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input into ecological analyses. In the case of sea surface 
temperature, these models can have projections unrepre-
sentative against a larger ensemble mean. Moreover, 91% 
of studies failed to incorporate the internal variability of a 
climate model into results. We explored the influence that 
the choice of emission scenario, climate model, and model 
realisation can have when predicting the future distribution 
of the pelagic fish, Electrona antarctica. Future distributions 
were highly influenced by the choice of climate model, and 
in some cases, internal variability was important in deter-
mining the direction and severity of the distribution change. 
Increased clarity and availability of processed climate data 
would facilitate more comprehensive explorations of cli-
mate uncertainty, and increase in the quality and standard 
of marine prediction studies.

Introduction

Climate change is having an unprecedented effect on marine 
biodiversity, with recorded shifts in species phenology 
(Edwards and Richardson 2004), biogeography (Perry et al. 
2005), and extinction risk (Dulvy et al. 2003; Barnosky et al. 
2011). Specifically, increasing ocean temperatures due to 
rising anthropogenic carbon dioxide (CO2) emissions is rec-
ognised as one of the biggest threat to marine ecosystems 
and the goods and services they provide (Hoegh-Guldberg 
and Bruno 2010; Doney et al. 2012; Gattuso et al. 2015). 
The geographic distribution of a number of marine species 
is found to be tracking temperature changes: a meta-analysis 
of 857 species calculated a mean distribution shift of 72 km 
per decade at leading range edges, which is estimated to be 
an order of magnitude faster than that observed for terrestrial 
species (Poloczanska et al. 2013).
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While some impacts are already visible and come with a 
moderate to high degree of certainty (IPCC 2013), efforts 
to understand how climate change will affect ecosystems 
in the future require projections using existing observa-
tions and modelling efforts (Barange et al. 2016). Predict-
ing how species and their environments will respond to 
future climate change is becoming increasingly necessary 
to strengthen ecosystem and resource management, impact 
assessments, policy decisions, and conservation priorities 
(Guisan et al. 2013). This is highlighted by the growing 
number of marine climate impact publications, increasing 
tenfold between 1990 and 2010 (Brander et al. 2013), and 
the evolving sophistication of research, moving from simple, 
short-term experiments to complex, high resolution model-
ling at the species, community, and the ecosystem levels 
(Barange et al. 2016).

Species distribution models (SDM’s), whether cor-
relative or mechanistic, are the dominant model class for 
evaluating the susceptibility of species to climate change 
(Guisan and Zimmermann 2000; Guisan and Thuiller 2005; 
Elith and Leathwick 2009; Kearney and Porter 2009; Elith 
et al. 2010; Kearney et al. 2010), and they are becoming an 
increasingly common tool in marine science (Dambach and 
Roedder 2011; Robinson et al. 2011). Multiple  SDM’s can 
be used together to assess changes in community structure 
and biodiversity patterns (Barton et al. 2016), or they can 
be extended with additional parameters. For example, the 
Dynamic Bioclimate Envelope Model (DBEM) an extension 
of the SDM concept, has been used to project changes in fish 
size distributions (Cheung et al. 2013), as well as fisheries 
catch potential (Cheung et al. 2010). Models with popula-
tion-dynamic (Maury 2010), trophic interaction (Chaalali 
et al. 2016), and biogeochemical cycling (Yool et al. 2013) 
parameters are also used to predict complex community and 
ecosystem level responses to climate change.

With numerical models and predictions comes inherent 
uncertainty in SDM outputs, both in relation to the param-
eters of the biological model, and in the climate data used 
to determine future ocean conditions. Though the potential 
uncertainty arising from the former has received attention in 
recent years (Thuiller 2004; Diniz et al. 2009; Garcia et al. 
2012; Cheung et al. 2016b; Benedetti et al. 2017) investi-
gating how the variation within future climate data affects 
species predictions has been less systematic. This may be 
due to the multi-faceted nature of climate projections; most 
studies incorporate only a subset or single strand of it (see 
section “The cascade of climate uncertainty” for discussion 
on climate projections and their uncertainties). For marine 
species, the extent to which SDM results are affected by the 
choice of climate data has been found to be minimal (Hare 
et al. 2010, 2012), considerable (Jones et al. 2013; Jones and 
Cheung 2015), or changing in significance over time (Buis-
son et al. 2010). However, a full and inclusive exploration of 

climate uncertainties and their impact on ecological predic-
tions has yet to be achieved for any marine species.

From here on we define “climate uncertainty” loosely as 
the variability between future climate projections. Knowl-
edge of how to include, control, and communicate climate 
uncertainty into ecological analyses remains one of the 
most recognised and challenging issues for climate change 
research in the oceans (Planque et al. 2011; Hollowed et al. 
2013; Jones and Cheung 2015; Cheung et al. 2016a; Fröli-
cher et al. 2016; Payne et al. 2016; Planque 2016). Con-
sequently, there has been a call for a standard framework 
when reporting climate uncertainty to move towards creating 
risk assessments based on the magnitude and probability 
of change, ultimately facilitating discussions for mitigation 
and adaptation (Cheung et al. 2016a; Payne et al. 2016). 
However, before such an idealistic way of reporting can be 
realised, we must first fully understand the current trends 
and attitudes towards climate uncertainty when predicting 
marine responses to climate change. Once this has been 
achieved in a systematic and formal way we can highlight 
the factors preventing robust predictions, as well as the tools 
necessary for progress.

In this review, we aim to give an overview of the main 
sources of climate uncertainty and identify four criteria 
that constitute a thorough interpretation of an ecological 
response to climate change in relation to these (awareness, 
access, incorporation, communication of climate uncer-
tainty). We then assess the literature to investigate the extent 
to which the marine ecology community has addressed these 
four criteria in their predictions. Next, we demonstrate, using 
a pelagic fish species, the range of future distributions that 
can result from using 62 future climate simulations as input 
into SDM analyses. We conclude by discussing solutions 
that may overcome current limitations and ensure that inter-
pretations of ecological predictions are as representative and 
robust as possible.

