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Abstract 

A sequence of major flood events in Britain over the last two decades has prompted 

questions about the influence of anthropogenic greenhouse gas emissions on flood 

risk. Such questions are difficult to answer definitively, as a range of other factors are 

involved, but modelling techniques allow an assessment of how much the chance of 

occurrence of an event could have been altered by emissions. Here, the floods of 

Winter 2013/14 in Great Britain are assessed by combining ensembles of climate 

model data with a national-scale hydrological model and, for one severely-impacted 

river basin (the Thames), a detailed analysis of flood inundation and the increased 

number of residential properties placed at risk. One climate model ensemble 

represents the range of possible weather under the current climate, while 11 alternative 

ensembles represent the weather as it could have been had past emissions not 

occurred. The pooled ensemble results show that emissions are likely to have 

increased the chance of occurrence of these floods across much of the country, with a 

stronger influence on longer duration peaks (~10 days or more) than for shorter 

durations (consistent with observations). However, there is substantial variation in 

results between alternative ensembles, with some suggesting likely decreases in the 

chance of flood occurrence, at least in some regions of the country. The influence on 

flows and property flooding varies spatially, due to both spatial variation in the influence 

on precipitation and variation in physical properties that affect the transformation of 

precipitation to river flow and flood impacts, including flood defences. This complexity 

highlights the importance of using hydrological modelling to attribute hydrological 

impacts from meteorological changes. Changes in snow occurrence in a warming 

climate are also shown to be important, with effects varying spatially.  
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1 Introduction 

It is now widely accepted that climate change will have significant impacts on the 

hydrological cycle, globally and regionally, and there are increasing signs of 

hydrological changes having already occurred, rather than just being a concern for the 

future (Jiménez Cisneros et al. 2014, Blöschl et al. 2017). Detection and attribution of 

observed hydrological changes to anthropogenic emissions is difficult however, due to 

the influence of a range of other factors (both anthropogenic and natural) and because 

available records are often relatively short (Hannaford 2015), making statistical tests 

prone to uncertainty.  

In the UK, there is evidence of observed changes in precipitation, evaporation and river 

flows, although with varying levels of confidence and little evidence to link them to 

anthropogenic climate change (Watts et al. 2015). Although there has been little 

change in annual mean precipitation for England and Wales (since records began in 

1766), there have been winter increases and summer decreases, and more recent 

changes in heavy rainfall (Jenkins et al. 2008). There have also been increases in 

evaporation (Kay et al. 2013) and decreases in snow (Kay 2016). Each of these is 

likely to have affected river flows; analyses suggest increases in annual and winter 

runoff across much of the UK but decreases in summer runoff for England (1961-

2011), along with increases in high flow magnitude and duration to the north and west 

of the UK, although the latter are not always coincident with increases in peak flows 

like annual maxima (Hannaford 2015).  

Floods are one of the most damaging natural hazards, threatening lives and livelihoods 

worldwide. Floods present a serious natural hazard in the UK, with over 5 million 

properties considered at risk of flooding from one or more sources (rivers, surface 

water, coastal) (Thorne 2014). A sequence of major floods has occurred in the UK over 

the last two decades (Hannaford 2015); Easter 1998 (the Midlands), Autumn 2000 

(much of England and Wales), Summer 2007 (central and northern England), 

November 2009 (north-west Britain), Summer/Autumn 2012 (much of Britain) and, 

more recently, Winter 2013/14 (southern England; Huntingford et al. 2014) and 

December 2015 (northern Britain; Barker et al. 2016). This has prompted questions 

about whether such floods are ‘caused’ by climate change.  

While no single weather or flood event can be directly attributed to anthropogenic 

emissions of greenhouse gases, it is possible to assess how the chance of occurrence 

has been altered by emissions, via probabilistic event attribution (PEA; Allen 2003). 

This involves the generation of large ensembles of climate models runs, representing 

the climate both as it is now and as it could have been had no past anthropogenic 

emissions occurred. Data from the climate model runs can be analysed directly to 

investigate weather events (e.g. Northern England/Southern Scotland wet December 

2015, Otto et al. 2018; UK cold winter 2010/11, Christidis and Stott 2012), but to 

investigate a flood event the climate ensembles are used to drive a hydrological model 

to simulate runoff or river flow. Application of PEA to the Autumn 2000 floods 

suggested that emissions had increased the chance of occurrence, although with large 

uncertainty in the amount of increase and variation in the effect on different catchments 

(Pall et al. 2011, Kay et al. 2011). 
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In the winter of 2013/14 a series of severe storms led to widespread and persistent 

flooding across southern England, particularly the Somerset Levels and the lower 

reaches of the River Thames (CEH 2014). Using PEA, Schaller et al. (2016) showed 

that anthropogenic emissions gave an increase in January 2014 precipitation over 

southern England of up to 0.5mm/day in the wettest 1% of the ensemble simulations. 

This was shown to be due to both large-scale warming (the ability of warmer air to hold 

more moisture) and local dynamical changes (an increase in the number of January 

days with a westerly airflow), in the ratio of approximately 2/3 to 1/3; a result confirmed 

by Vautard et al. (2016) using a different method. Catchment-based hydrological 

modelling then showed that the rainfall changes led to an increase in 30-day mean 

flows in the River Thames at Kingston (its most downstream flow gauge), although 

changes in daily mean flows were much less. Flood risk mapping then showed a small 

increase in the number of properties at risk of fluvial flooding in the Thames catchment. 

