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This paper presents fundamental analysis of the injection and release of fluid into
porous media or geological reservoirs saturated by a different fluid undergoing a back-
ground flow, and tests the predictions using analogue laboratory experiments. The study
reveals new results important for an understanding the transport of hazardous contami-
nants through aquifers and the long-term fate of carbon dioxide (CO2) in geological CO2

sequestration. Using numerical and asymptotic analysis, we describe a variety of flow
regimes that arise, and demonstrates an almost instantaneous control of the injected
fluid by the far-field conditions in geological reservoirs. For a continuous input, the flow
develops a horizontal interface between the injected and ambient fluids. The background
flow thereby effectively caps the height of the injected fluid into a shallower region of
vertical confinement. For a released parcel of fluid, gravitational spreading is found to
become negligible after a short time. A dominant control of the interface by the back-
ground pressure gradient arises, and stems from the different velocities at which it drives
the injected and ambient fluids individually. Similarity solutions describing these dynam-
ics show that the parcel approaches a slender triangular profile that grows horizontally
as t1/2, where t is time, a rate faster than relaxation under gravity. Shock layers develop
at the front or back of the parcel, depending on whether it is more or less viscous than
the ambient fluid, respectively. New analytical results describing the long-term effects of
residual trapping due to capillary retention are developed, which yield explicit predictions
for the time and length scales on which a parcel of CO2 becomes retained. We end by ap-
plying our results to geological contexts, concluding that even slight background motion
can have considerable implications for long-term transport through the subsurface.

1. Introduction

An understanding of the fate of fluid contaminants in porous geological formations is
necessary in order to ensure the safe exploitation of our natural environment. The long
term transport of fluids through the subsurface is if concern in many applications of major
humanitarian significance. These include the geological disposal of radioactive waste, the
spoiling of freshwater reservoirs by inputs containing dissolved contaminants, the fate
of fluids injected for industrial processes such as enhanced oil recovery and hydraulic
fracture, and the long-term fate of supercritical CO2 sequestered for geological carbon
storage (Bickle 2009; Orr 2009). The potential for waste products to leak and migrate
from their disposal location poses major risks to maintaining environmental standards.
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Of particular importance is the long-term migration of CO2 injected during geological
carbon storage, which is key to assessing the viability of this emerging technology. To date,
the analysis of fluid releases in porous media or aquifers has concentrated on cases where
the medium or rock is either unsaturated or saturated with a quiescent fluid (Barenblatt
1952; Bear 1988; Huppert & Woods 1995; Lyle et al. 2005; Nordbotten et al. 2005; Vella
& Huppert 2006; Nordbotten & Celia 2006; Hesse et al. 2007; MacMinn & Juanes 2009;
Golding & Huppert 2010; Gunn & Woods 2011; de Loubens & Ramakrishnan 2011a;
Pegler et al. 2013a, 2014a; Zheng et al. 2015; Guo et al. 2016). These studies focus on
the effects of substrate topography and vertical confinement. However, they neglect a
widespread feature of geological reservoirs, namely, a background flow of the saturating
ambient fluid. Such flows are prevalent in subsurface environments, and are driven by
long-range gradients in hydrostatic pressure from surface precipitation or poroelastic
deformation. We demonstrate in this paper that even slight background flow generally
creates dominant long-term controls on the released fluid.

For the fundamental situation in which a two-dimensional parcel of fluid is released into
a quiescent porous medium, it is found that the parcel relaxes self-similarly under gravity
with its horizontal extent growing in proportion to t1/3, where t is time (Barenblatt 1952).
This solution also describes the relaxation of a parcel released on an incline in a semi-
infinite porous medium (Huppert & Woods 1995). It is also the final regime resulting
from the release of a parcel in a confined reservoir of quiescent fluid (Hesse et al. 2007).
To the best of our knowledge, the general control of a background flow on the evolution of
a released fluid parcel has not been considered previously. A primary result of this paper
is to show that the regime determined by Barenblatt (1952) generally fails to arise under
the influence of even weak background motion, and we determine the new asymptotic
regimes that arise in these new situations.

Our study begins by considering the effects of a background flow on the continuous
input of fluid injected at a constant rate, as characterises the injection phase of CO2

sequestration. Interesting dynamics arise in this case because the background flow and
injectate compete for space within the confining porous layer. The effects of a background
flow on a continuous input were considered previously by Gunn & Woods (2012) for a
strongly inclined aquifer, where different flow regimes can arise depending on the relative
directions of the inclination and the background flow. The effect of a background flow
on the rate at which a trapped region of CO2 dissolves into an aquifer was considered by
Unwin et al. (2016). In our analysis, we focus on the different situations of a horizontal (or
broadly horizontal) substrate with a miscible contaminant, and explore the fundamental
regimes controlled purely by background flow.

Capillary retention in the porous matrix can occur for a finite release of a fluid that
is immiscible or partially immiscible with the ambient fluid, such as applies to a post-
injection fixed-volume release of CO2 into a saline aquifer (Hesse et al. 2008; MacMinn
et al. 2010). While we focus on fundamental regimes arising with negligible retention,
we also conduct a short analysis developing new analytical results for the asymptotic
evolution of a parcel subject to capillary retention and the time and length scales on
which a released parcel of pure CO2 is retained.

A particular case of the flows we address (the special case of no background flow)
concerns an as-yet-unconsidered fundamental problem of fluid injection into the interior
of an aquifer bounded asymmetrically between a sealing fault and a permeable fault.
Studies of injection into confined porous media to date have typically assumed a priori

that the flow is axisymmetric (Nordbotten & Celia 2006; Guo et al. 2016) or symmetric
about a linear input (equivalent to a one-sided injection) (Pegler et al. 2014a; Zheng
et al. 2015). Idealisations of this kind assume symmetrical far-field conditions on the
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Figure 1. Schematic of a dense fluid contaminant introduced into a fluid-saturated porous
medium at the volumetric flux Q1(t) with a background flow of flux Q2.

saturating fluid. However, aquifers naturally contain far-field asymmetries. For example,
some faults provide a complete seal while others are permeable. An important finding of
this paper is that, for a fluid-saturated aquifer, far-field asymmetries lead to dominant,
almost immediate controls on the evolution of the injected fluid. The conditions at the
margins of a geological reservoir, however far away, are thus demonstrated to play a
leading-order role in the evolution of fluid introduced anywhere in its interior.

We complement our theoretical results with a series of analogue laboratory experiments
in which aqueous solutions of sodium chloride are injected into a confined porous bead
pack saturated with fluid undergoing a pressure-driven background flow. These provide
the first laboratory experiments of fluid transport with a background flow, and build on
those performed previously in a quiescent medium (Pegler et al. 2014a). We use these
experiments both to test our theoretical predictions and to develop new insights regarding
additional physical effects not included in our model. These additional effects include,
in particular, the role of vertical stresses and the time-dependence of fluxes caused by
changes in back stresses at the input points.