The cascade of climate uncertainty

The Coupled Model Intercomparison Project Phase 5 
(CMIP5) Earth System Models (ESM’s) are the latest group 
of climate models used within the Intergovernmental Panel 
on Climate Change AR5 report (IPCC 2013). They include 
and interweave the complex relationships between the cli-
mate, human activities, and ecosystem health, and have pro-
jected alternative futures for the twenty-first century under 
scenarios of varying severity (Moss et al. 2010). There are 
four scenarios, known as representative concentration path-
ways (RCP’s): 2.6, 4.5, 6, and 8.5 Watts/m2. These refer to 
the radiative forcing projected for the year 2100 given alter-
native greenhouse gas concentration trajectories (Moss et al. 
2010). Within each ESM are multiple realisations which are 
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generated by running the model with different, but equally 
realistic, initial conditions.

Crucially, climate models are not exact predictions for 
the coming decades, but rather represent an envelope that 
future climate could conceivably occupy (Porfirio et al. 
2014). Within this envelope of future climate is a cascade 
of uncertainty, from the severity of RCP, to the parameters 
of the ESM, to the realisation number that sets the initial 
state of the model (Fig. 1). These three levels of climate 
uncertainty (scenario uncertainty, model uncertainty, and 
internal variability) are commonly used in the literature 
(Hawkins and Sutton 2009) and have been discussed else-
where (Cheung et al. 2016a; Frölicher et al. 2016; Payne 
et al. 2016). Thus, here we will give a brief overview of each 
and summarise their relative importance at different spatial 
and temporal scales.

Scenario uncertainty

Scenario uncertainty stems from the different trajectories 
of future greenhouse gas emissions. Whilst other sources 
of uncertainty can potentially be reduced through progress 
in climate science, there is considerable intrinsic uncer-
tainty in how society will alter emissions as it depends 

on socio-economic policies, international agreements, and 
technological advances (Moss et al. 2010). By 2100, sce-
nario uncertainty dominates the variability in projections 
of ocean stressors, particularly for global surface pH and 
for sea surface temperature (SST) at low and mid latitudes 
(Frölicher et al. 2016).

Model uncertainty

Model uncertainty stems from how each model has been 
built and parameterized. Under the same radiative forc-
ing, models can project quite different changes in climate. 
For this reason, model uncertainty for SST varies greatly 
between regions (~ 2000 km), and has greatest uncertainty 
in polar regions due the particular importance of climate 
feedbacks at these latitudes. As such, model uncertainty 
of SST remains of greater importance than scenario 
uncertainty at high latitudes until the end of the century 
(Hawkins and Sutton 2009). On a similar timescale, model 
uncertainty can dominate the variability in the projections 
of other ocean stressors, including primary productivity at 
low to mid latitudes, and subsurface oxygen at high lati-
tudes and in low oxygenated waters (Frölicher et al. 2016).

Fig. 1   A simplified diagram of the CMIP5 structure. The global 
mean sea surface temperature (SST) anomalies of each simulation 
are shown relative to the baseline period (1982–2001). The three lev-
els of the pyramid highlight the ‘cascade of uncertainty’ due to the 
different Representative Concentration Pathways (RCP), Earth Sys-
tem Models (ESM), and realisations (shown here as the mean of the 

realisations included). Coloured lines denote position of most com-
monly used ESM’s in the marine literature, grey lines indicate the 
other 11 ESM’s used in this study. The intersection on the top row of 
each time period is the multi-scenario, multi-model, multi-realisation 
mean Adapted from (Wilby and Dessai 2010)
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Internal variability

Internal variability comes from the natural variability 
inherent in the complex climate system. Initialisation of the 
model at different starting states (i.e. the realisations of a 
model) can propagate variability throughout the model. This 
can be amplified by its internal variability, which includes 
chaotic behaviours, nonlinearities, and feedbacks (Payne 
et al. 2016). Internal variability dominates the variability of 
projections at shorter timescales for pH, SST, and subsurface 
oxygen; however it remains important source of uncertainty 
for primary productivity towards the end of the twenty-first 
century (Frölicher et al. 2016). Internal variability also var-
ies regionally, for example, with pH it has a relatively greater 
impact in the Pacific Ocean basin and in the Southern Ocean 
(Frölicher et al. 2016).

Model bias and resolution

Additional complications that come with climate data 
include model bias (the initial over- or under-estimate of 
present day climate variables included in the ESM), and the 
available resolution of ESM’s which are often too coarse to 
make ecologically relevant conclusions. Both of these have 
the potential to artificially increase or decrease a species’ 
predicted response to change, rendering predictions at best 
highly variable, and at worst, inaccurate. These uncertainties 
are not the focus of this review, but see Harris et al. (2014), 
Ruffault et al. (2014), and Tabor and Williams (2010).

Identifying a thorough interpretation of an ecological 
response to climate change

There are now several reviews aimed at ecological model-
lers (Beaumont et al. 2007, 2008; Tabor and Williams 2010; 
Fordham et al. 2011; Stock et al. 2011; Gould et al. 2014; 
Harris et al. 2014) which provide an overview of the climate 
model structure, as well as outlining recommendations for 
their use in ecological applications (see Online Resource 
1 for a summary of recommendations). The principal sug-
gestions of these reviews are that ecologists should: (i) pre-
pare climate model projections through bias correction and 
appropriate downscaling techniques, (ii) strive to achieve a 
multi-model, multi-RCP approach to capture the variation 
of, and inherent uncertainty of, climate projections, and (iii) 
properly communicate results so that the full range of pos-
sible outcomes are retained and passed down to end users 
and decision makers.

Despite these guidelines, methods to source and prepare 
climate data are often overlooked in the literature, and a 
multi-model, multi-RCP approach in applied ecological 
or conservation studies is rare (Porfirio et al. 2014; Gob-
erville et al. 2015). In marine science specifically, Payne 

et al. (2016) suggested there is a lack of any formal treat-
ment of climate uncertainty, irrespective of ecological 
sub-discipline.

