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Abstract  13 

Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem 14 

function and human well-being. Building on the IPBES global assessment of pollinators and pollination, we 15 

synthesise current understanding of invasive alien impacts on pollinators and pollination. Invasive alien 16 

species create risks and opportunities for pollinator nutrition, re-organise species interactions to affect native 17 

pollination and community stability, and spread and select for virulent diseases. Risks are complex but 18 

substantial, and depend greatly on the ecological function and evolutionary history of both the invader and 19 

the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, 20 

and identify future research directions, key messages, and options for decision-making. 21 

  22 
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Introduction 23 

Global anthropogenic drivers including land-use change, conventional intensive agriculture, pesticide use or 24 

misuse, pests and pathogens, and climate change threaten pollinators and pollination services1,2. Biological 25 

invasions are another major global change driver that can affect this natural capital1,3. The Convention on 26 

Biological Diversity (www.cbd.int/invasive/WhatareIAS.shtml) describes invasive alien species as those 27 

intentionally or accidentally introduced by human actions beyond natural ranges, which subsequently spread 28 

as vigorously growing populations that impact on biota, ecosystems and society. The global growth in 29 

economic wealth, trade, commerce, and transport efficiency facilitates this human-mediated spread of 30 

organisms into novel environments4-6, with implications for the benefits that humans derive from nature1. 31 

Successful invaders have both ecological and evolutionary effects on native species and their 32 

interactions. Invasive alien species can alter the flow of energy and nutrients within an ecosystem4, and 33 

disrupt mutualisms including those underpinning crop and wild plant reproduction7-9. Strongly interacting 34 

alien invaders can also establish novel selection pressures within a community that can modify evolutionary 35 

trajectories and adversely affect species with low genetic diversity and/or small effective population sizes10-36 

12. 37 

Scientific and policy concern over various threats to pollinators and pollination led the 38 

Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) to carry out a 39 

global evidence-based assessment on their values to humanity, their status and trends and drivers of change, 40 

and to identify policy response options to conserve them for the future3,13. In 2016, the Parties to the 41 

Convention on Biological Diversity (CBD-COP13) endorsed the findings of this IPBES assessment. 42 

In this review, we build on the peer-reviewed IPBES evaluation3,13 and earlier review papers14-17 to 43 

synthesise the current understanding of impacts on pollinators and pollination from invasive alien species 44 

spanning different ecological functions (Fig. 1). We evaluate the negative, neutral or positive impacts of: 1) 45 

alien flowering plants on pollinator nutrition, community assembly and native pollination; 2) introduced 46 

alien pollinators on native plant-pollinator systems via competition, genetic exchange and pathogen and 47 

parasite transfer to new hosts; and 3) alien predators that consume pollinators and transform pollination 48 

systems. We outline potential risks to evolutionary dynamics from invasive aliens (Box 1) and conclude by 49 

identifying future research directions, key messages, and recommendations for decision-making. 50 
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 51 

Invasive alien plants 52 

Global human-mediated dispersal of alien plants has increased, both accidentally (e.g. contamination of 53 

agricultural cargo) and deliberately (e.g. horticultural species)4-6. Introduced alien plants may prosper by 54 

escaping biological regulation of population size, by occupying a vacant ecological niche in the recipient 55 

ecosystem, or by possessing or evolving phenotypic traits (e.g. novel defences) that confer competitive 56 

advantage over native plant species4,8,18. Insect-pollinated species represent a large proportion of documented 57 

invasive alien plants; however, the capacity for self-pollination often aids initial establishment and spread19. 58 

Thereafter, invasive alien plant species that become abundant, and possess copious nectar and pollen rewards 59 

or large and enduring floral displays can lure and co-opt pollinators adapted to exploit such floral resources 60 

