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Abstract
In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is 
investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability 
through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine 
error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized 
dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the 
theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solu-
tion given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess 
the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning 
Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature 
(SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested 
metrics, except for SST, ∼ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condi-
tion uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the 
initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that 
a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction 
by 70% for 1–5 years lead times.

1  Introduction

Anthropogenic global warming has changed Earth’s climate 
over the last century (IPCC 2007, 2013) In this context, 
there is an ever increasing societal pressure to predict (as 
accurately as possible) climate changes from local to global 
scales and from seasonal to centennial time scales. Previ-
ous studies have suggested that on interannual to decadal 
time scales internal variability dominates the uncertainty 

in global temperature changes, whereas on multidecadal 
to centennial time scales the emission scenarios are more 
important (Hawkins and Sutton 2009; Branstator and Teng 
2012; IPCC 2013). Because of its slow variability and its 
large heat content, the ocean can control climate variations 
on interannual to decadal time scales. For example, vari-
ability of the Atlantic Meridional Overturning Circulation 
(AMOC) can suppress anthropogenically forced warming 
in the North Atlantic (Drijfhout 2015). Hence predicting 
AMOC variations, and more generally the North Atlantic 
Ocean state is crucial for accurate climate predictions on 
interannual to decadal time scales. Moreover, because of 
its robust quasi-harmonic multi-decadal variation (Kush-
nir 1994; Frankcombe and Dijkstra 2009; Chylek et al. 
2011), the North Atlantic is a perfect candidate for suc-
cessful interannual to decadal climate prediction (Griffies 
and Bryan 1997).

Considering the chaotic nature of several components 
of the climate system, in particular the atmosphere (Lor-
enz 1963), a pragmatic approach has been widely used to 
determine climate predictability on different time scales 
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(Hurrell et al. 2006; Meehl et al. 2009). This approach 
consists of acknowledging the uncertainty in initial condi-
tions by taking an ensemble of nearby initial conditions 
and evaluating the predictability by computing the time 
evolution of the spread of this ensemble (e.g., Boer 2011). 
There are various strategies to accurately sample the initial 
condition uncertainty and to accurately define the ensemble 
(e.g., Persechino et al. 2013). However, except for a few 
dedicated studies (e.g., Du et al. 2012; Baehr and Piontek 
2014; Germe et al. 2017b), the role of the oceanic uncer-
tainties has often been overlooked in these ensemble design 
strategies, despite being a possible source of predictability 
(Hawkins et al. 2016).

Since the early work of Griffies and Bryan (1997), there 
has been a large body of work suggesting the predictabil-
ity on interannual to decadal time scales of climatically 
relevant metrics of the North Atlantic Ocean, such as the 
AMOC (Collins and Sinha 2003; Pohlmann et al. 2004; 
Collins et al. 2006; Latif et al. 2006; Keenlyside et al. 
2008; Msadek et al. 2010; Teng et al. 2011). For example, 
Branstator and Teng (2014) suggested predictability of up 
to 20 years for one AMOC mode of variability, whereas 
Hermanson and Sutton (2010) suggested an average pre-
dictability of 5 years for the annual AMOC. Although 
using different methods to assess predictability, these two 
examples illustrate the difficulty of a robust quantitative 
estimation of AMOC predictability. Hence, despite good 
qualitative progress in assessing the interannual to decadal 
predictability of the North Atlantic climate variability, the 
quantitative results still substantially differ between stud-
ies. This disagreements might be caused by the model 
uncertainty that has been showed to dominate on decadal 
time scale (Hawkins and Sutton 2009). Beyond this, one 
other hypothesis to explain the lack of quantitative agree-
ment is the rather small number of members (∼ 10) used 
to build the ensembles (Sévellec and Sinha 2017). This 
number is far from being enough to systematically sam-
ple the initial condition uncertainty of the climate system 
(Deser et al. 2012). Hence another methodology is highly 
desirable to assess predictability on interannual to decadal 
time scales.

Generalized Stability Analysis has been developed to 
estimate the transient growth of small perturbations (GSA; 
Farrell and Ioannou 1996a, b) rather than their asymp-
totic growth, as used in classical Linear Stability Analysis 
(Strogatz 1994) This generalization to finite time develop-
ment makes GSA particularly well suited to study predict-
ability (Palmer 1999). Hence, in the context of the North 
Atlantic there has been a wide range of applications with 
this method, from idealized ocean models to fully coupled 
ones (Tziperman and Ioannou 2002; Zanna and Tziperman 
2008; Alexander and Monahan 2009; Hawkins and Sutton 
2011) and even observations (Zanna 2012). Sévellec et al. 

(2007) suggested a subtle but fundamental modification 
of the GSA: instead of estimating the maximum growth 
of perturbations through a quadratic norm, one can esti-
mate the maximum change in any linear combination of 
the state-variables.

This modification simplifies the solution going from an 
eigenvalues problem (i.e., singular value decomposition, 
hard to tackle in a state-of-the-art climate model) to an 
explicit solution (i.e., Linear Optimal Perturbation—LOP, 
Sévellec et al. 2007). This allowed the study of a wide 
range of climatically relevant problems of the North Atlan-
tic from idealized ocean models (Sévellec et al. 2007) to 
state-of-the-art ocean general circulation models (Sévellec 
and Fedorov 2017). Also, through this new formulation 
of GSA, changes are not restricted to non-normal growths 
and are easily comparable to the pragmatic ensemble 
approach based on perturbing initial conditions.

These methods are particularly useful to determine 
regions of sensitivities to ocean initial conditions (Mon-
tani et al. 1999; Leutbecher et al. 2002). They have been 
shown to be extremely efficient in improving typhoon fore-
casts (Qin and Mu 2011; Zhou and Mu 2011), for instance. 
Hence, in the context of the AMOC, Wunsch (2010) and 
Heimbach et al. (2011) suggested the use of these meth-
ods to assess regions where enhanced sampling strategy 
can improve prediction. Alternative methods to assess the 
effect of enhanced sampling strategies have also been pro-
posed, such as initializing different layers of the ocean 
(Dunstone and Smith 2010) but these methods are not yet 
able to determine the most sensitive region with the same 
level of details.

In this study, the relation between the two approaches 
is discussed and it is shown that under two assumptions 
(linearized dynamics and normal distribution of uncer-
tainties), the spread of an ensemble can be retrieved from 
a theoretical framework. Unlike the ensemble simulation 
strategy, the theoretical framework provides an exact quan-
titative estimate of the predictability (measured through the 
Predictive Power), as it does not depend on the arbitrary 
number of members like the ensemble method. In Sect. 2, 
we develop the method for a quantitative assessment of 
the predictability and illustrate the solution using an ideal-
ized stochastic model. In Sect. 3, we apply the solution to 
a state-of-the-art ocean general circulation model (GCM) 
for four ocean metrics related to the AMOC. Applications 
to the design of efficient monitoring systems for climate 
prediction are given in Sect. 4. A discussion on the limits 
of the methods, conclusions and directions for future work 
are included in Sect. 5.
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2 � Theory

2.1 � Propagating errors in a linear framework

Here we discuss the mathematical framework of our method. 
Readers more interested in its application to the North Atlan-
tic Ocean circulation can skip this section.

The prognostic equations of the full nonlinear ocean 
model can, after discretization, be written as a general 
non-autonomous finite-dimensional dynamical system:

where   are time-dependent nonlinear terms and the forcing 
of the model, �U⟩ is a state vector consisting of all prognostic 
variables, and t is time. The state vector is comprised of the 
three dimensional fields of temperature, salinity, and zonal 
and meridional velocities, together with the two dimensional 
field of barotropic stream function. Since we study a finite-
dimensional vector space, we can also define a dual vector 
⟨U� through the Euclidian scalar product ⟨U�U⟩.