To demonstrate how our results can be used to inform geological problems, we apply
them to some examples. As a case study, we consider the injection of natural CO2-
saturated brine from a fault zone into the water-saturated Navajo Sandstone at Green
River, Utah (Allis et al. 2001; Kampman et al. 2014). The source originates from deeper
reservoirs saturated by CO2, where CO2-charged brine is driven vertically through a fault
by formation overpressures and leaks laterally into higher sandstone aquifers, including
the Navajo. The injected brine is subsequently thought to be advected tens of kilometres
or more by a background flow of water. The site provides a natural analogue for subsurface
CO2 transport on time scales of tens of thousands of years, thus providing a route towards
to understanding some long term implications and risks of engineered geological carbon
storage. We use our analytical results to assess the degree of spreading by the background
flow. We also apply our results more generally to address the effect of background flow
on the evolution of pure CO2 injected in geological carbon storage. For typical parameter
values, background flow advects CO2 between one and two orders of magnitude faster
than the background flow itself.

We begin in §2 by outlining the development of our model describing the evolution of
a contaminating fluid in a confined aquifer with a background flow. The equations are
studied first in §3 in the context of a continuous input of fluid, with the identification of
the principal regimes arising with and without background flow. This is followed in §4
by an analysis of the long-term migration of a fluid parcel released with fixed volume,
and the various long-term modes of deformation that develop. In §5, we present our
laboratory study and comparisons with the theory. Section 6 discusses the geological
implications of the results and we conclude in §7 by summarising the key findings.
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2. Model equations

We consider a two-dimensional porous medium of uniform porosity φ and permeability
k saturated by an ambient fluid of density ρ2 and dynamic viscosity µ2 [figure 1]. The
medium is assumed to be confined by two impermeable horizontal boundaries along
z = 0 and z = H . A large-scale horizontal pressure gradient drives a background flow
at the volumetric flux per unit width (or depth-integrated Darcy velocity) Q2, assumed
to be constant. The saturating fluid enters the medium from an input far upstream in
the negative x direction, corresponding physically to a source of fluid driven by surface
precipitation, for example. The fluid is assumed to exit the medium far downstream.
The special case Q2 = 0 models the case of a sealing fault lying far upstream, which we
address as a special case [§3]. A second fluid of greater density ρ1 and viscosity µ1 is
introduced through an input point at x = 0 at a volumetric flux per unit width Q1(t) to
form an intruding current of height h(x, t) along the base of the medium, and g is the
gravitational strength. It should be noted that our analysis applies equally to buoyant
injected fluid (e.g. CO2 injected into an aquifer) on reversal of the z coordinate. The
interface between the injected and ambient fluids, z = h(x, t), is assumed to remain
sharp.

Let u1(x, t) and u2(x, t) denote the horizontal interstitial velocities of the ambient and
injected fluids, respectively. We model the flow using Darcy’s law and a hydrostatic-flow
(Dupuit) approximation in which the horizontal velocities and pressures of the two fluid
layers are given by

ui = − k

µi

∂pi
∂x

,

{

p2 = P (x, t)− ρ1gz (0 ≤ z ≤ h),
p1 = P (x, t)− ρ1gh− ρ2g(z − h) (h ≤ z ≤ H),

(2.1a,b)

where P (x, t) is the as-yet-undetermined pressure along the base of the medium. On
substituting (2.1b) into (2.1a), we obtain

u1 =
k

µ1

∂P

∂x
, u2 =

k

µ2

(

∂P

∂x
−∆ρg

∂h

∂x

)

, (2.2a,b)

where ∆ρ ≡ ρ1 − ρ2 is the density difference between the two fluids. Mass conservation
across the full depth of the medium implies that the depth-integrated horizontal velocity
or volumetric flux per unit width of both fluids combined, Q(x, t), must be uniform
throughout the regions x < 0 and x > 0 with a jump of Q(0+, t) − Q(0−, t) = Q1(t)
across the injection point. Upstream, the total flux is equal to the background flux Q2

and hence Q(x, t) = Q2 for all x < 0. For x > 0, it equals the sum Q2 +Q1(t). Hence,

φ [hu1 + (H − h)u2] = Q(x, t) ≡
{

Q2 for x < 0,
Q2 +Q1(t) for x > 0.

(2.3)

On substituting (2.2a, b) into (2.3) and rearranging, we determine the expression for the
background pressure gradient

∂P

∂x
=

[

−µ2

k
Q(x, t) + ∆ρg(H − h)

∂h

∂x

]/

[Mh+ (H − h)] , (2.4)

where M ≡ µ2/µ1 is the viscosity ratio (ambient fluid over injected fluid). By substituting
(2.4) into (2.2a), we obtain the flow rate of the injected fluid

u1 =
1

φ

[

MQ(x, t)− U(H − h)
∂h

∂x

]/

[Mh+ (H − h)] , (2.5)

where U ≡ ∆ρgk/µ1 is the intrinsic Darcy speed at which a parcel of injected fluid falls
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vertically in an infinite porous medium saturated by the ambient fluid. By substituting
(2.5) into the depth-integrated form of the mass-conservation equation for the lower fluid,
we obtain the governing equation for the interface

∂h

∂t
= −∂(hu1)

∂x
= − ∂

∂x









h

(

MQ(x, t)− U(H − h)
∂h

∂x

)

φ[Mh+ (H − h)]
∣

∣

∣









. (2.6)

This equation generalises those developed previously to model fluid injection or finite-
volume release in quiescent porous media to allow for a spatially dependent total flux
Q(x, t) given by (2.3), which incorporates the background flow.

To specify the injection of the input fluid at x = 0, we impose

[hu1]
+
− = Q1(t) or

[

∂h

∂x

]+

−
=

Q1(t)

HU

(

M − H

h

)

at x = 0, (2.7a,b)

where the latter follows on substitution of (2.5) and simplification.

The current forms both an upstream flow front x = x−(t) and a downstream flow front
x = x+(t). To determine their evolutions, we impose the conditions of vanishing frontal
thickness and kinematic rates of propagation,

h(x+) = 0, ẋ+ = u1(x+) =
1

φ

(

MQ(x+, t)

H
− U

∂h

∂x

)

, (2.8a,b)

h(x−) = 0, ẋ− = u1(x−) =
1

φ

(

MQ(x−, t)

H
− U

∂h

∂x

)

, (2.9a,b)

where a dot denotes differentiation with respect to t.

The injection of the current is assumed to initiate at t = 0 and occur continuously at a
constant rate until a total volume per unit width V is injected. To model this, we impose

Q1(t) = Q1I(t), where I(t) =

{

1 (Q1t ≤ V),
0 (Q1t > V), , (2.10)

and Q1 is a constant. Our analysis will address the cases of continuous injection (V
infinite) and of a finite-volume input (V finite) separately.