There was a substantial range of numerical uncertainty in these analyses, reflecting 

weather variability and climate model uncertainty. Further epistemic uncertainty, 

relating to approximations made in the analysis of flood impacts, was acknowledged 

but not quantified. 

The catchment-based PEA study of Kay et al. (2011) showed that it is important to 

account for variation in catchment response, due to spatial variation in physical 

catchment properties. Spatial variation in rainfall can also be important, as shown by a 

PEA analysis of the rainfall that led to flooding in December 2015 (Otto et al. 2018, van 

Oldenborgh et al. 2015). Schaller et al. (2016) acknowledge that impacts on Winter 

2103/14 flows and damages for other rivers than the Thames are likely to differ 

because of variation in catchment properties and spatial rainfall patterns.  

The work presented here uses a national-scale grid-based hydrological model to 

investigate spatial aspects of the Winter 2013/14 floods, based on the same climate 

ensembles used by Schaller et al. (2016). The first part of the paper investigates river 

flows across the whole of Great Britain (GB) using the grid-based hydrological model, 

looking at the role of snow and providing a first national scale hydrological PEA 

analysis for the nationally-significant Winter 2013/14 events. The second part re-

investigates the Thames basin, looking at both river flows and damage estimates and 

comparing results to those from the catchment-based modelling of Schaller et al. 

(2016). The latter PEA study was the first to express attributable risk in terms of the 

eventual impacts of flooding, represented by the number of properties affected. To 

make that analysis possible using the available hydrological model simulations, which 

were for one location on the Thames (Kingston), it was assumed that the impacts 

throughout the 9,948 km2 upstream catchment could be determined from the peak flow 

at Kingston. Although this approximation was lent some support through consideration 

of the strong spatial and temporal dependence within flood events on the Thames, it is 

generally more realistic to assess flood impacts using a spatially-distributed analysis of 

peak flows, inundation and the built environment. Spatially-distributed flood impacts 

modelling has therefore been applied here for the first time in a PEA study; an 

important advance that brings the analysis into line with the high level of detail 

considered in models applied for re/insurance and infrastructure planning. A further 

advance is that the new analysis accounts for the influence of flood defences. 
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2 Background and Methodology 

2.1 Winter 2013/14 flooding in GB 

The meteorological review of Kendon and McCarthy (2015) describes a sequence of 

storms affecting the UK between mid-December 2013 and mid-February 2014, with a 

brief period of less stormy but still unsettled weather in mid-January. The storms 

resulted in the wettest winter (December–February) in Britain since records began, 

whether measured regionally using gridded precipitation from 1910, or using the 

average England and Wales precipitation series from 1766. Within this, the gridded 

precipitation shows that January 2014 was the wettest January in England since 

records began, and even the wettest calendar month in south-east and central-

southern England since records began. 

The hydrological review of Muchan et al. (2015), based on data from 104 river flow 

gauging stations across the UK (index rivers) covered by the National Hydrological 

Monitoring Program (nrfa.ceh.ac.uk/nhmp), describes how flows were generally 

declining and below the seasonal average in early December 2013 but increased 

quickly in some responsive catchments as the storms began in mid-December. 

Floodplain inundations became more widespread from the end of December, and flows 

in many rivers in southern, central and eastern England increased substantially in 

January. Further storms in early February led to further increases in flows, with 500 

flood warnings/alerts issued in England and Wales. Over the winter, a majority of index 

rivers saw total flows exceeding previous winter records, but with few record peak 

flows; overall, the winter was more exceptional for the duration of the high flows and 

inundations.  

This is confirmed by a wider analysis of gauged flow data from the National River Flow 

Archive (nrfa.ceh.ac.uk), looking at the rankings of the maximum observed flows for 

Winter 2013/14 for gauges with at least 40 years of relatively complete data up to 2014 

(Figure 1). This shows that, while some catchments did experience record or near-

record peaks in daily mean flow during Winter 2013/14, many more catchments 

experienced record flows at longer durations. Figure 1 also highlights the areas most 

affected by flooding in Winter 2013/14, which reflect those areas experiencing the 

highest rainfall totals over the period (Kendon and McCarthy 2015). The Somerset 

Levels were particularly badly affected, with about 65km2 flooded and a number of 

villages cut off for a long period (Muchan et al. 2015, Willis and Fitton 2016). There was 

also extensive and sustained flooding in the middle and lower Thames (Muchan et al. 

2015, Huntingford et al. 2014). According to the Association of British Insurers, 

between 23 December 2013 and 28 February 2014 there were 18,700 flood insurance 

claims totalling £451m, about half of which was for homes (ABI 2014). According to 

Thorne (2014), “the number of properties inundated was surprisingly small given the 

number and severity of the storms… [but] the societal impacts… were 

disproportionately large”. 
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2.2 Hydrological model 

The national-scale grid-based hydrological model CLASSIC-GB was developed by 

combining the runoff-production scheme from the semi-distributed catchment-based 

model CLASSIC (Climate and LAnd-use Scenario Simulation In Catchments; Crooks 

and Naden 2007) in a modular framework with a kinematic wave routing module and 

other modules like a temperature-based snow module (Crooks et al. 2014). CLASSIC 

was used in the flood attribution studies of Schaller et al. (2016) and Kay et al. (2011), 

and has been used to investigate historical changes in flow in the River Thames 

(Crooks and Kay 2015) and the impacts of climate change on floods in catchments 

across GB (Prudhomme et al. 2013a,b, Kay and Crooks 2014).  