(Fig. 2)19-22. In this manner, invasive alien plant species can dominate species interactions and the diet and 61 

community structure of pollinators19,23-25. 62 

Impacts on pollinator nutrition 63 

Whilst providing a substantial food resource for pollinators19,24,26, a predominance of alien pollen and nectar 64 

in pollinator diets may produce risks for pollinator health. Pollinator species have particular physiological 65 

requirements for energy and a diversity of macronutrients27-29, and they forage to balance these needs over 66 

time at both individual and colony levels26,30-32. Alien plant domination of floral communities can transform 67 

pollinator diet from a diverse suite of floral species to a largely monotypic diet comprising alien pollen and 68 

nectar (Fig. 2)25. Pollinating bees are highly sensitive to the specific dietary source and combination of 69 

nutrients, e.g. ratio of different essential amino acids (EAA) to carbohydrates, showing poor growth and 70 

survival when reared on monotypic or nutritionally sub-optimal diets29,30,33,34. Consequently, alien plant 71 

invasions may raise the risk of nutritional deficits for pollinators by eroding the ecosystem availability of 72 

combinations of essential nutrients provided by diverse floral resources. Alternatively, invasive alien plants 73 

can adequately supply carbohydrates or essential amino acids exploitable by pollinators with generalized 74 

foraging behaviour and diet26. However, the subtle nutrient requirements of pollinators, e.g. protein to lipid 75 

or EAA combinations, and a species’ capacity to balance nutrition through flexible foraging29,30 mean that 76 

the benefits of invasive pollen and nectar for native pollinators remain to be determined. Adverse impacts of 77 

alien pollen or nectar are more likely for relatively specialized pollinator species, either physiologically or 78 
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morphologically ill adapted to exploit the alien food resource, or dependent on native plants outcompeted by 79 

the invader34-36. Secondary compounds in alien pollen and nectar can be differentially toxic to native 80 

pollinator species representing a further risk from plant invasions where they come to dominate diets34,37,38. 81 

Dominance of plant communities by invasive alien species (Fig. 2) could also restrict community-82 

wide flowering phenology, truncating the period of floral resources’ availability. Such curtailment could 83 

cause pollinator population declines and an overall decrease in pollinator diversity, as proposed for 84 

agricultural landscapes39. Surprisingly, there are comparatively few recorded examples of alien plant 85 

invasions consistently lowering overall pollinator diversity or abundance40-42. 86 

Although more research is definitively needed, this scarce evidence implies that pollinators may 87 

either physiologically or behaviourally trade-off or compensate for spatial and temporal changes in nutrient 88 

availability due to invasive alien plants26, that effects are subtle, chronic and possibly undetected hitherto, or 89 

that they only adversely affect pollinators in combination with other stressors2,43. 90 

Modified interactions and community stability 91 

The dynamic and flexible nature of pollinator foraging behaviour30,44,45 means interaction networks are 92 

readily penetrated by flowering alien plants23,46, where they often assume a key role in community 93 

organisation and function7,8 (Fig. 2). Where the invasive alien plant species is highly abundant or possesses 94 

generalized floral traits that make it highly attractive to pollinators, it can rewire interspecific interactions to 95 

modify network architecture (Fig. 2)44,45,47,48. For example, they can usurp native interactions and operate as 96 

a hub that increases the size and connectivity of network modules (subsets of highly co-dependent species)7, 97 

or weaken the co-dependency of mutualistic relationships in the network49. Such changes in modularity and 98 

interaction strength7,49 can increase community stability by lowering the risk of co-extinction cascades 99 

arising from future environmental changes50, unless the invasive alien performing the central role in the 100 

network is itself extirpated. Conversely, as seen with habitat structure, the high dominance of invasive alien 101 

plants could erode the co-phylogenetic structure of native plant-pollinator networks, reflecting poorer 102 

phenotypic matching between interacting partners and less-fitted mutualism, potentially introducing 103 

instability and reduced function of the pollination system48,51. 104 

Disrupted native pollination  105 
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The influential functional position of invasive alien plants once integrated into pollinator networks may have 106 

ramifications for native plant species reproduction. Invasive alien plants may affect co-flowering native 107 

plants by elevating pollinator activity to facilitate native pollination22,52,53. However, if an invasive alien plant 108 

reduces the abundance of native plants that become overly reliant on the invader for facilitation of 109 

pollination services, then there is a potential risk to the native species, should those connections become 110 

eroded or lost due to further environmental changes. Alternatively, invasive alien plants may simply 111 

outcompete native plants for pollinators (Fig. 2) and meta-analyses suggest native plant visitation rates do 112 

tend to decrease, indicating that competition prevails48,54-57. Whether regional facilitation or local competition 113 

predominates may depend on the spatial scale of the alien plant invasion, and the differing foraging ranges 114 