2.1. Dimensionless model and representative parameter values

By forming scaling relationships between the terms in (2.6)–(2.10), we can determine the
intrinsic horizontal length and time scales

L ≡ UH2

Q1
, T ≡ φUH3

Q2
1

, (2.11a,b)

respectively, which characterise the flow of a gravity current of height h ∼ H injected
into a quiescent aquifer. We use these scales to form dimensionless variables according to

x =

(

UH2

Q1

)

x̂ t =

(

φUH3

Q2
1

)

t̂ h = Hh̃ Q = Q1Q̂. (2.12)
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This choice maximises the generality of solutions to the associated dimensionless model.
Recasting (2.6) in terms of (2.12) and dropping the hats, we obtain

∂h

∂t
= − ∂

∂x






h







MQ(x, t)− (1 − h)
∂h

∂x

Mh+ (1 − h)
∣

∣

∣












, (2.13)

where

Q(x, t) =

{

I(t) +B (x > 0),
B (x < 0),

and I(t) =

{

1 (0 ≤ t ≤ V ),
0 (t > V ).

. (2.14a,b)

The input condition (2.7b) becomes
[

∂h

∂x

]+

−
=

(

M − 1

h

)

I(t) at x=0. (2.15)

The flow-front conditions (2.8) become

h(x+, t) = 0, ẋ+ = M [I(t) +B]− ∂h

∂x
(x+, t), (2.16a,b)

h(x−, t) = 0, ẋ− = MB − ∂h

∂x
(x−, t). (2.17a,b)

The system depends on three dimensionless parameters

M ≡ µ2

µ1
, B ≡ Q2

Q1
, V ≡ V

Q1T
, (2.18)

which represent the ratio of the ambient viscosity to the injectate viscosity, the ratio of
the background flux to the input flux, and the dimensionless total volume of injected
fluid (t = V is the dimensionless time at which the input is stopped).

Representative parameter values for different physical situations are given as follows.
The case M ≪ 1 represents the case of a negligible ambient viscosity, as applies to
good approximation to hydrological problems involving the flow of water into an air-
saturated aquifer, for which M ≈ 0.01. For flows involving the evolution of a solution of
water charged with a contaminating solute such as sodium chloride or CO2, M ≈ 0.5–1.
The converse case of a low-viscosity contaminant (M > 1) characterises the injection
of supercritical CO2 into a saline aquifer. As estimated in §6, M ≈ 5–20 are typical
values for CO2 injection, and B is of order unity given representative injection rates and
background flow rates.

3. Continuous input

This section explores the effects of a background flow on a continuous injection of fluid
(V = ∞). In order to illustrate the essential dynamics, we solved the initial-value problem
(2.13)–(2.17) numerically. A scheme was developed in which the domains upstream and
downstream of the input point are each mapped onto temporally fixed domains and the
derivatives in the equations are discretised using centred differences. The details of this
scheme are provided in appendix A.

The solution for the case of no background flow B = 0 is shown in figure 2(a). This
case represents the input of fluid between a sealing fault far upstream that imposes a net
volumetric flux Q = 0 throughout the region x < 0 in accord with (2.14a), with the effect
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Figure 2. Numerically determined solutions to (2.6)-(2.17) describing the evolution of a fluid
injected continuously for (a) no background flow B = 0 and viscosity ratio M = 0.5 (injectate
twice as viscous as the ambient fluid), (b) a background flux B = 1 and M = 0.5, and (c)
B = 1 and M = 2 (injectate half as viscous as the ambient). Height profiles are shown at times
t = 0.0625, 0.25, 1, 4 and 8. The long-term similarity solution describing flow towards the sealing
fault for B = 0, given by our numerical solution to (3.5)–(3.6), is shown by the curve of green
crosses in (a). The steady-state solution (3.11a) is shown as a red dotted curve in (b). The
prediction for the position of the horizontal interface hH given by (3.9b) is shown as a dashed
blue line in (b) and (c).

Figure 3. Distances of the positive and negative flow fronts from the injection point, x+(t)
and |x

−
(t)|, for the solutions of figure 2. In all cases, the flow is symmetrical at early times in

accord with (3.1), which is shown as a line of blue circles in each panel. The late-time asymptote
(3.10) for the positive flow front x+ is shown as a black dashed line in each case. In (a), the
late-time asymptote for the negative flow front described by the similarity solution of §3.1.1,
|x

−
| ∼ ηN t1/2, is shown as a line of green crosses. The long-term steady position of |x

−
| for

B > 0, as given by (3.11b), is shown as a horizontal dotted red line in each of (b) and (c).
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of producing asymmetrical far-field conditions on the saturating fluid. For illustration,
we have chosen M = 0.5 (injected fluid twice as viscous as the ambient fluid).

The injected current is initially symmetrical, splitting equally between leftwards and
rightwards propagation. The symmetry is confirmed by the plots of x+(t) and |x−(t)|
shown in figure 3(a). The initial growth conforms to an early-time similarity solution in
which

x+ ∼ |x−| ∼ 1.18 t2/3 (t → 0+), (3.1)

which describes the continuous injection of fluid into a semi-infinite unsaturated porous
medium (Huppert & Woods 1995). The prefactor in (3.1) has been adjusted here to
account for the half–half split of the current in two directions. This similarity solution has
also been determined previously to describe the early-time flow of a one-sided injection
into a fluid-saturated confined porous medium in accordance with a general principle
that unsaturated dynamics are recovered for h ≪ M−1 (Pegler et al. 2014a). The general
emergence of this similarity solution in the flows considered here verifies that this principle
also applies in the presence of asymmetrical far-field conditions, as well as a background
flow.

By t = 1, the symmetry begins to break, at which time the majority of the fluid is
propagating to the right, towards the permeable fault, as t. A slower current propagates
towards the sealing fault to the left as t1/2. The break in symmetry about x = 0 demon-
strates a remarkable effect of the far-field conditions in providing an almost instantaneous,
long-range control of the direction in which the injected fluid propagates.

The solution with a non-zero background flux B = 1 and M = 0.5 [figure 2(b)] illus-
trates several effects of a background flow. Early times again conform to the symmetrical
self-similar growth (3.1). However, in contrast to the case B = 0, the interface does not
approach the top boundary asymptotically. Instead, it forms a steady horizontal interface
along the centre of the medium. The positive flow front x+(t) again grows in proportion
to t but at a faster rate than the case B = 0. Meanwhile, the upstream flow in x < 0
approaches a (stagnant) steady state of finite extent −x−, contrasting with the indefinite
expansion (x− → −∞ as t → ∞) occurring in the case B = 0.

The flow for B = 1 and M = 2 (ambient fluid twice as viscous as the injected fluid) is
shown in figure 2(c). Compared to the case M = 0.5, the injected fluid forms a shallower
layer. It also flows a shorter distance upstream against the background flow. Unlike
the cases with M = 0.5, the current develops a broader slope, reminiscent of the profile
resulting from a one-sided injection of relatively less viscous fluid into a quiescent aquifer.

3.1. Injection into a quiescent asymmetrical reservoir

We begin with a dedicated analysis of the special long-term regimes that arise with no
background flow, B = 0. For this case, our solution of figure 2(a) indicated that the
majority of the injected fluid eventually propagates towards the permeable fault at long
times, hu1 ∼ 1. Therefore, the rightwards flow for B = 0 approaches the same long-
term regimes as a one-sided injection into a confined aquifer, as detailed by Pegler et al.