CLASSIC-GB requires gridded input time-series of precipitation and potential 

evaporation (PE), plus temperature (if the snow module is implemented), and can run 

at spatial resolutions of 1km, 2.5km, 5km or 10km, aligned with the GB National Grid. 

The routing time-step must be sufficiently short (relative to the spatial resolution) for 

stability of the routing scheme, but the main model time-step can be a multiple of the 

routing time-step. Here, CLASSIC-GB uses a 5km spatial resolution, 1-day main time-

step and 2-hour routing time-step. Runs at coarser spatial and temporal resolutions are 

much faster, enabling use of large driving data ensembles (Section 2.3). 

Crooks et al. (2014) tested CLASSIC-GB performance for 54 catchments (representing 

a range of catchment types), using three measures of fit between simulated and 

observed river flows. Analyses showed generally very good performance across the full 

range of catchments. While performance was often better at finer resolutions, 

improvements when moving from 5km to 1km resolution were generally small, so using 

the 5km resolution is a good compromise between model performance and speed. Kay 

et al. (2015) also analysed CLASSIC-GB performance (1km resolution), for 32 

catchments across southern GB, using four measures of fit between flow statistics. 

Analyses showed generally good performance, with that for high flows and flood 

frequency showing no evidence of bias with respect to catchment properties (area, 

average annual rainfall, altitude or baseflow index) but a tendency towards under-

estimation in catchments in south-west England. This tendency should be borne in 

mind, but is not considered crucial for flood attribution analysis, which considers 

differences rather than absolute values. Such biases may be more important for flood 

damage analyses, due to application of thresholds, but they do not affect the Thames 

basin damage analysis presented here.  

2.3 Winter 2013/14 climate ensemble data 

Ensembles of climate data for December 2013 – February 2014 were produced using 

the weather@home project (Massey et al. 2015), by running the HadRM3P Regional 

Climate Model (RCM) for Europe (~50km resolution) nested in the HadAM3P 

atmospheric Global Climate Model (GCM) driven with prescribed sea surface 

temperatures (SSTs) and sea ice concentration (SIC). Initial conditions are perturbed 

slightly for each ensemble member, to give a different realisation of the winter weather 

and so account for natural variability. One ensemble represents the possible weather 

under the current climate, using observed greenhouse gas concentrations, SSTs and 
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SIC for 2013/14 (“Actual”, named by the letter ‘a’). A further 11 ensembles represent 

the possible weather had past anthropogenic emissions not occurred (“Natural”, named 

‘e’ to ‘o’). These use pre-industrial atmospheric composition, the maximum well-

observed SIC, and estimates of pre-industrial SSTs constructed by subtracting 

anthropogenic SST change patterns from observed SSTs. Eleven different patterns of 

SST change were applied based on GCM simulations from 11 CMIP5 models, thus 

producing 11 Natural ensembles sampling the uncertainty in regional patterns of SST 

change. Table 1 summarises the ensembles; see Schaller et al. (2016) for further 

details. An evaluation of the climate model showed that, on average, the “Actual” 

ensemble realistically represented the strong zonal large-scale circulation seen during 

Winter 2013/14, and can therefore be used in the context of probabilistic event 

attribution (Schaller et al. 2016). 

The RCM runs provide the daily precipitation and temperature data required to drive 

CLASSIC-GB, but do not provide PE, which has instead been estimated from monthly 

mean temperature using the method of Oudin et al. (2005). Precipitation and PE are 

then converted from the rotated latitude-longitude RCM grid to the 5km CLASSIC-GB 

grid using area-weighting, with extra weighting based on standard average annual 

rainfall patterns for precipitation (Kay et al. 2006). Temperature data are lapsed to the 

CLASSIC-GB grid using altitude information.  

CLASSIC-GB is then run with driving data from each ensemble member. To allow spin-

up of stores, runs are started in January 2010 using observed driving data; 1km daily 

precipitation from CEH-GEAR (Tanguy et al. 2015, Keller et al. 2015), 5km Met Office 

daily minimum and maximum temperature (Jenkins et al. 2008), and 40km monthly PE 

from MORECS (Hough and Jones 1997). Observed data are used up to 10 December 

2013, followed by RCM data from 11 December 2013; the first 10 days of the RCM 

simulations are not used, to allow the atmosphere to spin up (precipitation in the first 

few days of the Natural simulations is unrealistically high, but has stabilised after 10 

days – see Schaller et al (2016) for further detail). CLASSIC-GB was run both with and 

without the snow module, to investigate the effects of snow. Note that the spin-up with 

observed driving data does not allow for any anthropogenic effect on antecedent 

conditions (see discussion in Section 4). 

