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Highlights 

 We examined the effect of commonly used anaesthetics on behaviour and physiology of 

rainbow trout. 

 Rainbow trout demonstrated low behavioural stress during immersion in 2-phenoxyethanol. 

 Plasma cortisol concentrations were lowest in 2-phenoxyethanol treatment group. 

 MS-222 administration had the most adverse stress response. 

 2-phenoxyethanol may be a preferred alternative anaesthetic for use in rainbow trout. 

 

Abstract 

 

Anaesthetic drugs are commonly administered to fish in aquaculture, research and veterinary 

contexts. Anaesthesia causes temporary absence of consciousness and may reduce the stress 

and/or pain associated with handling and certain invasive procedures. The rainbow trout 

(Oncorhynchus mykiss) is a widely-used model species with relevance to both aquaculture 

and natural ecosystems. This study sought to establish the relative acute impact of commonly 

used anaesthetics on rainbow trout when used for anaesthesia or euthanasia by exploring their 

effects on aversion behaviour and stress physiology. Five widely used anaesthetics were 

investigated at two concentrations reflective of common laboratory practises: MS-222, 

benzocaine, 2-phenoxyethanol, etomidate and eugenol. The anaesthetics were administered 

https://owa.liv.ac.uk/owa/redir.aspx?C=LDMePTnVgEKqb1DtD4xI1Gea7Y4shNEIZU-RJeqE38cGeS1aq_78hVrgsYUpTjkXlA4adwGuQME.&URL=mailto%3akpounder%40liverpool.ac.uk


via immersion and fish were: 1) euthanised with anaesthetic; or 2) allowed to recover from 

deep plane anaesthesia; or 3) subjected to a conditioned place avoidance paradigm. 

Behaviour, opercular beat rate and plasma cortisol concentrations and cortisol release rates to 

water were quantified to investigate the effects of the five drugs. Based upon longer induction 

to deep plane anaesthesia, and increased plasma cortisol levels post-anaesthesia the widely-

used and recommended anaesthetic MS-222 may be relatively stressful for rainbow trout. 

Whereas 2-phenoxyethanol, due to a combination of quicker induction, reduced aversive 

behavioural response during anaesthesia and lower post-anaesthesia plasma cortisol levels 

may be a more advisable alternative. It is crucial for the welfare of fish that the use of 

anaesthetics is as humane as possible and thus these findings have important implications for 

the welfare and husbandry of captive rainbow trout. 

 

Keywords: Oncorhynchus mykiss; Anaesthetic; 2-phenoxyethanol; Aversion; Stress; 

Cortisol. 

 

Introduction 

Fish are a major source of protein, with an estimated two million tonnes of farmed fish being 

produced across Europe annually (FEAP, 2014); they are also a widely exploited research 

model, second only to mice (e.g. UK Home Office, 2014; Europa 2015; USDA 2013), and 

they are a popular companion animal with large numbers kept in home aquaria, ponds and 

public aquaria (PFMA, 2015). The importance of safeguarding fish health and avoiding 

events that are aversive in the wide range of contexts in which fish are kept is essential. The 

administration of anaesthetics is employed during handling and experimental procedures in 

order to reduce stress, however, exposure to these drugs may in itself elicit a stress response 

thus it is vital that we know what the physiological and behavioural consequences of each 

drug are. Choice of humane anaesthetics in fish has been highlighted recently as an area of 

concern (Cressey, 2014). 

 

The administration of anaesthetics to fish has long been widespread in veterinary practice, 

research and aquaculture (Schoettger and Julin, 1967) in order to minimise stress during 

procedures such as blood sampling, transportation, and routine veterinary surgery and 

consultation (Sneddon, 2012). Rates of induction and recovery have been investigated in 

previous studies, as have responses to external stimuli, and the pharmacokinetics of the 



anaesthetic agents (Sneddon, 2012). However, different species may react differently to, and 

tolerate, different anaesthetic drugs (Zahl et al. 2012). Previous research has been restricted to 

a limited number of species, with only a few anaesthetic agents investigated (Sneddon, 2012). 

Anaesthetics are usually administered to fish by immersion and simple awareness of the 

chemical can result in an aversive response or even a physiological stress response. Research 

by Readman, Owen et al. (2013) investigated whether nine of the most frequently used 

anaesthetic agents are perceived as aversive by zebrafish (Danio rerio) by exploring whether 

fish avoided water containing 50 % of the effective concentration of each drug. In this study 

zebrafish actively avoided MS-222 (ethyl 3-aminobenzoate methanesulfonic acid) and 

benzocaine (ethyl 4-aminobenzoate), two of the most widely used anaesthetic agents 

(Sneddon, 2012; Readman et al. 2013). Least aversive of the agents tested in this study were 

etomidate [ethyl 3-(1-phenylethyl)imidazole-4-carboxylate] and 2,2,2 tribromoethanol 

(Avertin), and the authors recommended that etomidate should be favoured for routine 

zebrafish use (Readman et al. 2013). However, caution should be applied since etomidate 

possesses no pain relieving properties, and may actively interfere with the function of the 

stress axis (Limsuwan et al. 1983; Olsen et al. 1995), whereas MS-222 and benzocaine 

putatively act as local anaesthetics (Sneddon, 2012). Further evidence supporting the 

potential aversiveness of MS-222 has been reported in zebrafish which exhibited a greater 

condition place avoidance in response to MS-222 compared to eugenol (2-methoxy-4-prop-2-

enylphenol; clove oil, isoeugenol, AQUI-S®) and metomidate [methyl 3-(1-

phenylethyl)imidazole-4-carboxylate] (Wong et al. 2014), and Lewbart (1998) describes an 

increase in excitatory behaviour including thrashing and leaping in response to MS-222 

(species not specified). In contrast however, MS-222 had no effect post-treatment on several 

commonly measured behavioural parameters in zebrafish (Nordgreen et al. 2014). Many of 

these findings are specific to zebrafish, and there is a legitimate concern that the findings may 

not be applicable to other teleost species. This is evident in a study by Readman, Owen et al. 