and ecology of pollinators in the species pool53,58-60. Overall, the impact of alien plant invasions on native 115 

plant pollination and reproductive success is greater if, relative to the native flora, the alien produces higher 116 

densities of flowers, they are phylogenetically related, or they possess similar phenology and anatomy of 117 

floral displays9,19,59,61. Aside from fundamental competition for pollinators, there may also be native pollen 118 

loss and pick up of foreign pollen during visits to alien flowers. This could either reduce conspecific native 119 

pollen transfer or increase deposition of heterospecific alien pollen that could cause stigma clogging or 120 

chemical inhibition of pollen germination62. This improper pollen transfer can translate into reduced native 121 

plant reproduction55,57,63,64, yet the extent of this is complicated by plant compensatory mechanisms that can 122 

assure pollination and reproduction, such as the capacity for self-reproduction or recruitment of alternative 123 

pollinators14,54,56,65. 124 

Invasive alien pollinators 125 

Competitive exclusion and co-existence 126 

Humans have globally translocated many different bee species (e.g. species of Apis, Bombus, Osmia, 127 

Megachile) for apiculture and crop pollination services13,66-68. The principal managed pollinators, the western 128 

honeybee Apis mellifera and the bumblebee Bombus terrestris, possess traits such as sociality, generalist 129 

feeding habit and nesting flexibility, that coupled to recurrent introduction of managed colonies and frequent 130 

escape and establishment of feral populations, raise the risk of competition with native species66,69-72 (Fig. 1). 131 

Direct competition from alien honeybees has altered the behaviour and reproductive success of native 132 

pollinators69,73. Given their long history of global spread, however, there are surprisingly few accounts of 133 
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honeybee competition reducing survival or densities of native wild bee species and no reported 134 

extinctions67,74-76. One possibility is that the introduced super-generalist honeybee, by occupying a distinct 135 

ecological niche, becomes readily integrated into native pollinator networks, apparently with little 136 

competitive displacement of native pollinators77,78. Alternatively, the role of alien honeybees in historic 137 

declines of native pollinators, while noted in certain regions (e.g. decline of congener Apis cerana in China) 138 

may have contributed to declines in places like oceanic islands, but gone unrecorded75,79. In contrast, 139 

introduced alien bumblebee species, typically B. terrestris, often compete with native congeners that occupy 140 

very similar niches for nesting and floral resources, leading to the invader becoming dominant and excluding 141 

natives66,70,71. An example is the extirpation of the Patagonian giant bumblebee Bombus dahlbomii from most 142 

of its range following the introduction and subsequent establishment of feral populations of managed 143 

European bumblebee species (B. terrestris and B. ruderatus)66 (Fig. 1). 144 

Genetic effects and mating interference 145 

Another potential risk from anthropogenic introductions of bee species is intra-generic hybridization and 146 

introgression, and reductions of native species fitness through mating interference80-82. Despite the history of 147 

global translocation of A. mellifera, overall evidence of hybridizations, introgression or mating interference 148 

with endemic sub-species is scant67,83. A notable exception was the movement of A. mellifera capensis into 149 

the range of A. m. scutellata as part of migratory beekeeping in South Africa, where it behaved as a social 150 

parasite, resulting in substantial A. m. scutellata colony losses67,83. Another example, from South America, 151 

was the introduction (>250 years ago), establishment of feral populations and spread of managed stocks of 152 

European A. mellifera, and more recently (1956) an African sub-species (A. m. scutellata) regarded as better 153 

suited to tropical environments. Debate continues about the extent that hybridization and introgression of the 154 

European type occurred, nonetheless there seems to be a latitudinal gradient in the extent of hybridization 155 

and the type possessing so-called ‘African’ traits came to dominate bee assemblages across the Neotropics 156 

and Southern USA67,84. 157 

Pollination disruption or rescue 158 

Introduced pollinators can influence native pollination processes in complex ways, according to the identity 159 

of the pollinators and the nature of the recipient ecosystem53. There is evidence that the introduced 160 

honeybee’s foraging behaviour, i.e. social recruitment of numerous worker bees to a floral resource, can 161 
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effectively maintain pollination function over great distances, particularly where the ecosystem and 162 

indigenous pollinators have been disrupted by anthropogenic habitat loss and species invasions77,84,85. 163 