We decompose the state vector as �U⟩ = ||Ū
⟩

 + �u⟩, 
where ||Ū

⟩
 is the nonlinear annually varying trajectory 

(i.e., the climatological background state) and �u⟩ is a per-
turbation. Under the assumptions of small perturbations 
and following Farrell and Ioannou (1996b), the temporal 
evolution of the perturbation follows a linear equation:

where �(t) is a Jacobian matrix (a function of the trajec-
tory ||Ū

⟩
) and ||f

sto
(t)
⟩
 is an anomalous stochastic forcing 

imposed by the atmospheric synoptic noise, now made 
explicit. We also define an adjoint to the Jacobian matrix 
�
† as ⟨a���b⟩ = ⟨b��†�a⟩, where �a⟩ and �b⟩ are two anoma-

lous state vectors.
We can integrate (2) to obtain an explicit expression 

for the perturbation as a function of time (Farrell and 
Ioannou 1996b) 

where ||uini(t)
⟩
 is the perturbation at time t induced by the 

initial disturbance at time ti, such that ��u(ti)⟩ = ||uini(ti)
⟩
; 

��usto(t)⟩ is the perturbation induced by the stochastic forc-
ing; and �(t, ti) is called the propagator of the linearized 

(1)dt�U⟩ =  (�U⟩, t),

(2)dt�u⟩ = �(t)�u⟩ + ��f
sto
(t)
�
,�(t) =

𝜕
𝜕�u⟩

�����Ū⟩
,

(3a)�u(t)⟩ = ���u
ini
(t)
�
+
��usto(t)

�
,

(3b)
|||u

ini
(t)
⟩
= �(t, ti)

|||u
ini
(ti)

⟩
,

(3c)||usto(t)
⟩
= ∫

t

ti

ds�(t, s)||f
sto
(s)

⟩
,

dynamics from the initial time ti to a time t. In gen-
eral the propagator does not commute with its adjoint, 
�

†

(ti, t)�(t, ti) ≠ �(t, ti)�
†

(ti, t), in which case the dynam-
ics is said to be non-normal.

2.2 � Ensemble spread and predictability

To evaluate the ocean state predictability we will focus on 
physical metrics of the form ⟨F�u⟩, where �F⟩ is a vector 
defining the cost function. The derivation below is adapted 
from the theoretical framework set by Chang et al. (2004) to 
fit the specific goals of our analysis.

Hence, according to (3), we can also follow the evolution 
of any metrics through the expression: 

We use the variance to evaluate the spread of the ensem-
ble. The independence of initial oceanic disturbances and 
atmospheric stochastic disturbances suggests that their 
covariance is weak and can be neglected. Hence, we obtain:

where �2
ini

 and �2
sto

 are the variances induced by a large sets 
of N initial oceanic disturbances (|||u

ini
k
(ti)

⟩
) and of corre-

sponding surface atmospheric disturbances (||f
sto
k
(s)

⟩
), 

respectively (k being the index of the random realization or 
of the individual member in the ensemble).

These two variances can be expressed as: 

 s i n c e  limN→∞

∑N

k=1

�
F�uini

k
(t)
�

 =  0  a n d 
limN→∞

∑N

k=1

�
F�usto

k
(t)
�

=0 by definition of the linear 
framework. Hence the spread of the ensemble is 

(4a)

⟨
F|uini(t)

⟩
=

⟨
F|�(t, ti)|uini(ti)

⟩
=

⟨
uini(ti)|�†

(ti, t)|F
⟩
,

(4b)

⟨
F|usto(t)

⟩
= ∫

t

ti

ds
⟨
F|�(t, s)|f sto(s)

⟩
= ∫

t

ti

ds
⟨
f sto(s)|�†

(s, t)|F
⟩
.

(5)�2
(t) ≃ �2

ini
(t) + �2

sto
(t),

(6a)

�2

ini
(t) =

1

N

N∑

k=1

{
⟨
F|uini

k
(t)
⟩
−

[
N∑

k=1

⟨
F|uini

k
(t)
⟩
]}2

=

1

N

N∑

k=1

⟨
F|uini

k
(t)
⟩2
,

(6b)

�2

sto
(t) =

1

N

N∑

k=1

{
⟨
F|usto

k
(t)
⟩
−

[
N∑

k=1

⟨
F|usto

k
(t)
⟩
]}2

=

1

N

N∑

k=1

⟨
F|usto

k
(t)
⟩2
,

(7a)
�2
ini
(t) =

1

N

N∑

k=1

⟨
F|�(t, ti)|uinik

(ti)
⟩2

=

1

N

N∑

k=1

⟨
uini
k
(ti)|�†

(t, ti)|F
⟩2
,
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 The Eqs. (7) suggest that to measure the spread of initial 
and stochastic disturbances we can either propagate all the 
N initial and stochastic disturbances and project them onto 
the cost function or propagate (with the adjoint) the cost 
function only once and project it on the N initial and stochas-
tic disturbances. Obviously, the latter is a lot more efficient 
and will even allow to rebuild the entire probability density 
function (PDF). Indeed, the application of a moment (here 
the second moment or variance) is applied as a post-compu-
tation diagnostic. Hence, this demonstration can be repro-
duced for any statistical moment (not only the variance), so 
that the statistical properties of the oceanic initial condi-
tion and atmospheric stochastic forcing uncertainties can 
be propagated in the same way. Applying this procedure on 
any statistical moment of the PDF (�ini

n
 and �sto

n
), we obtain: 

 Coming back to the special case of the variance, and 
acknowledging that ⟨F�v⟩2=⟨F�v⟩⟨v�F⟩ (where �v⟩ is any 
disturbance), (7) can be even more efficiently expressed as: 

where �ini and �sto are the variance matrices for ini-
tial and stochastic disturbances, respectively. Here we 
have used the properties of the white noise, both for oce-
anic initial condition and atmospheric stochastic distur-
bances: 

⟨
uini
k
(ti)|uinil

(ti)
⟩
 = �2

ini
�k,l and 

⟨
f sto
k
(s)|f sto

l
(s�)

⟩
 = 

(7b)

�2

sto
(t) =

1

N

N∑

k=1

⟨
F|∫

t

t
i

ds�(t, s)|f sto
k
(s)

⟩2

=
1

N

N∑

k=1

[

∫
t

t
i

ds
⟨
f sto
k
(s)|�†(s, t)|F

⟩]2
.

(8a)

�ini
n
(t) =

1

N

N∑

k=1

⟨
F|�(t, ti)|uinik

(ti)
⟩n

=

1

N

N∑

k=1

⟨
uini
k
(ti)|�†

(ti, t)|F
⟩n
,

(8b)

�sto

n
(t) =

1

N

N∑

k=1

⟨
F|∫

t

t
i

ds�(t, s)|f sto
k
(s)

⟩n

=
1

N

N∑

k=1

[

∫
t

t
i

ds
⟨
f sto
k
(s)|�†(s, t)|F

⟩]n
.

