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Abstract 

New seamless onshore to offshore bedrock (1:10k scale) mapping for the Lyme Bay area is used to 

resolve the westward termination of the Purbeck-Wight Fault Zone (PWFZ) structure, comprising 

one of the most prominent, long-lived (Variscan-Cimmerian-Alpine) structural lineaments in the 

southern UK. The study area lies south of the Variscan Frontal Thrust and overlays the basement 

Variscide Rhenohercynian Zone, in a region of dominant E-W tectonic fabric and a secondary 

conjugate NW-SE/NE-SW fabric. The PWFZ comprises one of the E-W major structures, with a typical 

history including Permian to early Cretaceous growth movement (relating to basement Variscan 

Thrust reactivation) followed by significant Alpine (Helvetic) inversion. Previous interpretations of 

the PWFZ have been limited by the low resolution (1:250k scale) of the available offshore BGS 

mapping, and our study fills this gap. We describe a significant change in structural style of the fault 

zone from east to west. In the Weymouth Bay area, previous studies demonstrate the development 

of focussed strain associated with the PWFZ, accompanied by distributed strain, N-S fault 

development, and potential basement uplift in its hangingwall. In the Lyme Bay area to the west, 

faulting is dominantly E-W, with N-S faulting absent. Comparison of the newly mapped faulting 

networks to gravity data suggests a spatial relationship between this faulting variation and basement 

variability and uplift. 
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1. Introduction 
Deformation in late Palaeozoic, Mesozoic and Cenozoic sequences in the southern UK is 

characterised by the development of major en echelon E-W orientated faults, which may be partially 

inherited from Variscan ‘basement’ structures, and which acted as growth faults controlling the 

deposition of Permian through to the late Cretaceous sequences, and furthermore provided the 

focus for Alpine inversion (Stoneley, 1982; Lake and Karner, 1987; Chadwick, 1986, 1993; Ziegler, 

1987; Peacock and Sanderson, 1999; Smith and Hatton, 1998; Underhill and Stoneley, 1998; 

Underhill and Paterson, 1998; Blundell, 2002; Chadwick and Evans, 2005). The faults demonstrate 

significant structural variability along their length, relating for example to differing degrees of 

inversion in post-rift sequences and the development of overlapping major fault segments (e.g. 

Barton et al., 1998; Harvey and Stewart, 1998; Underhill and Paterson, 1998; Collier et al., 2006; 

Evans et al., 2011). Focussed inversion along these faults was accompanied by more distributed 

deformation and uplift of the intervening basins (Chadwick, 1993; Blundell, 2002; Sanderson et al., 

2017).  

The Purbeck-Wight Fault Zone (PWFZ) is one of the best-developed of these late Cretaceous-

Cenozoic inversion lineaments, extending along strike for over 100 km from east of the Isle of Wight 

to Lyme Bay in the west (Fig. 1). It includes multiple overlapping fault segments, including, for 

instance, the Purbeck Fault extending across the south of the Isle of Purbeck, and the Abbotsbury-

Ridgeway Fault extending westwards into Lyme Bay (Fig. 1; Fig. 2; Stoneley, 1982; Hamblin et al., 

1992; Chadwick and Evans, 2005; Evans et al., 2011). The history of study of the spectacular 

exposures of this World Heritage site ‘Jurassic Coast’, accompanied by detailed onshore and offshore 

mapping, and subsurface seismic interpretation, also make it one of the best understood examples 

of a major structure affecting both the deposition and deformation of cover sequences in the 

southern UK (e.g. Arkell, 1936, 1947; Chadwick, 1993; Underhill and Paterson, 1998; Barton et al., 

2011). The topographical and tectonostratigraphical position of the PWFZ, extending west towards 

the margins of the exposed Cornubian basement massif in SW England, and to lower exposed 

(Permo-Triassic) stratigraphical levels than many of the other inversion fault zones in the southern 

UK, make it of particular interest. 

Our current knowledge of the structures in southern England comes mainly from the interpretation 

of geological and geophysical data collected in the 1980s-2000s (summarised, for example, in 

Chadwick and Evans, 2005). Much of this work was implemented by the BGS as part of its mapping 

programme of the British Islands, together with commercial organisations principally driven by 

exploration for conventional hydrocarbons (Underhill and Stoneley, 1998). More recently, the 

onshore area has been evaluated for shale oil and shale gas potential (Greenhalgh, 2016). This 

exploration has resulted in a wealth of information including outcrop observations, borehole logs, 

seismic reflection profiles and potential field grids.  Whilst these traditional datasets are still being 

expanded with new acquisition campaigns it is the application of new technologies that arguably 

offer the biggest potential to significantly advance our understanding of the structure of this well-

known area. Recent examples of these new approaches include DInSAR onshore (Aldiss, 2013), and 

swath bathymetry offshore (Collier et al., 2006; Sanderson et al., 2017), both of which provide high 

resolution imagery of previously unseen structures that complement traditional datasets and allow 

current interpretations to be tested.  
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Figure 1. Regional tectonic setting. A. Basement terranes of Southern Britain, after Chadwick and Evans (2005), including 

their proposed position of the Variscan Frontal Thrust (labelled VFT); differing positions proposed by other authors for the 

VFT are also shown; WBFS = Welsh Borderland Fault System; ML = Malverns Lineament.; B. BGS regional gravity 

compilation, with scale as shown (Bouguer onshore and free-air offshore; residual after subtraction of an upward-

continued field); C. Compilation map of major fault lineaments in southern Britain, both concealed and cropping out. WCH 

= Watchet-Cothelstone-Hatch Fault; SDH = South Dorset High; WPF = Wardour-Portsdown Fault Zone; PLPF = Pewsey-

London Platform Fault Zone; B/H = Basin/High; RF = Rusey Fault Zone. Base of Mesozoic cover and Base Aptian (Lower 

Cretaceous) shown. Compiled principally from Chadwick and Evans (2005), with additional information from the literature 

(including Stephan et al., 2016; Warr, 2012; Holdsworth, 2012; Waters and Davies, 2006; Leveridge and Hartley, 2006; 

Chadwick and Evans, 2005; Stoneley, 1982), plus additional lines from BGS digital mapping. Principal faults within the PWFZ 

emphasised in bold purple. Offshore faults in the study area (Fig. 2) taken from Sanderson et al. (2017) for Weymouth Bay, 

and from the present mapping in Lyme Bay. 

We aim to improve our understanding of the PWFZ, by building on the work Sanderson et al. (2017), 

and extending the seamless onshore-offshore bedrock mapping westwards from Weymouth Bay to 

include a further 800 km2 of the offshore area of Lyme Bay (Fig. 2). This area is key to understanding 

the lateral variation in structural style along this major structure, and has previously been covered 

only by 1:250 k mapping (BGS DigRock250). We also extend previous subsurface understanding, such 

as that of Harvey and Stewart (1998) for Lyme Bay, by linking seismic interpretation to the surface 

mapping. The new surface mapping, in particular the fault network distribution, is compared to 

existing BGS onshore and UKCS regional gravity compilations in order to understand any potential 

link between higher and deeper level (potentially Variscan) structure. This contribution considers the 

PWFZ in a regional context, and provides new details on the tectonic regime in this pivotal location, 

as well as adding to the wider understanding of inversion tectonics in southern Britain. 

