different measurement protocols (e.g. equilibration and extraction protocol, sample 449 

volume/vial).  450 

 We found a significant salt effect for CRDS measurements carried out by injecting the 451 

seawater directly or via a liner into the vaporiser, indicating that the measurements are not 452 

initially in the concentration scale, as some water likely remains traped on hydrated salts that 453 

precipitate during evaporation.  454 

 Considering the salt effect is a necessary step for accurately comparing datasets analysed in 455 

different laboratories. We recommend being aware of these possible systematic differences 456 

when comparing isotope datasets produced in different laboratories.  457 

 We suggest that the concentration scale is the most relevant to precisely compare δ18O-δ2H 458 

seawater isotope data. We recommend that all laboratories measuring the isotope composition 459 

of seawater, using LS or IRMS (and equilibration), should evaluate the salt effect specific to 460 

their own analytical equipment by carrying out a series of tests on artificial seawater of known 461 

isotope composition. These tests should be repeated during the lifetime of the instrument to 462 

evaluate if the salt effect remains constant over a longer period of time for a given analytical 463 

setup. Our experiments carried out over a period of time of less than 6 months and do not 464 

allow to evaluate if the salt effect remains constant over a longer period of time for a given 465 

analytical setup.  466 



 Finally, when providing isotope data to international databases, we recommend that the 467 

measurement method be fully described, including any corrections applied. Assembling 468 

datasets based on measurements made by different groups using varying analytical approaches 469 

is a complex undertaking. It is very important to ensure that datasets and methods are fully 470 

documented, because investigating long term change in the oceanic freshwater budget or large 471 

scale oceanic processes requires the highest precision we can attain. 472 

 473 
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Appendix A : The sea water distillation process 482 

 483 

The distillation line is shown in Figure A1.  Before distillation, we provide partial 484 

vacuum in all glass compartments. Thus, we freeze 2 ml of the sample with liquid nitrogen and 485 

open the connection to the pump. When the void is sufficiently strong (~5.5 10-2 mbar), we turn 486 

off the connection to the pump. Then, the water sample is heated to its boiling point and a cold 487 

trap is used to retrieve the distilled water. This operation lasts at least 15 minutes to allow 488 

reproductibility. The 15 minute duration is necessary to have the best precision, which is 489 

dependent on a full recovery of the water originally present in the seawater sample. The 490 

reproductibility of the method has been evaluated by distilling 15 times the same seawater 491 

samples at salinity 35 and measuring the 15 products with our Picarro instrument. We found a 492 

standard deviation of 0.04‰ for δ18O and 0.24‰ for δ2H, showing the good reproducibility in 493 

the method. We elaborated on this method here because over the long term, measuring 494 

freshwater samples decreases maintenance problems, such as salt accumulation in the vaporizer 495 

and extends the very short lifetime of the syringe. 496 

 497 

 498 

 499 

  δ18O 1SD δ2H 1SD 

1 +1.57 0.01 +5.37 0.07 

2 +1.63 0.02 +5.74 0.18 

3 +1.62 0.00 +5.81 0.18 

4 +1.63 0.04 +5.86 0.21 

5 +1.63 0.03 +5.89 0.21 

6 +1.67 0.02 +5.91 0.05 



7 +1.69 0.03 +6.26 0.16 

8 +1.69 0.00 +6.13 0.18 

9 +1.74 0.03 +6.41 0.22 

10 +1.61 0.02 +5.86 0.14 

11 +1.63 0.03 +5.84 0.14 

12 +1.65 0.02 +6.07 0.22 

13 +1.67 0.01 +5.91 0.10 

14 +1.70 0.03 +6.09 0.05 

15 +1.66 0.03 +5.97 0.01 

 500 

Table A1: Measurements with a Picarro instrument of 15 distillated products from a same 501 

seawater sample at salinity 35. The column SD indicates the standard deviation for each 502 

isotopes based on the three last injections to the vaporiser (after removing the three first 503 

injections).  504 

  505 
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Caption 584 

 585 

Figure 586 

 587 

Figure 1: Estimation of the salt effect for the single salt (a) NaCl, (b) KCl, (c) MgCl and (d) 588 

CaCl for δ18O (left) and δ2H (right). The Y-axis is the difference between the pure freshwater 589 

and the salt solution (=salt effect) and the X-axis is the molality in mole.kg-1. The dashed black 590 

vertical line indicates the molality of the single salt in the standard mean sea water (S=35). Note 591 

that Lecuyer et al. (2009) do not use a pure NaCl solution but natural sea salt marsh of Guerande 592 

(France) (see exact composition in their Table 1).  593 

Figure 2: Sea salt effect in ‰ in function of the salinity (A) for δ18O and (B) for δ2H. The Y-594 

axis is the difference between the freshwater reference and the artificial sea water. The error 595 

bar represents a 95% confidence interval 596 

 597 

 598 

 599 

Figure 3: Salt effect for pure NaCl solution in a function of the concentration. The Y-axis is 600 

the difference between the freshwater reference and the artificial sea water (=the salt effect). 601 

Note that Lecuyer et al. (2009) did not use a pure solution of NaCl but a sea salt from natural 602 

sea salt marsh of Guerande (France) (see composition in their Table 1).  The data from 603 

Martineau et al. (2012) is the average of their two different runs presented in Figure 1 (pure 604 

NaCl solution). The error bar represents a 95% confidence interval. 605 

 606 

Figure 4: Estimation of the salt effect for δ18O (left) and δ2H (right) during (A) CRDS 607 

measurement post distillation for artificial seawater and pure NaCl solution, and (B) CRDS 608 



measurement with Liner or by direct injection to the vaporizer (only one measurement was done 609 

by direct injection). The error bar represents a 95% confidence interval. The data from Skrzypek 610 

and Ford (2014) are also presented (1 SD=0.10 ‰ for δ18O and 1 SD=1‰ for δ2H, manufacturer 611 

specification). 612 

 613 

Figure 5: Comparison of the natural sea water sample at salinity 34.9. The measurements are 614 

reported on the VSMOW scale. No correction was applied for the black dots, while the red dots 615 

are corrected for the salt effect estimated from this study (Table 5). For δ18O and δ2H, the 616 

dispersion is smaller after correction. The error bar represents a 95% confidence interval (only 617 

one measurement done by direct injection). 618 

 619 

Figure A1: Schema of the distillation line : Step A : The sample is frozen and we did the vaccum 620 

in the line. Step B: The distillation is running, the water vapor is trapped with liquid nitrogen.  621 

 622 

Tables 623 

 624 

Table 1: Methods and measurements for the four participating laboratories. Each laboratory 625 

received the initial freshwater reference, the three artificial seawater (0.5SW, SW, 2SW), the 626 

three pure NaCl solutions (17.5, 35 and 70 g/l) and the natural seawater sample of 627 

salinity=34.9. 628 

Table 2: Calculations of the weighted amounts of solid salts and volumes of KONA II. 629 

Table 3: Number of measurement (n), mean salt effect and one standard deviation (1SD) for 630 

each saline solution and each IRMS method. The salt effect is presented in ‰ as the 631 

difference between the freshwater reference and the saline solution.  632 



Table 4: Number of measurement (n), average salt effect and standard deviation for each salt 633 

solution and each CRDS method. 634 

Table 5: Estimated correction in ‰ for a seawater sample at salinity 35. 635 

Table A1: Measurements with a Picarro instrument of 15 distillated products from a same 636 

seawater sample at salinity 35. The column SD indicates the standard deviation for each 637 

isotopes based on the three last injections to the vaporiser (after removing the three first 638 

injections).  639 
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