(9a)

�2
ini
(t) = ⟨F��(t, ti)

�
1

N

N�

k=1

���u
ini
k
(ti)

��
uini
k
(ti)

���

�
�

†

(ti, t)�F⟩,

=

�
F��(t, ti)�ini�

†

(ti, t)�F
�
,

(9b)

�2
sto
(t) =

1

N

N�

k=1
∫

t

ti

ds ∫
t

ti

ds
�

�
F�𝖬(t, s)�f sto

k
(s)

��
f sto
k
(s
�

)�𝖬†

(s
�, t)�F

�
,

= ∫
t

ti

ds ∫
t

ti

ds
� ⟨F�𝖬(t, s)

�
1

N

N�

k=1

���f
sto

k
(s)

��
f sto
k
(s
�

)

���

�
𝖬

†

(s
�, t)�F⟩,

= ∫
t

ti

ds
�
F�𝖬(t, s)sto𝖬

†

(s, t)�F
�
,

�2
sto
�k,l�(s − s�) where �k,l is the Kronecker delta and �(s − s�) 

is the Dirac delta function. The �ini and �sto matrices are 
diagonal where the terms on the diagonal are the variances 
of the uncertainty at each particular locations. It is important 
to note that these variance matrices do not provide a norm 
but a pseudo norm, since local variances can be zero, lead-
ing to singularities in the operators. These Eqs. (9) demon-
strate that the knowledge of the oceanic initial condition and 
atmospheric stochastic forcing variances, together with the 
propagation of the cost function by the adjoint is enough to 
diagnose at all times the evolution of the system variance 
measured through the cost function.

2.3 � Application to an idealized stochastic model

To illustrate our ability to compute the ensemble spread 
without running an ensemble we apply our method to an 
idealized stochastic model of anomalous sea surface tem-
perature (SST), where both oceanic initial condition uncer-
tainty (white noise with �SST = 5 × 10−2 K) and atmos-
pheric stochastic forcing (white noise with �SAT = 0.3 K) 
are imposed. The stochastic idealized model is derived 
from Hasselmann (1976) and Frankignoul and Hasselmann 
(1977), and reads:

where SSTk and SATk are random realizations of anomalous 
sea surface temperature and surface atmospheric tempera-
ture, respectively; k is the index of the random realization 
or of the individual member of the ensemble, and � is the 
inverse of an oceanic damping time scale set to 10 years.

Using this model we compute the ensemble spread through 
(9). Indeed, the solution of this idealized model of a Langevin 
equation is an Ornstein–Uhlenbeck process which can be 
determined analytically (see for example section 3.4 in Dijkstra 
2013). Hence, we obtain the evolution of the oceanic uncer-
tainties in the context of the idealized model as: 

 To validate the analytical result we also diagnose the total 
uncertainty from a large ensemble of 1000 members (differ-
ing in their random realization of both oceanic initial con-
dition uncertainty—SSTk(0)—and atmospheric stochastic 
forcing—SATk(t), Fig. 1a). As expected these two diagnos-
tics are identical (Fig. 1b), although the former is far more 
quantitatively accurate and computationally efficient (a sin-
gle simulation vs 1000 ones). Also, (9) allows us to attrib-
ute at each lead time the relative contribution of the two 
uncertainties in the total variance (Fig. 1c), which cannot be 

(10)dtSSTk(t) = −�
[
SSTk(t) − SATk(t)

]
,

(11a)�id
ini

2
(t) = �2

SST
e−2�(t−ti),

(11b)�id
sto

2
(t) = �2

SAT

�

2

[
1 − e−2�(t−ti)

]
.
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disentangled robustly with a classical forward integration of 
a large ensemble.

3 � Application to a detailed ocean GCM

3.1 � Experimental set‑up

To apply the exact same procedure as in Sect. 2.3, but now 
in a more realistic setting, we use a forced ocean GCM 
(NEMO-OPA 8.2, Madec et al. 1998) in a global realistic 
configurations (with a horizontal resolution of 2◦× 2 ◦ and 
31 vertical levels with a level distance ranging from 10 to 
500 m, Madec and Imbard 1996). We also use its tangent and 
adjoint components (OPATAM, Weaver et al. 2003). The 
combined model configuration follows Sévellec and Fedorov 
(2017) under flux boundary condition. We refer the reader to 
this study for further details of the model configuration and 
the climatological background state used here.

Despite being the typical configuration used in current 
climate prediction systems and in the last Coupled Model 
Intercomparison Project (CMIP5, Taylor et al. 2012), the use 
of non-eddy-resolving model is not trivial. Indeed the ocean 
chaotic behaviour is absent from this low resolution model. 
However, the oceanic solutions of these type of models 

remain irregular through ocean–atmosphere interactions 
and the propagation of the atmospheric uncertainty in the 
(almost-laminar) ocean (Germe et al. 2017b). As a result, in 
this study we assume that the oceanic uncertainty is forced 
by the chaotic nature of the atmosphere.

We select four typical ocean metrics of the North Atlan-
tic. The intensity of the AMOC (MVT, measured as the 
meridional volume transport above 1500 m at 50◦N), the 
meridional heat transport (MHT, measured at 25◦N), the 
spatially-mean SST (SST, average from 30◦N to 70◦N) and 
the oceanic heat content (OHC, measured as the mean tem-
perature from 30◦N to 70◦N and from the surface to the 
bottom of the ocean).

The two sources of uncertainty are assumed to be rep-
resented by white noise. For the oceanic initial condition 
uncertainty, given our relative poor knowledge of its true 
nature (Germe et al. 2017a) we choose a spatially-uniform 
white noise. The intensity of this spatially-uniform white 
noise was determined from typical uncertainties in ocean 
observations. To this end we used errors estimate from Argo 
float measurements in the North Atlantic (Debruyères et al. 
2016). This dataset provides 10-day mean uncertainties after 
objective interpolation on a 2◦ by 2◦ and 20 dB uniform grid 
over the 2004–2015 period. From this dataset we have built 
a distribution (regardless of the time or of the horizontal and 

Fig. 1   a Increase in anomalous 
sea surface temperature uncer-
tainty for the idealized stochas-
tic model descibed in Eq. (10). 
Each grey lines correspond to 
individual members— SST

k
(t). 

Thick black line is the ensemble 
mean, and thin black lines 
together with the grey shaded 
region represent plus/minus one 
ensemble standard deviation. 
b The ensemble spread (thick 
black line) is equivalent to the 
theoretical result (red dashed 
line) following the sum of Eqs. 
(11a) and (11b), whereas the 
perfect case (thin black line) 
represents the spread when 
initial condition uncertainty 
is ignored, uncertainty being 
restricted to the stochastic forc-
ing following Eq. (11b). c Frac-
tion of the variance between 
the two sources of uncertainty: 
(red) the atmospheric stochastic 
forcing following Eq. (11b) and 
(blue) the oceanic initial condi-
tion following Eq. (11a)
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vertical locations of the uncertainties) for the mean ORCA2-
grid volume after assuming the independence of the uncer-
tainties. To estimate a typical uncertainty we compute the 
mode (most frequent value), the median and the mean of 
this error distribution. We obtained 0.001, 0.05 and 0.13 K 
for these measures. (Note that typical error values for salin-
ity are roughly equivalent after rescaling them in term of 
temperature, using a linear equation of state for seawater: 
0.005, 0.04, and 0.12 K.) Hence, to cover the full range of 
uncertainties, we use three intensities: low with a standard 
deviation of 0.025 K, medium with 0.05 K and high with 
0.1 K. These values allow us to test the role of this parameter 
and explore different plausible values. For the atmospheric 
stochastic forcing, we also assume a white noise representa-
tion. The uncertainty intensity follows the standard deviation 
of SST and Sea Surface Salinity (SSS) diagnosed from a 
long control simulation of the IPSL coupled model (Fig. 2), 
which used NEMO as its oceanic component (Mignot et al. 
2013). To convert this temperature and salinity variations 
into tendency variations we scale them with a typical atmos-
pheric synoptic timescale of 7 days.

3.2 � Error growth attribution

Using this experimental set-up together with (9), we are able 
to diagnose the exact theoretical growth of the uncertainty 
(Fig. 3a1–4) and can attribute the contribution of oceanic 
initial condition and atmospheric stochastic forcing to the 
total uncertainty (Fig. 3b1–4). To compare our results with 
previous studies we also diagnose the Predictive Power such 
as PP = 1 − �2

(t)∕�2
∞

 (Schneider and Griffies 1999), where 
�2
∞

 is diagnosed as the variance of the ensemble spread in 
(5) evaluated at t = 40 year for a given metric (Fig. 3c1–4). 
This diagnostic is 0 if the uncertainty reaches its asymptotic 
value and 1 if negligible (negative values suggest that the 
uncertainty exceed asymptotic value).