2. Tectonic setting 

The depositional and tectonic framework of the southern UK to the south of the Variscan Frontal 

Thrust (VFT) relates to the characteristics of both ‘basement’ rocks (generally Carboniferous or older 

in age) and ‘cover’ rocks (generally Permian or younger). The basement is defined 

tectonostratigraphically as the Variscide Rhenohercynian Zone (Chadwick and Evans, 2005; 

Leveridge and Hartley, 2006; Fig. 1A), bounded to the north by the Variscan Frontal Thrust, the origin 

and position of which has been the subject of debate (e.g. Chadwick and Evans, 2005; Waters and 

Davies, 2006; Stephan et al., 2016; Fig. 1). This thrust is interpreted as the northern limit of major 

Variscan orogenic deformation, typified by northward-propagating thrusting (with E-W striking 

thrusts developed under broadly N-S shortening), and pervasive cleavage development of the 

basement rocks, such as evident in the Devonian and Carboniferous sequences exposed in SW 

England (Leveridge and Hartley, 2006; Holdsworth et al., 2012; Warr, 2012; Woodcock and Strachan, 

2012). The cover sequences range from Late Palaeozoic (Permian), through Mesozoic, to Cenozoic in 

age, and are affected by several generations of less pervasive deformation.  

The dominant ‘tectonic fabric’ of the southern UK is formed by major, 10’s km-spaced E-W striking 

faults, and secondary fabric of similar spatial scale formed by mainly NW-SE but also NE-SW striking 

fault lineaments, each with associated, often sub-parallel, open to locally intense folding. These 

deformation lineaments in the cover are commonly but not always linked to Variscan structures in 

the basement (e.g. Chadwick et al., 1983; Hawkes et al., 1998; Underhill and Stoneley, 1998; 

Blundell, 2002). The Variscan Orogeny extended from the Devonian, through the Carboniferous, to 

the early Permian (Chadwick and Evans, 2005; Holdsworth et al., 2012; Warr, 2012). In its later 

stages in NW Europe and the UK the development of E-W orientated thrust structures was 
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accompanied by the development of NW-SE striking right-lateral strike slip faults developed under 

oblique NNW-SSE shortening (transpression) across the E-W to WNW-ESE trending Variscan 

deformation belt (Lake and Karner, 1987; Stephan et al., 2016). Such NW-SE striking faults occur 

widely across the Variscan belt and include the Watchet-Cothelstone-Hatch and the Sticklepath Fault 

(Holloway and Chadwick, 1986; Chadwick and Evans, 2005; Leveridge and Hartley, 2006; Fig. 1C). 

Right-lateral strike-slip offset is also inferred to have occurred, principally during the Carboniferous, 

along the NW-SE Bristol Channel-Bray Fault, a notable crustal structure, which was responsible for 

north-westwards transport for some 400 km of the Cornubian terrane against the Avalon terrane 

(Holder and Leveridge, 1986; Holdsworth et al., 2012; Warr, 2012; Woodcock, 2012).  

The E-W tectonic fabric is apparent beneath cover rocks in SE England as curvilinear and en echelon 

lineaments on gravity and magnetic data (Lee et al., 1990; Blundell, 2002; Fig. 1B). The basement 

structures are thought to have exerted a spatially variable and episodic influence on deposition and 

subsequence inversion of overlying Mesozoic sequences (Chadwick, 1993; Blundell, 2002; Chadwick 

and Evans, 2005). Although the degree of this basement influence is debatable, there is evidence for 

interaction between newly formed Mesozoic extensional faults and selective re-activation of 

favourably orientated Variscan structures (Holdsworth et al., 2012).  

Orogenic collapse and thermal uplift following the Variscan Orogeny led to the development of the 

Variscan unconformity, above which the cover sequences of Permian and younger cover rocks were 

deposited (Hounslow et al., 2012; base Mesozoic on Fig. 1C). These cover sequences are affected by 

the late Palaeozoic (Permian) to Cenozoic Cimmerian-Alpine tectonic cycle, subdivided by the 

regional Cimmerian, or Albian-Aptian unconformity into the Permian to Lower Cretaceous, and 

Upper Cretaceous (and younger) megasequences (Underhill and Paterson, 1998; Underhill and 

Stoneley, 1998; Chadwick and Evans, 2005; Sanderson et al., 2017; Fig. 1C). Permian and Triassic 

deposits in the southern UK were deposited in a series of fault controlled basins (with evaporites 

common in thicker basinal settings), which were influenced by re-activation of existing Variscan 

contractional structures (e.g. Chadwick, 1986). East-west trending extensional basins were also 

compartmentalised by NW-SE trending faults possibly inherited from Variscan structures (Lake and 

Karner, 1987; Barton et al., 1998; Blundell, 2002; Chadwick and Evans, 2005). The relationship 

between the Variscan and higher level structures is in places complicated by the development of 

‘short-cut’ faulting structures extending upwards from the shallower basement thrusts (Blundell, 

2002; Chadwick and Evans, 2005). Regional uplift formed a persistent high in SW England (the 

Cornubian massif) during Permian and later times, acting as a source of sediment to basins to the 

east and south (Gale, 2012; Hesselbo, 2012; Hounslow et al., 2012;). Thermal doming and regional 

uplift, which formed the Albian-Aptian unconformity, was followed by passive margin subsidence 

and deposition of the late Cretaceous megasequence, including the Chalk (Lake and Karner, 1987; 

Underhill and Stoneley, 1998). 

The Alpine deformational phase includes earlier ‘Laramide’ (Cretaceous) and later ‘Helvetic’ 

(Neogene) phases (Chadwick and Evans, 2005). The later phase was responsible for reversed 

movements (inversion) on many of the basin-bounding growth faults inherited from the Variscan 

template, accompanied by more distributed uplift of the basinal areas; this produced vertically and 

laterally variable, and often significant, erosion of the Chalk (Chadwick, 1993). One of the best 

examples of this is the PWFZ, with around 1000 m of distributed hangingwall uplift and erosion 

south of the main fault zone, and up to 2000 m within the fault zone (Chadwick, 1993; Law, 1998).  



6 of 32 
 

3. Faulting history in the southern UK 
We have compiled information from the literature regarding the principal (most laterally and 

vertically persistent) faults in the southern UK. This compilation elucidates the broad picture that 

this region is characterised by E-W and NW-SE structural fabrics, picked out by major fault zones at 

depth and at outcrop (Fig. 1C). Two broad domains are apparent, separated by the projected trend 

of the Bray Fault: a region to the east, characterised by the dominantly E-W orientated en echelon 

faults, and; an apparently more complex region to the west, where the E-W fault traces are often 

accompanied by NW-SE, and subsidiary NE-SW and N-S traces. Our study area occupies a central 

location in the western region, lying on the northern margin of the Channel Basin, which is bounded 

by the Bray Fault to the east and Sticklepath Fault to the west (Harvey and Stewart, 1998; Fig. 1C). 

The north-westwards projection of the Bray Fault to link up with the Bristol Channel fault zone is, 

however, contentious. A number of authors project the lineament north-westwards across central 

southern England to link up with the Bristol Channel fault system, in order to define broad tectonic 

terranes (e.g. Holdsworth et al., 2012, on which the projected line in Fig. 1 is based), whilst others 

prefer to show the Bray Fault merging with the PWFZ (e.g. Lake and Karner, 1987; Mortimore and 

Pomerol, 1997; Harvey and Stewart, 1998). We would support the latter interpretation given that 

the gravity data (Fig. 1B) does not show any features supporting the north-westwards projection.   

In the southern UK, the direction of principal extension during Permian to late Cretaceous basin 

development was approximately N-S (Stoneley, 1982; Chadwick, 1993). Key examples of basin-

controlling E-W striking faults are the PWFZ (including the Purbeck-Wight and en echelon 

Abbotsbury-Ridgeway elements) and the Wardour-Portsdown Fault further to the north (Fig. 1C). 

The PWFZ is linked to deeper Variscan structures and was periodically active as a growth fault from 

Triassic to early Cretaceous times with significant downthrow to the south, for example, by at least 

1700 m on the Isle of Wight (Chadwick and Evans, 2005). The fault zone is taken broadly to define 

the northern margin of the Channel Basin (also termed Portland-Wight Basin), itself bounded to the 

south by the E-W Mid-Channel Fault lineament (e.g. Lake and Karner, 1987; Harvey and Stewart, 

1998; Underhill and Stoneley, 1998; Chadwick and Evans, 2005).  