(2017) who employed a chemotaxic choice chamber to ascertain if several closely related fish 

species responded differently when exposed to one of three anaesthetic agents, benzocaine, 

etomidate and MS-222. They found zebrafish (D. rerio), medaka (Oryzias latipes) and carp 

(Cyprinus carpio) all demonstrated avoidance behaviour to MS-222 and benzocaine, but not 

etomidate, whilst rainbow trout (Oncorhynchus mykiss) reportedly did not avoid any of the 

agents tested (Readman et al. 2017). Overall, there still remains a paucity of information on 

the non-target responses of fish to anaesthetics. 

 



The present study was conducted to investigate the effects of five commonly used 

anaesthetics each at two recommended concentrations for recovery anaesthesia and 

euthanasia. The acute effects on behaviour and physiology of rainbow trout (O. mykiss), a 

model species widely used in research (Thorgaard et al. 2002) were measured. The aims of 

the study were (i) to identify the most humane anaesthetic for euthanasia or anaesthesia with 

recovery, by measuring induction time to the onset of deep plane anaesthesia, time to the 

absence of consciousness and reflex responsiveness, and time to death and (ii) to identify the 

least behaviourally aversive anaesthetic using a condition place avoidance paradigm. In 

addition, the degree of stress associated with exposure to the anaesthetics was evaluated by 

measuring plasma cortisol concentrations in fish after mortality and one hour after recovery 

from deep plane anaesthesia. 

 

Materials and Methods 

Fish husbandry  

Experiments were conducted with approval from the Home Office, U.K. (licence no. PPL 

40/3435) and the University of Liverpool’s Ethics Committee. Juvenile rainbow trout, 

Oncorhynchus mykiss (n = 103) were obtained from a commercial supplier and maintained in 

a stock tank (2 x 2 x 0.5 m) in a semi-recirculating system at 12 ± 1 °C, with constant 

aeration and a 14:10 h light:dark cycle. The trout were allowed at least two weeks in the stock 

tank to recover from the stress of transport. Fish were fed commercial trout diet (Skretting, 

Northwich, U.K.) at 1 % body weight per day. For experiments, fish were caught at random 

and transferred to separate individual glass aquaria (90 x 50 x 45 cm) in environmentally 

enriched conditions (air stone, gravel, plastic plant and an overhead area of cover). Each tank 

was screened to prevent visual disturbance. The glass aquaria were provided with filtered 

water and aeration by a semi-closed recirculation system and light, temperature and feeding 

regimes were identical to those of the stock tank. Fish remained in individual tanks for at 

least two weeks until acclimatised and were allowed at least seven days after resumption of 

feeding before use in experiments. Rainbow trout are a naturally territorial species and form 

dominance hierarchies where subdominants and subordinates are chronically stressed due to 

low social status (Gilmour et al., 2005; Sneddon et al., 2011). Therefore, this species is less 

stressed when held individually where they are allowed to form a “territory” within their 

holding tank without the stress of social subordination or territorial disputes (e.g. Frost et al., 

2007; Thomson et al., 2011; 2012; Frost et al., 2013) thus we tested fish individually to 

ensure social stress was not a confounding factor and behaviour and physiological responses 



were consistent over the experimental period and any responses were due to the treatments 

imposed. 

 

Experiment 1: Euthanasia 

Fish (mean weight ± SE; 47.61 ± 2.79 g; n = 31) were randomly assigned to one of six 

treatment groups, five fish per group for benzocaine, etomidate, eugenol, MS-222 (buffered), 

2-phenoxyethanol, and six fish for concussion (followed by exsanguination and pithing). For 

the anaesthetic treatments fish were carefully netted and removed from the tanks and placed 

in an opaque bucket with cover containing 10 L of aerated anaesthetic at the concentrations 

shown in Table 1 (Euthanasia). System water was used to ensure water quality parameters 

remained the same. Tachy opercular beat rate (OBR) and time to reach each of the following 

was measured for each fish: absence of equilibrium, low OBR, absence of reflex 

responsiveness to a tail pinch, absence of OBR, and death (Table 2). Fish were tested every 

15 s for loss of responsiveness to tail pinch stimulus once loss of equilibrium and reduced 

OBR had been achieved. All measurements were conducted with partial cover over the 

bucket in order to avoid visual disturbance and minimise any stress to the fish. Death was 

confirmed by cessation of OBR and heart beat and the fish immediately exsanguinated. Two 

observers were present during the experiment, one who watched constantly and one who 

recorded the behaviours spoken by the first, to ensure results were consistent. The concussion 

treatment group were removed directly from their holding tanks and humanely killed by 

concussion. Blood samples were collected from each fish immediately following 

confirmation of death and assayed for cortisol as described below. 

 

Experiment 2 – Recovery from anaesthesia 

Fish (average weight ± SE 138.17 ± 5.77 g; n = 35) were randomly assigned to one of seven 

treatment groups (five fish per group): benzocaine, etomidate, eugenol, MS-222, 2-

phenoxyethanol, sham handling and undisturbed. The sham handling group was included to 

account for the stress associated with the handling and relocation to the bucket, and the 

undisturbed group to control for when no manipulation occurred and fish remained in their 

individual holding tanks. Fish were carefully netted and removed from the individual holding 

tanks and placed in an opaque bucket with cover containing 10 L of aerated water with or 

without (sham handling) anaesthetic at the concentrations shown in Table 1. The 

concentrations were chosen based on those recommended in Sneddon (2012), Neiffer and 

Stamper (2009), Ross and Ross (2008), reflecting those commonly used in laboratory practise 



for O. mykiss anaesthesia. The fish remained in the bucket until they reached deep plane 

anaesthesia, defined as the absence of responsiveness to a gentle tail pinch by forceps. Fish 

were tested every 15 s for loss of responsiveness to tail pinch stimulus once loss of 

equilibrium and reduced OBR had been achieved. For the sham treatment group the time 

spent in the bucket was established by averaging the time taken to establish deep plane 

anaesthesia in fish exposed to the five anaesthetics. System water was used in the buckets to 

ensure water quality parameters remained the same. From the time the fish were added to the 

bucket, to the point at which tail pinch responsiveness was lost, the fish were constantly 

monitored and assessed using a behavioural stress indicator scoring system (1-4): 1 = no 

movement; 2 = calm continuous swimming in the bucket with no breach of water surface; 3 = 

sporadic erratic swimming where surface was breached in a rapid manner followed by being 

motionless; 4 = constant erratic swimming where surface was breached during the entire 

induction period. Fish were assigned a stress score for the duration of exposure that 

represented the most severe indicator of behavioural stress observed. Time to absence of 

equilibrium and absence of a response to gentle tail pinch were also measured. Once the fish 

reached deep plane anaesthesia, they were returned to the home tank. They were left for 30 

mins to recover, and then OBR was recorded as a non-invasive stress indicator. Ventilation 

rates were visualised from behind screens to avoid visual disturbance, and a minimum of 

three 15 second measures were recorded over 2 minutes after the 30 minute recovery to 

provide an average of beats per minute. Inter-observer reliability tests were conducted 

between the two observers for behavioural scoring to ensure repeatability/validity of results. 