Interactions between naturalized honeybees and native pollinators have been seen to enhance pollination of 164 

native plants and crops, additively or synergisitically86,87. However, alien pollinators are efficient pollen 165 

collectors and nectar robbers, so at high densities they can also behave as antagonists rather than mutualists, 166 

adversely affecting plant pollination72,88, as seen in South America where frequent visits by abundant 167 

invasive bumblebees reduce crop yields89. A preponderance of invasive alien pollinators that either prefer or 168 

are able to exploit alien forage plants, may also produce less effective native mutualisms. To illustrate, 169 

removal of invasive plant species from a Seychelles island ecosystem decreased the domination by invasive 170 

A. mellifera of plant-pollinator networks; correspondingly increasing network flower visitation, interaction 171 

diversity and functional redundancy, which resulted in higher fruit production of native plants48. Alien 172 

pollinators, by altering mutualistic networks, can raise the likelihood of inbreeding depression via increased 173 

selfing within plant species, or outbreeding depression through hybridization between closely related alien 174 

and native plants62,66,69,90. Ultimately, such changes represent a risk to plant fitness, community structure and 175 

function. 176 

Introduction of alien pests and pathogens  177 

An outcome of the trans-continental transport of pollinating bees beyond their native ranges is the greater 178 

likelihood of pathogen and parasite transfer to new hosts, with the potential to elicit population declines of 179 

native pollinators66,91,92 (Fig. 1). Introductions of A. mellifera to China in 1896 coincided with a drastic 180 

reduction in the range and population size of the Asian honeybee A. cerana with interspecific competition 181 

and pathogen transfer (e.g. Sacbrood viruses) implicated75,93. The sustained movement by humans of 182 

managed honeybee (A. mellifera) colonies into Asia ultimately resulted in the host shift of the ectoparasitic 183 

Varroa mite from sympatric A. cerana populations and its subsequent worldwide spread, along with a 184 

complex of viral pathogens (Picornavirales) it transmits among bee hosts, as part of trade in managed honey 185 

bees94,95 (Fig. 3). Through vectoring viruses, possibly suppressing bee immune functions, and direct parasitic 186 

feeding the Varroa mite is among the major pressures impacting managed and feral honeybee colonies1,2,96. 187 

Indeed, the most recent analyses suggest that the Varroa host shift may have elicited eco-evolutionary 188 

changes in host-vector-pathogen dynamics resulting in selection for increased virulence of strains of 189 
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Deformed Wing Virus (DWV) infecting honeybees and implicated in colony losses94-98 (Fig. 3). Moroever, 190 

there are also signs of pathogen transmission between managed bee populations and wild pollinators91,95,99,100. 191 

Possibly these pathogens are generalists infecting a broad spectrum of hosts and commonly shared across 192 

flower-visiting insects100,101. Alternatively, pathogens introduced along with alien pollinators, managed or 193 

feral, might represent a novel ecological and selective pressure with consequences for pollinator decline and 194 

the epidemiology of pollinator communities (Fig. 3). 195 

Invasive alien predators 196 

Invasive alien predators, such as cats, rats, and stoats, spread by humans often exert strong top-down 197 

pressure on plant pollination and fitness by consumption of pollinators such as birds, lizards, bats and other 198 

small mammals13 (Fig. 1), especially in the specialised and simpler networks of island ecosystems6. A recent 199 

example of a direct threat to already stressed European honey bee populations is the accidental introduction 200 

(2004) of the predatory yellow-legged hornet (Vespa velutina) into Europe from Asia102,103 (Fig. 1). 201 

Alien predators can also indirectly shift the functioning of native pollination systems through 202 

networks of trophic and competitive interactions. For instance, in Africa, California and Mauritius, invasive 203 

ant species that are more aggressive or competitive than native ants, deter pollinators and seed dispersers 204 

thereby reducing plant fitness104-106. Alien insectivorous lizards transformed the pollination system of the 205 