Our analysis shows that the uncertainty for the SST met-
ric is almost equal to its asymptotic value after a few years 

(Fig. 3a3). Also, the oceanic initial condition uncertainty 
does not seem to play an important role for SST (Fig. 3b3). 
This suggests that the atmospheric synoptic noise is the main 
driver of the error growth. This leads to a rather weak Pre-
dictive Power over the 40 years tested (Fig. 3c3), suggesting 
that our ability to predict (i.e., potential prediction skill of) 
SST is restricted to values of less than 20% of its long-term 
variance and to interannual time scales. We emphasize, 
however, that this metric is not well represented in a forced 
ocean context. Hence conclusions from this experimental 
set-up might not be directly applicable to the coupled cli-
mate system.

For the three other metrics (MVT, MHT, and OHC) the 
uncertainty reaches its asymptotic value on much slower, 
multidecadal time scales (Fig. 3a1, 2, and 4). For OHC, 
however, the standard deviation is still slightly increasing at 
40 years. This might be problematic since 𝜎2

(40 years) < 𝜎2
∞

,  
which potentially lead to an underestimation of the predic-
tive power. Unlike SST, the OHC metric is also sensitive to 
the oceanic initial condition uncertainty. In the perfect case 
(absence of oceanic initial condition uncertainty), the error 
growth increases almost monotonically with time (Fig. 3a4), 
leading to an almost linear decrease of the Predictive Power 
from 1 to 0 over the 40 years tested (Fig. 3c4). This suggests 
that, in the absence of oceanic initial condition uncertainty, 

Fig. 2   a, b Standard deviation 
of SST and SSS, respectively, 
from a long simulation of the 
IPSL model (Mignot et al. 
2013). This standard deviations 
are used has the intensity of the 
atmospheric stochastic forcing 
(note that the atmospheric sto-
chastic forcing is applied glob-
ally, despite being represented 
here only in the North Atlantic, 
region of interest of the study)

Fig. 3   a1–4 Growth in the uncertainty using NEMO for four metrics 
of the North Atlantic ocean: a–c1 meridional volume transport at 50◦

N and 1500 m depth (MVT), a–c2 meridional heat transport at 25◦N 
(MHT), a–c3 sea surface temperature averaged in the Atlantic from 
30◦N to 70◦N (SST), and a–c4 temperature averaged in the Atlantic 
from 30◦N to 70◦N and from surface to bottom (OHC). The thick 
solid lines correspond to a uniform uncertainty in the oceanic initial 
condition of (blue—low) 0.025  K, (purple—medium) 0.05  K, and 
(red—high) 0.1  K of standard deviation. The black thin line repre-
sents the perfect case where the oceanic initial condition uncertain-
ties are neglected. b1–4 Attribution of uncertainty growth between 
atmospheric stochastic forcing and oceanic initial condition, using the 
medium uncertainty for the latter (0.05 K). c1–4 as a1–4 but for pre-
dictive power [PP = 1 − �2

(t)∕�2
∞

, where �2
∞

 is evaluated at 40 years]

▸
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OHC has a predictive skill that remains above 80% up to 
a decade, above 50% up to 20 years, and below 20% after 
3 decades. When not neglected the impact of oceanic initial 

condition uncertainty are mainly occurring over the first two 
decades (Fig. 3a4). Depending on the intensity of this error 
it can significantly impact the Predictive Power (Fig. 3c4). 
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In the most extreme case it suggests the absence of potential 
prediction skill after only 5 years. In this case it induces 
a slight overshoot (a variance bigger than the asymp-
totic value) of the OHC variance peaking between 10 and 
20 years. This implies that an initial error of such an inten-
sity has huge repercussion on prediction systems by pushing 
them beyond their natural attractor. However, using the aver-
age value for the oceanic uncertainty, we find that it domi-
nates the error growth on time scales up to 15 years, with a 
maximum impact of 75% of the error growth on interannual 
time scales (Fig. 3b4). This suggests that accurate oceanic 
initial condition can improve significantly the potential pre-
diction skill of OHC on interannual to decadal time scales.

The two last metrics (MVT and MHT) show the same 
overall behaviours, but differ from OHC. In the absence of 
oceanic initial condition uncertainty, the two error growths 
increase with time until a saturation value is reached around 
20–30 years (Fig. 3a1–2). This reflects on the predictive 
powers as an almost monotonous decrease in the exception 
of a plateau over the first ∼ 5 years (Fig. 3c1–2). When an 
oceanic initial condition uncertainty is applied the instan-
taneous error growth of the two metrics becomes huge, 
regardless of the applied intensity (Fig. 3a1–2). This sug-
gests that initial error on the oceanic field can lead to an 
overshoot of MVT and MHT variability, even for relatively 
weak intensity (0.025 K). This is of importance for predic-
tion systems since it suggests that such an error can push 
the system beyond its natural attractor. This result is con-
sistent with the analysis of Sévellec and Fedorov (2017). 
They demonstrated that small spatial-scale disturbances 
of the density field have important impacts on both MVT 
and MHT, because MVT and MHT are controlled by local 
East-West density differences (this result is summarized in 
the “Appendix”). Consequently, oceanic initial condition 
uncertainty removes any predictability on short interan-
nual time scales, regardless of its intensity (Fig. 3c1–2). 
However, these small spatial-scale disturbances disappear 
quickly because of the relatively fast effect of horizontal dif-
fusion on them (Sévellec and Fedorov 2017). This leads to 
a “sweet spot” for prediction around 5–10 years for meridi-
onal volume and heat transport. This originates from the 
sharp decrease of the oceanic uncertainty and the relatively 
slow increase of the atmospheric forcing uncertainty. Hence 
on interannual to decadal time scales the oceanic initial 
condition uncertainty dominates the error growth, whereas 
on decadal to multidecadal time scales the error growth is 
dominated by the atmospheric stochastic forcing for both 
MVT and MHT (Fig. 3b1–2). This suggests that MVT and 
MHT interannual to decadal predictions can be improved 
by a more accurate oceanic initialization.

It should be noted, however, that in a chaotic turbulent 
ocean, the sharp decrease in oceanic uncertainty might 

probably not take place. While the role of a small change in 
initial condition would still decrease on longer time-scales, sto-
chastic internal noise from ocean turbulence should enhance 
oceanic uncertainty when time progresses. Nevertheless, 
this “sweet spot” for prediction that arises in laminar ocean 
models, suggests that in the real ocean predictions 5–10 years 
ahead are still probably the most valuables in terms of signal 
to noise ratio.

4 � An optimal monitoring system

4.1 � Method

As mentioned earlier, to decrease the overall uncertainty, 
and so to increase potential predictability, we can reduce the 
oceanic initial condition uncertainty (unlike the stochastic 
atmospheric forcing uncertainty that will remain). This is par-
ticularly true for MVT, MHT and OHC, where oceanic initial 
condition uncertainty dominates the variance growth over 
interannual time scales. This reduction can be accomplished 
by a better monitoring system of the ocean state (i.e., accurate 
measurement of temperature and salinity). Here we show a 
way to design such an efficient monitoring system.

For this purpose we use the linear optimal perturbation 
framework. The formulation of LOP is summarized in the 
"Appendix" and we refer the reader to Sévellec et al. (2007) 
and Sévellec and Fedorov (2017) for further details. The LOP 
framework comprises the computation of the pattern of sen-
sitivity to initial conditions for a given linear metric (such 
as MVT, MHT, SST and OHC). The LOP depends on the 
lag between the initial condition perturbation and the metric 
response (examples of LOPs for different lags and for the 
four cost functions are shown in Figs. 7, 8, 9, 10). As we will 
demonstrate, the LOPs are directly relevant for the design of 
monitoring system.