2.4 Data analysis and damage estimation 

From each CLASSIC-GB run, the gridded daily mean flows for 11 December 2013 to 

end February 2014 are extracted. To analyse flow peaks at a range of durations, the 

daily time-series for each grid cell are turned into running mean flows for a range of 

durations (10, 30 and 60 days) and the maximum flow extracted in each case. While it 

is the shorter duration flow peaks that are important for determining inundated areas, 

longer duration flow peaks have implications for economic damages (beyond simple 

counts of properties inundated) as well as for civil emergency response and recovery 

operations. 

The flow maxima are then used to estimate the Fraction of Attributable Risk, FAR=1–

NE/AE, where AE is the fraction of Actual runs with peak flows exceeding a given 

threshold, and NE is the fraction of Natural runs with peak flows exceeding the 
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threshold (Allen 2003). A positive FAR indicates that past emissions have increased 

the chance of peak river flows exceeding the chosen threshold (with a value of 1 

suggesting that exceedances may not have occurred without anthropogenic 

emissions), whereas a negative FAR indicates that emissions have decreased the 

chance of peak river flows exceeding the threshold. FAR is calculated for each Natural 

ensemble ‘e’ to ‘o’ separately, and for a pooled Natural ensemble (‘e-o’, giving all 

members of each separate Natural ensemble equal weight), relative to the threshold 

given by the 100-year return period flow as simulated by the Actual ensemble. 

Similarly, FAR is calculated for rainfall accumulations over a range of durations. 

Regional summaries use the eight areas shown in Figure 3b, which are groupings of 

river basins based on the Water Framework Directive River Basin Districts. 

To estimate property damage within the catchment of the Thames at Kingston (an area 

of nearly 10,000km2), peak river flow data simulated using CLASSIC-GB were fed into 

a model combining flood inundation extents, depths and property locations. This model 

is a subset of the JBA Risk Management UK Flood Probabilistic Model (JBA Risk 

Management 2015), which is one of several models used by the insurance industry, 

and has been adopted by the state-mandated reinsurance scheme Flood Re 

(Insurance Journal 2015) to provide estimates of damage and financial loss for flood 

events. It is (in common with comparable products) a proprietary model, however the 

foundations of the approach are detailed (5m x 5m cell resolution) inundation mapping 

based on 2D hydrodynamic modelling, using peer-reviewed methodologies that were 

summarised by Schaller et al. (2016).  

For each ensemble member simulated using CLASSIC-GB, the peak flow values are 

interpolated spatially to a set of points placed on the river network. Each peak flow 

value needs to be represented as an inundation extent and depth in every postcode 

unit within the Thames catchment. To do this without needing to hydraulically model 

floodplain inundation for each ensemble member (which would be computationally very 

expensive) a set of five pre-modelled design floods representing annual exceedance 

probabilities from 1/20 to 1/1000 are used. The peak flows are converted to return 

periods, spatially interpolated to the postcode units and then extents and depths at 

each postcode unit are interpolated from the pre-modelled design floods. This 

approach is analogous to the development of a river flood ‘catastrophe model’ applied 

for estimation of risk across an insured portfolio (see Toothill and Lamb 2017, Figure 

3.15, for a summary). 

To estimate the number of properties affected in each postcode unit, the Thames 

subset model includes an input property dataset; developed using population data from 

the UK census (ONS 2011) combined with property location data purchased from a 

commercial provider (Rightmove) containing 3.4 million residential properties. Each 

property is attributed with a postcode unit but the exact footprint of an individual 

building is not known. This is recognised to be an important source of uncertainty in 

flood risk assessments (e.g. when comparing flood model predictions with insurance 

claims data) because even relatively small scale positional uncertainties can affect the 

number of properties calculated as being within a flooded area, especially at the 

margins of flooding in densely populated locations. To overcome this, for each 

individual property and for every ensemble member, many samples are drawn from the 
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range of water depths within that postcode unit. This also accounts for the proportion of 

the postcode that is predicted to be dry. A property is counted as being flooded if the 

mean of the sampled depths is greater than 20cm. Flood defence information is 

included; properties in areas benefiting from flood defences are only assumed to flood 

if the peak river flow exceeds the standard of protection of the associated flood 

defence. 

3 Results 

3.1 National 

Maps show that flow FAR values calculated from the pooled Natural ensemble (‘e-o’) 

vary considerably across GB, particularly for shorter duration peak flows (Figure 2). For 

daily peak flows, parts of south-east England show negative FAR while much of 

western England, Wales and Scotland show positive FAR. For 10-day peak flows, FAR 

values for parts of north-east England are strongly negative (FAR < -0.5), whereas 

FAR values are positive for much of the rest of the country (apart from small parts of 

south-east England, Wales and south-west Scotland for example). For 30-day peak 

flows, FAR in north-east England is less strongly negative and there are even fewer 

negative FAR values elsewhere. For 60-day peak flows, FAR in parts of north-east 

England is still slightly negative but FAR is positive almost everywhere else (apart from 

a few pixels to the far eastern side of Scotland). In general, FARs are higher for longer 

durations than for shorter durations. 

Boxplots summarising the FAR values calculated from the pooled Natural ensemble 

(‘e-o’) highlight the variation in values between different regions of the country (Figure 

3). They also illustrate that there is little variation in FAR within some regions 

(especially in southern England), but a much wider range of FAR in other regions 

(especially Scotland and northern England).  