The PWFZ is also one of the best examples in the southern UK of late Cretaceous-Cenozoic inversion 

(relating to N-S shortening) on an earlier E-W striking extensional fault. This is seen in the 

development of the Purbeck monoclinal structure in the (post-rift) late Cretaceous Chalk (e.g. 

Stoneley, 1982; Chadwick, 1993; Blundell, 2002). Other similar examples in the southern UK are the 

Wardour and Hog’s Back monoclines (Lake and Shepherd-Thorn, 1985; Barton et al., 1998).  The 

degree of evident inversion on these major structures is dependent on both the observed 

stratigraphical level and the amount of pre-inversion extensional displacement (Stoneley, 1982, 

Chadwick, 1993, Underhill and Stoneley, 1998, Blundell, 2002, Chadwick and Evans, 2005). The 

Abbotsbury-Ridgeway Fault component of the PWFZ, for example, shows an apparent reversed 

sense of movement in its eastern (largely onshore) segment, with Jurassic sequences upthrown to 

the south against Chalk, but apparent normal displacement in its western segment (as it tracks 

offshore) with downthrow to the south of late Jurassic against early Jurassic sequences (Chadwick 

and Evans, 2005; Fig. 2).  

Across the southern UK, away from such major fault zones, deformation of the intervening basins 

during the inversion phase was characterised by open folding and domal uplift (Blundell, 2002). 

Collier et al. (2006) demonstrate how deformation of the Channel Basin graben, between the 
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inverted Purbeck-Wight fault to the north, and the Mid-Channel Fault to the south, is characterised 

by broad folding in the centre and more intense folding near the rift margins. The form of the rift-

margin deformation varies along strike, however, indicating that it is partly controlled by variation in 

the properties of the basin fill. Where incompetent rocks are present they focussed uplift, or 

mechanical ‘extrusion’, by up to 1500 m (Collier et al., 2006). This behaviour is in contrast to the 

neighbouring Weald Basin, which has a symmetric outcrop and inversion structure.  The Weald Basin 

did not initiate until the Early Jurassic and the lower syn-rift fill of this (Lias) age is a more competent 

succession of limestone and sandstone with occasional mudstone than that deposited in the 

Channel Basin (Hawkes et al., 1998). The Weymouth Anticline, which is in the hangingwall of the 

PWFZ, is thought to have developed in response to inversion, or to represent an uplifted earlier roll-

over fold (Fig. 2; Underhill and Paterson, 1998; Chadwick and Evans, 2005). The footwalls to the 

major inversion faults also acted as rigid ‘buttresses’ during the inversion phase. For example, 

Chadwick and Evans (2005) suggest the footwall of the Abbotsbury-Ridgeway fault acted as a 

buttress, which encouraged short-cut reverse faulting in the hangingwall during inversion. 

Sanderson et al. (2017) similarly propose that the footwall to the Purbeck Fault acted as a rigid 

buttress, encouraging the development of extensive N-S striking normal faulting (exposed beneath 

Weymouth Bay; Fig. 2) in response to distributed stress in the hangingwall. 

The NW-SE striking Sticklepath and Watchet-Cothelstone-Hatch faults, which bracket the Lyme Bay 

area to its west and north-east, have long-lived movement history (dominated by strike-slip), 

extending from the Variscan through to the Alpine phases, with a number of reversals in the sense of 

strike-slip movement. Holloway and Chadwick (1986), for example, imply a 10 km right-lateral offset 

on the Sticklepath Fault during the late Variscan. This is demonstrable through offset of an earlier 

thrust structure (implied itself to be later re-activated as a basin-bounding fault to the Permian 

deposit-filled Crediton trough), and Leveridge and Hartley (2006) indicate that the structure had a 

basin-constraining role during deposition of Carboniferous sequences. Holloway and Chadwick 

(1986) suggest a reversal of this offset (by up to 6 km) through left-lateral strike-slip during the early 

Cenozoic (Eocene-Oligocene; forming the ‘pull-apart’ Bovey Tracey and Petrockstowe basins), 

followed by a return to right-lateral strike slip during the later Cenozoic (relating to variations in the 

Cenozoic stress field). Chadwick and Evans (2005) propose a similar history for the NW-SE 

orientated, steeply SW-dipping Watchet-Cothelstone-Hatch Fault, culminating in late Cenozoic 

(Alpine Helvetic) transpression (in response to N-S shortening), driving right-lateral strike slip and the 

development of the Compton Valence Dome as a ‘pop-up’ structure along the fault. 
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Figure. 2. Onshore-offshore bedrock mapping of the Lyme Bay- Weymouth Bay region (location shown in Fig. 1). The area of Weymouth Bay previously mapped by Sanderson et al (2017) is 

shown outlined with a black dotted line; the rest of the offshore area, including Lyme Bay, is that mapped in the present study. A. Geological bedrock map, showing locations of figures later in 

the paper, outlined with white dotted lines. The Abbotsbury-Ridgeway Fault (ARF) and Purbeck Fault (PF) in the PWFZ are emphasised in bold purple; other principal faults are labelled:  

comprising: MF = Mangerton Fault; EF = Eypemouth Fault; NLBF = North Lyme Bay Fault. The Weymouth Anticline (WA) trace is also shown. B. Residual gravity grids taken from the BGS 

regional gravity compilations (see methods), with scale shown. Overlain with the surface-mapped faults shown in A. 
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4. Lyme Bay to Weymouth Bay study area 

We focus on the east Devon-west Dorset area, extending the work of Sanderson et al. (2017) in 

Weymouth Bay westward into the offshore area of Lyme Bay (Fig. 1C; Fig. 2). One key aim was to 

understand if the structures detected in Weymouth Bay, in particular, the intense development of N-

S striking extensional faulting in the PWFZ hangingwall extended further westwards.  

4.1. Methods and data 

We have undertaken a new bedrock mapping interpretation across ~800 km2 of the seabed and 

coastal area of Lyme Bay at a detailed 1:10 000 scale using compiled bathymetric and coastal Lidar 

data, and joined it to the existing onshore BGS mapping. Figure 2 shows the extent of the mapping 

of Sanderson et al. (2017) and the remaining offshore area shown is our new interpretation. 

Additionally we have re-interpreted a number of key seismic sections to discern the surface and 

subsurface structure, both in Lyme Bay and along the Weymouth Bay coast. We have also used the 

detailed coastal and seabed mapping based on side-scan sonar of Darton et al. (1981) for the area of 

northern Lyme Bay south of Lyme Regis to contribute to the interpretation.   

The geological mapping and seismic interpretations are based on identification of key marker 

formations in the Triassic, Jurassic and Cretaceous sequences occurring across the area, which form 

identifiable geomorphological featuring (onshore and offshore) and principal reflectors on seismic 

profiles. The bedrock mapping is based primarily on geomorphological feature mapping against 

swath bathymetry data for the offshore areas, supported by aerial Lidar data for the coastal 

sections. The key markers used in the mapping are generally the thinner, limestone-dominated 

shallower-water originating formations, including the Penarth Group, Inferior Oolite Formation, 

Cornbrash Formation, Corallian Group, and Portland and Purbeck groups (undivided) (Fig. 3). These 

lie between the thicker, mudstone-dominated, generally deeper-water sequences, including Triassic 

mudstones, Lias Group, Great Oolite Group, Kellaways and Oxford Clay formations (undivided) and 

Kimmeridge Clay Formation. Figure 3 provides summary lithologies but for detailed descriptions see 

Barton et al. (2011) and Sanderson et al. (2017). 