To further investigate the use and reporting of climate 
uncertainty by marine ecologists when making ecological 
predictions, we grouped concepts and suggestions from 
the literature into four assessment criteria. First, we asses 
if there is a general awareness of the uncertainties arising 
from climate data. An awareness of the potential biases and 
limitations of the selected climate data is important because 
it demonstrates knowledge of these uncertainties and exer-
cises caution to readers perhaps less familiar with the topic. 
The second assessment criterion is clear and knowledge-
able access to climate data. This criterion creates a link 
between awareness and incorporation. Reporting informa-
tion on source datasets, processing procedures, and format-
ting methods also encourages sharing of information and 
facilitates progress. Third, we assess the extent of incor-
poration of climate uncertainty into ecological predictions. 
Using multiple realisations, climate models, and scenarios 
controls for sources of climate uncertainty and improves the 
interpretation of an ecological prediction. Finally, informa-
tive communication of all possible outcomes arising from a 
multi-model ensemble approach is the fourth criterion. This 
is important, particularly for conservation and marine man-
agement, so that a range of results are made transparent to 
allow for informed decision making. We use these criteria to 
assess the robustness of ecological predictions in the marine 
ecology literature.

Literature review

To investigate the use and reporting of climate uncertainty 
in marine prediction studies, we conducted a literature 
search within the ISI Web of Science database, using the 
following criteria: (“ocean” OR “marine”) AND (“climate 
change”) AND (“future” OR “impacts” OR “projection” 
OR “prediction”) AND (“species distribution” OR “biocli-
matic”). This was conducted on the 2nd of February 2017 
and revealed 511 journal articles published in the last 5 years 
(2013–2017). From these, we only included articles that spe-
cifically used the CMIP5 simulations to predict a species, 
community, or ecosystem level response to changes in the 
marine environment. We included papers that predicted dis-
tribution shifts, changes to ecosystem function, or changes 
to phenology, growth, or abundance. We also included those 
which predicted changes to fisheries productivity and those 
which assessed future vulnerabilities of species, communi-
ties, or ecosystems.

For each article, we explored the extent to which they 
incorporated the levels of climate uncertainty found within 
the CMIP5 structure, specifically the scenario, model, and 
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internal variability. This was measured by the number of 
RCP’s, ESM’s, and realisations used within the study, 
respectively. For those that used more than one ESM, we 
also noted the choice of communication method for multi-
model ensemble results. We made additional notes on 
whether articles reported the source of present and future 
climate variables, and if the article discussed general limita-
tions of the climate data used.

The final number of articles assessed in the literature 
review was 48 (see Online Resource 2 for full article cita-
tions). Of these, 50% focused on predicting species distri-
butions in the twenty-first century. Predicting impacts to 
fisheries were also common (8%) as was the undertaking 
of vulnerability assessments (7%). The majority of studies 
were conducted at a global scale (38%), or within the North 
Atlantic (25%).

Awareness

Overall, most articles demonstrated an awareness of climate 
uncertainty; 33 out of the 48 studies discussed the limita-
tions of their results in the context of the climate data that 
had been selected as input. This varied, however, from 
briefly mentioning the need for other scenarios, ESM’s, and/
or realisations to be included, to additional information justi-
fying why specific ESM’s or scenarios were chosen to repre-
sent future conditions. In total, three studies (6%) gave a jus-
tification for why a specific ESM was chosen; either because 
of its resolution, specific parameterisations, or its skill (i.e. 
how closely it simulated observed data over a historical time 
period). Examples of poor awareness of the uncertainties 
in climate data were also found. There were cases in which 
basic information regarding the number of and name(s) of 
the ESM(s) used in the study were unreported (Joo et al. 
2015; Seebens et al. 2016), and one article which also failed 
to report the emission scenario used (Saeedi et al. 2016). 
Each of these studies also failed to discuss how the climate 

data used to represent future conditions may have affected 
the ecological results they present.

Access

The most commonly reported sources of species occur-
rence data were the Ocean Biogeographic Information Sys-
tem (OBIS) and Fish Base. The most frequently reported 
sources of SST data (which was also the most frequently 
used environmental variable) were National Oceanic and 
Atmospheric Association’s (NOAA) World Ocean Atlas 
(WOA) and Optimum Interpolated Advanced Very High 
Resolution Radiometer (AVHRR-OI). For the CMIP5 cli-
mate data, 68% of papers lacked clear information on the 
source of their data. For the remaining 32%, official CMIP5 
data portals through the Earth System Grid Federation such 
as the PCMDI (http://pcmdi9.llnl.gov/), BADC (http://
esgf-index1.ceda.ac.uk) and DKRZ (http://esgf-data.dkrz.
de) were cited, as well as the NOAA Climate Change Web 
Portal (https://www.esrl.noaa.gov/psd/ipcc/ocn/) and KNMI 
climate explorer tool (https://climexp.knmi.nl/start.cgi).

Incorporation

The amount of climate uncertainty incorporated into an eco-
logical study generally decreased through the CMIP5 struc-
ture. Most studies used data simulated under multiple RCP’s 
but not multiple realisations (Fig. 2). The most frequent 
number of RCP’s used by a study was two, the most com-
mon being RCP 8.5 (83%) and RCP 4.5 (45%; Fig. 2). The 
number of ESM’s used as input into an SDM ranged from 
one to 35, with 43% of studies using only one ESM to simu-
late future ocean conditions. 91% of studies failed to report 
information regarding the incorporation of internal model 
variability into their study (Fig. 2). Specifically, only four 
studies out of the 48 declared the number or name of ESM 
realisations used (Deutsch et al. 2015; Bruge et al. 2016; 

Fig. 2   Summary of findings from a literature review of marine ecol-
ogy publications which predict ecological responses under climate 
change. Graphs indicate the extent to which the articles incorporated 
climate uncertainty into analyses by measuring; (I.) the number and 

severity of emission scenario used, (II.) the number of Earth System 
Models (ESM’s) used, and (III.) whether information regarding the 
internal variability of ESM’s was reported

http://pcmdi9.llnl.gov/
http://esgf-index1.ceda.ac.uk
http://esgf-index1.ceda.ac.uk
http://esgf-data.dkrz.de
http://esgf-data.dkrz.de
https://www.esrl.noaa.gov/psd/ipcc/ocn/
https://climexp.knmi.nl/start.cgi
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Butzin and Pörtner 2016; Cheung et al. 2016c). Deutsch 
et al. (2015) was the only article to report using multiple 
realisations for each ESM used to simulate future climate in 
their predictions of future metabolically viable habitats and 
species ranges.