For parts of eastern Scotland, FAR is strongly positive (>0.5) for all durations (Figure 2 

and Figure 3). This is related to changes in flow patterns associated with changes in 

snowfall and snowmelt in this Highland region; when modelled without the snow 

module these positive FAR are significantly reduced, becoming negative for longer 

durations (Figure 3 and Figure 4). A study of future potential changes in peak flows 

under climate change also highlighted this region of GB as one where changes in snow 

were likely to have a significant effect on the expected changes in flows (Bell et al. 

2016). Although the influence of snow is largest in eastern Scotland and at longer 

durations, it also has an effect in more southerly regions (e.g. Anglian, SE England and 

W England) at shorter durations (1- and 10-day), where FAR is typically lower when 

modelled with snow than without. This was previously shown for the Thames at 

Kingston for the Winter 2013/14 floods (Schaller et al. 2016) and for eight catchments 

in England for the Autumn 2000 floods (Kay et al. 2011), and suggests that snow 

changes are moderating the increases in shorter duration peak flows. The differing 

effect of snow on flow FARs in E Scotland compared to the rest of the country is likely 

to be because this is one of the few areas of GB that experiences significant 

accumulations of snow in the current climate; snow in most areas of GB under the 
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current climate is much more irregular and transient, but would have been more 

common everywhere in the past (Kay 2016). 

Boxplots summarising the FAR values calculated from each Natural ensemble ‘e’ to ‘o’ 

separately (Figure 5) highlight the large variation between them. The same natural 

ensemble (‘m’) leads to the highest median FAR value across most regions for all 

durations, the exceptions being regions in the south and west, where ensemble ‘f’ gives 

higher FAR at the 10-day duration and ensemble ‘g’ gives marginally higher FAR at the 

60-day duration. The natural ensemble with the lowest median FAR value varies more 

between regions. Ensemble ‘n’ generally gives the lowest FAR in regions towards the 

south and east (SE England, Anglian and NE England), and ensemble ‘l’ generally 

gives the lowest FAR in north-western regions (NW England and most of Scotland). In 

south-western regions (SW England, W England and E Wales) ensembles ‘h’, ‘j’ and ‘l’ 

all give similarly low FAR values for durations of 1, 10 and 30 days, but ensemble ‘j’ 

gives the lowest FAR for the 60-day duration. 

Comparing the estimated FAR values across GB (Figure 2) with the rankings of 

observed Winter 2013/14 flows (Figure 1) shows some similarities, in that the FAR 

values are generally greater for longer durations and the observed flows were more 

record-breaking at longer durations. However, there appears to be little spatial 

consistency, especially for daily mean flows: Some areas with positive FARs 

experienced few record flows (e.g. the far south-west of England, Wales and Scotland) 

while some areas with negative FARs experienced a number of record flows (e.g. 

south-east England). While Schaller et al. (2016) showed that the RCM driven by 

observed boundary conditions was able to represent the large-scale situation of the 

event reasonably well, these results indicate that the average RCM response in terms 

of precipitation was different compared to what happened in reality. This is unsurprising 

as there is only one ‘realisation’ from the weather in the real world, but a distribution of 

realisations in the model ensembles.  

Maps of precipitation FAR (Figure 6) are relatively consistent with those for flow FAR 

(Figure 2 and Figure 4), in that precipitation FAR values are also generally greater for 

longer durations, and there is a good amount of spatial consistency. However, for most 

river points, precipitation FARs are higher than flow FARs for the same duration (Figure 

7), reflecting the complexity of the transformation of precipitation into river flows. 

Similarly, the generally lower correlation between flow and precipitation FARs at the 1-

day duration reflects the fact that different catchments, with different physical properties 

(e.g. area, orientation, geology), respond in different ways to the same climatic inputs, 

so a high increase in 1-day rainfall in a small ‘flashy’ responsive catchment can cause 

a high increase in daily peak flow, but to get the same increase in daily peak flow in a 

more slowly responding catchment would require a more sustained increase in rainfall, 

typically over a number of days. In particular, the presence of groundwater and its 

influence in attenuating catchment responses to precipitation is likely to be important in 

parts of southern and eastern England. [Note that this analysis is not intended to 

suggest that n-day precipitation peaks lead directly to n-day flow peaks, but is merely 

assessing the correlation between precipitation FARs and flow FARs for the same set 

of durations. Also, the analysis for 60-day peaks is more likely to be affected by events 
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being cut off at the end of the 80-day analysis period, which could have the effect of 

artificially reducing correlations.] 

In north-western and eastern Scotland, correlations between precipitation and flow 

FARs are generally lower than for other regions, even for higher durations, and flow 

FARs can be much higher than precipitation FARs in some cases, especially at longer 

durations (Figure 7). This is again because of the influence of extended periods of 

snow accumulation and melt changing the nature and timing of flow peaks in these 

more northerly, typically higher altitude, colder regions; correlations are much higher 

when flows are simulated without the snow module (not shown). 