One hour after treatment, fish were humanely killed by concussion and a blood sample 

obtained immediately and assayed for cortisol as described below. 

 

Experiment 3 – Condition place avoidance 

Individual tanks were split into two equal halves by dividers made from transparent Perspex 

(445 x 300 x 3 mm) with space for a door (175 x 125 mm), and 24 holes (2 cm diameter) 

evenly spaced in two vertical rows of six on either side of the door, in order to permit water 

flow to both sides of the tank. The door was attached by wire to a pulley system such that the 

door could be opened and closed without any disturbance to the fish. The tank environments 

were enriched with gravel, plants and air stones identically on both sides of the dividers. Fish 

(average weight ± SE 138.10 ± 12.80 g; n = 37) were randomly assigned to one of seven 

anaesthetic treatment groups (five fish per group): benzocaine, etomidate, eugenol, MS-222, 

and 2-phenoxyethanol, and six fish for undisturbed and sham. For 2 weeks, fish were 



conditioned to associate the inflow side with a positive experience by being fed twice daily in 

that area of the tank only, whilst the other side remained neutral. Fish were checked twice a 

day, and once individuals entered the positive area prior to the presentation of food 

repeatedly over six consecutive days, it was assumed that the fish were conditioned to that 

side. The inflow or positive area was on the left hand side in half of the tanks and on the right 

in the other half to control for any left:right bias. Once conditioned, fish were anaesthetised in 

the home tank using enough drug to treat the entire tank (100 L; Table 1). The concentrations 

were chosen based on those recommended in Sneddon (2012), Neiffer and Stamper (2009), 

Ross and Ross (2008), reflecting those commonly used in laboratory practise for O. mykiss 

anaesthesia. The anaesthetic was added to the positive side either by airline tubing and a 50 

ml syringe or a 1L measuring cylinder, depending on the volume used, at the same time as 

feeding and fish were left to reach deep plane anaesthesia so the potential aversive exposure 

to the drug was coupled to a positive reward in order to gauge how negative an anaesthetic 

was. They were then carefully netted and transferred into 10 L opaque buckets with cover 

containing continuously aerated system water for 1 hour to recover. During this time the 

anaesthetic-treated water was removed from the home tank to eliminate all residues, and 

replaced with fresh filtered mains water used as inflow to the system, which had been aerated 

via airline and air stone for a minimum of 24 hours to ensure chlorine was not present. The 

water was at the same temperature as the system water (12 °C ± 1 °C) as were all water 

quality parameters (pH 7.2, nitrite < 0.1 ppm, nitrate < 20 ppm, ammonia < 0.1 ppm). After 1 

hour, the fish were returned to their tanks on the neutral side, with the door closed. Two litres 

of water were taken from the recovery buckets to determine the amount of cortisol released 

across the gills during the procedure and thereby providing a non-invasive comparative 

measure of circulating blood cortisol levels in the fish from each treatment immediately after 

exposure to the anaesthetic. Direct measurement of blood cortisol at this stage in the 

procedure would have required venepuncture and this procedure could have confounded the 

subsequent detection of between-treatment differences arising from the anaesthetic 

treatments. Fish were left to recover for 30 minutes and then latency to return to the positive 

side was tested; used here as a measure of the negative affective component of experiencing 

anaesthesia and a delay to return demonstrates how aversive the anaesthetic was for the 

individual. The door was opened and one pellet of food was added initially, and then every 

minute. The latency for the fish to enter the positive/conditioned side, as well as the latency 

to resume feeding response was recorded. Sham treated fish underwent the same procedure 

except were not exposed to an anaesthetic, and undisturbed treated fish were conditioned but 



not exposed to anaesthetic or relocation to the bucket. In order to understand the degree of 

stress associated with exposure to the anaesthetics during the condition place avoidance 

paradigm, terminal plasma samples were taken. Fish were humanely killed by concussion 1 

hr after originally returning them to their tanks and a blood sample obtained immediately and 

assayed for cortisol as described below. 

 

Blood Sampling 

All fish were humanely killed at approximately the same time each day (12:30 hours ± 1 hr) 

to ensure interpretation of plasma cortisol concentrations were not compromised by diel 

variations in cortisol secretion (Pickering and Pottinger, 1983). Fish were weighed, and blood 

was collected via sterile heparinised needles (25 g) into 2 ml syringes. After centrifugation at 

3500 x g, at 4 °C for 5 min, the supernatant plasma was frozen and stored at -20 °C until 

further analysis. Cortisol concentrations were determined blind using a validated 

radioimmunoassay procedure (Pottinger and Carrick, 2001). 

 

Water extraction for cortisol analysis 

Water samples (2.0 L) underwent solid phase extraction (SPE) using Sep-Pak C-18 cartridges 

(Waters, UK) fitted to a four-port manifold. Water samples were pre-filtered through 0.45 

micron nitrocellulose filters (diameter 15 cm) (Whatman, UK) using a Buchner funnel and 

flask under vacuum, to remove any particles that might obstruct the cartridges. Cartridges 

were first primed by washing 5 ml HPLC grade methanol through the cartridge at a rate of 2 

ml per minute by a Gilson Minipuls 2 peristaltic pump, followed by a 5 ml wash with 

distilled water. The water sample collected was then passed through the cartridge at the same 

rate. Finally, cartridges were washed with 5 ml of distilled water to purge the salts and were 

flushed with air before being stored at -20 °C until further analysis. The cartridges were 

eluted with 2.0 ml of ethyl acetate and cortisol concentrations were determined blind in 200 

μl of eluate using a validated radioimmunoassay procedure (Pottinger and Carrick, 2001). 