(2014a) and Zheng et al. (2015). As determined therein, the asymptotic position of the
positive flow front for M ≤ 1 is

x+ ∼ t (t → ∞), (3.2)

which is shown by the dashed line in figure 3(a). The general possible regimes including
those for M > 1 and B > 0 will be reviewed later in the text preceding (3.10). The result
of (3.2) confirms the long-term prediction of our numerical solution. In the practical
context, the asymptotic regime of (3.2) will apply until the rightwards flow front interacts
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Figure 4. The solid curve shows the prefactor ηN (M) to the frontal position x
−

∼ −ηN t1/2

describing the long-term propagation of the injected fluid in the direction of the sealed fault
for the case of no background flow (B = 0) plotted against the viscosity ratio M , obtained
from numerical solutions of (3.5)–(3.6). The plot shows the decrease of the rate of propagation
with M . The horizontal dashed green line shows the asymptote ηN ∼ 1.62 for M → 0, which
represents the limit of an unsaturated aquifer. The curve of blue circles represents the asymptote
for M → ∞ given by (3.7), as predicted by the boundary-layer analysis of appendix B. The
insets illustrate the self-similar profiles for M = 10−3 and M = 103, the latter showing the
strongly concave profile that arises for large M .

with the downstream end of the aquifer, beyond which time a different regime, possibly
involving leakage of the current through the permeable fault, will apply subsequently.
While the rightwards-propagating regime described by (3.2) is asymptotically equivalent
to that of a one-sided injection towards a permeable fault, a qualitative difference is that
the interface never touches the top boundary of the medium as it does in that case. A
gap must persist in the present case in order to provide a conduit for fluid to escape
the confined region x < 0. The gap gradually narrows over time but never vanishes
completely. It should be noted that this conduit would not necessarily occur for the
related problem of a point-source injection because, in that case, ambient fluid can flow
around the injectate.

3.1.1. The self-similar flow towards the sealing fault

Figure 3(a) indicates that the leftwards current grows in proportion to t1/2, a signif-
icantly slower rate than the rightward current (3.2). To understand this evolution, it
should be noted first that, as the gap above the current in the region x > 0 closes, the
fluid above the injection point gradually approaches the top boundary,

h(0) ∼ 1 (t → ∞). (3.3)

The leftwards current is therefore fed by a region of fixed height asymptotically. The long-
term flow to the left can therefore be described by (2.6), (2.8a) and (3.3). No explicit
time-independent horizontal length scale can be formed from scalings of these equations,
indicating a similarity solution. We define the relevant similarity variables by

η = t−1/2x, h = h(η), (3.4a,b)
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Figure 5. The boundary-layer structure underlying the self-similar propagation of a gravity
current towards a closed fault in the limit of small injectate viscosity, M → ∞. The case
M = 100 is illustrated. The numerical solution to the exact equations (3.5)–(3.6) is shown as a
solid curve, with the flow front indicated by a star. As detailed in appendix B, the flow involves
a boundary layer of extent δ ∼ (M logM)−1/2 near the flow front ηN ∼ 2(M−1 logM)1/2,
representing a transition from a region dominated by resistance to ambient flow to a region
wherein the resistance to flow of the injectate becomes leading order (and ultimately constrains
the tip propagation). The outer solution satisfying (B 4a) is shown as a dotted red curve. The
inner solution (B 7), which consistently matches the outer solution to the frontal conditions
(3.6b, c), is shown as a dashed blue curve.

with frontal evolution x− = −ηN t1/2, where ηN is a constant to be determined. In terms
of (3.4), equation (2.13) becomes

−1

2
ηh′ =

[

h(1− h)h′

Mh+ (1− h)

]′
, (3.5)

where we use a prime to denote d/dη. The conditions (3.3) and (2.16a, b) become

h(0) = 1, h(−ηN ) = 0, h′(−ηN ) = 1
2ηN . (3.6a,b,c)

We solved (3.5)–(3.6) numerically using a scheme in which (3.5) is integrated subject to
(3.6b, c) using the Matlab routine ode113. This integration was iterated in conjunction
with a bisectional search which tunes ηN to meet (3.6a). The height profile and extent
thus determined are shown as curves of green crosses in figures 2(a) and 3(a), and provide
a close match with our numerical solution to the initial-value problem. The t1/2 regime
described here will cease once the current makes contact with the sealing fault assumed
to lie far in the negative x direction; beyond that time, a no flux condition will apply at
the left-hand edge of the current, and the current will proceed to fill the left-hand section
of the aquifer to long times.

By solving (3.5)–(3.6) over a range of viscosity ratios M , we determine the universal
relationship between ηN and M shown in figure 4. For M ≪ 1, it is found that ηN ∼
1.62. This limiting value represents the self-similar flow of a gravity current fed from a
constant pressure head into an unsaturated or semi-infinite porous medium (Pritchard
2007; Neufeld et al. 2009). It is recovered here for M → 0 because the far-field condition
of the sealing fault has no effect when M = 0. As M increases from zero, ηN decreases.
Perhaps counterintuitively, reducing the viscosity of the current therefore decreases its
rate of propagation. It should be noted that the opposite of this conclusion holds for the
analogous (fixed-headed input) similarity solution describing flow towards a permeable
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fault (Pegler et al. 2014b). The coefficient ηN instead decreases with M here because,
with a sealing fault, the current must drive a return flow of ambient fluid in order to
propagate. For larger M , the stresses associated with mobilising the return flow are larger,
thus resisting the propagation of the current.

For M → ∞, as applies approximately to pure CO2 injected into a saline aquifer,
the resistance to ambient flow becomes a dominant effect. This limit produces a distinct
asymptotic regime in which the evolution of the interface throughout the majority of the
flow is resisted by the mobilisation of the ambient fluid. Remarkably, the viscosity of the
injectate nevertheless remains important near the flow front within a small boundary layer

of extent δ = O[(M logM)
−1/2

], and provides the ultimate constraint on the overall rate
of propagation. The mathematical analysis of this boundary-layer structure is provided in
appendix B. The structure is illustrated in figure 5, where our numerical solution to the
exact equations (3.5)–(3.6) for M = 100 is shown alongside the inner and outer solutions
determined in appendix B. The analysis reveals the asymptote

ηN ∼ 2
(

M−1 logM
)1/2

(M → ∞), (3.7)

which is shown as a curve of circles in figure 4 and validates the numerically determined
values for M ≫ 1.

3.2. The effects of background flow

The solution for B = 1 and M = 0.5 [figure 2(b)] indicates several effects of background
flow. Most evident are the development of an asymptotically steady horizontal interface
in the region x > 0, and the approach of the flow for x < 0 towards a steady state.