3.2 Thames at Kingston 

The maps in Figure 8 show the spatial variation in FAR calculated for peak daily flows 

across the catchment of the Thames at Kingston, and the variation between the 11 

natural ensembles. Table 2 summarises the FAR values for the catchment, in terms of 

the value at the outlet point and the minimum and maximum values across the whole 

catchment, for the pooled natural ensemble (‘e-o’) and for each natural ensemble (‘e’ to 

‘o’) separately. Table 2 also shows the FAR values for the outlet point estimated from 

the catchment-based modelling of Schaller et al. (2016). For some natural ensembles 

the outlet FAR from the gridded modelling is higher than that from the catchment-based 

modelling, but for other ensembles the opposite is true. This includes the pooled 

natural ensemble (‘e-o’), for which the outlet FAR value is 0.004 from the gridded 

modelling but 0.032 from the catchment-based modelling. However, both values sit well 

within the range of uncertainty calculated for the catchment-based modelling (-0.117 to 

0.146), so these differences do not appear to be significant.  

The gridded modelling shows that flow FAR values vary at a much finer scale than that 

of the precipitation inputs, for which only ~4 boxes cover the Thames catchment. Also, 

FAR values upstream in the Thames can be much higher than at the outlet (Figure 8 

and Table 2). For the pooled natural ensemble (‘e-o’) FAR goes up to 0.186, although 

some tributaries closer to the outlet at Kingston have negative FAR values (down to -

0.142). This suggests that damages estimated using gridded modelling should be more 

reliable than assuming that what happens at the outlet point is representative of the 

whole catchment (as done by Schaller et al. 2016). 

Figure 9 maps the FAR calculated for counts of flooded residential properties 

aggregated into the 395 postcode districts within the catchment, each of which contains 

between 2 and 38,733 properties (average 8,774). The results are consistent with the 

analysis of peak flows: For the pooled ensemble, FAR for flooded properties is greater 

than zero across much of the catchment, but there are some districts with values below 

zero. As with the peak flows (Figure 8), the spatial patterns of FAR for flooded 

properties exhibit considerable variation between ensembles, with some ensembles 

containing districts for which the FAR indicates considerably stronger influence of past 

emissions on flood risk, either in terms of an increase or a decrease in likelihood of 

flooding. 

Whilst the FAR results indicate, overall, a slightly increased likelihood of flooding 

connected with past greenhouse gas emissions, Figure 10 shows the magnitude and 
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uncertainty of this increase in attributable risk, expressed in terms of the difference 

between the number of properties flooded in the Actual ensemble and each Natural 

ensemble, and plotted as a function of increasing levels of extremeness within the 

ensembles (interpreted as a return period in years). A comparable result was 

presented by Schaller et al. (2016; Figure 5f), based on the simplifying assumption of 

spatial uniformity, and their headline estimate of 1,000 additional properties at risk is 

also shown in Figure 10. The new results show a likely increase, attributable to past 

emissions, in the number of properties at risk of flooding over a wide range of event 

magnitudes ranging from 20- to 500-year return periods (where the return period 

estimates are based on the rank position of the simulations within the ensemble). This 

result is broadly consistent with the earlier analysis of Schaller et al. (2016), but with 

some important refinements stemming from the new, distributed impacts analysis. 

Firstly, the amount of increase in attributable risk is smaller than the previous findings, 

but also within a narrower range of uncertainty. The mean of the pooled ensemble 

increase (calculated over the range of return periods in Figure 10) is +457 properties, 

with the individual ensembles ranging between -1,334 (ensemble ‘n’) and +4,605 

(ensemble ‘o’). This can be compared with Schaller et al. (2016) estimates of 

approximately -4,000 to +8,000.  

Secondly, whilst there is some variation in the number of properties at additional risk 

over the range of return periods, both here and in Schaller et al. (2016), the new 

analysis shows a coherent reduction in the amount of attributable risk (for the pooled 

ensemble) for return periods between approximately 50 and 300 years, with almost no 

change attributable to past emissions for return periods between 100 and 300 years. 

This reduction is observed in most, though not all, of the individual ensembles. It 

reflects the expected influence of flood defences in the impacts analysis: an increase in 

river flows will not translate to more properties being flooded if those flows are still 

contained by flood defence systems. Only a small proportion of properties in the 

catchment benefit from significant flood defences (see Schaller et al. 2016 

Supplementary Information), and hence flood defences have no influence on 

attributable risk in many parts of the catchment. However, where defences do exist 

their marginal influence could be significant. This effect is expected to be felt for events 

that are similar in severity, or somewhat less severe, than the standard of protection of 

the defence systems, which are typically designed to resist flood flows no worse than a 

200-year return period in the Thames catchment (Environment Agency, 2009). For 

events that are sufficiently extreme to exceed flood defence standards, the marginal 

influence of those defences (i.e. for an incremental increase in river flow) should 

diminish. Although the return period scale in Figure 10 is not defined in precisely the 

same way as the standard of protection of flood defences (owing to the conditional 

nature of return periods calculated within the simulated ensemble), the pattern in 

Figure 10 is consistent with the expected influence of flood defences as discussed 

above. 

4 Discussion and Conclusions 

The seemingly high incidence of floods in GB in recent years has prompted increasing 

questions about the role of climate change. Thus methods like probabilistic event 
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attribution, that can assess the influence of anthropogenic emissions on event 

occurrence, are becomingly increasingly important. Here, large ensembles of climate 

model runs, representing both Actual and Natural conditions, have been used to drive a 

national-scale hydrological model, to assess the influence of emissions on the Winter 

2013/14 floods. The results show that emissions are likely to have increased the 

chance of occurrence of these floods across much of the country (FAR > 0; Figure 2), 

with the influence on longer duration peaks being greater than that for shorter 

durations. This is consistent with an analysis of observed flows for the period (Figure 

1), which shows that they were more unusual (relative to flows over the preceding 40+ 

years) at longer durations.  