 

Statistical analysis 

All analyses were performed in Minitab v17 (Minitab, 2013) and all data, unless stated 

otherwise, met the assumptions for parametric analyses. In order to identify the most human 

anaesthetic for euthanasia and anaesthesia with recovery, we tested whether treatment had 

any effect on time to onset of anaesthesia, time to absence of consciousness and reflex 

responsiveness, and time to death by applying One-way ANOVAs with treatment as a factor. 



Data for time to absence of tail pinch from the Recovery experiment was not normally 

distributed and thus a non-parametric Kruskal-Wallis analysis was applied. Mann-Whitney U 

tests including sequential Bonferroni treatment for multiple tests were subsequently applied 

to compare between treatment groups. To determine the least behaviourally aversive 

anaesthetic, we tested whether treatment influenced latency to return to the 

positive/conditioned side and to resume feeding response, as data were not normally 

distributed a non-parametric Kruskal-Wallis test was applied. A chi-squared goodness of fit 

test was used to determine if treatment affected the stress response displayed during 

anaesthesia and to compare each anaesthetic with the results of sham handling. To assess 

whether treatment had an effect on plasma and water-borne cortisol concentrations One-way 

ANOVAs were employed with treatment as a factor. To test for an association between the 

concentrations of cortisol released into the water of the recovery bucket, following 

anaesthesia in the home tank, and the level of plasma cortisol at the end of the experiment, a 

Pearson correlation was applied to the data. Spearman rank correlations were applied to 

determine if there was an association between behavioural signs of aversion (latency to return 

to conditioned side and resume feeding) and plasma or water-borne cortisol concentrations. 

 

Results 

Experiment 1 - Euthanasia 

Excluding the concussion treatment group, there was no effect of treatment on time to death 

(F4, 20 = 2.18, p = 0.109). For the anaesthetics, there was a treatment effect on the reciprocally 

transformed time to absence of equilibrium (F4, 20 = 4.73, p < 0.01; Table 3), with fish exposed 

to benzocaine taking significantly longer than those exposed to 2-phenoxyethanol and 

etomidate (Tukey HSD: both p < 0.05). However, the time taken for fish to lose reflex 

responsiveness to a tail pinch was not different between treatments (F4, 20 = 0.81, p = 0.536; 

Table 3). 

 

The time required for low opercular beat rate (OBR) to become evident (F4,20 = 6.41, p < 

0.01; Table 3) and for OBR to cease completely (F4,20 = 3.28; p < 0.05; Table 3) was 

significantly different between treatments. Fish exposed to MS-222 took significantly longer 

to reach the low OBR threshold compared to those exposed to 2-phenoxyethanol, benzocaine, 

etomidate and eugenol (Tukey HSD: all p < 0.05) and longer to cease OBR than fish exposed 

to etomidate (Tukey HSD: p < 0.05). There was also a treatment effect on the tachy (rapid) 

OBR (F4, 18 = 4.62, p = 0.01; Table 3) with fish exposed to benzocaine having considerably 



greater tachy OBR than those exposed to etomidate (Tukey HSD: p < 0.01). For tachy OBR, 

both 2-phenoxyethanol and eugenol treatment group statistics are based on samples sizes of 4 

as one fish from each did not exhibit this stage. 

 

There was no treatment effect on reciprocally transformed plasma cortisol concentrations 

measured in blood samples collected immediately following euthanasia (F5, 25 = 1.08, p = 

0.394; Fig. 6). 

 

Experiment 2 - Recovery 

Mean OBR 30 minutes after recovery from anaesthesia was significantly different between 

treatments (F6, 28 = 8.26, p < 0.001; Fig. 1) with the mean OBR being lower in the 

undisturbed treatment group than all other groups with the exception of the etomidate-

exposed fish (Tukey HSD: all p < 0.05). However, sham handling also resulted in a higher 

OBR than undisturbed controls and none of the anaesthetic-exposed groups exhibited OBR 

higher than the sham treatment group. 

 

Time to absence of equilibrium was significantly different between the treatment groups (F4, 

20 = 4.02, p < 0.05; Fig. 2), with etomidate-exposed fish taking considerably longer to enter 

light anaesthesia compared to fish exposed to eugenol (Tukey HSD: p < 0.05). The time 

required to lose reflex responsiveness to a tail pinch was also affected by drug (n = 25; df = 4; 

H = 16.56, p < 0.01; Fig. 3) with etomidate-exposed fish requiring longer than the fish 

exposed to any other anaesthetic (all W = 40.0, p = 0.0122). 

 

There was a treatment effect on behavioural stress response during induction of anaesthesia 

(X2 = 488; df = 3; p < 0.001; Fig. 4). In response to the anaesthetics, only one fish exposed to 

benzocaine and 2-phenoxyethanol displayed fast swimming (category 3) and none in 

category 4. In contrast, one fish treated with etomidate, MS-222 and eugenol displayed 

category 4 where fish swam erratically continuously and leaped from the water. Additionally, 

four fish from each of the treatment groups benzocaine, MS-222 and 2-phenoxyethanol 

displayed category 2 or lower. 

 

Plasma cortisol concentrations 60 mins after removal from the anaesthetic were not 

significantly different between treatment groups (F6, 28 = 2.30, p = 0.062; Fig. 5 and 6), 



although all treatments, including the sham treatment, were elevated compared to the 

undisturbed group.  

 

Experiment 3 - Condition place avoidance 

Following anaesthesia, there were no differences between treatment groups in the latency of 

return to the positive conditioned side (n = 25; df = 4; H = 3.00, p = 0.558; Table 4) or in the 

time taken to resume feeding (n = 25; df = 4; H = 2.48, p = 0.648; Table 4). 