To determine these asymptotic regimes, we consider the steady form of (2.6), namely
∂(hu1)/∂x = 0. Since the long-term flow only propagates in the positive x direction,
u1 > 0 (otherwise, the leftwards current would remain unsteady), it follows that the
dimensionless flux of injected fluid hu1 is equal to zero for x < 0 and unity for x > 0.
Using (2.5), we therefore obtain

hu1 = h

[

MQ(x)− (1 − h)h′

Mh+ (1− h)

]

=

{

0 (x < 0),
1 (x > 0),

(3.8)

where, here, h and Q are functions of x only and we have used a prime to denote d/dx.
To seek a solution to (3.8) with a horizontal interface for x > 0, we set h′ ≡ 0 and

Q(x) = B + 1 to yield

M(B + 1)h

Mh+ (1− h)
= 1 and hence h =

1

MB + 1
≡ hH (3.9a,b)

on making h the subject. The height predicted by (3.9b) is shown as a horizontal dashed
line in figures 2(b, c) and matches a prevailing interior region of the numerical solution
at long times. Two fluids driven simultaneously into a porous medium thus divide along
a critical height hH that depends on the viscosity ratio M and flux ratio B between the
fluids. For less viscous injectate (M larger) or larger background flux (B larger), equation
(3.9b) predicts that the height confining the lower fluid hH becomes smaller.

The sustained gap above the injected current effectively confines the current into a
shallower quiescent aquifer of effective depth hH . Consequently, the rightwards current
is asymptotically equivalent to a one-sided injection with no background flow adjusted
to an effective aquifer depth hH = 1/(MB + 1). To review the regimes arising for a
one-sided injection with no background flow (Pegler et al. 2014a; Zheng et al. 2015), we
recall that, in that case, the current generally grows vertically to span the depth of the
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medium fully. For M < 1, the two flow fronts along the top and bottom boundaries both
propagate as t at long times and form the ends of an asymptotically linear interface of
constant length which is relatively short compared with the horizontal extent of the flow
at long times. For M = 1, a similar regime arises except with the horizontal length of the
interface growing as t1/2 under the effect of gravity. For M > 1, the interface approaches
a large-scale concave profile in which the front propagates at the faster rate of Mt and
the upper front at the slower rate of M−1t. With the results for the long-term frontal
position adjusted to incorporate the effective aquifer height of (3.9b), the leading position
of the positive flow front with background flow can be determined as

x+ ∼
{

t/hH = (1 +MB)t for M ≤ 1,

Mt/hH = M(1 +MB)t for M > 1.
(3.10a,b)

The asymptotes (3.10) are shown as dashed black lines in panels (a)–(c) of figure 3
and agree with the large-time numerical predictions. Expression (3.10a) shows that for
M ≤ 1, the effect of background flow is to increase the rate of propagation of the flow
front by a value MB relative to its speed if B = 0. For M > 1, the speed of propagation
is further enhanced by the extra factor of M . For M ≫ 1, (3.10b) has the limiting form
x+ ∼ BM2t. The value of the quadratic prefactor M2 is considerable for CO2 storage,
with representative values lying in the range 25–400. Background flow can therefore
advect injected fluid significantly faster than the background flow itself, an effect that
has the potential to provide a dominant control on the migration of CO2.

To analyse the steady state arising for x < 0, we set Q(x) = B in (3.8). By integrating
that equation analytically subject to the asymptotic condition h(0) ∼ hH , we obtain the
steady-state height profile and negative frontal position

h = 1−
[

(1 − hH)2 − 2MBx
]1/2

, x− = − 1− (1− hH)2

2MB
, (3.11a,b)

respectively. The predicted steady profile of (3.11a) is shown by the curve of red circles
in figure 2(b) and agrees with the numerically determined profile at long times. The cor-
responding agreement with (3.11b) is shown in figures 3(b, c). Expression (3.11b) implies
that |x−| is smaller for less viscous injectate (M larger), and hence the current propagates
less far against the background flow when it is less viscous (confirmed by the comparison
of the steady profiles arising for x < 0 in panels (a) and (b) of figure 2). The regime
of (3.11) is not just steady but completely static (u1 = 0). That is, fluid entering the
upstream region x < 0 never leaves it and is retained there to long times.

4. Release of a parcel

This section explores the propagation and deformation of a miscible fluid parcel fol-
lowing its release into a background flow (the effects of residual trapping for immiscible
fluid will be considered in §6.3). To illustrate the essential phenomena, we determined
numerical solutions to the initial-value problem (2.13)–(2.17). This was done by modi-
fying our numerical solver to perform a transition from the two-domain representation
used above for t < V to a single-domain representation [x−, x+] for t ≥ V (as detailed
in appendix A). Illustrative solutions for V = 4, background flux B = 1 and viscosity
ratios M = 0.5, 1 and 2 are shown in figures 6(a–c).

For case (a), M = 0.5, the profile resulting from the input condition rapidly smooths
the interface. Relatively more fluid migrates towards the front of the parcel to produce
an asymmetrical shape. The whole fluid parcel translates at approximately half the speed
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Figure 6. Evolutions of fluid parcels of dimensionless volume V = 4 released into a porous
medium with a dimensionless background flux B = 1 and viscosity ratios (a) M = 0.5, (b) M = 1
and (c) M = 2, obtained from our numerical solution of (2.6)-(2.17). Times are indicated above
each profile. For injected fluid more viscous than the ambient fluid (M < 1), the parcel develops
a gravity-smoothed frontal shock layer. For equal viscosities (M = 1), the profile develops a
symmetrical parabolic shape in its moving frame described by the similarity solution (4.19),
which is shown by the curve of purple circles at t = 300. For a less viscous injectate (M > 1),
the parcel develops a trailing shock layer.

of the background flow. At long times, the profile steepens near the positive flow front
x+. For M = 1, the parcel instead propagates at the same rate as the background flow.
In this case, the current retains a fully symmetrical shape. For M = 2, the parcel is
advected approximately twice as fast as the background flow. In this case, a steepened
profile develops instead near the negative flow front x−.

4.1. The leading-order rate of propagation of the parcel

To analyse these regimes, we begin by considering asymptotic simplifications of the model
equations. It is evident from the numerical solutions that the parcel generally becomes
increasingly slender with time. That is, h → 0 and ∆x → ∞ as t → ∞, where ∆x ≡
x+ − x−. Accordingly, the slope ∂h/∂x ∼ h/∆x → 0. In these limits, the gravitational
contributions to the flow-front conditions (2.16b) and (2.17b) become asymptotically
smaller than the order-unity contributions from background flow. With regards to the
leading position of the parcel, gravitational spreading can therefore be neglected. In the
absence of those contributions, (2.16b) and (2.17b) each integrate to yield the long-term
leading-order displacements of the flow fronts,

x± ∼ MBt (t → ∞). (4.1)

The parcel as a whole therefore advects at a rate of M multiplied by the background
flow rate. For geological carbon storage, the rate of advection of CO2 by the background
flow may be as high as M = 20 times the ambient flow rate, implying an order-of-
magnitude difference in velocity between the parcel and the ambient fluid. The potential
for considerable differences in flow rates between the parcel and the ambient differs
qualitatively from how a background flow typically affects a fluid body in non-porous
fluid-mechanical configurations, for which interfacial viscous drag drives an immersed
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Figure 7. The deformation velocity uD(h), representing the advective prefactor to the nonlinear
wave equation (4.6) and the rate at which the background pressure gradient advects the interface
in the frame of the parcel. The cases shown correspond to (a) a more viscous injectate M = 0.5,
(b) an equally viscous injectate M = 1 and (c) a less viscous injectate M = 2.

fluid parcel towards the same velocity as the background flow. The relative smallness
of interfacial shear stresses in a porous medium renders that effect negligible, allowing
instead for considerable velocity contrasts between the parcel and the ambient fluid.