Analyses of flow FAR produced with and without the snow module (Figure 3) show that 

changes in snow processes are affecting flows differently in different parts of the 

country. In more northerly regions snow changes are increasing FAR, especially at 

longer durations, but in more southerly regions and for shorter durations they are 

decreasing FAR. This highlights the importance of using hydrological modelling, as 

analyses of precipitation totals do not allow for changes in snowfall and snowmelt, or 

for the complex effects they can have on flows when modulated by physical catchment 

properties like topographic distribution (Kay and Crooks 2014). For example, snow melt 

can occur slowly, with differing timing of melt at different altitudes within a catchment, 

leading to much reduced peaks, or rapid snow melt, often combined with rainfall, can 

increase peaks. A review of snow in Britain highlights the complexity of its effects on 

river flows (Kay 2016). 

While flow FAR and precipitation FAR patterns are relatively consistent (especially 

when the hydrological model is run without the snow module), the precipitation FAR are 

often higher than the flow FAR, and the correlation between the two varies by region 

and by duration (Figure 7). This again highlights the importance of using hydrological 

modelling to attribute hydrological impacts from meteorological changes, to incorporate 

the complexities of the transformation of precipitation into runoff and river flow. There is 

variation in the response of different rivers not just because of spatial variation in 

rainfall patterns but because of variation in physical properties that influence runoff 

production. Antecedent conditions can also be more influential for some types of 

catchment (e.g. those with more high permeability bedrock, Kay et al. 2011). Any 

anthropogenic effect on antecedent conditions is not accounted for here, but is likely to 

be less influential (i.e. less variable) for winter events than for summer or autumn 

events for example. Ideally though, the climate ensembles would cover a period prior to 

the event of interest, in order to include any effects on antecedent conditions. 

Similar variation is also visible when the change in risk attributable to past greenhouse 

gas emissions is translated from the hydro-meteorological domain into impacts of 

flooding on properties (Figure 9). This variation in patterns of attributable risk can only 

be explored by using a distributed modelling approach, linking spatially-varying 

hydrological simulations to detailed, spatially explicit inundation and impacts analysis. 

Here, such an approach has been demonstrated for the Thames catchment, applying 

state-of-the-art industry models for flood inundation and impacts analysis, which also 

include flood defences. Over a range of possible events of increasing severity, the 

combined modelling suggests a central estimate of +457 properties placed at additional 
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risk because of historical greenhouse gas emissions, within an uncertainty range 

of -1,334 to +4,605. This number refines earlier estimates of ~1,000 additional 

properties at risk (range -4,000 to +8,000), with a consistent interpretation that the 

balance of probabilities indicates an increase in risk attributable to climate change. The 

attributable change in risk of property flooding varies with the relative severity of events 

within the ensemble simulation. This variation appears to be in line with the expected 

influence of flood defences. Flood defences may be able to “absorb” some of the 

additional risk attributed to climate change, but cannot be relied upon to mitigate the 

additional risk in its entirety for extreme events, which are nevertheless now shown to 

be somewhat more likely in the present-day climate than they would have been under 

pre-industrial conditions.  

Uncertainty related to the day-to-day variation in the weather is accounted for through 

an ensemble approach, with uncertainty in pre-industrial SSTs accounted for through 

use of SST changes from a range of climate models, resulting in a wide range of FAR 

values. However, only one GCM/RCM was used for the climate simulations, with one 

hydrological model; other models may give different results (as for future climate 

change impacts; e.g. Kay et al. 2009). Ideally a range of climate models would be 

applied, as this is likely to be the largest source of uncertainty (Vetter et al. 2017, Kay 

et al. 2009), although Hauser et al. (2017) show that the choice of event attribution 

method, as well as the data source (GCM), can lead to differing conclusions. 

Uncertainties in the flood inundation mapping and the sub-postcode location of 

properties are accounted for via a sampling approach. Flood defences are included, 

although uncertainties about their actual (as opposed to design) standards and 

potential for structural failures (e.g. breaching) have not been explored. 

While the results presented here and in Schaller et al. (2016) suggest that past 

anthropogenic greenhouse gas emissions have led to an increased chance of flooding 

from weather events like those experienced in Winter 2013/14, caution needs to be 

exercised when inferring how future changes will develop. The modelling study of 

Rasmijn et al. (2016) suggests that, in a future warmer climate, further changes in 

atmospheric dynamics will counterbalance the increased atmospheric moisture 

content, leading to similar precipitation anomalies for the Winter 2013/14 event in the 

future as in the present day. However, they also suggest that the circulation anomaly of 

Winter 2013/14 may occur more frequently in future, meaning a likely continued 

increase in flood risk (unless additional mitigation/adaptation is implemented). This 

demonstrates the complex and large-scale effects of the atmospheric interactions 

involved, alongside the complexities of the hydrological processes that transform 

precipitation into runoff and river flow. Thus detailed and proven climate models and 

hydrological models are required, along with inundation and damage models, to reliably 

investigate climate-driven changes in floods and their impacts on people. 
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Tables 

Table 1 Summary of the Actual and Natural climate ensembles for Winter 

2013/14. 