 

There was a significant effect of treatment on plasma cortisol concentrations (F6, 30 = 4.83, p 

< 0.01; Fig. 6), with plasma cortisol concentrations in MS-222-exposed fish being 

significantly elevated compared to fish exposed to 2-phenoxyethanol and eugenol (Tukey 

HSD: both p < 0.05), 2 hrs after removal from the anaesthetic. The square root transformed 

rate of release of cortisol to water during the period in which the fish were exposed to 

anaesthetic also varied significantly between anaesthetic treatment groups (F5, 23 = 10.64, p < 

0.001; Fig. 7). The cortisol release rate was significantly greater in fish exposed to 2-

phenoxyethanol compared to fish exposed to MS-222, benzocaine or sham treatment (Tukey 

HSD: both p < 0.01). There was no association between latency to return to conditioned side 

and cortisol (plasma: rs = -0.028, p = 0.893; water: rs = 0.074, p = 0.725), and likewise with 

latency to resume feeding response and cortisol (plasma: rs = -0.188, p = 0.368; water borne: 

rs = 0.137, p = 0.514). However, there was a weak negative association between plasma 

cortisol and the rate of release of cortisol to water (r = -0.444, p < 0.05). 

 

A summary of results across the three studies are shown in Table 5. 

 

Discussion 

The present study employed stress and behavioural indicators in rainbow trout to investigate 

the relative impact on welfare indicators of commonly used anaesthetics at concentrations 

reflective of common practice. The results suggest that anaesthetics differentially affected 

behaviour and physiology and that this information can be used to inform decisions as to 

which anaesthetic to employ for euthanasia and recovery anaesthesia at the concentrations 

investigated. Based upon time to reach light anaesthesia and low OBR, reduced plasma 

cortisol concentrations and low behavioural stress 2-phenoxyethanol may be a more humane 

alternative for use on rainbow trout, although note sample sizes are low. However, 

importantly it is not known whether this drug has analgesic properties so it may not be 



suitable for invasive procedures. This could be addressed by employing 2-phenoxyethanol in 

combination with an analgesic such as morphine (injected 5 mg/kg IM; Mettam et al. 2011). 

In contrast MS-222 and benzocaine are thought to act as local anaesthetics and may provide 

pain relief (Sneddon, 2012) thus careful consideration should be given in the context of the 

use of the fish and the role anaesthesia plays. Further work is also necessary to evaluate the 

analgesic properties of the different anaesthetics as well as the potential benefits associated 

with combination anaesthesia (Schoettger et al. 1970; Kumlu and Yanar, 1999; Yanar and 

Kumlu, 2001) particularly when anaesthesia is used for surgical or other invasive procedures. 

 

Euthanasia 

For the purpose of euthanasia in fish, the method of concussion offers advantages and is 

probably a less stressful and more humane alternative to anaesthetic agents. Primarily 

concussion is very rapid, and avoids prolonged exposure to chemicals and any potential side 

effects that might be incurred. However this method requires specific training to ensure that 

the procedure is carried out humanely according to The Animals (Scientific Procedures) Act 

1986 guidelines (ASPA, 2012). In addition, the size of fish being sampled adds a level of 

complexity. If the fish is large achieving a rapid endpoint can be difficult, and with small fish 

there is the risk of compromising tissue collection. There was no evidence of a stress 

response during the process of anaesthesia in any of the treatment groups directly following 

euthanasia demonstrated by the low mean plasma cortisol concentrations (range 1.3 – 4.9 ng 

ml-1). When comparing between the anaesthetic drugs, induction was slower for benzocaine 

(absence of equilibrium) and for MS-222 (cessation of opercular beat rate). Although two 

different concentrations were used in this study, it was only the higher dose of etomidate and 

2-phenoxyethanol that induced more rapid times to mild and deep plane anaesthesia. This 

may be due to uptake rates and mode of action of these agents and requires further study. For 

the purposes of humane killing if rapid induction is key to ensuring a rapid death the results 

suggest that at the concentrations used, 2-phenoxyethanol and etomidate may be the preferred 

agents.  

 

Recovery 

If length of exposure is considered as a negative event, etomidate seemed to be the most 

disruptive, since it required the longest induction times for fish to reach both light and deep 

plane anaesthesia. Faster induction rates would mean that the impact of a potentially stressful 

event could be minimised while also limiting the contact time with the drug. However, there 



is a trade off with induction rates as they need to be sufficient in length so that the stage of 

anaesthesia can be controlled and monitored (Sneddon, 2012). Also whilst higher 

concentrations of anaesthetics would induce rapid induction times they may be aversive or 

detrimental to fish physiology and can result in accidental overdose (Sneddon, 2012). 

 

Using OBR, a measure often used as a non-invasive indicator of stress, our results suggest 

that use of four of the five anaesthetic agents (benzocaine, MS-222, 2-phenoxyethanol and 

eugenol) as well as sham handling resulted in higher OBR compared to fish receiving no 

treatment. Yet the use of etomidate did not significantly elevate OBR and plasma cortisol 

values were lower than MS-222, benzocaine and eugenol. This might imply that at the 

concentration tested etomidate is least aversive, in terms of its effects on ventilation rate, and 

which is in line with recommendations by Readman et al. (2013) that etomidate is the most 

humane anaesthetic in zebrafish, Danio rerio. However, etomidate can suppress the HPI axis 

in fish (Limsuwan et al. 1983; Olsen et al. 1995). Negative effects on respiration and 

circulation have previously been reported in Chinook salmon (O. tshawytscha) anaesthetised 

using the nonbarbiturate hypnotic metomidate, an analog of etomidate (Hill and Forster, 

2002; 2004). Therefore, the lack of elevation in OBR in trout may not be indicative of a non-

aversive anaesthetic, but instead may be due to the pharmacological effects of etomidate. 

Therefore, using OBR as an indicator of stress during anaesthesia could be confounded, by 

direct effects of the drug on ventilation rate. The action of etomidate should be further tested 

in rainbow trout and other species, however, caution should also be applied when using 

etomidate as it is a hypnotic, acting to sedate the fish and it has no known intrinsic analgesic 

properties. Additionally, it is important to note that in the present study the sham treatment 

with no anaesthesia did elicit a comparable physiological stress response to that observed in 

the anaesthesia treatment groups. Indeed, among the sham-treated fish recovery OBR was 

similar to most anaesthetic groups as was plasma cortisol. Therefore, it is likely that 

confinement in a novel environment, the bucket in the present study, for anaesthesia, and the 

associated handling and transfer, is stressful in itself and should be avoided where practically 

possible. Comparisons between home tank anaesthesia and removal to another tank or vessel 

are rare yet many of the guidelines available propose fish should be anaesthetised in their 

home tank if possible. 