4.2. The deformation of the parcel

To explore how the parcel deforms in its moving reference frame, we recast (2.13)–(2.17)
in terms of the moving coordinate system (ξ, t), where

ξ = x− (MB)t. (4.2)

In terms of these coordinates, (2.13) becomes

∂h

∂t
= MB

(

[Mh+ (1− h)]2 − 1

[Mh+ (1− h)]2

)

∂h

∂ξ
+

∂

∂ξ

(

h(1− h)

Mh+ (1− h)

∂h

∂ξ

)

(4.3)

and conditions (2.16) and (2.17) become

h(ξ+) = 0, ξ̇+ = −∂h

∂ξ
, (4.4a,b)

h(ξ−) = 0, ξ̇− = −∂h

∂ξ
. (4.5a,b)

Our numerical solutions for M = 0.5 and 2 [figures 2(a, c)] indicated prevailing interior
regions of the parcel in which |∂h/∂ξ| ≪ 1 connected to short shock layers through which
∂h/∂ξ becomes large at either the front or back of the parcel, respectively. To understand
this structure, we begin by considering the simplified flow regimes arising from the decay
∂h/∂ξ → 0. Assuming that the first term in (4.3) is non-zero (M 6= 1), this term will
dominate over the second, gravitational term in the limit ∂h/∂ξ → 0, yielding

∂h

∂t
∼ MB

(

[Mh+ (1− h)]2 − 1

[Mh+ (1− h)]2

)

∂h

∂ξ
≡ −uD(h)

∂h

∂ξ
. (4.6)

This nonlinear advection equation governs the deformation of the interface caused by the
relative rates of advection of the two fluid species by the background flow. It shows that
the relative rate of advection is dependent on the height of the interface separating the
fluids h. The parcel thus evolves as a nonlinear wave with rate of advection uD(h) in the
frame moving with the background flow, which we refer to as the deformation velocity.
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Figure 8. The magnitude of the stretching factor |Ω| = 2BM |1−M |, representing the coefficient
in the nonlinear advection equation (4.7) describing the leading-order dynamics as h → 0 and
M 6= 1. For small ambient viscosity (M → 0), Ω ∼ 2M → 0 and background flow plays a small
role in deforming the particle to leading order. For M = 0.5, Ω attains a local maximum (the
green circle), implying that for M < 1 a fluid parcel is stretched fastest if it is exactly twice as
viscous as the ambient fluid. For M = 1, the lack of viscosity contrast abruptly removes any
effect of background flow on deforming the parcel (Ω = 0) and the purely gravity-driven flow (in
the frame of the parcel) described by the theory of §4.5 applies uniquely. For M > 1, Ω increases
relatively significantly as 2M2, implying the potential for considerable deformation of a parcel
that is less viscous than the ambient fluid.

The function uD(h) is different for each value of M , and is shown for (a) M = 0.5, (b)
M = 1 and (c) M = 2 in figure 7. For M < 1, uD is positive, implying that fluid migrates
forwards in the frame of the flow fronts. This is consistent with the development of a
shock at the downstream edge. For M = 1, uD is identically zero because the background
flow advects both fluids at exactly the same rate and hence does not generate the velocity
contrast necessary to deform the parcel. In this special case, the advective term in (4.3)
[proportional to B] is identically zero and its assumed dominance in deriving (4.6) above
is uniquely invalid; we defer addressing this case to §4.5. For M > 1, uD is instead
negative and fluid migrates backwards in the frame of the parcel, consistent with the
formation of a trailing shock layer.

4.3. The self-similar horizontal stretching of the parcel

At long times, the injectate layer thins, h → 0, and the deformation velocity uD(h)
defined in (4.6) approaches the linear asymptote uD(h) ∼ Ωh, where Ω ≡ 2BM(1−M)
is the stretching parameter. In this limit, (4.6) reduces asymptotically to

∂h

∂t
∼ −Ωh

∂h

∂ξ
, (4.7)

which is a simple nonlinear wave equation with prefactor proportional to Ω (an inviscid
Burgers’ equation). The absolute value |Ω| measures the rate at which the background
flow stretches the interface horizontally. The value of |Ω/B| is plotted as a function of
M in figure 8, with the main plot showing log–log axes and the inset showing natural
axes. For M ≪ 1, Ω increases with M (as 2M) because M increases the background
stress driving the deformation. However, at M = 0.5, the increase stops and Ω attains a
local maximum, shown as a green circle. While increasing M still increases the ambient
stress in the range 0.5 < M < 1, the increasing similarity between the rates at which the
background flow advects the two fluid species individually as M approaches unity causes
the ambient stress to become less effective at deforming the parcel. At M = 1, Ω = 0



16 S. S. Pegler, A. S. D. Maskell, K. A. Daniels and M. J. Bickle

because the background flow does not drive any one fluid faster than the other. The value
M = 0.5 is the critical value at which the increase in the background pressure gradient
balances the reduction in rate of deformation caused by the viscosities of the two fluids
becoming similar. For M > 1, the viscosity contrast is reinstated and the magnitude of
Ω continues to increase. Ultimately, it grows as 2M2, attaining values larger than those
possible for M < 1.

We begin our analysis of (4.7) with the case of a relatively more viscous injected fluid,
M < 1, for which Ω > 0. Motivated by the development of a shock layer near the front
x+, we seek a solution to (4.7) subject to (2.17a) and the volume constraint

∫ ξ+(t)

ξ
−
(t)

h(x, t) dx = V, (4.8)

with the anticipation that a conflict between the resulting solution to these equations
and condition (2.16a) produces the shock front (this will be confirmed in §4.4 below).
Since no horizontal length scale can be formed from scalings of (4.7), (2.17a) and (4.8),
one can anticipate that they support a similarity solution. To determine this, we recast
these three equations in terms of the similarity variables

ζ =
x

(ΩV t)1/2
, h =

V f(ζ)

(ΩV t)1/2
, (4.9a,b)

which yield

1
2 (ζf

′)′ = ff ′, f(0) = 0,

∫ ∆ζ

0

f(ζ) dζ = 1, (4.10a,b,c)

where ∆ζ ≡ ζ+ − ζ−. On integrating (4.10a) subject to (4.10b, c), we obtain

f = ζ, ∆ζ =
√
2. (4.11a,b)

This result shows that the leading-order flow approaches a linear similarity solution with
a single shock front (cf. de Loubens & Ramakrishnan 2011b). The approach is confirmed
in figure 9(a), where (4.11) is plotted as a dashed blue line and the numerical solution is
shown as a solid black curve for M = 0.5 at t = 4× 103. The convergence occurs fastest
near the negative flow front because the gravitational dynamics is weakest furthest from
the shock layer. The evolution of the horizontal extent implied by (4.11b) is

∆x ∼ (2ΩV t)1/2 = 2[BVM(1−M)t]1/2. (4.12)

This result shows that the extent of the parcel grows as t1/2 with a prefactor that is
proportional to

√
Ω and

√
V . The parcel therefore stretches horizontally faster for larger

values of the parameter Ω and volumes V .