We first define the optimal perturbation for a given cost 
function (i.e., the pattern of temperature and salinity anomalies 
that leads to the biggest change in the given cost function). 
Following the "Appendix", we obtain:

where � and � are a norm and a parameter setting a global 
normalization constraint on the LOP at time ti, such as 
⟨uopt(ti)���uopt(ti)⟩ = �2. The system’s response to the optimal 
perturbation gives the optimal variance and reads:

Combining (9a) and (12), one can rewrite the variance 
growth for any set of initial conditions as:

(12)��uopt(ti)
�
= ± �

�
−1
�

†

(ti, t)�F⟩√
⟨F��(t, ti)�

−1�†
(ti, t)�F⟩

,

(13)�2
opt
(t) =

⟨
F|uopt(t)

⟩2
= �2

⟨
F|�(t, ti)�

−1
�

†

(ti, t)|F
⟩
,
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One can easily check this expression by substituting (12) 
into the numerator of the second term on the right hand side 
of (14) and using (13) and (9a). We define a re-normalization 
factor, �, as:

where � has the same unit as �u⟩ and �. Using (13), we can 
then express the error growth linked to oceanic initial con-
ditions as:

This suggests that the variance of a set of initial conditions 
can be inferred from the optimal variance after applying a 
re-normalization factor (based on the local intensity of the 
initial condition uncertainty and the projection of it onto the 
optimal perturbation). This re-normalization factor is thus a 
way to go from a global initial uncertainty to the local one.

This last expression allows us to write the predictive 
power as:

where �2
∞

 = �2
(∞) = �2

sto
(∞), since limt→∞

�2
ini
(t) = 0 (i.e., 

the system is asymptotically stable, Sévellec and Fedorov 
2013). This leads to the property that

This gives a lower and upper theoretical bounds to the pre-
dictive power.

This result has important consequences for the design of 
efficient monitoring systems. Indeed, increasing measure-
ments in regions of high values of the LOP will decrease the 
initial condition uncertainty in those regions, hence reducing 
the re-normalization factor, since the latter is the norm of 
the LOP to the initial condition uncertainty. This will natu-
rally increase the Predictive Power to its ideal value: PPPerfect 
= 1 − �2

sto
(t)∕�2

∞

, since lim�4→0 �
2
ini
(t) = 0. This result also 

demonstrates the usefulness of data-targeting: one should 
decrease the uncertainty in regions of high intensity of the 
LOP.

We have tested this approach in the ocean GCM and 
found that data-targeting is indeed particularly efficient at 
decreasing the error growth. To define the optimal monitor-
ing system we have normalized the time integral from 0- to 
40-years delay of absolute temperature and salinity patterns 

(14)�2
ini
(t) =

�
F�uopt(t)

�2 ⟨uopt(ti)𝖲ini𝖲
��uopt(ti)⟩

�4
.

(15)�4 = ⟨uopt(ti)𝖲ini𝖲
��uopt(ti)

�

(16)�2
ini
(t) = �2

opt
(t)
(
�

�

)4

.

(17)PP = 1 −

[
�2
sto
(t)

�2
∞

+

�2
opt
(t)

�2
∞

(
�

�

)4
]
,

(18)1 −
�2
sto
(t) + �2

opt
(t)

�2
∞

≤ PP ≤ 1 −
�2
sto
(t)

�2
∞

.

obtained from the LOPs. This gives us a relative sensitivity 
to initial condition in terms of temperature and salinity at all 
time scales that can be mathematically expressed as: 

where T and S are the optimal pattern of the LOP in terms 
of temperature and salinity from ��uopt(ti)⟩ and OOD is the 
Optimal Observation Density (Fig. 4).

Hence assuming no uncertainty in oceanic initial condi-
tions in regions of high OOD (and modifying �ini accord-
ingly) we see a decrease in error growth, which converges 
to the perfect case (where oceanic initial condition uncer-
tainty is neglected). This applies to all prediction time scales 
(Fig. 4a). Significant improvement is especially possible for 
the MVT with an optimal monitoring system that is quite 
narrow and mainly located in the Labrador Sea (Fig. 4b1, 
c1). SST does not show any improvement (Fig. 4a3). This 
is expected given the strong control of atmospheric stochas-
tic forcing over error growth in SST (Fig. 3b3). MHT and 
OHC improvement remains possible (Fig. 4a2, a4) but the 
rather large scale spread of their OOD (Fig. 4b–c2, b–c4) 
suggests technical difficulty in monitoring accurately such 
large regions of the ocean.

4.2 � Applicability to in situ measurements

The knowledge of OOD is extremely useful for fundamental 
understanding of the sensitivity regions of the ocean. How-
ever, it remains the question of the feasibility of its develop-
ment, even as a guide to future monitoring systems. Hence 
it is fundamental to relate it to current in situ observational 
systems and in particular to their technological limitations.

In this context, it is interesting to note the high intensity 
of OOD below 2000 m (Fig. 4c1–4, especially for OHC 
metric) which is currently the typical maximum depth of 
Argo float temperature and salinity measurements. This 
result, which has already been suggested in a wide range 
of studies (Wunsch 2010; Dunstone and Smith 2010; 
Heimbach et al. 2011; Germe et al. 2017b), implies that 
the maximum improvement in prediction skill can only be 
gained by also accurately monitoring the deep ocean, as 
soon possible with the development of Deep Argo floats.

Alternatively, monitoring arrays or specific scientific 
cruise transects can also act to reduce the uncertainty. To 
diagnose the best latitudinal location in the North Atlan-
tic, we have computed the zonal and depth averages of the 

(19a)OOD =

1

2

[
T̃

max
(
T̃
) +

S̃

max
(
S̃
)
]
,

(19b)T̃ = ∫
40years

0

dti |T(ti)|, and S̃ = ∫
40year

0

dti |S(ti)|,
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OOD for each metrics (Fig. 5). Our study suggests that, to 
be the most efficient to reduce prediction uncertainty, tran-
sects should be located around 55◦N for MVT (northward 
to the MVT measurement at 50◦N), whereas 35◦N–45◦N is 
the most efficient latitudinal band for MHT, SST and OHC. 
This suggests that the most efficient latitudes are always in 
the subpolar region rather than in the subtropical one (even 
for MHT despite being estimated at 25◦N). In particular, our 
study suggests the usefulness of the OSNAP array (located 
between 53◦N and 60◦N, Lozier et al. 2016) compared to the 
RAPID array (located at 26.5◦N, McCarthy et al. 2012) to 
reduce prediction uncertainties of the MVT metrics.

Beyond these more classical ocean monitoring systems, 
our method can also provide guidance for more innova-
tive in situ ocean measurements, such as glider journeys. 
To this purpose we estimate the area covered by a single 

glider over a month. Following Wood (2010) and Gafurov 
and Klochkov (2015) typical travel speed for Deepglider is 
0.25 m s−1 and assuming a 160 km autocorrelation length 
scale for oceanic observations (Purkey and Johnson 2010) 
we find: ∼100,000 km2. On the other hand, from ODD we 
can compute the decrease of uncertainty per area moni-
tored assuming that all depth are monitored as now pos-
sible with Deepgliders. Comparing these two estimates 
gives us the reduction for a glider fleet size for the MVT 
error gowth (Fig. 6). Hence our estimation suggests that 
for a fleet of 70 gliders the uncertainty due to oceanic ini-
tial condition can be reduced by 90% for the first 5 years 
and by 80% for 10 years. Even with only 15 gliders the 
error is already reduced by more than 70% on time scales 
from 1 to 5 years.