 

Rainbow trout expressed varied behavioural responses in reaction to the anaesthetic agents. 



None of the fish from the sham, benzocaine and 2-phenoxyethanol treatment groups 

exhibited a response of the highest category (4), implying that these treatments may be least 

aversive in terms of behavioural reactions during anaesthesia. In contrast, fish in the other 

anaesthetic treatment groups (etomidate, eugenol and MS-222) exhibited erratic swimming 

and breaking the surface of the water. Therefore these drugs could be considered to have an 

adverse effect on behaviour and elicit behavioural stress in trout during induction. Rainbow 

trout anesthetised by immersion in CO2 are reported to show a similar strong aversive 

response of rapid swimming and escape attempts for at least 30 seconds (Kestin et al. 1995). 

The mechanisms of action should be investigated further to determine if it is the olfactory or 

gustatory characteristics of the anaesthetic that comprises the negative affective experience 

driving these stress-related behaviours. Certainly, fish are known to avoid, or to attempt to 

escape from, negative stimuli (Sneddon, 2009) and jumping from the water in the bucket may 

be motivated by an aversion or avoidance response. Investigation into recovery anaesthesia in 

the home tank could remove this possible confounding factor (Caamaño Tubío et al. 2009), or 

enriched experimental buckets could be used (gravel, plants and cover) to establish if stress 

responses vary after anaesthesia in a barren bucket, as data suggests certain stress indicators 

are ameliorated in enriched environments in rainbow trout (Pounder et al. 2016). Do note the 

sample sizes for this experiment were relatively low and future studies should increase the 

number of individuals used.  

 

Condition place avoidance 

In accordance to the findings in rainbow trout (Readman et al. 2017), in the present study 

anaesthesia was not aversive to rainbow trout in terms of influencing latencies to return to a 

previously conditioned area or resume feeding response. This may be because anaesthesia via 

immersion is not aversive enough for a feeding response to be disrupted, particularly for 

species such as rainbow trout, which are bred and selected for high growth rates for industry, 

meaning that they are highly motivated to feed. However, it is worth noting that Readman, 

Owen et al. (2017) used 50 % of effective dose seen within the literature in their experiments 

and as such may not have been enough to illicit avoidance behaviour, whereas in this present 

study we used concentrations that induce anaesthesia and thus reflective of common practice.  

Many studies investigating fish behaviour or for the application of anaesthesia/euthanasia 

protocols it is often required for fish to be taken from home tanks and placed into test arenas 

or other holding vessels. Our results with the sham-treated fish clearly show that placing fish 

into a novel environment is stressful in itself and have additive effects of stress that may have 



been associated with handling or novel environments (Blaser and Gerlai, 2006; Levin et al. 

2007; Caamaño Tubío et al. 2009). Fish may be less anxious in their home tank and react 

differently to anaesthesia than would be the case in the more stressful context of being 

caught, handled and placed in a novel environment. The possibilities that conditioned place 

avoidance does not work when performed in the home tank or that the drugs used here are not 

aversive to rainbow trout cannot be excluded but further work is necessary to clarify these 

issues. 

 

In contrast to the behavioural responses, plasma cortisol concentrations were greatest in the 

MS-222 treatment group, and were significantly higher than levels in the 2-phenoxyethanol, 

eugenol and undisturbed treatment groups, suggesting that MS-222 exposure resulted in the 

most persistent adverse effects of all the drugs at the concentrations evaluated. We also 

analysed free cortisol from water samples taken from the buckets in which fish were placed 

to recover. Cortisol released across the gills provides an alternative measure of the activity of 

the HPI axis during and following exposure to a stressor (Scott and Ellis, 2007; Ellis et al. 

2005). The water-borne cortisol concentrations were not directly proportional to plasma 

concentrations of cortisol, but instead showed a broadly inverse relationship with plasma 

cortisol levels. This appears counter-intuitive, but the two endpoints report different aspects 

of stress axis function, with plasma cortisol providing a snapshot of levels at the precise time 

of sampling, whereas the water-borne cortisol concentration provides information on the 

activity of the stress axis for the entirety of the recovery period. It is possible that in the group 

exposed to MS-222, factors controlling the stress response were more profoundly affected 

than in other groups, resulting in an attenuation of the stress response, lower plasma cortisol 

levels and hence lower release rates to water for the duration of the anaesthesia. However, on 

recovery and regaining consciousness, other aspects of the MS-222 exposure may have been 

perceived as more stressful by the MS-222-treated fish, resulting in a greater post-anaesthesia 

cortisol response.  

 

Overview 

The results of the present study suggest that 2-phenoxyethanol at the concentrations tested 

might be a preferred anaesthetic for use in rainbow trout. The time required to reach light 

anaesthesia and low OBR was less compared to several of the other anaesthetics tested during 

the euthanasia experiment, and plasma cortisol concentrations were lowest in the recovery 

and condition place avoidance experiments suggesting a less stressful experience. In addition, 



the majority (80%) of fish in this treatment group demonstrated a lower behavioural stress 

score indicating either calm swimming or no movement on immersion into the anaesthetic 

and suggestive of a less aversive response. If we assume these indicators are linked to 

improved welfare and reduced stress during anaesthesia then 2-phenoxyethanol would be 

preferred over the other anaesthetics at the concentrations tested in the present study. In 

rainbow trout, 2-phenoxyethanol has already been identified as an effective anaesthetic 

(Gilderhus and Marking, 1987), with fungicidal and bactericidal characteristics making it 

particularly useful during surgery (Jolly et al. 1972; Ucar and Atamanalp, 2010). It is 

relatively harmless to fish in terms of its acute toxicity (Velíšek and Svobodová, 2004), and 

has been shown to have no effect on haematological parameters (Tort et al., 2002; Ucar and 

Atamanalp, 2010; Velíšek et al. 2007) or amine concentrations in the brain (Sloley et al. 