Ogasawara archipelago of Japan by extirpating endemic bee species and leaving the alien honeybee (A. 206 

mellifera) that prefers flowers of invasive alien plants to dominate, thus completing the shift to an invasive-207 

dominated pollination ecology107. 208 

A case that highlights the complex nature of interactions between predators, pollinators and plants is 209 

that of the invasive predatory wasp (Vespula pensylvanica) in Hawaii72,77. This generalist predator of 210 

arthropods also behaves as a nectar thief, competing with native Hylaeus bees and the alien honeybee A. 211 

mellifera that pollinate the native tree Metrosideros polymorpha, thereby lowering pollinator visitation and 212 

resultant fruit production72,77 (Fig. 4). Experimental removal of the wasp revealed the alien A. mellifera was 213 

the most effective pollinator in this system, in all likelihood fulfilling a niche previously occupied by extinct 214 

or declining bird pollinators, themselves reduced by introduced vertebrate predators77 (Fig. 4). These 215 

examples serve to illustrate the impact that alien predators can have on the community of interactions 216 
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affecting pollination, but also how invasive alien pollinator species can maintain pollination in highly 217 

modified ecosystems in the absence of native pollinators. 218 

Future research directions 219 

Invasive alien species remain an ongoing threat to pollinator biodiversity and pollination function 220 

worldwide. Nonetheless, our ability to understand and forecast the risk to pollinators and pollination 221 

requires that we fill substantial gaps in knowledge by stimulating future biological, ecological and 222 

evolutionary research. 223 

The impact of particular invasive alien species on native pollinators and pollination has been 224 

somewhat overlooked. The impact of introduced solitary bees on the ecology of native pollinators and 225 

pollination is a specific gap in knowledge and risk assessment, warranting further study to help forecast and 226 

prevent future invasions by alien pollinators. For instance, solitary bees such as species of Osmia or 227 

Megachile, introduced for crop pollination services, sometimes possess similar traits (e.g. dietary 228 

generalism) to the bee species A. mellifera and B. terrestris, which facilitated the invasion and modification 229 

of native mutualisms by these social bees13,66-68. There has also been little investigation of herbivory as an 230 

aspect of pollination invasion ecology, compared to other trophic interactions. Introduced mammalian 231 

herbivores can modify plant communities affecting the floral or nesting resources available to native 232 

pollinators and influencing native plant pollination108,109; given the global prevalence of livestock 233 

introductions, this is an understudied research area. Similarly, insect herbivory can influence plant 234 

physiological function and allocations of metabolites to floral displays, pollen and nectar, and emissions of 235 

volatile organic compounds that recruit pollinators110 and affect pollination111-113. Yet, the impact of invasive 236 

insect herbivory on the chemical ecology of native pollination remains a significant knowledge gap with 237 

considerable research potential. 238 

Much remains to be discovered about the impact of invasive alien species on the structure, function 239 

and stability of plant-pollinator networks. Henceforward, research should employ recent innovations in 240 

simulation modelling that capture greater biological realism and complexity of species interactions - such as 241 

temporal dynamics, interference competition, variable mutualism dependence - to obtain new insights on 242 

how invasive species re-organise pollinator network structure and affect key mechanisms or properties 243 

underpinning the stability of invaded networks facing future global change45,48,50,114,115. Furthermore, 244 
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research on network structure and stability should be extended beyond impacts from alien plants and alien 245 

pollinators to other invasive groups occupying different trophic or parasitic roles and evaluate the overall 246 

consequences for interconnected mutualistic and antagonistic networks116. 247 

Research must continue to understand the community dynamics of invasions and their consequences 248 

for pollination processes. We know little about the consequences of massive plant species invasions for 249 

community-wide flowering phenology, and how such temporal changes in distribution of floral resources 250 

link to changes in the temporal dynamics, composition, and diversity of pollinator communities. The extent 251 

that co-flowering native plant species, through their influence on foraging behaviour of different pollinator 252 

groups (e.g. flies, bees, birds), facilitate alien plant establishment is a gap in understanding the dynamics of 253 

alien plant invasions117. Similarly, the impact on agricultural crop production of changes in pollinator 254 

foraging due to invasive alien plants has yet to be well studied60. Furthermore, by usurping native 255 

interactions7,49, alien plant and pollinator species may increase the proportion of ill-matched interactions and, 256 

therefore, decrease pollination function, an untested hypothesis based on a relatively well-established 257 

assumption with important ecological and evolutionary consequences. 258 

Evolutionary mechanisms facilitating or hindering invasions by mutualists are largely at a theoretical 259 

stage10,118, but recent observations show how rapid adaptation in invading plant populations may aid their 260 