5 � Discussion and conclusion

In this study, we have focused on the North Atlantic to assess 
the predictability of four ocean metrics: the AMOC intensity 
(MVT at 50◦N and above 1500 m depth), the intensity of its 
heat transport (MHT at 25◦N), the spatially-averaged SST 
over the North Atlantic (from 30◦N to 70◦N), and the spatial 
and depth averaged North Atlantic ocean temperature (from 
30◦N to 70◦N). Here we propose a theoretical framework 
to quantitatively assess the growth of small perturbations.

Fig. 4   a1–4 Error growth and b1–4 optimal monitoring system fol-
lowing Eq. (19) in the upper (0–2056 m) and c1–4 deep ocean (2056–
4001 m) for a–c1 MVT, a–c2 MHT, a–c3 SST, and a–c4 OHC met-
rics. Note that the definition of the deep ocean is below typical Argo 
floats coverage. a1–4 The error growth decreases when uncertainty 
in the oceanic initial condition is decreased, from a uniform uncer-
tainty of (thick black lines) 0.05 K of standard deviation, by removing 
uncertainty in region of high optimal observation density: no uncer-
tainty for (green thin lines) OOD > 0.5, (brown thin lines) OOD > 
0.25, and (red thick lines) OOD > 0.1. The decrease converges to the 
perfect case, where no uncertainty in the oceanic initial conditions is 
assumed (black thin lines)

◂

Fig. 5   Normalized vertical and 
zonal average of the optimal 
monitoring system following 
(19) and shown in Fig. 4 for a 
MVT, b MHT, c SST, and d 
OHC. The maximum values 
show location where repeated 
transects or a mooring array 
would be the most efficient to 
reduce error growth in predic-
tion
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Following the study of Chang et al. (2004), we have 
developed an exact expression of the ocean predictabil-
ity for given metrics under 3 main assumptions. (1) The 
uncertainty remains small (linear assumption); (2) the 
uncertainty follows a normal distribution (independence of 
uncertainties); and (3) the ocean dynamics can be treated 
in a forced context (absence of explicit ocean–atmosphere 
feedback). In addition, this theoretical result allows us to 
separate the sources of uncertainty. We are thus able to 
attribute on a dynamical ground the relative role of inter-
nal oceanic initial condition uncertainty and of external 
atmospheric synoptic noise on ocean prediction uncer-
tainty. After illustrating the method in an idealized model 
where analytic solutions are known (Hasselmann 1976) 
the method has been applied to a state-of-the-art GCM 
(NEMO, Madec et al. 1998) in its 2◦ realistic configuration 
(ORCA2, Madec and Imbard 1996). Given the importance 
of the model uncertainty on the time scales studied (Hawk-
ins and Sutton 2009), it is worth noting that the single 
model approach used in this study limits the generalization 
of our results. Hence our developed framework needs to 
be applied to other ocean GCMs as well. In particular the 
location and intensity of deep convection, that is crucial 
for meridional volume transport (Sévellec and Fedorov 
2015) might be strongly model-dependent, potentially 
modulating the optimal monitoring system.

Our analysis suggests that spatially-averaged SST uncer-
tainty is strongly dominated by the atmospheric synoptic 
noise (Fig. 3b3), with a strong impact at all time scales, 
suggesting the limited predictability of this metric. The three 

other metrics (MVT, MHT and OHC, Fig. 3b1, 2 and 4) are 
dominated (∼ 80%) by oceanic initial condition uncertainty 
on interannual time scales (< 5 years). Whereas the Predic-
tive Power of OHC is monotonically decreasing suggesting 
the higher predictability of shorter time scales, MVT and 
MHT predictive power features a “sweet spot” at interannual 
time scales (Fig. 3c). This means that MVT and MHT are 
especially predictable on 5–10 years time scales where the 
signal to noise ratio peaks.

These results were obtained by focusing on the propa-
gation of the error measured through the variance of its 
probability density function. We have shown that we can 
also compute solutions for other statistical moments, and 
so potentially reconstruct the entire probability density 
function. However, we are limited by two assumptions 
that restrict the generalization of our solutions. The first 
assumption is on the structure of the atmospheric stochas-
tic forcing and of oceanic initial condition uncertainty. 
Assuming a Gaussian white noise leads to simplification 
in the mathematical treatment of the problem and allows 
an analytic solution. Hence, by construction our theoreti-
cal solution and its numerical application with the ocean 
GCM consider only random spatially-uncorrelated errors 
for the oceanic initial condition uncertainties. However 
initial conditions uncertainties, which are often derived 
from ocean reanalysis for operational prediction systems, 
might not have such a useful property. They are often spa-
tially correlated. This might change our results. In particu-
lar, this might eliminate the important interannual uncer-
tainties for MHT and MVT due to rapid unbalanced errors. 

Fig. 6   Relative reduction of 
the MVT error growth (due to 
oceanic initial condition uncer-
tainty) as a function of moni-
tored area following the optimal 
monitoring system (vertical 
average of Fig. 4b1, c1). For 
comparison we have computed 
the glider fleet number required 
to cover the monitored area in 
a month, assuming a 0.25 m 
per second travel speed (Wood 
2010; Gafurov and Klochkov 
2015) and a 160 km spatial cor-
relation of observations (Purkey 
and Johnson 2010). (Gliders are 
assumed to reach the bottom of 
the ocean, as now possible with 
Deepgliders.) Thick solid line is 
50%, and thin dashed and solid 
lines are for lower and higher 
values, respectively; contour 
interval is 10%
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Hence, it would be ideal to generalize our theoretical result 
to a more general uncertainty. This will be a direction for 
future investigation. The other assumption is on the linear-
ity of the dynamics which limits the behaviour that can 
be represented. For instance, the possible occurrence of 
qualitative changes in the probabilistic distribution (e.g., 
P-bifurcation), such as the change from an unimodal to a 
bi-modal distribution, cannot be captured. In this context 
other methods should be used such as the pullback attrac-
tor (e.g., Ghil et al. 2008) or transfer operator (e.g., Tantet 
et al. 2015) techniques. However they appear to be still 
computationally expensive and are currently only appli-
cable for idealized models.

The dominance of oceanic initial condition uncertainty in 
the overall MVT, MHT and OHC uncertainty strongly sug-
gests the possible improvement of predicting these metrics. 
This source of uncertainty can be reduced by an accurate 
monitoring of the oceanic state. By using LOPs to design an 
optimal monitoring system, reduction of such uncertainty is 
accomplished. Such monitoring systems can be done by the 
deployment of a suited mooring array or repeated transects 
at 35◦N and 55◦N. Alternatively, a fleet of gliders might be 
able to efficiently sample the important regions. We estimate 
that a fleet of 15 gliders can reduced the uncertainty due to 
oceanic initial condition by more than 70% on time scales 
from 1 to 5 years. Also, since gliders are a type of autono-
mous robotic vehicle, they can both monitor the suggested 
region and be re-oriented on the fly as the optimal monitor-
ing system evolves. At an operational level our method cou-
pled to a glider fleet would provide a self-adaptative network 
specifically designed for improving a prediction system.