We found that certain ESM’s are utilised more than others 
in the literature, perhaps due to the larger number and variety 
of climate variables that are available for these models on the 
Earth System Grid data portals. The most frequently used 
ESM’s by ecological studies were those of the Geophysical 
Fluid Dynamics Laboratory (GFDL-ESM2M), Max Planck 
Institute for Meteorology (MPI-ESM-LR), Met Office Had-
ley Centre (HadGEM2-ES), and the Institut Pierre-Simon 
Laplace (IPSL-CM5A-MR), whilst those of the Common-
wealth Scientific and Industrial Research Organization and 
Bureau of Meteorology (ACCESS1.3), Centro Euro-Medi-
terraneo sui Cambiamenti Climatici (CMCC_CESM), and 
China’s First Institute of Oceanography (FIO-ESM) have 
been cited only once each. In comparison to the 15 ESM’s 
used within this study, the popular ESM’s lie either at the 
extreme high or extreme low end of projections for SST at 
a global scale, regardless of emission scenario and future 
time period (Fig. 1). For example, IPSL-CM5A-MR has one 
of the highest SST anomaly values under both RCP 4.5 and 
8.5 whilst GFDL-ESM2M has one the lowest. Of the four 
most common ESM’s, MPI-ESM-LR lies below, but closest 
to, the multi-model mean. A similar pattern is found when 
comparing the Transient Climate Response (TCR) of these 
ESM’s. The TCR is a method of calculating the overall cli-
mate sensitivity of a model, and is defined briefly as the tem-
perature change of a simulation at the time of CO2 doubling 
(Flato et al. 2013). GFDL-ESM2M has a TCR value of 1.3, 
well below the multi-model ensemble mean of 1.8, whilst 
HadGEM2-ES has the second highest TCR value compared 
to all other CMIP5 models at 2.5 (Flato et al. 2013).

Communication

Of the 50% of studies that used more than one ESM to 
project an ecological response into the future, 29% of them 
chose the multi-model ensemble mean or median as the 
only method to communicate results. A further 29% com-
bined this metric with a measurement to show the range 
of results, either using the standard deviation, between-
model range, or the coefficient of variation. Six studies 
went one step further and provided the ensemble mean, 
a range, as well as comparison of the  SDM’s based on 
different climate models. It is worth noting that out of all 
the papers in our review that used a species distribution 
modelling approach, only one article successfully incor-
porated multiple SDM algorithms, RCP’s, and ESM’s, as 
well as communicating the mean and range of their results, 

to show the probable southward range expansion of the 
introduced American Jackknife clam, Ensis directus (Ray-
baud et al. 2015).

Case study

Theoretical background

Lanternfishes (Family Myctophidae) are an abundant and 
species rich group of mesopelagic fishes, with over 240 
species distributed globally between the surface waters 
and 1000 m (Catul et al. 2011). In the Southern Ocean, 
Electrona antarctica (Günther, 1878) is one of the most 
dominant pelagic fish species in terms of abundance and 
biomass (Greely et al. 1999) and is one of only two myc-
tophids to exhibit a true Antarctic distribution, south of 
the Antarctic polar front (Duhamel et al. 2014). Strong, 
circumpolar frontal systems such as the polar front play an 
important role in delimiting different water masses as well 
as the spatial distribution of the Southern Ocean pelagic 
ichthyofauna (Collins et al. 2012; Duhamel et al. 2014). 
This biogeographic range coincides with the area in which 
model uncertainty, rather than emission scenario uncer-
tainty, dominates the variability among climate projections 
of SST until the end of the twenty-first century (Frölicher 
et al. 2016). Thus, E. antarctica provides an opportunity 
to demonstrate the extent of variation that is possible to 
encounter when predicting species responses to climate 
change under multiple ESM’s, and to investigate the 
additional variation that can be produced when multiple 
realisations and emission scenarios are also incorporated 
into analyses, even if they are not the dominant source of 
climate uncertainty at the temporal and spatial scale being 
investigated.

Not only is E. antarctica usefully geographically 
located for this study, it is also of significant ecological 
importance. The vast abundance and biomass of this spe-
cies lends it to having a key role ecosystem functioning, 
particularly as a dominant krill predator (Greely et al. 
1999), and in turn, being an important component in the 
diet of many charismatic Antarctic fauna including pen-
guins (Guinet et al. 1996), flighted seabirds (Barrera-Oro 
2002), and elephant seals (Cherel et al. 2008). E. ant-
arctica is also a major component of the diurnal vertical 
migration (DVM) in the Southern Ocean, in which mes-
opelagic fauna migrate to surface waters each night and 
return to depths at dawn, and so it is likely to play a signifi-
cant role in the export of carbon to deeper waters (Collins 
et al. 2012). This importance provides another reason to 
investigate E. antarctica’s response to ocean warming.
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Methods

Occurrence records

1186 occurrence records of E. antarctica were downloaded 
from the Global Biodiversity Information Facility (GBIF; 
http://www.gbif.org/) facilitated by the software Mod-
estR (Garcia-Rosello et al. 2013). All occurrence records 
were then cleaned for unreliable data including duplicated 
records, records with identical latitude and longitude, and 
records with a latitude and longitude corresponding to a ter-
restrial location, leaving 950 records for analysis.