The interpretations were carried out using modern digital mapping techniques described in detail in 

Sanderson et al. (2017), in particular use of the 3D BGS-Virtalis GeoVisionary virtual mapping 

software (Westhead et al., 2015) in conjunction with the BGS System for Integrated Geological 

Mapping (SIGMA) Desktop toolkit extension (Jordan, 2010). These enabled production of BGS digital 

map-standard (DiGMapGB-compatible) outputs, which have been used to derive the figures in this 

paper, although re-projected in UTM [Zone 30N] co-ordinates. 

We have produced new structural interpretations of key coastal sections in the north of Weymouth 

Bay (St. Oswald’s Bay-Stair Hole and Ringstead), based partly on the mapping of Westhead et al. 

(2017; as described in Sanderson et al., 2017), which used the following public-domain, contiguous 

Lidar and bathymetry datasets (depicted in figs. 4 and 6): 

 Maritime and Coastguard Agency (MCA) swath bathymetry data collected under the UK Civil 

Hydrography Programme, HI_1154 (2008/9), as part of the Dorset Integrated Seabed 
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(DORIS) Survey for the Weymouth Bay area (and extending around the south and west of 

the Isle of Portland), gridded at a 1 m horizontal resolution.   

 1 m horizontal resolution coastal Lidar data from the Environment Agency, sourced from 

Channel Coastal Observatory, for the 1 km onshore strip around the north of Weymouth  

Bay. 

 

 

Figure 3: Summary lithostratigraphy for the study area, with thicknesses and summary lithologies for the key units, from 

Sanderson et al. (2017), Barton et al. (2011), and present interpretation. Colours as used for figures 2 and 9. 

The mapping of Lyme Bay is our new interpretation, based primarily on extending the geological 

mapping using the same technique of geomorphological feature mapping against an elevation 

surface generated from the bathymetric and coastal Lidar datasets, as described below and depicted 

in figures 7 and 8 (supported by analysis of additional information such as seabed samples):  
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 Maritime and Coastguard Agency (MCA) swath bathymetry data collected under the UK Civil 

Hydrography Programme, for both survey areas: HI_1453 (2016) covering the west and 

south parts of Lyme Bay at a 1 m horizontal resolution, and; HI_1343 (2010) covering the 

central Lyme Bay, and nearshore coastal area (re-gridded at a 2 m horizontal resolution).  

These data are depicted in part in figures 7 and 8. 

 1 m horizontal resolution Lidar from the Environment Agency, sourced from Channel Coastal 

Observatory, for the 1 km onshore strip around the north of Lyme Bay (Fig. 8). 

The coastal join for the bedrock mapping is implemented against the existing onshore British 

Geological Survey 1:10k digital bedrock mapping (DiGMapGB-10), for the coastal area of map sheets 

Sidmouth, Bridport, West Fleet and Weymouth, and Swanage (parts of sheets 326, 327, 340, 341, 

342, 343). The method involves overlapping the offshore mapping onto the existing onshore 

mapping for a strip of up to several hundred metres, ensuring a seamless coastal join. We have also 

used the seabed mapping of Darton et al. (1981) for the northern part of Lyme Bay to support our 

interpretation. This onshore overlap in our mapping was all carried out within the 1 km wide strip of 

Lidar data specified above. For completeness, however, the inshore area of the hill-shaded elevation 

surface shown in Figure 8B is generated from NEXTMap Britain elevation data from Intermap 

Technologies, a high resolution Digital Elevation Model dataset generated from airborne IFSAR 

(Interfereometric Synthetic Aperture Radar). 

The geological mapping and structural interpretations are also supported by selected interpretation 

of key seismic sections (shown in figures 4, 6 and 9) and boreholes (although no deep boreholes 

occur in Lyme Bay). This seismic reflection data used are freely available and were sourced from the 

UK Onshore Geophysical Library and the BGS GeoIndex. Correlation of surface data with available 

subsurface sections is carried out in 2D Move and 3D Move software (Midland Valley Exploration 

Ltd). Where possible fault traces are linked to the bathymetry data and extrapolated between 

sections using surface expressions. The main reflectors mapped on seismic are: Corallian; Cornbrash; 

Inferior Oolite; Top Green Ammonite Beds (within the Lias Group); Top Triassic/Penarth Group; Top 

Triassic Salt; Top Sherwood Sandstone. As many of the sections used in this study are scans of 

original paper records, a depth conversion has not been attempted. 

The results from the mapping are also compared to regional gravity data presented in figures 1 and 2 

as a set of 1km grids of residual gravity taken from BGS regional gravity compilations. The onshore 

gravity data for the UK are freely available to download from the BGS website. The offshore data for 

the UK continental shelf are not available to download. Residual gravity was calculated by 

subtraction of an upward-continued field. The gravity data for onshore was processed using the 

Bouguer method, whilst the offshore data is free-air gravity.   

4.2. Structural observations 

A. St Oswald’s Bay-Stair Hole 

This coastal segment includes the geomorphological features of Durdle Door, Stair Hole and 

Lulworth Cove (Fig. 4). The onshore-offshore mapping (Westhead et al., 2017) allows us to map and 

fully reveal the geological structures in the coastal section, which are only partly seen in the cliff 

exposures. This includes a set of c. 500 m long WNW-ESE to E-W striking faults with intervening N-S 

to SW-NE striking faults (Fig. 4A). The latter appear to truncate or bend into the E-W striking faults, 
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demonstrating a likely coeval relationship. The limestone units of the Purbeck and Portland groups 

form a topographical feature in the bathymetry beneath St Oswald’s Bay, and are offset 

perpendicularly to strike by 300 m by an E-W fault, into which they curve in open folds on both sides 

(Fig. 4A, B).  The Wealden Formation, which forms a less featured seabed, is repeated by this fault 

and is apparently downthrown on the south side against Portland Sand Formation. The coastal 

bedrock mapping in this area also confirms significant thinning of the succession, particularly of the 

Wealden Formation to the north of Durdle Door, where it is only 65 m thick compared to 425 m in 

Worbarrow Bay only 4 km to the east (Barton et al., 2011). The Purbeck Group is also known to be at 

its thinnest in this area (Westhead and Mather, 1996). Given the contractional nature of the 

deformation in the PWFZ, the most feasible explanation for the structure beneath St Oswald’s Bay is 

a north-inclined thrust, with south-directed overthrusting and repetition of the Wealden Formation 

and Portland and Purbeck groups; the oblique, cross-cutting geometry of the thrust in relation to 

bedding implies a lateral ramp structure. The northward inclination would imply an antithetic 

relationship to the principal southerly inclined Purbeck Fault structure, as shown diagrammatically in 

Figure 5. A seismic section crossing the structure (AUK-94-AJ054) shows the main southerly inclined 

Purbeck Fault, which projects to just south (around shot point 1250) of the outcropping synclinal 

monocline hinge mapped in the Chalk onshore to the north of the bay (Fig. 4A, C), but the resolution 

of the seismic section across the coastal section does not allow discernment of the possible 

antithetic fault proposed above. This mapping and structural interpretation is significantly different 

to earlier interpretations of this area (e.g. Nowell, 1997, and previous BGS mapping e.g. as published 

on the Swanage 1:50k map sheet), made before the bathymetric data were available, in which the 

northward deflection in the outcrop is related principally to NNW-SSE or NW-SE striking, E-

downthrowing fault structures. 
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Figure 4: St Oswald’s Bay-Stair Hole geological interpretation. A. Bedrock mapping from Westhead et al. (2017), with key as 

shown. The map area is shown in Figure 2. The position and shot points for seismic line AUK-94-AJ054 (displayed in C) are 

shown. The synclinal hinge of the Purbeck monocline is depicted within Late Cretaceous outcrop. B. Hill-shaded elevation 

surface for the same area as A, generated from bathymetric and Lidar data as described in the text C. An interpretation of 

seismic line AUK-94-AJ054 (faults shown in red). The colours match key in Figure 2, with units shown for clarity. D. A 

photograph of the ‘Lulworth Crumple’ fold at Stair Hole, viewed looking east; the cliff height is approximately 33 m (photo: 

Keith Westhead). 