4.4. The shock layer

While describing the prevailing interior of the parcel, the similarity solution (4.11) con-
flicts with the condition of vanishing thickness at the nose (2.16a). This conflict indicates
that the second-order (gravitational) term in (4.7) remains significant near x = x+ to
produce a narrow ‘shock layer’ in which gravity suppresses the overturning of the inter-
face. To investigate its intervention, we begin by considering the direct simplification of
(4.3) arising from the limit h → 0 only, namely

∂h

∂t
∼ −Ωh

∂h

∂ξ
+

∂

∂ξ

(

h
∂h

∂ξ

)

. (4.13)
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Figure 9. The long-term regimes arising for (a) M = 0.5 shown at time t = 4 × 103 and (b)
M = 2 shown at t = 200, as given by our numerical solution to the full equations (2.13)–(2.16).
The self-similar asymptotes describing the prevailing triangular regions, given by (4.11) for
M < 1 and (4.20) for M > 1, are shown by the dashed blue lines in (a) and (b), respectively.
The leading-order solutions describing the gravitational smoothing of the shock fronts, given by
(4.17) for M < 1, is shown by curves of circular markers.

To study the shock layer, we transform this equation into the frame of the shock and the
similarity height variable (3.4b) by defining the horizontal coordinate and scaled height,

X = ξ − (2ΩV t)1/2, h = (ΩV t)−1/2F (X). (4.14)

In terms of these variables, (4.13) becomes

Ω

V

(

− F

2t1/2
+ t1/2Ft

)

− Ω√
2
FX = −ΩFFX + (FFX)X . (4.15)

To seek a solution that matches steadily to (4.11), we set Ft = 0. Since F is of order
unity, the first term in (4.15) decays as t−1/2 and is negligible as t → ∞, leaving

− 1√
2
ΩFX = −ΩFFX + (FFX)X . (4.16)

By integrating this equation subject to the frontal condition (2.16a), we obtain

F ∼
√
2
(

1− eΩ(x−x+)/2
)

. (4.17)

This solution is shown as a curve of green circles in figure 9(a) and successfully describes
the profile through the shock layer. Expression (4.17) shows that the extent of the shock is
of O(Ω−1), implying, in particular that a stronger background flow creates a shorter shock
layer. This length scale remains constant in time but, since ∆x given by (4.12) increases
with time, the shock layer becomes increasingly smaller relative to the horizontal extent
of the parcel as a whole as t → ∞. Equation (4.17) predicts that F →

√
2 as x → −∞.

This confirms a correct matching between (4.17) and the value of the outer solution
(4.11) in the limit ζ →

√
2, in accordance with van Dyke’s matching rule.
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4.5. Equally viscous input and ambient fluids

As noted above, for M = 1 the background flow advects the injected fluid at exactly the
same rate as the background flow itself. Its effect in deforming the parcel, represented by
the first term on the right-hand side of (4.3), is therefore identically zero. In this unique
case, the assumption that the gravitational term in (4.3) becomes negligible as the slope
of the parcel decreases is invalid. Instead, (4.3) simplifies to

∂h

∂t
=

∂

∂ξ

(

h(1 − h)
∂h

∂ξ

)

∼ ∂

∂ξ

(

h
∂h

∂ξ

)

(h → 0), (4.18)

and describes a purely gravity-driven relaxation of the parcel in the frame of the back-
ground flow. In its moving frame, the parcel therefore relaxes exactly as if in a quiescent
porous medium. As determined by Barenblatt (1952), this equation, along with the vol-
ume constraint (4.8), supports the exact similarity solution

h =

(

3

32

V 2

t

)

1
3



1−
(

2

9V t

)

2
3
ξ2



 , ∆x = (36V t)1/3. (4.19a,b)

This dome-shaped profile is shown as a curve of purple circular markers in figure 6(b). It
confirms the leading-order symmetrical relaxation of the parcel in a frame moving with
the background flow. It should be noted that the rate of relaxation ∆x ∝ t1/3 predicted
by (4.19b) is slower than the rate ∆x ∝ t1/2 predicted by (4.12) for M 6= 1. The effect
of the background flow in directly stretching a released parcel for M 6= 1 thus drives a
greater rate of horizontal extension than would occur by gravity acting independently.

4.6. Less viscous input fluid

For M > 1, the first term in (4.3) is non-zero and hence, like the cases of M < 1, it
becomes dominant at late times. Likewise, the resulting simplified equation (4.7) describes
the leading-order dynamics. The only difference is that the stretching factor Ω is negative
if M < 1. That is, the background flow advects higher fluid backwards in the frame of
the parcel. To address this case, we repeat the steps of the analysis of §4.3 above, except
with Ω replaced by its absolute value |Ω| in (4.9), and applying (2.16a) instead of (2.17a).
The analysis determines the similarity solution

f = −ζ, ∆ζ =
√
2. (4.20a,b)

Like (4.11), equation (4.20) describes a triangular profile. However, its gradient is opposite
to the case M < 1 and thus predicts a shock at the negative flow front instead of the
positive flow front. The asymptotic approach of our numerical solution towards (4.20) is
confirmed in figure 9(b), where (4.20a) is shown as a dashed blue line at t = 200. The time
of transition towards the similarity solution is faster for M = 2 than M = 0.5 because
the magnitude of the stretching parameter |Ω| = 2 is four times larger. For M > 1, there
is no maximum value of |Ω|, contrasting with the case M < 1, for which it was noted
that there is a maximum at M = 0.5. Background flow thus has the potential to provide
significantly greater rates of stretching when the parcel is less viscous than the ambient
fluid compared with cases where it is more viscous.

5. Experimental study

A series of laboratory experiments was conducted to confirm aspects of the model
predictions and to assess the significance of further mechanical considerations not in-
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Figure 10. Schematic of our experimental system.

0 200 400 600 800 1000
0

100

200

0 200 400 600 800 1000
0

0.1

0.2

0.3(a) (b)

t (s)t (s)

Q
(0)
1

Q1

(cm2 s−1)
V

(cm3 s−1)

Figure 11. (a) The volume per unit width of fluid injected into the tank, as inferred from the
mass reading for the reservoir of dyed injected fluid over the course of experiment 4. The dotted
curve shows the raw data. The solid blue curve shows the the fitted least-squares parabola. Panel
(b) shows the associated linear change in Q1(t) implied by the derivative of the fitted parabola,

which we used to determine the constants Q
(0)
1 and α1 in (5.1a).

corporated within our model. The experiments were conducted in an acrylic tank with
dimensions of length 200 cm, height 25 cm and internal spacing 0.6 cm [figure 10]. Spac-
ers confined a region of internal height 10 cm that was fully enclosed except for a 10 cm
horizontal gap at the right-hand edge of the upper confining boundary. This enclosed
region was filled with glass beads of diameter 2 mm to create a porous medium. The
mean porosity was φ ≈ 0.38± 0.01 and the mean permeability was k ≈ 3.1 (±0.2)× 10−5

cm2 (Pegler et al. 2014a).
For the saturating ambient fluid, we used freshwater of density ρ2 = 0.998 (±0.001)

g cm−3 and viscosity µ2 ≈ 0.93–0.99 (±0.01) g cm−1 s−1, which were measured before
each set of experimental runs using a hydrometer and U-tube viscometer, respectively.
For the injected fluid, we used denser (and more viscous) solutions of water and sodium
chloride to create density differences of ∆ρ = 0.069–0.178(±0.001) g cm−3 and injectate
viscosities of µ1 ≈ 1.16–1.72 (±0.01) g cm−1 s−1.