Environmental variables

Sea surface temperature (SST) and bathymetry were used as 
environmental variables in our species distribution model-
ling. By relying on SST, the modelled distributions presented 
here are valid for surface waters only. We acknowledge that 
the vertically migrating behaviour of this species means that 
environmental conditions at depths of up to 1000 m should 
ideally be accounted for in our SDM (Duffy and Chown 
2017). Obtaining a three-dimensional distribution model 
was inhibited, however, by unreliable depth information 
associated with the occurrence records. Nevertheless, the 
majority of occurrences used were reportedly from the upper 
water column (0–200 m) and the well-oxygenated water in 
the Southern Ocean gives highly correlated environmental 
variables between the surface and deep layers (SST and tem-
perature at 1000 m Pearson’s R = 0.89), reducing the chance 
of misrepresenting their occupied niche.

For SST, the Optimum Interpolation Sea Surface Temper-
ature V2 dataset from the National Oceanic and Atmospheric 
Administration (NOAA) was downloaded from http://www.
esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html. This 
dataset includes monthly mean SST values over a global 
grid of 1° resolution taken from both satellite measurements 
and in situ recordings for the years 1981–2016 (Reynolds 
et al. 2002) and is also used as the observed SST baseline 
during processing of future climate data. Bathymetry was 
determined from a global 30 arc second resolution (approx. 
1 km) (Becker et al. 2009) and was re-sampled to the same 
resolution as SST using the bilinear resample tool in ArcGIS 
v. 10.4 (ESRI, Redlands, California).

Future climate data

We processed SST climate projections from 15 CMIP5 
ESM’s, nine of which are an ensemble of multiple (three) 
realisations (Table 1). Each ESM projection is represented 
by a 20-year period (2081–2100), under two emission 
scenarios. The SST variable “tos” (temperature of sur-
face) data were downloaded from 15 ESM’s for both RCP 

4.5 and RCP 8.5 emission scenarios which are available 
from the World Climate Research Programme data portal: 
https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/. Up to 
three realisations were downloaded for each ESM with 31 
realisations used in total. Each realisation gives monthly 
mean SST estimates on a global grid of coarse resolu-
tion between the years 2006 and 2100 (Table 1 for model 
resolutions). SST values from the historical realisations 
used to guide each ESM realisation, running from 1850 to 
2005, were also downloaded from the same data portal to 
provide model baselines.

Data were processed to extract monthly mean SST val-
ues from both the 1982–2001 and 2081–2100 time slices. 
The 1982–2001 data were taken from both climate model 
and observed baselines whilst the future climate data 
(2081–2100) were extracted from each ESM. Mean cal-
culations were carried out using the NetCDF Record Aver-
ager “ncra” command of the NetCDF Operator (NCO) 
utility for Linux (http://nco.sourceforge.net/). Hereafter, 
these time slices are referred to as baseline (1982–2001) 
and 2090 (2081–2100).

We implemented a bias correction procedure to mini-
mize the difference between observed and simulated 
recent climates. This is a simple and quick method to 
deal with bias uncertainties when processing many large, 
global datasets and is similar to the change-factor method 
described by Tabor and Williams (2010). Specifically, pro-
jected SST anomalies from a model baseline (1982–2001) 
were added to the baseline derived from the observed SST 
dataset. The processing workflow proceeds as follows (Fig. 
A1 in Online Resource 3). For each ESM, the projected 
change in SST for each grid cell for a future time period 
(i.e. the 2090 anomaly) was calculated by creating a new 
raster in which the model baseline cell values were sub-
tracted from the 2090 cell values. Each anomaly raster 
was then added to the observed baseline SST raster. In this 
way, the projected change in SST simulated by the model 
is retained for each grid cell, but is shifted on to the more 
realistic baseline, giving an adjusted projection of future 
SST across the globe.

All environmental variables for both present and 
future time periods were cropped to a latitudinal extent of 
30–75°S and interpolated to 0.25 × 0.25 degrees resolu-
tion (~ 9 km) using a regularized spline interpolation of 
vector points implemented in ArcGIS v.10.4. This method 
uses a mathematical function that minimizes overall sur-
face curvature, resulting in a smooth surface appropri-
ate for data such as temperature (Hijmans et al. 2005). 
This resolution is common in the marine literature (Fly 
et al. 2015; Alabia et al. 2016; Byrne et al. 2016) and is 
appropriate to capture both the large distributional range 
of pelagic species and the dynamic oceanography of the 
Southern Ocean.

http://www.gbif.org/
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
http://nco.sourceforge.net/
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Species distribution model

Occurrence records and environmental predictors were fit-
ted to the species distribution modelling algorithm MaxEnt 
(Phillips and Dudik 2008; Elith et al. 2010, 2011). MaxEnt 
models the environment from a range of random locations 
across the study region (“background sites”) to discrimi-
nate against the environment at locations where species 
are known to be present (“presence sites”). In doing so, the 
model predicts the relative suitability of the environment 
across the study region. MaxEnt was chosen for its repeat-
edly high performance against other SDM algorithms (Elith 
et al. 2006; Ortega-Huerta and Peterson 2008; Monk et al. 
2010), its popularity in the literature, ease of use, and acces-
sibility. Furthermore, MaxEnt’s capacity to use presence-
only data is appropriate because of the high potential for 
errors under a presence–absence approach for E. antarctica, 
given the relatively low sampling effort in polar regions and 
the species net avoidance behaviour (Collins et al. 2008).

The SDM was run using a 10-k cross-validation method 
and 30% of occurrence data were reserved for model test-
ing. Auto features were selected with the following settings: 
regularisation parameter = 1, maximum number of itera-
tions = 500, and number of background points = 8000. Only 
one occurrence record per grid cell was used in the model. 
The predictive performance of the model was evaluated 
using both area under the receiving operator characteristic 
curve (AUC) values and the model’s omission rate.