The spatial resolution of the ocean model used here restricts 
the study of ocean dynamics to non-eddying regimes. Hence 
testing the role of oceanic mesoscale eddies is a direction for 
future work, that would require the extension of the current 
method to a fully nonlinear framework (following conditional 
nonlinear optimal peturbations by Mu and Zhang 2006; Li 
et al. 2014, for instance). The ocean-only forced context of 
our analysis neglects the impact of large scale atmospheric 
feedbacks. However, Sévellec and Fedorov (2017) showed that 
the LOPs are only marginally modified by the ocean surface 
boundary conditions and Germe et al. (2017a) demonstrated 
that the overall expected behaviour of LOPs is conserved in a 
coupled context, despite a reduction of impact. We anticipate 
that both air-sea interaction and ocean turbulence impact the 
error growth. The “sweet spot” around 5–10 years for MVT 
and MHT, showing a minimum in uncertainty in the laminar 
ocean model, suggests that predicting these time scales in a 
fully coupled and eddy-resolving climate model is probably 
most valuable in terms of signal-to-noise ratio and that further 
development of the method outlined here to more complex 
Earth System Models is a promising route for improving cli-
mate predictions.
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Appendix: LOP computation

Here, we summarize the calculation of the Linear Optimal Per-
turbation. The discussion closely follows a series of studies on 
similar topics (see Sévellec et al. 2007; Sévellec and Fedorov 
2017, for instance).

To find the optimal perturbation associated to a metric ⟨F 
under the constraint of the LOP falling within the initial con-
dition uncertainty (i.e., a global size constraint or an average 
local variance constraint), we define the Lagrangian function 
as:

where ti is the initial time (when the optimal initial perturba-
tion is applied), t is the maximization time (when the cost 
function reaches its maximum value), and � is a Lagrange 
multiplier. Furthermore, � and � are a parameter and a norm, 
respectively, associated with the normalization constraint:

where � and � are the thermal expansion and haline con-
traction coefficients, respectively; and dv and V are the unit 
and total ocean volumes (note that � is invertible since it 
represents a norm). That is, � measures the magnitude of 
the initial perturbation and restricts the perturbation to be 
within a globally average initial uncertainty and is set to �
/� = 1 mK. The goal here is to maximize the cost function 
subject to this normalization constraint.

From expression (20) and the optimization condition �= 
0 the optimal initial perturbations are computed as

Hence we can bound the impact of the initial disturbances 
as:

(20)(��u(ti)⟩, �) = ⟨F�u(t)⟩ − �
�
⟨u(ti)���u(ti)⟩ − �2

�
,

(21)⟨u(ti)���u(ti)⟩ = ∭
�2T2

+ �2S2

V
dv = �2,

(22)��uopt(ti)
�
= ± �

�
−1
�

†

(ti, t)�F⟩√
⟨F��(t, ti)�

−1�†
(ti, t)�F⟩

.

(23)

�
F�uopt(t)

�
=

�
F��(t, ti)�uopt(ti)

�
= ± �

�
⟨F��(t, ti)�

−1�†
(ti, t)�F⟩.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Examples of LOPs and their predicted impact are displayed 
in Figs. 7, 8, 9, and 10, using MVT, MHT, SST, and OHC 
for their cost functions, respectively. They have been studied 
in detail by Sévellec and Fedorov (2017). Here, we sum-
marize their relevant behaviours for this study. Depending 

on the cost function, LOPs are dramatically different. For 
OHC and SST, LOPs are basin-scale anomalies acting most 
efficiently on interannual to decadal time scales (Figs. 9, 
10); for MVT and MHT, together with their basin-scale sig-
nature LOPs have also a small spatial-scale signature and 

Fig. 7   Linear optimal perturbations of the MVT metrics. a The MVT 
response to LOP is computed for delay ranging from 0 to 40 years. 
b–e Four examples of LOP for delay of 2, 5, 10 and 20 years, as indi-
cated by the vertical lines in a: b-e1 0–2056 m average temperature, 

b-e2 2056–4001  m average temperature, b-e3 0–2056  m average 
salinity, b-e4 2056–4001 m average salinity. For comparison all LOPs 
are normalized by 

√
⟨uopt(t

i
)���uopt(t

i
)⟩/� = 1 mK
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act most efficiently instantaneously (Figs 7, 8). This can 
be rationalized by the intrinsic characteristics of the met-
rics. Whereas, MVT and MHT are virtually equivalent to 
East–West density differences (that can be induced by both 
small and large spatial-scale disturbances), OHC and SST 

are basin-scale spatial-averages of temperature field (filter-
ing-out their sensitivity to small spatial-scale disturbances). 
All the LOPs have important signature in the deep ocean 
(included below 2000 m).

Fig. 8   As Fig. 7 but for the MHT metric
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Fig. 9   As Fig. 7 but for the SST metric



Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application…

1 3

References

Alexander J, Monahan AH (2009) Nonnormal perturbation growth 
of pure Thermohaline Circulation using a 2D zonally averaged 
model. J Phys Oceanogr 39:369–386

Baehr J, Piontek R (2014) Ensemble initialization of the oceanic com-
ponent of a coupled model through bred vectors at seasonal- to-
interannual timescales. Geosci Model Dev 7:453–461

Boer GJ (2011) Decadal potential predictability of twenty-first century 
climate. Clim Dyn 36:1119–1133

Branstator G, Teng H (2012) Two limits of initial-value decadal pre-
dictability in a CGCM. J Clim 23:6292–6311

Branstator G, Teng H (2014) Is AMOC more predictable than north 
Atlantic heat content? J Clim 27:3537–3550

Chang J et al (2004) Predictability of linear coupled systems. Part I: 
theoretical analyse. J Clim 17:1474–1486

Fig. 10   As Fig. 7 but for the OHC metric



	 F. Sévellec et al.

1 3

Chylek P et al (2011) Ice-core data evidence for a prominent near 20 
year time-scale of the Atlantic Multidecadal Oscillation. Geophys 
Res Lett 38(L13):704

Collins M, Sinha B (2003) Predictability of decadal variations in the 
thermohaline circulation and climate. Geophys Res Lett 30:1306

Collins M et al (2006) Interannual to decadal climate predictabil-
ity in the North Atlantic: a multimodel-ensemble study. J Clim 
19:1195–1203

Debruyères DG et al (2016) Global and full-depth ocean temperature 
trends during the early 21st century from argo and repeat hydrog-
raphy. J Clim 30:1985–1997

Deser C et al (2012) Uncertainty in climate change projections: the role 
of internal variability. Clim Dyn 38:527–546

Dijkstra HA (2013) Nonlinear climate dynamics. Cambridge University 
Press, Cambridge, p 357

Drijfhout S (2015) Competition between global warming and an 
abrupt collapse of the AMOC in Earth’s energy imbalance. Sci 
Rep 5(14):877

Du H et al (2012) Sensitivity of decadal predictions to the initial atmos-
pheric and oceanic perturbations. Clim Dyn 39:2013–2023

Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-sur-
face ocean data on decadal climate prediction. Geophys Res Lett 
37(L02):709

Farrell BF, Ioannou PJ (1996a) Generalized stability theory. Part I: 
autonomous operators. J Atmos Sci 35:2025–2040

Farrell BF, Ioannou PJ (1996b) Generalized stability theory. Part II: 
nonautonomous operators. J Atmos Sci 53:2041–2053

Frankcombe LM, Dijkstra HA (2009) Coherent multidecadal variabil-
ity in North Atlantic sea level. Geophys Res Lett 36(L15):604

Frankignoul C, Hasselmann K (1977) Stochastic climate models, Part 
II. Application to sea-surface temperature anomalies and thermo-
cline variability. Tellus 29:289–305

Gafurov SA, Klochkov EV (2015) Autonomous unmanned underwater 
vehicles development tendencies. Procedia Eng 106:141–148

Germe A et al (2017a) Impacts of the North Atlantic deep temperature 
perturbations on decadal climate variability and predictability. 
Clim Dyn (submitted)

Germe A et al (2017b) On the robustness of near term climate predict-
ability regarding initial state uncertainties. Clim Dyn 48:353–366

Ghil M, Chekroun M, Simonnet E (2008) Climate dynamics and fluid 
mechanics: natural variability and related uncertainties. Phys D 
237:2111–2126

Griffies SM, Bryan K (1997) A predictability study of simulated North 
Atlantic multidecadal variability. Clim Dyn 13:459–487