spread and establishment, and also the role of balancing selection at the sex locus of A. cerana enabling its 261 

recent establishment in Australia11,119. More empirical research is needed to test predictions such as 262 

understanding micro-evolutionary effects, shifting trait structure of plant-pollinator networks, or the role of 263 

genetic diversity in shaping invasion probabilities and dynamics in an ecosystem (see Box 1). We need to 264 

understand better the eco-evolutionary constraints to invasion of pollinator communities and their effects on 265 

evolutionary trajectories post- invasion to predict future risk. For instance, community permeability to an 266 

invasive species may be limited by the genetic diversity or the effective population size of the invading 267 

populations, governing their ability to adapt to novel environments. Genetic variability in the native 268 

populations with which the invader will interact may contribute to the success or failure of the invasions, 269 

depending of the type of interaction (e.g. competitive, mutualistic) established with the invasive species. 270 

Once established, an invader has the potential to affect the evolvability of native species, since introductions 271 

can affect the (effective) population sizes, the genetic diversity and the fitness of native populations (Box 1). 272 
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There is considerable scope for increasing our knowledge about the disease risks for native 273 

pollinators and pollination from exposure to invasive alien species. The epidemiology of pollinator 274 

communities is in its infancy with recent detection of pathogen sharing and potential asymmetric 275 

interspecific transmission and virulence91,95,99,100. There is an opportunity to unify network theory, evolution, 276 

disease biology and ecology to understand how novel host-vector-pathogen shifts involving alien organisms 277 

affect the evolution of pathogen virulence within hosts; competition and coexistence among assemblages of 278 

ecotoparasites, viral, fungal and bacterial pathogens; and transmission processes and disease frequency 279 

among multiple pollinator hosts2,96. Related to this, there is a need to study the underlying mechanisms for 280 

pathogen resistance/tolerance among bee species in their native and invaded ranges, including those living 281 

wild and those reared commercially (e.g. B. terrestris)120. Furthermore, global trade in agricultural 282 

commodities or the human-mediated translocation of alien plant species increase the risk of spreading alien 283 

plant pathogens121. There is some evidence that plant pathogens in native systems may modify plant 284 

physiology and flowering to affect plant-pollinator interactions and plant reproduction122,123, but this 285 

possibility during invasion of pollination systems has been hitherto ignored. Moreover, a single study 286 

provides some evidence that a plant pathogenic RNA virus (TRSV) due to its evolutionary history may 287 

infect bees via Varroa mite vectors, albeit without apparent effects on bee colony health, intriguingly 288 

pointing to the potential for viruses to transcend kingdoms124. Overall, the biological and evolutionary 289 

complexity and phylogenetic breadth of potential plant-pollinator-pathogen epidemiology arising from 290 

species invasions is considerable and warrants investigation. 291 

Conclusions and policy responses 292 

The effects of invasive alien species on pollinators and pollination are complex and substantial, particularly 293 

under the biogeographical circumstances of oceanic islands6,13, but depend greatly on the functional ecology 294 

and phylogenetic history of the invader and the recipient ecosystem. For example, invasive alien species 295 

possessing generalised ecological traits or evolutionarily close to natives are readily incorporated into species 296 

networks and ecosystems, and when attaining great abundance, they substantially modify structure and 297 

function of pollination systems, often negatively for native species. Alien predators exert considerable top-298 

down pressure on native pollination systems through direct and more subtle indirect trophic interactions that 299 

can transform the pollination ecology into a state dominated by alien interactions. Global trade in managed 300 
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bees and horticultural or agricultural plants increases disease risks through the interspecific spread and 301 

selection of novel pathogens with the potential to impact pollinators and pollination in unforseen ways. 302 

Invasive alien species thus tend to represent a significant biological risk to pollinators and pollination, albeit 303 

one that varies with species identity, abundance and environmental context. 304 

In the globalised economy, there is considerable scope for interactions among drivers of biodiversity 305 

change, thus the impact of invasive alien species on pollinators and pollination is exacerbated or complicated 306 

when it occurs in combination with other threats such as diseases, climate or land-use change2,6,43. Policies 307 

that minimize impacts on pollinators from stresses such as conventional intensive agricultural management 308 

and climate change, for example by diversifying agricultural landscapes and building ecological 309 

infrastructure1,2,13,125, are likely to relieve some of this overall multifactorial pressure on pollinators. In 310 

principal, this could increase the resilience of native plant-pollinator communities to alien species invasions. 311 