The new structural mapping at St Oswald’s Bay has implications for the interpretation of the 

‘Lulworth Crumple’ fold structure at Stair Hole, less than a kilometre along strike to the east (Fig. 4B, 
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D). The Lulworth Crumple itself is a south-verging fold with longer north-inclined limbs and a short 

south-inclined intervening limb (Fig. 4D), with additional parasitic folds (Underhill and Paterson, 

1998). Interpretations of this structure vary from ‘gravity collapse’ (Phillips, 1964) to ‘upwards drag’ 

Arkell (1938). West (1964) similarly argues for ‘upwards movement’ and accompanying shortening of 

the Purbeck Group to form the fold. Our mapping indicates this structure is along strike from and at 

the same structural and stratigraphical level as the implied south-directed, antithetic thrust beneath 

St Oswald’s Bay. This supports an interpretation of south-directed shear for the formation of the 

Lulworth Crumple. Figure 5 shows this diagrammatically, indicating the enclosure of the Stair Hole 

structure in a south-directed shear envelope. Therefore, the Lulworth Crumple could be a lateral 

equivalent of the St Oswald’s Bay thrust structure, with the reverse movement expressed as a fold 

structure. This interpretation supports the previous hypotheses of Arkell (1938) and West (1964), in 

which they imply south-directed shear. It is also consistent with that of Underhill and Paterson 

(1998) who interpret the Lulworth Crumple as formed under intraformational, flexural slip in the 

hangingwall to the main, southerly inclined Purbeck Fault structure but refines this by proposing the 

antithetic movement in the immediate hangingwall of the principal Purbeck Fault. Additionally, the 

observed stratigraphical thinning of the Purbeck Group and Wealden Formation in this area at Stair 

Hole and Lulworth could in part be due to structural thinning through shearing out of the mudstone 

layers. 

The structural picture to the south across Weymouth Bay contrasts to that along the St Oswald’s 

Bay-Stair Hole coastline, instead characterised by evenly 300-500 m spaced, N-S to NNE-SSW striking 

faults (Fig. 2; Fig. 4A; Sanderson et al., 2017). These faults vary from 100’s m to 10’s km in length, 

and affect gently dipping (generally less than 5o), openly folded strata with normal throws of 10’s m. 

They are evident in the bathymetric data, displacing Corallian Group strata in the Lulworth Banks 

anticline (Fig. 4B), and also affecting Kimmeridge Clay Formation, Portland and Purbeck groups and 

Wealden Formation strata across Weymouth Bay (Fig. 2; Sanderson et al. 2017). Where these faults 

can be traced onshore, in the coastline from Kimmeridge Bay and to the east towards Swanage, they 

are observed to form a conjugate set of normal faults with dips of 60-80o (Hunsdale and Sanderson, 

1998; Putz-Perrier and Sanderson, 2008). Sanderson et al. (2017) propose that these N-S striking 

faults indicate a distributed strain regime affecting sediments in the hangingwall of to the PWFZ 

during its Cenozoic inversion phase, with a N-S principal shortening direction and sub-horizontal, E-

W extension. These authors contrast this to more focussed strain along the PWFZ itself, with the N-S 

shortening is accompanied by top-to-the-north shear, with related movement on the E-W striking 

faulting described. We provide a model for this structural contrast in Figure 5, showing how the St 

Oswald’s Bay-Stair Hole structures occur within the PWFZ ‘shear zone’, and the N-S striking faults lie 

in the hangingwall block to the south. 
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Figure 5. Structural model for St Oswald’s Bay to Stair Hole coastal section, and area to the south towards Lulworth Banks, 

approximating to the area of the mapping in Figure 4. Viewed looking north-east. 

B. Ringstead Bay 

The surface mapping of Westhead et al. (2017) demonstrates a set of E-W orientated, c. 1 km long, 

100-300 m-spaced faults, with several 10’s m throws, with a related central periclinal anticline, 

affecting the Corallian sequence, and seen particularly clear in the nearshore platform (Fig. 6A). 

These structures are also evident in a seismic section (AUK-94-AJ060), extending N-S from onshore 

to offshore, showing how the northerly inclined faults (with both normal and reverse throws) in the 

south of the section truncate against a southerly inclined normal fault, with an intervening anticline 

(Fig. 6C). Chadwick and Evans (2005) describe similar structural relationships in the Upton-Poxwell 

area extending several kilometres onshore to the north of Ringstead Bay, including dominant 

southerly inclined faults (including the Abbotsbury-Ridgeway Fault itself) and associated E-W folding. 

They associate these with a history of early Jurassic to Early Cretaceous, largely down-to-the-south 

normal faulting followed by Cenozoic reversal. Underhill and Paterson (1998) describe the structures 

in this area as lying within the left-stepping relay ramp zone between the Purbeck Fault and 

Abbotsbury-Ridgeway Fault elements of the main Purbeck-Wight lineament (Fig. 2), originating 

during their extensional phase and modified by the later inversion.  
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Figure 6. Ringstead Bay geological interpretation. A. Bedrock mapping from Westhead et al. (2017), with key as shown. 

Map area shown in Fig. 2. Shows position and shot points for seismic line AUK-94-AJ060 shown in C. B. Hill-shaded 

elevation surface for the same area as A, generated from bathymetric and Lidar data as described in the text. C. 

Interpretation of seismic line AUK-94-AJ060 (faults shown in red). Colours match key in Fig. 2, with geological units shown 

for clarity. 
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C. South Lyme Bay 

Our new mapping traces a WNW-ESE striking fault zone for over 45 km across the southern extent of 

Lyme Bay (Fig. 2), from late Triassic (Penarth Group) to Kimmeridge Clay stratigraphical levels. In its 

eastern part (Fig. 7), the fault zone comprises a series of left-stepping, overlapping c. 10 km long 

WNW-ESE trending segments, with intervening NW-SE to N-S orientated linking faults. Here it affects 

both the Cornbrash Formation and Corallian Group marker units, the latter being folded into a 

narrow syncline between the en echelon principal fault segments. The fault zone is mapped as dying 

out into the Kimmeridge Clay outcrop south of the Isle of Portland. The outcrops of both the 

Cornbrash Formation and Corallian Group are offset to the west by 5 km on their southern side of 

the faults, which could be explained by a downthrow to the south in the order of 300 m (allowing for 

a general 3° eastward dip as measured from limestone beds in the Corallian Group outcropping at 

the seabed). This is consistent with the throws apparent in the seismic section crossing the structure 

(Den-60, Fig. 9). However, the overall geometry might also suggest an element of right-lateral strike 

slip but this cannot be proven. The displacement in the western extent of the fault zone appears to 

diminish or even reverse to a minor down-to-the-north where it displaces the Penarth Group.  