Hasselmann K (1976) Stochastic climate models. Part I: Theory. Tel-
lus 28:473–485

Hawkins E, Sutton R (2009) The potential to narrow uncertainty in 
regional climate predictions. Bull Am Meteorol Soc 90:1095–1107

Hawkins E, Sutton R (2011) Estimating climatically relevant singu-
lar vectors for decadal predictions of the Atlantic Ocean. J Clim 
24:109–123

Hawkins E et al (2016) Irreducible uncertainty in near-term climate 
projections. Clim Dyn 46:3807–3819

Heimbach P et al (2011) Timescales and regions of the sensitivity of 
atlantic meridional volume and heat transport: toward observing 
system design. Deep Sea Res Part II 58:1858–1879

Hermanson L, Sutton L (2010) Case studies in interannual to decadal 
climate predictability. Clim Dyn 35:1169–1189

Hurrell J et al (2006) Atlantic climate variability and predictability: a 
CLIVAR perspective. J Clim 19:5100–5121

IPCC (2007) Climate change 2007—the physical science basis: con-
tribution of Working Group I to the Fourth Assessment Report of 
the IPCC. Cambridge University Press, Cambridge

IPCC (2013) Climate change 2013—the physical science basis: con-
tribution of Working Group I to the Fifth Assessment Report of 
the IPCC. Cambridge University Press, Cambridge

Keenlyside NS et al (2008) Advancing decadal-scale climate prediction 
in the North Atlantic sector. Nature 453:84–88

Kushnir Y (1994) Interdecadal variations in North Atlantic sea sur-
face temperature and associated atmospheric conditions. J Clim 
7:141–157

Latif M et al (2006) A review of predictability studies of Atlantic 
sector climate on decadal time scales. J Clim 19:5971–5986

Leutbecher M et al (2002) Potential improvement to forecasts of two 
severe storms using targeted observations. Q J R Meteorol Soc 
128:1641–1670

Li Y, Peng S, Liu D (2014) Adaptive observation in the South 
China Sea using CNOP approach based on a 3-D ocean 
circulation model and its adjoint model. J Geophys Res. 
doi:10.1002/2014JC010 220

Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 
20:130–141

Lozier MS et al (2016) Overturning in the Subpolar North Atlantic 
Program: a new international ocean observing system. Bull Am 
Meteorol Soc 98:737–752

Madec G, Imbard M (1996) A global ocean mesh to overcome the 
North Pole singularity. Clim Dyn 12:381–388

Madec G, et al (1998) OPA 8.1 ocean general circulation model refer-
ence manual. Tech. Rep., Institut Pierre-Simon Laplace (IPSL), 
France, No. 11, p 91

McCarthy G et al (2012) Observed interannual variability of the Atlan-
tic meridional overturning circulation at 26.5◦N. Geophys Res 
Lett 39(L19):609

Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Am 
Meteorol Soc 90:1467–1485

Mignot J et al (2013) On the evolution of the oceanic component of 
the IPSL climate models from CMIP3 to CMIP5: a mean state 
comparison. Ocean Modell 72:167–184

Montani A et al (1999) Forecast skill of the ECMWF model using 
targeted observations during FASTEX. Q J R Meteorol Soc 
125:3219–3240

Msadek R et al (2010) Assessing the predictability of the Atlantic 
meridional overturning circulation and associated fingerprints. 
Geophys Res Lett 37(L19):608

Mu M, Zhang Z (2006) Conditional nonlinear optimal perturbations 
of a two-dimensional quasigeostrophic model. J Atmos Sci 
63:1587–1604

Palmer TN (1999) A nonlinear dynamical perspective on climate pre-
diction. J Clim 12:575–591

Persechino A et al (2013) Decadal predictability of the Atlantic meridi-
onal overturning circulation and climate in the IPSL-CM5A-LR 
model. Clim Dyn 40:2359–2380

Pohlmann H et al (2004) Estimating the decadal predictability of cou-
pled AOGCM. J Clim 17:4463–4472

Purkey SG, Johnson GC (2010) Warming of global abyssal and deep 
southern ocean waters between the 1990s and 2000s: contributions 
to global heat and sea level rise budgets. J Clim 23:6336–6351

Qin X, Mu M (2011) Influence of conditional nonlinear optimal per-
turbations sensitivity on typhoon track forecasts. R Meteorol Soc 
Q J. doi:10.1002/qj.902

Schneider T, Griffies SM (1999) A conceptual framework for predict-
ability studies. J Clim 12:3133–3155

Sévellec F, Ben Jelloul M, Huck T (2007) Optimal surface salinity 
perturbations influencing the thermohaline circulation. J Phys 
Oceanogr 37:2789–2808

Sévellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of 
the Atlantic meridional overturning circulation in a realistic ocean 
model. J Clim 26:2160–2183

Sévellec F, Fedorov AV (2015) Optimal excitation of AMOC dec-
adal variability: links to the subpolar ocean. Prog Oceanogr 
132:287–304

https://doi.org/10.1002/2014JC010%20220
https://doi.org/10.1002/qj.902


Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application…

1 3

Sévellec F, Fedorov AV (2017) Predictability and decadal variability 
of the North Atlantic ocean state evaluated from a realistic ocean 
model. J Clim 30:477–498

Sévellec F, Sinha B (2017) Predictability of decadal Atlantic Meridi-
onal overturning circulation variations. Oxford Research Ency-
clopedia of Climate Science (submitted)

Strogatz SH (1994) Nonlinear dynamics and chaos with applications 
to physics, biology, chemistry and engineering. Advanced book 
program, Perseus book, p 498

Tantet A, van der Burgt FR, Dijkstra HA (2015) An early warning 
indicator for atmospheric blocking events using transfer operators. 
Chaos 25(036):406

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and 
the experiment design. Bull Am Meteorol Soc 93:485–498

Teng H, Branstator G, Meehl GH (2011) Predictability of the Atlan-
tic overturning circulation and associated surface patterns in 
two CCSM3 climate change ensemble experiments. J Clim 
24:6054–6076

Tziperman E, Ioannou PJ (2002) Transient growth and optimal excita-
tion of thermohaline variability. J Phys Oceanogr 32:3427–3435

Weaver AT, Vialard J, Anderson DLT (2003) Three- and four-dimen-
sional variational assimilation with a general circulation model of 
the tropical Pacific Ocean. Part 1: formulation, internal diagnos-
tics and consistency checks. Mon Weather Rev 131:1360–1378

Wood S (2010) Autonomous underwater gliders. Underwater vehicles. 
Tech. Rep, Florida Institute of Technology

Wunsch C (2010) Observational network design for climate. In: Ocean-
Obs2009 plenary papers, 1. doi:10.5270/OceanObs09.pp.41

Zanna L (2012) Forecast skill and predictability of observed Atlantic 
sea surface temperatures. J Clim 25:5047–5056

Zanna L, Tziperman E (2008) Optimal surface excitation of the ther-
mohaline circulation. J Phys Oceanogr 38:1820–1830

Zhou F, Mu M (2011) The impact of verification area design on tropical 
cyclone targeted observations based on the CNOP method. Adv 
Atmos Sci 28:997–1010

https://doi.org/10.5270/OceanObs09.pp.41

	Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application to the design of optimal monitoring systems
	Abstract
	1 Introduction
	2 Theory
	2.1 Propagating errors in a linear framework
	2.2 Ensemble spread and predictability
	2.3 Application to an idealized stochastic model

	3 Application to a detailed ocean GCM
	3.1 Experimental set-up
	3.2 Error growth attribution

	4 An optimal monitoring system
	4.1 Method
	4.2 Applicability to in situ measurements

	5 Discussion and conclusion
	Acknowledgements 
	References