This present day model was then used to predict the future 
distribution of E. antarctica under each climate simulation 
for the year 2090 (31 simulations × two scenarios, equal-
ling 62 simulations in total). Logistic outputs, which give 
the conditional probability of occurrence between 0 and 1 
for each grid cell in the study region, were then thresholded 
using the Reclassify tool in ArcGIS to create a binary pres-
ence–absence map of E. antarctica’s future distribution. 
For all outputs the threshold used was 0.41 as informed by 
the “Equal test sensitivity and specificity” threshold recom-
mended by Liu et al. (2005).

We then quantified the variation in the predicted suitable 
area amongst the 62 outputs. The predicted area of suit-
able habitat, taken as the area with a probability of pres-
ence above the 0.41 threshold, was calculated for each 
output using the R package “raster” (Hijmans 2015) and 
subtracted from the present day suitable area. To quantify 
the spatial variability in future predictions, pairwise range 
overlap metrics for each of the 62 future distribution maps 
were calculated using the range overlap function in the soft-
ware ENMTools (Warren et al. 2010). To visualise how the 
use of different model realisations can affect SDM results, 
the future distribution maps created from using each reali-
sation of an ESM were summed together, thus showing the 
level of agreement between them (i.e. a value of three = high 

agreement in the future distribution of the species; the loca-
tion is predicted to be suitable when using any of the three 
realisations, a value of one = low agreement in the future 
distribution of the species; the location is predicted to be 
suitable by only one of the three realisations). Similarly, the 
future distribution maps created from using each of the 15 
ESM’s were summed together to show the level of agree-
ment between them, ranging from 15 (the location is pre-
dicted to be suitable regardless of the ESM used as input 
into the SDM) to one (the location is predicted to be suitable 
by only one ESM).

Results

The present day distribution model gave strong model 
performance based on AUC and omission rate met-
rics (mean AUC  =  0.829  ±  0.009  SD, omission 
rate = 0.001 ± 0.003 SD). Under this model, E. antarc-
tica has an upper latitudinal distribution of ~ 55°S in the 
Pacific region of the Southern Ocean, to ~ 45°S in the 
Atlantic region, coinciding closely with the polar front 
(Fig. 3) and has a predicted current suitable habitat of 

Fig. 3   The present-day distribution of Electrona antarctica between 
35 and 75°S as predicted by the species distribution model algorithm 
MaxEnt. Output is the logistic conditional probability of presence 
ranging from 1 (high probability of occurrence) to 0 (low probabil-
ity of occurrence). The position of the main oceanographic fronts in 
the Southern Ocean are shown; Subtropical Front (dashed black line), 
Subantarctic Front (black line), Polar Front (red line), Southern Ant-
arctic Circumpolar Current Front (black dotted line)
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17,503,869  km2 based on the 0.41 threshold criteria. 
Future SDM results based on 62 climate simulations 
all indicate a change in the future suitable habitat for E. 
antarctica, but the direction and severity of this change 
is highly dependent on the choice of emission scenario, 
ESM, and ESM realisation (Figs. 4, A2 and A3 in Online 
Resource 4).

Scenario uncertainty

The severity of E. antarctica’s response to climate warming 
is influenced firstly and inherently by the choice of emission 
scenario as input into the SDM. By 2090, under the stabi-
lising scenario RCP 4.5,  SDM’s predict that E. antarctica 
will lose, on an average, 6.21% of suitable habitat. These 

Fig. 4   The percentage loss or gain of suitable habitat area for Elec-
trona antarctica by 2090 (2081–2100) relative to 1992 (1982–2001) 
as predicted by species distribution models using 31 different climate 
simulations from 15 global climate models and two emission scenar-

ios, RCP 4.5 (a) and RCP 8.5 (b). Simulations are grouped by climate 
model and by the severity of the predicted change in suitable area. 
Realisations of the same model are denoted by realisation (r) number
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increases to a loss of 13.11% when the more severe scenario 
RCP 8.5 was used as input (Fig. 4). The variation amongst 
SDM outputs is also elevated when using simulations from 
RCP 8.5, from a standard deviation of ± 5.96% under RCP 
4.5 to ± 10.24% under RCP 8.5.

Model uncertainty

Much of the variability in predictions of E. antarctica’s 
future distribution can be attributed to the climate model 
used to represent future climate conditions (Fig. 4). At the 
extremes, the use of certain ESM’s predicted a loss of suit-
able area of up to 28.84% (CCSM4, RCP 8.5) to an increase 
in suitable area of 2.91% (MPI-ESM-LR, RCP 8.5). This 
variation equates to differences in suitable habitat of over 
5 million km2. Although most ESM’s projected a more 
severe change to E. antarctica’s distribution under RCP 8.5 
(either losing or gaining more suitable area), the SDM based 
on the GFDL-ESM2G climate model predicted a loss of 
area of 13.38% under RCP 4.5 and only 5.77% under RCP 
8.5 (Fig. 4). Range overlap of future distributions based on 
different ESM’s was on an average 87% (± 0.07) for RCP 
4.5 and 88% (± 0.08) for RCP 8.5. Lowest range overlap 
of 64% was between predictions based on CNRM-CM5-2 
and GFDL-ESM2G climate models (Table 2). Overall, spa-
tial agreement in future distributions under different ESM’s 
is highest in the core range of E. antarctica and decreases 
towards range edges, specifically in the leading edge sur-
rounding the Western Antarctic Peninsula and Weddell Sea 
(Fig. 5).