Current and future research focused on the interplay between invasive species and other global change 312 

drivers affecting pollinator biodiversity in different ecosystems will enable subsequent refinement of 313 

intergovernmental policy (e.g. CBD) tackling invasive alien species. 314 

Eradication or control of established invasive aliens is often prohibitively expensive and rarely 315 

successful beyond oceanic islands and vertebrate species. Consequently, the most effective policy response is 316 

a tiered approach to mitigate the risk. Crucial to forestalling invasions is horizon scanning for emerging 317 

threats and forecasting likely impacts, which allows for timely scientific, technical and policy 318 

responses3,103,126,127. Thereafter, actions leading to improving regulation, e.g. of trade in managed pollinators 319 

or horticultural plants, maintaining surveillance and establishing rigorous monitoring3,126,128, and once 320 

detected, rapid assertive management to avoid establishment by the alien species are expected to prevent new 321 

invasions or limit their impacts3,126. If invasive alien species go unchecked, the risk to pollinators and 322 

pollination is elevated, ultimately with unpredictable but mostly negative consequences for ecosystem health 323 

and human well-being1. 324 
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Box 1. Evolutionary perspectives on impacts of invasive alien species on pollinators. Evolution is driven by 685 

four processes: mutation, gene flow, drift and selection. Anthropogenic changes to a pollination system that 686 

modify these processes have the capacity to affect the evolutionary outcomes for species, co-evolutionary 687 

dynamics and community structure and function. Several eco-evolutionary characteristics of the interacting 688 

communities can modulate these evolutionary processes, such as the extent of mutual dependence between 689 

the interacting species, the probability of encounter, the demography of the invasion, and the phylogenetic 690 

histories of the plants and pollinators10,129-131. 691 

Species invading a pollination community create and are exposed to novel selective pressures have 692 

the ability to modify ongoing evolutionary trajectories10-12. Indeed, the newly interacting species compete for 693 

resources (e.g. floral rewards, pollination service), and asymmetric interactions will allow some to dominate 694 

the community. This is one of the reasons why mathematical models predicted that the widespread 695 

introduction of the super-generalist and very competitive honeybee A. mellifera is expected to select for 696 

convergence in flower traits across many wild plant species, affecting plant-pollinator community function 697 

and structure in the longer term118.  The relative changes of both the census and effective population sizes of 698 

the invasive and native species131 can also have a direct impact on the evolutionary paths of the interacting 699 

species. Because invasive species usually reach large population sizes, they can affect the populations of co-700 

occurring natives negatively through either interference or exploitative competition. Ultimately, this can, on 701 

the one hand, decrease the native population’s chances of demographic recovery, and on the other hand, 702 

reduce the native’s effective population size increasing the effects of genetic drift. Likewise, the effects of 703 

genetic drift are also expected to be amplified in species that already have low effective population sizes, 704 

such as is usually the case in endangered or rare species132. Further, organisms with small effective 705 

population sizes are less responsive to selection, which negatively affects the ability of natives to adapt to the 706 

new conditions created by the arrival and establishment of the invasive species. 707 

Through its effect on the population sizes of co-occurring native species, invasive species can also 708 

affect connectivity among native populations. Loss of connectivity decreases gene flow and in some cases 709 

genetic diversity and evolvability, rending native species less able to adapt to new conditions or to recover 710 

from the effects of drift132-134. Impoverished genetic diversity may affect adaptive processes contributing to 711 

the success or failure of invasions, depending of the type of interaction the native has with the invasive 712 

species. On this point, modelling approaches indicated that an alien species with high genetic diversity 713 
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(usually associated with a higher ability to adapt) is expected to establish in the community. Further, higher 714 

genetic diversity in the resident (native) species than in the invasive species can lead to exclusion of the 715 

invasive in predator-prey interactions, and may allow adaptation to the invasive  and survival of both species 716 

in other types of interactions (e.g., mutualistic, competition)10. 717 

  718 
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Figure 1. Conceptual synthesis of the direct and indirect impacts on (A) native pollinators and (B) 719 

native plant pollination from invasive alien species of (C) plants, (D) predators, (E) introduced 720 

pollinators and their (F) pests and pathogens. Images are representative examples of native and invasive 721 

alien species and do not portray a particular ecological system: (A) native Patagonian giant bumblebee 722 