1986). However it must be noted that side effects arising from 2-phenoxyethanol exposure 

have also been reported in fish although not necessarily in rainbow trout. These include 

reduced immune function, impaired ventilation, reduced cardiovascular responses, lowered 

blood O2, increased CO2, and reduced pH (Iwama et al. 1989; Lambooij et al. 2009; Ortuño et 

al. 2002; Sneddon 2012). More research is required however, as the pharmacological action 

of 2-phenoxyethanol is currently undetermined, although it is thought to involve expansion of 

neuronal cell membranes (Burka et al. 1997). 

 

Concentrations of each anaesthetic employed in the study reflect common laboratory practice 

(Neiffer and Stamper, 2009; Ross and Ross, 2008; Sneddon, 2012) but ideally a range of 

concentrations with increased sample sizes should be tested for each anaesthetic agent, in 

order to establish if it is the agent itself that may be aversive, or if it is due to the 

concentration in which it is administered. Time and resource constraints meant that this was 

not possible, and therefore results should be taken to be applicable only to the concentrations 

that were tested. Further, we have only explored the acute effects of these agents and it would 

be vital to assess longer term behavioural and physiological function to truly understand the 

chronic impact of anaesthesia. 

 

The different mechanisms of action and the purpose for anaesthesia should be considered 

with importance when selection of an anaesthetic with least adverse effects associated with 

its use is being considered. The anaesthetic agents that were tested have different functional 

properties. For instance, MS-222 and benzocaine are structurally similar compounds, and are 

often used in veterinary medicine as topical analgesics and have local anaesthetic qualities 



(Sneddon, 2012). Therefore, if fish are being anaesthetised for surgery, or for possible 

invasive procedures that may cause tissue damage, then benzocaine or MS-222 may be the 

most humane agents to use. Studies with zebrafish found anaesthesia with MS-222 had no 

effect on behaviour (Nordgreen et al. 2014), emphasising the need for the effects of 

anaesthetic on behaviour and physiology in different species to be investigated, to identify the 

most appropriate agent for each species across a variety of procedures.  

 

Our research suggests that 2-phenoxyethanol at the concentrations used is likely to be the 

least aversive anaesthetic in rainbow trout when non-invasive procedures are applied during 

anaesthesia. However, further research is needed that includes: the utilization of other 

experimental designs such as choice chambers, investigation with a range of agent 

concentrations for different procedures during anaesthesia, and establishing the effect of 

environmental enrichment, in order to confidently recommend the anaesthetic agents that 

promote welfare in rainbow trout. Another factor to consider is that only MS222 is approved 

for veterinary use in aquaculture in the USA and Europe, therefore, 2-phenoxyethanol would 

need to meet regulatory standards for food safety and public health before its use can be 

adopted. However, we recommend it for veterinary health and for research purposes based on 

the results from the two recommended concentrations investigated.  This initial study has 

shown that anaesthetics do affect rainbow trout physiology and behaviour and may do so 

adversely, therefore highlighting the need for further research into the effects of anaesthesia 

and the interaction of environment and anaesthetic dosage for different purposes of 

anaesthesia.   
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Figure 1. Mean (+ SE) opercular beat rate (beats min-1) 30 mins after removal from 

anaesthetic, in rainbow trout. Means that do not share a common lower case letter were 

significantly different (p < 0.001; n = 5 per group).  
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Figure 2. Mean (+ SE) time (seconds) to absence of equilibrium (mild plane anaesthesia) in 

rainbow trout following immersion in an anaesthetic solution. Means that do not share a 

common lower case letter are significantly different (p < 0.05; n = 5 per group). 
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Figure 3. Mean (+ SE) time (seconds) to absence of the tail pinch response (deep plane 

anaesthesia) in rainbow trout following immersion in anaesthetics. Means that do not share a 

common lower case letter are significantly different (p < 0.01; n = 5 per group). 
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Figure 4. Proportion of each behavioural stress response expressed during anaesthesia in 

rainbow trout exposed to anaesthetic-treated system water from the point of immersion to 

absence of tail pinch responsiveness (X2 = 488; n = 5 per group). The stress indicator scoring 

system was as follows: 1 = no movement, 2 = calm swimming, 3 = sporadic erratic 

swimming and 4 = constant erratic swimming. 
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Figure 5. Mean (+ SE) plasma cortisol concentrations (ng ml-1) in rainbow trout, (A) one hour 

after deep plane anaesthesia (n = 5 per group), and (B) two hrs after deep plane anaesthesia in 

the home tank (n = 5 per anaesthetic group, and n = 6 for sham and undisturbed treatments). 

Means that do not share a common lower case letter are significantly different (p < 0.05).  
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Figure 6. Comparison of individual plasma cortisol concentrations (ng ml-1) in rainbow trout 

following euthanasia with anaesthetic (open triangles), recovery from deep plane anaesthesia 

(open circles), or subjected to a conditioned place avoidance paradigm (crosses). 
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Figure 7. Mean (+ SE) water cortisol concentrations (pg g-1 hr-1) collected from recovery 

buckets one hour after deep plane anaesthesia in the home tank, in rainbow trout. Means that 

do not share a common lower case letter were significantly different (p < 0.01; n = 5 per 

anaesthetic group, and n = 4 for sham treatment). 

 

  

a 

ab 

bc 

bc 

ab 

c 



Table 1. Summary of selected anaesthetic agents and concentrations used in this study 

(Neiffer and Stamper, 2009; Ross and Ross, 2008; Sneddon, 2012; T. G. Pottinger, unpub. 

data). 

 

 

Table 2. Summary of selected measures used in this study. Tachy opercular beat rate (OBR) 

and time to reach each of the following was measured for each fish. 