Internal variability

The variability in predictions of E. antarctica’s future dis-
tribution that can be attributed to the internal variability of 
an ESM was highly dependent on the ESM used (Figs. A2 
and A3 in Online Resource 4). In the most extreme case 
(when using different realisations of the CNRM-CM5-2 
climate model, RCP 8.5, as input into the SDM), the area 
of predicted suitable habitat differs by almost 700,000 km2 
between the realisations, ~ 4% of E. antarctica’s total range 
(Fig. 4). Additionally, when using different realisations of 
the climate model MPI-ESM-MR, RCP 4.5, two out of the 
three realisations predicted a loss of suitable area (3.37 and 
2.53%) whilst one realisation predicted a slight increase in 
area (0.45%; Fig. 4). When comparing SDM outputs that 
used different realisations of the same ESM, range overlap in 
the predicted distributions varied from being highly consist-
ent (CCSM4, RCP8.5 = 99.9% [± 0.004]) to slightly vari-
able (MPI-ESM-LR, RCP 4.5 = 95.6% [± 0.012]; Table 2). 
There was generally high spatial agreement in the predicted 
distributions of E. antarctica when different realisations 
of the same ESM were used as input to  SDM’s (Fig. 5). 

However, this agreement tended to decrease in leading range 
edges, specifically around the Weddell Sea and Ross Sea 
regions (Fig. 5).

Discussion

Using a case study species, Electrona antartica, and by 
deconstructing future climate data to three sources of uncer-
tainty, we have demonstrated the large variability in predic-
tions of species responses to climate change that can arise 
from incorporating internal, model, and emission scenario 
uncertainty into analyses. Predicted loss of habitat, on an 
average, doubled under a more severe Representative Con-
centration Pathway. Species predictions based upon differ-
ent ESM’s ranged from substantial habitat loss of ~ 30%, 
to a marginal gain of 3%. When basing species predictions 
on multiple realisations within individual ESM’s, there was 
generally high spatial consistency, though in one instance 
SDM outputs had levels of variation which was still enough 
to give opposing conclusions to the species response to 
change.

To our knowledge this is the first example of a system-
atic exploration of the effect that all three levels of climate 
uncertainty can have when predicting the future distribu-
tion of a marine species. Previous studies have focused on 
understanding the effect of using multiple RCP’s and ESM’s 
when simulating future climate conditions, for example with 
the commercially important grey snapper Lutjanus griseus 
(Hare et al. 2012), or on comparing structural uncertainty 
of SDM results between different ecological and climate 
models (Jones and Cheung 2015; Benedetti et al. 2017). 
More broadly, our findings of large variation in SDM out-
puts caused by the choice of ESM used to represent future 
conditions is in line with similar analyses, for example, on 
European trees (Goberville et al. 2015) and plants (Thuiller 
2004), freshwater fish assemblages (Buisson et al. 2010), 
and African vertebrates (Garcia et al. 2012). Beaumont et al. 
(2007) investigated the effect of incorporating internal vari-
ability when predicting the future distributions of Australian 
butterflies, and similar to our findings, reported variability in 
SDM results due to multiple realisations of a single climate 
model.

It is clear from these examples that choosing which cli-
mate data to base an ecological prediction upon must be 
made carefully, and that using a single realisation, ESM, 
or emission scenario as input for an ecological prediction 
can lead to misleading and uninformative results. Yet from 
our literature review we find evidence of only moderate 
incorporation of climate uncertainties, with some receiving 
greater attention than others. Articles were more likely to 
include multiple RCP’s than ESM’s, and over 90% of stud-
ies failed to report information regarding the realisations 
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or initializations used, with only one study explicitly stat-
ing that they had incorporated multiple realisations into 
analyses. The lack of similar reviews in other ecological 
disciplines means we are unable to compare the marine 
community’s efforts to others. However, half of the stud-
ies investigated here had based their predictions on two or 
more ESM’s, 10% more than was found by Porfirio et al. 
(2014) when investigating the terrestrial SDM literature 
dating between 1982 and 2013. Additionally, our findings 
are in support Payne et al. (2016) that climate uncertainty 
is generally treated as one element, and that the internal 
variability of ESM’s is rarely accounted for in the marine 
ecology literature.

Whilst the marine literature had a higher percentage of 
studies using multiple ESM’s than was recorded for terres-
trial studies, the most commonly used ESM’s tend either to 
over- or under-project future SST relative to a multi-model 
mean (Fig. 1) and have previously been found to have rela-
tively high levels of internal variability for marine variables 
(Frölicher et al. 2016). Although studies that use these four 
common ESM’s together may be incorporating a broad range 

of possible SST conditions, the reliance of any one of these 
alone (which was the case for 40% of studies that used a 
single climate model) may affect the magnitude of the eco-
logical response being investigated. Indeed, this study high-
lights that climate models can project extremely different 
rates of change, both temporally and spatially, and that these 
differences are reflected in the ecological predictions that 
are made. For example, the climate models which generated 
predictions of extreme loss or gain of E. antarctica habitat 
are also those that have the highest and lowest rates of SST 
warming in the Southern Ocean, respectively. Regions that 
had decreased agreement between SDM outputs (e.g. the 
Weddell and Ross Seas) are also regions characterised by 
high variability in climate model projections of SST.

Variability in predicted species responses to climate 
change due to different emission scenarios is arguably the 
most obvious and inherent source of climate data uncertainty, 
and by the end of the twenty-first century (2070–2100), which 
is the most frequently used time period for marine prediction 
studies, scenario uncertainty is expected to dominate over 
the other sources for a large proportion of the Earth’s surface 

Fig. 5   Quantifying the level of agreement in predictions of E. ant-
arctica’s future distribution, when future climate conditions are sim-
ulated by (I.) 15 different Earth System Models (ESM’s), and (II.) 

three realisations of each ESM. Predictions under both emission sce-
narios RCP 4.5 and RCP 8.5 are shown
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(Hawkins and Sutton 2009). Thus, it is perhaps unsurprising 
it has been given priority in the literature. Yet our case study 
demonstrates large variation in a species response to climate 
change, and that when multiple realisations are available, 
using all three levels of uncertainty to simulate the future 
climate is the most appropriate action. It is often necessary to 
make compromises in which uncertainties can be integrated 
into a study due to the amount of data processing, resource 
constraints, or when a research question focuses on other 
sources of uncertainties. If such decisions are to be made, 
ecologists must consider how climate uncertainties interact 
and which ones are of greatest concern for their study region, 
time period of interest, and the environmental variables being 
used (Cheung et al. 2016a; Frölicher et al. 2016).