ID letter Ensemble set Number of members SST source 

a Actual 17220 Observed 

e Natural 7147 Obs – CanESM ΔSST 

f Natural 13823 Obs – CCSM4 ΔSST 

g Natural 7332 Obs – CNRM-CM5 ΔSST 

h Natural 7530 Obs – CSIRO-Mk3 ΔSST 

i Natural 15565 Obs – GFDL-CM3 ΔSST 

j Natural 15335 Obs – GISS-E2-H ΔSST 

k Natural 7159 Obs – GISS-E2-R ΔSST 

l Natural 10964 Obs – HadGEM2-ES ΔSST 

m Natural 7651 Obs – IPSL-CM5A-LR ΔSST 

n Natural 10177 Obs – IPSL-CM5A-MR ΔSST 

o Natural 13210 Obs – MIROC-ESM ΔSST 
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Table 2 Summary of Thames@Kingston flow FAR values for Winter 2013/14, from 

the catchment-based modelling of Schaller et al. (2016) and from gridded 

modelling. 

Natural 

ensemble 

Schaller et al. outlet FAR FAR from gridded modelling 

Direct 

estimate 

Resampling: median 

(5th-95th percentiles) 

Outlet 

value 

Catchment 

minimum 

Catchment 

maximum 

e-o 

(pooled) 

0.032 0.028 

(-0.117 -  0.146) 

0.004 -0.142 0.186 

e 0.039 0.036 

(-0.213 -  0.245) 

0.061 -0.149 0.286 

f 0.237 0.233 

( 0.060 -  0.377) 

0.182 0.001 0.377 

g 0.226 0.222 

( 0.006 -  0.400) 

0.140 -0.106 0.427 

h -0.097 -0.104 

(-0.377 -  0.117) 

0.003 -0.29 0.109 

i 0.009 0.004 

(-0.195 -  0.166) 

-0.164 -0.248 0.170 

j -0.207 -0.213 

(-0.441 - -0.023) 

-0.182 -0.417 0.001 

k 0.027 0.022 

(-0.227 -  0.234) 

0.007 -0.189 0.217 

l -0.017 -0.022 

(-0.244 -  0.169) 

-0.096 -0.178 0.169 

m 0.428 0.426 

( 0.250 -  0.571) 

0.372 0.097 0.542 

n -0.193 -0.200 

(-0.456 -  0.020) 

-0.121 -0.554 0.115 

o 0.073 0.069 

(-0.130 -  0.235) 

0.091 -0.243 0.348 
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Figures 

 

Figure 1 Maps showing the ranks of the maximum observed flows over 

December 2013–February 2014, for 1-, 10-, 30- and 60-day mean flows, for 342 

gauges with at least 40 years of available data up to 2014. 
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Figure 2 Maps of FAR values (using the pooled Natural ensemble), for 1-, 10-, 30- 

and 60-day mean flows. The legend shows the colours used for specific FAR 

values; colours are interpolated for intermediate values. 
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Figure 3 a) Boxplots summarising the range of FAR values for the 5km grid 

boxes within eight regions across GB (using the pooled Natural ensemble), for 1-

, 10-, 30- and 60-day mean flows, when modelled with and without the snow 

modules. The boxes show the 25th-75th percentile range (with the black line 

showing the median), the whiskers show the 5th and 95th percentiles, and 

additional markers show minima and maxima. b) Map showing the eight regions 

of GB. Also shown is the catchment of the Thames@Kingston (black line) in the 

SE England region. 
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Figure 4 As Figure 2 but simulated without the snow module. 
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Figure 5 Boxplots summarising the range of FAR values for eight regions across 

GB (Figure 3b) for 1-, 10-, 30- and 60-day mean flows, for the pooled Natural 

ensemble (‘e-o’) and each Natural ensemble (‘e’ to ‘o’) separately (see key). The 

boxes are defined as in Figure 3a. 
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Figure 6 Maps of precipitation FAR values (using the pooled Natural ensemble), 

for 1-, 10-, 30- and 60-day accumulation periods. 
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Figure 7 Scatter plots of flow FAR versus precipitation FAR (using the pooled 

Natural ensemble), for river points in eight regions across GB (Figure 3b), for 1-, 

10-, 30- and 60-day durations. The Pearson r correlation for each duration is 

shown in the bottom-right of each plot. 



27 

 

Figure 8 Maps of FAR values for 1-day mean flows in the Thames@Kingston 

catchment (black outline and dot), using the pooled Natural ensemble (‘e-o’) and 

each Natural ensemble (‘e’ to ‘o’) separately. See the Thames@Kingston 

catchment outline in the GB map of Figure 3b. 
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Figure 9 As Figure 8 but for flooded properties in each postcode district of the 

Thames@Kingston catchment. 
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Figure 10 Difference between number of properties flooded in the Actual 

ensemble relative to the pooled Natural ensemble (‘e-o’) and each Natural 

ensemble (‘e’ to ‘o’) separately. Data are plotted as a function of relative level of 

extremeness within the ensemble (interpreted as a return period in years). The 

dashed line shows the estimate made by Schaller et al. (2016) under spatial 

uniformity assumptions. 
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