Our seismic interpretation suggests that the fault zone could be steeply southward dipping. In the 

east (section Den-60; figs. 7, 9), some growth faulting has been interpreted, with a slight southward 

increase in thickness apparent in the Lias Group. The Great Oolite Group as a whole does not appear 

to change thickness across the faults, suggesting that any growth faulting ceased after early Jurassic 

times. A seismic section further to the west (Den-62; Fig. 9) does not suggest any discernible 

variation in TWT, suggesting that the syn-depositional movement at early Jurassic levels was variable 

along the fault length. This is consistent with the observations of Harvey and Stewart (1998) who 

imply dominantly late Jurassic to early Cretaceous movement on several of the Lyme Bay faults, but 

with some local thickness changes at Lower Jurassic levels, suggesting spatially limited growth 

faulting in this period. A further observation from the seismic interpretations is that, while the early  

Jurassic strata show generally consistent thickness across Lyme Bay (apart from the localised 

thickness changes across specific faults), the Great Oolite Group appears to thin significantly (by up 

to two thirds) from east to west, but does not display any localised thickness changes across 

individual faults. 
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Figure 7.  Geological interpretation for an area of South Lyme Bay; location shown in Figure 2. A. Bedrock mapping partly 

(eastern half of map area) from Westhead et al. (2017), and partly our new mapping (see Fig. 2 for areas). The location for 

seismic line Den-60, shown in Figure 9, is indicated. B. Hill-shaded bathymetry for the same area as A. Most of the seabed 

area is exposed bedrock, obscured in places as shown by mobile sand wave complexes. 
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D. North Lyme Bay  

The structural framework at outcrop level in the northern part of Lyme Bay, and onshore to the 

north, is complex, with a network of intersecting and anastomosing E-W and SW-NE striking, 

laterally persistent (several 10’s km in length) faults affecting strata from late Triassic (uppermost 

Mercia Mudstone) to mid Jurassic (Oxford Clay) age (Fig. 8). Our interpretation is supported by both 

our own mapping (including using the new high resolution bathymetry) and that of Darton et al. 

(1981) who used a variety of techniques including seabed sampling, side-scan sonar and sparker 

seismic for approximately the same area as shown in Figure 8.  

The Abbotsbury-Ridgeway segment of the PWFZ extends offshore into the east of Lyme Bay, and can 

be traced for at least 10 km offshore to the west, with down-to-the-south displacement of Oxford 

Clay and Cornbrash formations against Great Oolite strata (Fig. 2). This implies downthrow at surface 

level of at least several hundred metres, which is consistent with the interpretation of seismic line 

Den-60 which crosses the structure as shown in figures 8 and 9. For much of its onshore section, the 

Abbotsbury-Ridgeway fault demonstrates dominantly down-to-the-north, reverse throw, most 

evident in displacement of the late Cretaceous Chalk against late Jurassic (including Kimmeridge 

Clay) strata.  The relative throw reverses close to where the fault tracks offshore at lower 

stratigraphical levels, which is consistent with the interpretation of Chadwick and Evans (2005) for 

partial reversal but still net normal displacement for the westerly offshore section of the fault at 

lower stratigraphical levels.  The seismic section crossing the structure in the east of Lyme Bay (line 

Den-60, Fig. 9) suggests that it is steeply southward-dipping, and comprises several parallel fault 

segments at depth. A series of northward dipping antithetic faults link up to the series of E-W faults 

mapped at surface (there displacing Oxford Clay against Great Oolite). These latter faults are part of 

the complex of broadly axis-parallel faults affecting the core of the Weymouth Anticline (Chadwick 

and Evans, 2005). The main fault is known to detach at depth into the Triassic salt layer, but also 

relate to deeper basement fault steps (Chadwick and Evans, 2005; Harvey and Stewart, 1998). 

Our surface mapping also demonstrates three sub-parallel, 2km-spaced, laterally persistent (by 10’s 

km), WSW-ENE striking faults, which can be traced from onshore to offshore to the north of the 

Abbotsbury-Ridgeway Fault (Fig. 8). The southernmost of these, which we call the North Lyme Bay 

Fault (NLBF), overlaps the Abbotsbury-Ridgeway Fault in a left stepping fashion, and can be traced 

for nearly 35 km from the onshore to the west across the full width of the northern offshore part of 

Lyme Bay, displacing strata from Penarth Group to Great Oolite levels. The seabed mapping shows 

that this fault comprises several anastomosing segments, and that the outcrop of the Inferior Oolite 

is offset laterally on its south side by a cumulative total of nearly 15 km to the west. The two 

northerly faults converge and merge with the North Lyme Bay Fault in the centre of Lyme Bay (Fig. 

8).  
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Figure 8: Geological interpretation for the northern part of Lyme Bay; location shown in Figure 2. A. The new bedrock 

mapping, with key faults marked (MF = Mangerton Fault; EF = Eypemouth Fault; NLBF = North Lyme Bay Fault; ARF = 

Abbotsbury-Ridgeway Fault). This shows position of seismic lines used for the subsurface interpretation of Figure 9. Key to 

geological units as shown in Figure 2.  B. Hill-shaded elevation surface for the same area as A, generated from bathymetric, 

Lidar and IFSAR (NEXTMap) data as described in the text. NEXTMap Britain elevation data from Intermap Technologies. 

A seismic line crosses the North Lyme Bay Fault in its central extent (line Harvey-13 on figs. 8 and 9, 

taken from Fig. 13 of Harvey and Stewart, 1998) and indicates a southward downthrow in the order 

of 200-300 m, consistent with the surface mapping which shows Inferior Oolite thrown down against 

mid-Lias levels close to the line of the seismic section. The northernmost of the three parallel WSW-

ESE striking faults described above shows a similar southerly downthrow of 300m displacing 

Cornbrash against what is interpreted as uppermost Lias Group (faulting out the Inferior Oolite at 

the surface level). The intervening WSW-ENE fault shows an opposing down-to-the-north 

displacement of similar order, throwing uppermost Lias against mid-Great Oolite Group strata 

(although precise identification of stratigraphical level within the latter strata is difficult in this area 

due to patchy thin seabed sediment cover). Bedding dips across northern Lyme Bay are generally 

low-angle (at less than 5 degrees) and towards the east, although with local dip direction variations 
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due to open folding, and it is possible that the mapped surface strata displacements could be 

accommodated with normal fault displacements alone. However, the unusual anastomosing 

geometry of the fault zone represented by these three persistent faults, could suggest an additional 

element of possibly right-lateral strike slip (similar to that suggested for the South Lyme Bay fault 

zone), although this cannot be proven from our analysis.  

Our new mapping also allows the Mangerton Fault to be traced from the onshore for 3 km offshore 

to the SW, where it merges with the northernmost of the WSW-ENE faults discussed above, 

suggesting a possible coeval relationship (Fig. 8). The Mangerton Fault is part of the conjugate set of 

NW-SE and NE-SW striking faults in this part of S England, including the Char Fault ~8 km to the west 

and the Poyntington Fault ~30 km to the NE near Yeovil, and faults affecting the Chalk to the NW of 

the Compton Valence Dome, which are associated with the Watchet-Cothelstone-Hatch Fault Zone 

discussed earlier (Chadwick and Evans, 2005). The Mangerton Fault is sub-vertical and observed to 

displace the E-W striking Eypemouth and Bridport faults in a left-lateral sense by up to 1 km, and is 

thus thought to be of Miocene age (Fig. 8; Harvey and Stewart, 1998, Barton et al., 2011).  

An interpretation of the Mangerton Fault merging with the WSW-ESE faults in northern Lyme Bay 

further concurs with Darton et al. (1981) but adds significant detail in the faulting patterns and strata 

displacement obtained from use of the new high-resolution bathymetry. This interpretation, 

however, is converse to that of Harvey and Stewart (1998), who suggest (largely on the basis of 

seismic evidence) that the Mangerton Fault cuts and is therefore later than the offshore 

continuation of the Abbotsbury-Ridgeway fault system.  

Further detail from our mapping shows that the E-W striking Eypemouth Fault, shown to be 

displaced left-laterally by up to 1 km by the Mangerton Fault (Harvey and Stewart, 1998; Barton et 

al., 2011), can also be traced offshore to the west for 16 km across the northern part of Lyme Bay 

past Lyme Regis, to where it displaces the Penarth Group down-to-the-south (Fig. 8).  