Once used, predicted distributions obtained under multi-
ple RCP’s, ESM’s, and realisations must be communicated 
transparently and effectively to convey the full range and con-
fidence of the ecological predictions being made. There are 
multiple ways of summarising ensemble results, including 
the area in which at least one model, or all models, predicts 
species occurrence (bounding box), the area in which 50% 
of predictions show overlap (consensus forecast), and the 
probability of distribution change as a probability density 
function (Araujo and New 2007; Harris et al. 2014; Porfirio 
et al. 2014). A range of these were found in the marine litera-
ture and the presence of a variety of communication meth-
ods is promising but also highlights that there is no standard 
approach in communicating species predictions. Half of stud-
ies from the literature review chose only to use the multi-
model mean, despite advice that this should be avoided in 
most circumstances (Beaumont et al. 2007). To summarise 
the results for E. antarctica, we present future distribution 
maps based upon realisation and ESM agreement (Fig. 5). 
This method has been favoured among conservation manag-
ers due to it showing clear priority areas for conservation 
(Porfirio et al. 2014). It also conveys the range of potential 
outcomes and the level of confidence in the findings.

Uncertainty in predictions of ecological responses can 
also arise from parameters and data used in the biological 
model, for example, in evaluation of parameter estimates, 
model performance, or the spatial and temporal scale of the 
model (Beaumont et al. 2008). These sources of uncertainty 
were reviewed in a similar manner to the study by Planque 
et al. (2011). The authors reviewed the marine literature to 
determine if studies predicting species distributions had 
adequately reported uncertainty arising from modelling 
procedures, concluding that there was little evidence of suf-
ficient reporting and that predictions were not as reliable as 
previously assumed.

These issues can be somewhat ameliorated by recent 
developments in the wider SDM literature, where how to 
improve predicted distributions is now widely discussed 
(Araujo and Guisan 2006; Beaumont et al. 2008; Elith and 

Leathwick 2009; Elith et al. 2010; Beale and Lennon 2012; 
Porfirio et al. 2014; Jarnevich et al. 2015). There are also 
specific publications guiding ecologists through many of 
the common sources of uncertainty, for example, regard-
ing observation bias (Wisz et al. 2008; Stolar and Nielsen 
2015), modelling approaches (e.g. empirical and mecha-
nistic) (Kearney et al. 2010), algorithm settings (Merow 
et al. 2013; Boria et al. 2017) and comparisons (Elith et al. 
2006; Ortega-Huerta and Peterson 2008; Guillera-Arroita 
et al. 2015), evaluation metrics (Lobo et al. 2008), and 
collinearity (Braunisch et al. 2013; Dormann et al. 2013). 
Given the amount of literature addressing this subject, we 
focused here only on the use of climate uncertainty, but 
stress the need to account for all sources of uncertainty and 
incorporate, where appropriate, multiple modelling algo-
rithms. There is recent evidence of this being applied to 
marine ecology research (Jones and Cheung 2015; Cheung 
et al. 2016b; Legrand et al. 2016).

One insight from our review is that a major limitation 
when creating robust predictions of ecological responses 
in marine ecology is having adequate access to CMIP5 
data, and/or knowledge of how to process raw climate data. 
In over 65% of studies, sourcing of the CMIP5 climate 
data used was not reported. When it was, the data are often 
in a format (NetCDF) that requires complex processing to 
become smaller, manageable raster files most commonly 
used in distribution modelling. Though this is a problem 
that could be encountered by all ecologists, it is particu-
larly restrictive in the marine community as databases that 
contain a broad range of future environmental variables 
(not only SST but O2, pH, salinity and primary productiv-
ity) from multiple ESM’s in a rasterized format are largely 
lacking or only provide data from the previous CMIP3 
modelling efforts (though see interactive tools such as 
NOAA’s climate change web portal and Clim System’s 
SimCLIM for ArcGIS). Further development of these tools 
to include more ocean variables and realisations, greater 
communication between marine and climate scientists, as 
well as increased data sharing amongst marine ecologists 
will be necessary to improve data clarity and accessibil-
ity (Beaumont et al. 2008; Harris et al. 2014; Payne et al. 
2016). As a step towards this view, the 62 global SST 
simulations used in this study will be made available via 
the Dryad Data Repository (doi:10.5061/dryad.4f98t), pro-
viding a resource for ecological, conservation, and policy-
driven studies in rapidly changing marine environments.

Conclusions

Predicting species and ecological responses in the face of 
climate warming can be a useful exercise when implemented 
correctly, with growing practical applications. Whilst it is 

https://doi.org/10.5061/dryad.4f98t
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impossible to remove climate uncertainty, and much will 
only be helped by advances in climate science (e.g. in param-
eterisation and resolution), ignorance of these uncertainties 
by ecologists can be highly detrimental to those acting upon 
published results. We have reviewed the marine literature 
and found evidence that the marine ecology community is 
only moderately addressing climate uncertainty, despite a 
general high awareness of it, with improvement necessary 
in the incorporation of internal variability, broader repre-
sentation of ESM’s, and clearer communication of results. 
Moreover, with our case study species, Electrona antarc-
tica, we demonstrated that a full and transparent incorpora-
tion of climate uncertainty is possible, and that it plays a 
crucial role in creating reliable predictions. We identified 
possible solutions which may overcome current limitations 
in utilising climate data. This includes easier access to pro-
cessed climate data that includes, to some extent, all levels 
of climate uncertainty, which would provide an incentive 
for marine ecologists to increase the amount of uncertainty 
being incorporated into their analyses. This should, in turn, 
promote clearer communication of all possible outcomes and 
an overall increase in the quality and standard of studies that 
predict ecological responses in a changing ocean.
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