 

 

  

Level of 

Anaesthesia Measure Definition 

Excitation Tachy (faster than normal) OBR Increased ventilation rate 

   

Light Absence of equilibrium Failure to maintain upright position 

   

Deep Low OBR Infrequent gill ventilation movements 

 Absence of reflex activity and presumably consciousness Absence of reflex responsiveness to a tail pinch 

 

Absence of OBR Absence of ventilatory movements 

   Overdose Death Cessation of OBR and heart beat  

   

Anaesthetic 
                          Concentration 

Supplier 
Euthanasia (L-1) Recovery/Aversion (L-1) 

Benzocaine 150 mg 33 mg Sigma-Aldrich Co., UK 

Etomidate 10 mg 2 mg Thomson & Joseph Ltd, UK 

Eugenol 200 mg 100 mg Sigma-Aldrich Co., UK 

MS-222 (buffered) 200 mg 100 mg Sigma-Aldrich Co., UK 

2-Phenoxyethanol 6 ml 0.5 ml Vetark Professional, UK 



Table 3. Mean (± SE) induction measurements (seconds) and plasma cortisol concentrations 

(ng / ml) recorded for each treatment group during euthanasia (absence of equilibrium – 

failure to maintain upright position; tachy opercular beat rate – increased ventilation rate, low 

OBR – rare gill movements; absence of tail pinch – absence of reflex activity and presumably 

consciousness; absence of OBR – absence of ventilation rate). Different superscripts denote 

significant difference. 

 

 

 

Treatment 

Absence of 

equilibrium 

(s) 

 

Tachy 

OBR      

(beats per 

minute) 

 

Low OBR 

(s) 

 

Absence of 

tail pinch (s) 

 

Absence of 

OBR (S) 

 

Time to 

death (s) 

 

Plasma 

cortisol         

(ng / ml) 

Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE 

Concussion - - 
 

- - 
 

- - 
 

- - 
 

- - 
 

14.0a 3.7 
 

2.0 0.3 

Benzocaine 53.8b 10.7 
 

101.2b 5.6 
 

79.0a 8.9 
 

86.6 4.3 
 

101.6 8.3 
 

176.6b 24.5 
 

3.7 1.4 

Etomidate 31.6a 3.6 
 

76.8a 4.4 
 

66.8a 7.6 
 

100.0 10.2 
 

98.8a 16.8 
 

253.6b 34.8 
 

4.9 3.2 

Eugenol 32.0 1.3 
 

91.5 1.5 
 

67.2a 7.4 
 

86.0 5.1 
 

134.0 16.5 
 

167.6b 13.3 
 

1.3 0.1 

MS-222 46.6 8.4 
 

89.8 2.5 
 

122.4b 13.2 
 

91.4 14.2 
 

163.2b 14.2 
 

277.2b 45.7 
 

2.5 0.9 

2-

Phenoxyethanol 
27.8a 0.7 

 
92.3 5.1 

 
76.2a 7.0 

 
75.6 11.7 

 
109.6 17.2 

 
235.4b 35.1 

 
3.2 1.4 

 

 

 

 

Table 4. Mean ± SE latencies to return to positively associated side and to resume feeding 

response (seconds) post treatment and recovery, in rainbow trout. 

 

 

 

 

  

Treatment 

Latency to return to 

positively associated 

side (s) 
 

Latency to resume 

feeding response 

(s) 
 Plasma cortisol (ng 

/ ml) 
 Water cortisol (pg 

/g / hr)  
  Mean SEM   Mean SEM   Mean SEM   Mean SEM 

Undisturbed - - 

 

- - 

 

2.5 0.6 

 

- - 

Sham - - 

 

- - 

 

39.9 15.9 

 

0.29 0.09 

Benzocaine 250.0 147.0 

 

250.0 147.0 

 

46.1 7.3 

 

5.1 0.9 

Etomidate 47.4 30.7 

 

86.8 68.6 

 

53.9 22.8 

 

9.4 4.4 

Eugenol 31.8 23.3 

 

63.8 23.3 

 

20.4 6.5 

 

11.5 4.9 

MS-222 30.2 20.5 

 

30.2 20.5 

 

83.4 8.2 

 

2.9 0.6 

2-

Phenoxyethanol 94.8 41.7 

 

100.0 40.4 

 

25.3 8.2 

 

19.0 1.8 



Table 5. Summary of mean responses for each anaesthetic across the three experiments: 

euthanasia with anaesthetic, recovery from deep plane anaesthesia, or subjected to a 

conditioned place avoidance paradigm. Different superscripts denote significant difference. 

Experime

nt 
Measure Mean response (Lowest first)         

Euthanasia Tachy OBR 
Etom
a 

< 
MS-

222 
< Eug < 2-PE < 

Benz
b   

  

 

Absence of 

equilibrium 
2-PEa < 

Eto

ma 
< Eug < 

MS-

222 
< 

Benz
b   

  

 
Low OBR 

Etom
a 

< Euga < 
2-

PEa 
< Benza < 

MS-

222b   

  

 
Absence of tail pinch 2-PE < Eug < Benz < 

MS-

222 
< Etom 

  

  

 
Absence of OBR 

Etom
a 

< Benz < 2-PE < Eug < 
MS-

222b   

  

 
Time to death Eug < Benz < 2-PE < Etom < 

MS-

222   

  

 
Plasma cortisol Benz < 2-PE < 

MS-

222 
< Conc < Etom < Eug 

  

 
 

             
Recovery Mean OBR 

Undis

ta 
< Etom < 

2-

PEb 
< 

Sham
b 

< 
Benz
b 

< 
MS-

222b 
< 

Eug
b 

 
Behavioural stress 2-PE < Benz < 

MS-

222 
< Etom < Eug 

    

 

Absence of 

equilibrium 
Euga < 2-PE < 

MS-

222 
< Benz < 

Eto

mb     

 
Absence of tail pinch Euga < 

2-

PEa 
< 

MS-

222a 
< Benza < 

Eto

mb     

 
Plasma cortisol 

Undis

t 
< Etom < 2-PE < Sham < Benz < Eug < 

MS-

222 

               
Condition 

place 

avoidance 

Latency to return to 

conditioned side 

MS-

222 
< Eug < Etom < 2-PE < Benz < 

   

Latency to resume 

feeding response 

MS-

222 
< Eug < Etom < 2-PE < Benz < 

   

 
Plasma cortisol 

Undis

ta 
< Euga < 

2-

PEa 
< Sham < Benz < 

Eto

m 
< 

MS-

222b 

 
Water borne cortisol 

Sham
a 

< 
MS-

222ab 
< 

Benz
ab 

< 
Etom
bc 

< 
Eugb

c 
< 

2-

PEc   
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