Bombus dahlbomii (source Carolina Morales); (B) native British wildflowers (source Claire Carvell); (C) 723 

Himalayan balsam Impatiens glandulifera invasive in Europe (source Dan Chapman); (D) Asian hornet 724 

Vespa velutina invasive in Europe (source Gilles San Martin) (E) managed pollinators translocated 725 

worldwide include the western honeybee Apis mellifera (source Eugene Ryabov) and Bombus terrestris 726 

(source Adam Vanbergen), which has spread (F) pests and pathogens e.g. Varroa mite (source USDA); 727 

Deformed Wing Virus (source Pavel Plevka). 728 

 729 

Figure 2. Invasive alien plant impact on pollinator visitation and network structure. An example of an 730 

alien plant species (A) Himalayan balsam, Impatiens glandulifera native to Asia and invasive in Europe. 731 

This plant attains high densities, produces copious nectar and pollen and possesses a large, enduring floral 732 

display, all of which enables it to readily penetrate and dominate plant-pollinator networks by co-opting 733 

pollinators, such as (B) the honeybee and (C) syrphid hoverflies. In turn, alien plant invasions can alter the 734 

composition and structure of native plant-pollinator networks from (D) to (E). This raises the risk of (E) 735 

pollinator nutritional deficits due to reductions in availability of essential nutrients from diverse floral 736 

resources, poorly matched mutualisms and impaired native plant pollination (but see59 for an exception). 737 

Source of images: Dan Chapman, Claire Carvell and Adam Vanbergen. 738 

 739 

Figure 3. Global movement of managed pollinators and risk of altered host-vector-pathogen dynamics. 740 

The historic and current human-assisted translocation of (A) the western honey bee Apis mellifera for 741 

apiculture and pollination services led to its range extending from its native range (vertical lines) to a near 742 

global distribution (shaded green area) that overlapped with other Apis species including the Asian honey bee 743 

A. cerana (horizontal lines). This led to (B) the Varroa mite, a parasite of A. cerana, infecting sympatric 744 

colonies of A. mellifera and subsequently spreading worldwide in association with the new host bee. Varroa 745 

is now the major worldwide pest of managed honeybees between which it transmits many viruses2,13. Recent 746 
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evidence suggests that (C) the novel eco-evolutionary interaction between Varroa, A. mellifera and the 747 

Deformed Wing Virus (DWV) has increased viral virulence and that DWV (D) co-infects bumblebee species 748 

with (E) unknown implications for pollinator community epidemiology. Image sources: Apis mellifera 749 

(Eugene Ryabov); Apis cerana (Dino Martins); Varroa mite (USDA); Deformed Wing Virus (Pavel Plevka). 750 

 751 

Figure 4. Complex interactions between alien predators, alien and native pollinators and native plants 752 

transform and maintain pollination in highly modified ecosystems. Within the Hawaiian archipelago 753 

(map outline), historic introductions of (A) mammalian predators (e.g. cats and rats) led to (B) extinctions 754 

and declines of birds, particularly of the charismatic Hawaiian honeycreepers, that (C) pollinated the tree 755 

Metrosideros polymorpha among many other native plant species. More recently, the invasion by (D) 756 

Vespula pensylvanica the predatory wasp and nectar thief has increased competition for floral resources, 757 

deterred flower visitation by (E) native Hylaeus bees and the (F) alien honeybee A. mellifera and thereby (C) 758 

reduced M. polymorpha pollination and fruit production. Experimental exclusion of the wasp showed the 759 

alien honeybee (F) is now the most effective pollinator in this system with the decline or loss of bird 760 

pollinators. Double-headed arrows indicate mutualisms. Single headed arrows show impacts. Grey arrows = 761 

alien interactions; Blue arrows = native interactions. Dashed arrow = declining or extinct interactions. Image 762 

sources: V. pensylvanica (J. Gallacher CC-BY-2.0); Hylaeus spp. Forrest & Kim Starr; feral cat (Batty CC-763 

BY-2.0); rat (US-NPS). 764 
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