Seismic section ‘Harvey-13’ (figs. 8 and 9) intersects a further fault structure ~3 km to the north of 

the N Lyme Bay Fault, with a downthrow in the order of 300 m to the south. This occurs within the 

mapped extent of Lias rocks, but the seismic interpretation suggests that the fault could downthrow 

Great Oolite Group level rocks against Lias at the surface level but this cannot be resolved from the 

mapping due to indistinct bathymetric data in this part of the bay. 
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Figure 9: Subsurface interpretation for the Lyme Bay study area, shown in oblique view looking towards the north-east. A. Onshore-offshore bedrock map (key as shown in Fig. 2) B. Cut-away 

of the same surface map, showing key seismic section described in the text. Surface faults are traced across the cut-away area to show links between structures shown in seismic sections. 

Colours are the same as for the surface mapping (with additional labels on sections for clarity). 
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5. Discussion 
Our mapping and seismic interpretation work allows us to discern the westward projection and 

diffusion of the PWFZ, which our regional review demonstrates to be a critical structure in the long-

term tectonic evolution of the southern UK. Of particular interest is the contrast between the 

deformation style, picked out by faulting (and associated folding) styles and orientations, between 

the Weymouth Bay area (including the coastal sections around Lulworth) and the Lyme Bay area to 

the west (figs. 2 and 9). Prior to the high-resolution (1:10k scale) onshore-offshore bedrock mapping 

of Sanderson et al. (2017)  in Weymouth Bay, and our westward extension of the same into Lyme 

Bay, it was only possible to get a partial picture of the PWFZ and associated structures. The offshore 

seabed mapping, published at the 1:250k scale by the BGS (DigRock250, available via the BGS 

Offshore GeoIndex web service http://mapapps2.bgs.ac.uk/geoindex_offshore/home.html), 

provided a window into the lateral variations in structural style but only at a low resolution. Previous 

detailed subsurface interpretations, based primarily on seismic interpretation, have been published 

across the area, and have provided a picture of the structural history and setting (e.g. Underhill and 

Paterson, 1998 for the eastern part of the PWFZ between Weymouth and the Isle of Wight, and 

Harvey and Stewart, 1998, extending further westwards into Lyme Bay). However, these previous 

studies have been restricted by low-resolution surface mapping in the extent to which they are able 

to link the subsurface interpretations to lateral variations in structural style demonstrated 

particularly by the faulting networks exposed at the surface in the crucial offshore areas. We have 

concentrated on improving the interpretations in two key areas: the coastal sections along the Isle of 

Purbeck coastline on the north side of Weymouth Bay, and the wider offshore area of Lyme Bay.  

For the Weymouth Bay coastal exposures, interpretation of the structures associated with the 

Purbeck Fault seen in the coastal sections west of Lulworth Cove has previously been restricted by 

poor mapping in the nearshore zone. The term ‘White Ribbon’ has been used for the gap between 

onshore and offshore mapping in this shallow-water coastal strip (Mason et al., 2006; Leon et al., 

2013). Key structures in the coastal sections at Ringstead, Durdle Door/St. Oswalds Bay and Stair 

Hole are only partially exposed in the cliff sections but the new onshore-offshore mapping has 

enabled us to complete the picture.  Building on the work of Sanderson et al. (2017), we describe 

complex faulting and folding structures exposed particularly well in the nearshore sub-tidal platform 

at Ringstead (Fig. 6), and relate these to synthetic and antithetic faulting originating in the relay 

ramp zone between the en echelon (left-stepping) Purbeck and Abbotsbury-Ridgeway segments of 

the main PWFZ, as described by previous authors (Underhill and Paterson, 1998; Chadwick and 

Evans, 2005). We also offer a new interpretation of the structures between Durdle Door, St Oswalds 

and Stair Hole, occurring in the immediate hangingwall of the southerly dipping Purbeck Fault. A 

southerly directed thrust structure is mapped beneath St Oswald’s Bay, passing along strike towards 

Stair Hole, offering a revised explanation for the ‘Lulworth Crumple’ fold structure as a south-verging 

fold developed in response to antithetic shearing during inversion of principal underlying Purbeck 

Fault (figs. 4 and 5). These observations at Ringstead and St. Oswald’s Bay concur with the model of 

Sanderson et al. (2017), of lower Cenozoic reactivation of the southerly dipping PWFZ under N-S 

shortening accompanied by dominantly top-to-the-north shear but with significant antithetic 

faulting in the immediate hangingwall. Further to the south, as described by Sanderson et al. (2017), 

the majority of the PWFZ hangingwall in Weymouth Bay is characterised by more distributed N-S 



25 of 32 
 

shortening driving the development of the N-S striking extensional faulting seen there (Fig. 2). The 

transition from the E-W-dominated faulting close to PWFZ to the N-S faulting in its broader 

hangingwall is demonstrated in our interpretation of the St Oswald’s Bay-Stair Hole coastal section 

and the Lulworth Banks area to its south (figs 4 and 5). 

In the Lyme Bay area, the most comprehensive prior structural study is that of Harvey and Stewart 

(1998), who used primarily seismic interpretation to discern the faulting networks, and to look in 

detail at the tectonic influence of thick subsurface Triassic salt (Dorset Halite in the Mercia 

Mudstone). Their principal conclusion is that variation in structural style, in particular the degree to 

which the major E-W orientated faults are linked to faulting in the ‘basement’ (meaning pre-salt), 

relates to the presence of thicker salt. They conclude that the saliferous horizon is at its thickest 

(over 400 m) beneath the centre of Lyme Bay, thinning significantly to the north, south, and to the 

east towards Weymouth Bay (reducing to zero thickness between Swanage and the Isle of Wight. 

They conclude that the principal E-W faults in the north Weymouth Bay area, including the main 

Purbeck Fault, are ‘hard-linked’ to the pre-salt levels (and deeper to pre-Permian basement levels), 

whereas the major E-W faults in Lyme Bay, including the Abbotsbury-Ridgeway Fault, are ‘soft-

linked’, detaching into the salt horizon and variably linked to fault steps in the pre-salt levels. Our 

work demonstrates that this east to west variation in structural style also includes a westward loss of 

any N-S striking faulting, suggesting that the influence of the salt may in part be a driver for the 

deformation style in the hangingwall zone to the south of the main PWFZ lineament. 

Our interpretation of the Lyme Bay area reveals a contrast in the structural style to Weymouth Bay 

(figs. 2 and 9). No evidence is seen for N-S striking faulting in Lyme Bay, and the principal faulting is 

dominantly E-W striking, but also with significant development of NE-SW anastomosing faults (figs. 8 

and 9). Two principal E-W fault zones are seen in the south and north of Lyme Bay, both 

demonstrating overlapping and anastomosing fault segments. The seismic evidence demonstrates 

dominantly down-to-the-south normal fault movement, possibly representing strain distribution into 

en echelon fault segments at the termination of the PWFZ in the north Lyme Bay (Fig. 9).  The left-

lateral Mangerton Fault (and accompanying NE-SW striking structures) appear to become 

asymptotic to the E-W faulting structures. This conclusion differs from that of Harvey and Stewart 

(1998), who propose that the NE-SW faults (and suggested relatively minor NW-SE conjugate 

structures in the centre of Lyme Bay), cut the E-W faulting, and therefore represent accommodation 

of N-S shortening in the late-stages of the Alpine inversion phase. Our interpretation suggests the 

strike-slip dominated movements on the Mangerton Fault were likely to be synchronous with at 

least the late stage of movement on the E-W faults in Lyme Bay, and hence by implication, with the 

late stage Alpine inversion deformation in these structures.  

Further information can be gained from the regional geophysical data for the region. Comparison of 

the fault networks from our interpretations with the gravity data shows a strong correlation (Fig. 

2B), suggesting a link between basement involvement and development of the Weymouth-Lyme Bay 

structures associated with the PWFZ. In a study further to the east along the PWFZ, Busby and Smith 

(2001) conclude that the gravity high to the south of the lineament in the Isle of Wight area relates 

to higher density basement. They conclude that even with the modelled removal of higher density 

basin fill (due to up to 5km burial of Permian to Cretaceous sequences) the positive gravity high 

anomaly remains. It is possible that the gravity high continuing to the west into the present area to 

the south of the PWFZ also relates to the basement. A similar gravity high is seen to the south of the 
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South Lyme Bay fault zone. A possible conclusion therefore is that this fault zone is also basement-

involved, with the high to the south potentially relating to higher density basement rocks. Smith and 

Hatton (1998) do suggest that this gravity high may be due to compaction of thicker sedimentary fill 

to the south of this fault, and indeed our seismic interpretation does identify some thickness 

changes in to the south of this fault (in Lias age rocks) which may be indicative of longer-lived growth 

movement. However, the thickening identified does not suggest significant levels of growth faulting, 

which may not be enough to produce significant density changes in lower level strata of the same 

order as suggested by Busby and Smith (2001). This supports the conclusion that this gravity high is 

also related primarily to basement density variations across a possibly Variscan-aged structure. 

Harvey and Stewart (1998) ‘soft-link’ the Lyme-Portland fault and other E-W principal faults to the 

north in Lyme Bay through the Triassic salt (Dorset Halite, Upper Triassic Mercia Mudstone) to 

faulting in the pre-salt Permian and Triassic strata. The quality of the seismic data in Lyme Bay 

precludes any firm conclusions regarding deeper continuation of the faults into the pre-Permian 

‘Variscan’ basement.  

The N-S striking faulting identified in Weymouth Bay and to its east appears to correlate 

geographically with the positive gravity anomaly beneath the bay (Fig. 2). By contrast, the lack of N-S 

faulting in Lyme Bay (as identified by our extended mapping) occurs above a ‘flat’ area of no 

significant gravity anomalies. As described above, the gravity high to the south of the PWFZ points to 

involvement of high density basement in the hangingwall of the inverted structure. So there appears 

to be a spatial relationship in the hangingwall of the PWFZ between the distributed strain (with N-S 

shortening and E-W extension) that Sanderson et al. (2017) imply to be driving formation of the N-S 

faulting, and potential basement involvement. The periclinal form of the Weymouth anticline (Fig. 2) 

may also be a factor in driving formation of the N-S faulting through enhanced E-W extension.  

It is worth noting that the apparent lack of N-S striking faulting in the onshore area to the west of 

Swanage (Fig. 2), above the most pronounced gravity high in the PWFZ hangingwall, is potentially an 

artefact of the mapping process.  The N-S faults in the offshore here are mapped as extending into 

the exposed cliff sections, and may be expected to continue inland, but bedrock mapping is limited 

here by superficial deposits cover, including soil, head and landslide deposits, and seismic section 

data in this area is not of sufficient resolution to discern these relatively small-scale (10’s m throw) 

faults. 

In the north of Lyme Bay, the clearest relationship between potential basement variations and 

faulting structure is seen where the Mangerton Fault correlates with a left-lateral step in the gravity 

highs (Fig. 2). The North Lyme Bay Fault, into which the Mangerton Fault merges as described above, 

appears to have developed on the southern flank of the broad gravity high to the north-west of the 

area (which correlates with the exposed Permo-Triassic sequences), and therefore with relatively 

near-surface Variscan basement. The eastward termination of the Abbotsbury-Ridgeway Fault and 

the apparent north and westwards stepping of the faulting into the North Lyme Bay fault zone, also 

correlates with the northward transfer of the gravity highs, again suggesting a basement control to 

the development of the E-W faulting. 

6. Conclusions 

We review the regional tectonics of part of the southern UK in terms of the development of major 

deformation lineaments, which affect the post-Carboniferous ‘cover’ sequences, and their 
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relationship to the principal Variscan-Cimmerian-Alpine tectonic phases. Key observations from this 

review include: 

 The Variscan basement in southern Britain has a primary E-W tectonic fabric and a 

secondary NW-SE tectonic fabric. This basement fabric perseveres into the cover sequences, 

variably controlling active growth faulting in the Cimmerian phase, and inversion in the 

Alpine phase. 

 Despite complexities in the form and trend of the NW-SE Bristol Channel-Bray Fault, it 

appears to broadly separate a region to the east, where deformation in the post-

Carboniferous cover sequences is characterised by the dominantly E-W orientated en 

echelon lineaments, from an apparently more complex region to the west, where the E-W 

lineaments are commonly accompanied by NW-SE, and subsidiary NE-SW and N-S striking 

faults. The western region corresponds to the Cornubian basement massif, which was 

transported north-westwards along the Bray Fault by over 400 km against Avalon Terrane 

during the late Variscan phase, and includes the present study area. 

The regional review places the PWFZ in its context as one of the principal (most laterally and 

vertically persistent) and long-lived (Variscan through to Alpine) deformational lineaments in the 

southern UK, dying out to the west towards the exposed Cornubian massif. Our study of the PWFZ 

allows us to more fully characterise the structure, and we are able to make a number of new 

conclusions regarding its tectonic development: 

 Structures such as the ‘Lulworth Crumple’ relate to antithetic shearing in the immediate 

hangingwall of the principal Purbeck Fault, while faulting and related folding structures at 

Ringstead relate to deformation in the relay ramp zone between the en echelon Purbeck and 

Abbotsbury-Ridgeway elements of the main PWFZ. This confirms the model of Sanderson et 

al. (2017) of focussed higher strain along the PWFZ, contrasting with lower, more distributed 

strain observed in its hangingwall beneath Weymouth Bay. 

 No evidence is seen in Lyme Bay for the N-S striking extensional faulting seen in Weymouth 

Bay, the latter related by Sanderson et al. (2017) to the distributed (N-S shortening) strain in 

the PWFZ hangingwall. Instead, E-W striking faulting is dominant, including the offshore 

extension of the Abbotsbury-Ridgeway Fault, which appears to terminate beneath Lyme Bay, 

with the strain taken up further to the north and west by overlapping (left-stepping) en 

echelon E-W striking faults. 

 The NE-SW striking Mangerton Fault, thought to be mainly a late-stage (Miocene) structure 

truncating the E-W structures, is extended offshore in our mapping, and seen to merge with 

the E-W faulting complexes mapped beneath the north of Lyme Bay. This supports a 

conclusion that the development of the NE-SW structures (and conjugate NW-SE structures) 

in the area was in part coeval with the later stages of Alpine inversion-related movement on 

the PWFZ structures. We also tentatively suggest, from the faulting geometries, that there 

may also have been an element of strike-slip (possibly right-lateral) during inversion on the 

E-W striking fault complexes beneath Lyme Bay. 

 Observations using regional geophysical data (in particular, gravity) suggest the involvement 

of basement variability in the control of the regional faulting pattern. For example, the N-S 

striking faulting identified in the Weymouth Bay area by Sanderson et al. (2017) appears to 

correspond to the gravity high to the south of the PWFZ, which has been interpreted 
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previously to relate primarily to higher density basement uplifted during the Alpine 

inversion. The NE-SW striking Mangerton Fault and the E-W faulting in Lyme Bay with which 

it merges also appear to relate to steps in and flanks of gravity highs, pointing also to 

basement control. 

These conclusions give us an insight into the lateral variability of a long-lived deformation lineament 

in the southern UK, and how this relates in part to basement variability. In particular, we are able to 

observe how the classic Alpine inversion scenario seen in Weymouth Bay, of hangingwall buttressing 

against a rigid footwall (relating to N-S shortening) transfers westwards and to lower 

tectonostratigraphical levels into a scenario of E-W en echelon faulting development, with potential 

strike-slip involvement. 
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