A continuous input of ambient fluid was achieved using a raised reservoir of freshwater
connected via a syphon to the inlet at the upper left-hand corner of the enclosed region.
The hydrostatic head in the reservoir was maintained to create a fixed input pressure and
the mass of the reservoir was continuously monitored to determine the input flux per unit
width Q2(t). The ambient fluid partially filled an open region above the porous medium.
An outlet in the face of the cell allowed fluid to overspill through a large exit tube and
thus fixed the hydrostatic head of the upper surface of the ambient fluid over time. With
the background flow already initiated, the dyed salty water was injected through an inlet
at the base of the medium at a distance of 40 cm from the left-hand edge. The injection
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Unit 1 2 3 4 5 6 7 8

ρ1 g cm−3 1.176 1.176 1.176 1.176 1.176 1.176 1.067 1.067

ρ2 g cm−3 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998

µ1 g cm−1 s−1 (10−2) 1.72 1.72 1.72 1.72 1.72 1.72 1.16 1.16

µ2 g cm−1 s−1 (10−2) 0.93 0.93 0.9 0.93 0.93 0.93 0.99 0.99

Q
(0)
1 cm2 s−1 0.445 0.415 0.535 0.256 0.552 0.129 0.322 0.172

Q
(0)
2 cm2 s−1 0.085 0.294 0.392 0.309 0.758 1.13 0.124 0.283

α1 cm2 s−2 (10−4) 4.04 2.58 3.41 1.26 3.29 -0.93 - - - - - -

α2 cm2 s−2 (10−4) -0.90 0.32 1.18 0.50 3.37 4.85 - - - - - -

V - - - - - - - - - - - - - - - - - - 0.19 0.097

M 0.54 0.54 0.54 0.54 0.54 0.54 0.85 0.85

B0 0.27 0.68 0.73 1.42 1.45 8.80 0.39 1.65

A1 0.55 0.43 0.27 0.90 0.28 -5.17 - - - - - -

A2 -0.12 0.053 0.092 0.36 0.28 27.0 - - - - - -

S 0.015 0.051 0.068 0.063 0.13 0.20 - - - - - -

Table 1. Parameter values used in our laboratory experiments. The first set of experiments

(runs 1–6) involved a sustained continuous input (V = ∞). The second set (runs 7 and 8)

involved a finite-volume release (V finite). The two sets are individually listed from left to right

in ascending order of initial dimensionless background flux B0.

flux Q1(t) was determined analogously to the background flux. Two sets of experiments
were conducted. In the first set (runs 1–6), the injection was continued until the end
of the experiment (V = ∞). Across these runs, the hydrostatic head of the fluids in
the reservoirs was varied to create a variety of input rates. In the second set (runs 7–
8), we terminated the injection once a finite volume per unit width V was input. Each
experiment was recorded using a digital camera with time-lapse photography.

Analysis of the mass readings of the feeding reservoirs showed some temporal changes
in the rates of input of both the ambient and injected fluids over the course of each
experiment. Since the pressure heads at both input points were effectively constant, we
anticipate that the reduction of the input rates is a physical effect of the tank becoming
filled with the relatively more viscous fluid, which increases the resistance to driving
both fluids into the tank. An illustrative example of a decrease in the rate of dyed fluid
is shown for experiment 4 in figure 11. A least-squares parabola provides a good fit to
the data, as shown overlaid as a solid curve in figure 11(a), with similar fits applicable to
all of runs 1–6. The corresponding linear relationships for the input and ambient fluxes
[illustrated for Q1(t) in figure 11(b)] are

Q1(t) ≈ Q
(0)
1 − α1t, Q2(t) ≈ Q

(0)
2 − α2t, (5.1a,b)

where Q
(0)
1 ≡ Q1(0) and Q

(0)
2 ≡ Q2(0) are the fluxes at t = 0, and α1 and α2 are constants

determined from the least-squares fit. In order to incorporate this variation within our
model, we apply (5.1) in place of (2.3). With the same non-dimensionalisation (2.12),
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Figure 12. Time-lapse sequence of photographs showing a representative experiment (run 4) at
times (a) 80 s, (b) 200 s and (c) 800 s after the injection of the dyed salty water was initiated. The
dyed fluid, introduced at x = 0, is advected through the bead pack by an ambient background
flow of the saturating clear freshwater. The vertical aspect has been stretched by a factor of
two. The theoretical prediction of the full numerical model given by (2.13)–(2.17) with (5.2) in
place of (2.14) is overlaid as a white curve in each panel.
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Figure 13. The positions of the positive and negative flow fronts x+ and x
−

(crosses) as
measured from the experimental images for runs 1–6 involving a continuous input of fluid. Each
is compared alongside the theoretical prediction of (2.13)–(2.17) and (5.2) shown as curves.

except with the initial flux Q
(0)
1 in place of Q1, the augmented dimensionless model is

given by generalising (2.14) to

Q̂(x̂, t̂) =

{

B(t̂) + I(t̂) (x̂ < 0)
B(t̂) (x̂ > 0)

, where

{

I(t̂) = 1−A1t̂
B(t̂) = B0 −A2t̂

. (5.2)

These specifications depend on the initial ratio of background fluxes, B0 ≡ Q
(0)
2 /Q

(0)
1 ,

and two dimensionless rates of change, Ai ≡ αiT /Q
(0)
1 , which are listed for each experi-

ment in table 1. No significant variation in flux was evident in the finite-volume release
experiments 7 and 8. This is expected because the volume of the more viscous dyed fluid
inputted was sufficiently small in these experiments that any increase in the resistance
to driving fluid into the tank was negligible.
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Figure 14. Time-lapse sequence showing a representative finite-volume release (run 7) at (a)
the time t = 140 s at which the input is terminated, and (b) t = 1800 s. The vertical aspect has
been stretched by a factor of two. The theoretical prediction of the full numerical model given
by (2.13)–(2.17) with (5.2) in place of (2.14) is overlaid as a white curve in each panel.
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Figure 15. Comparisons between the experimental data (crosses) and theoretical predictions
(solid curves) of the model (2.13)–(2.17) for the negative and positive flow fronts, x

−
and x+,

measured for experimental runs 7 and 8. In these runs, the inputs were terminated at the times
indicated by vertical dashed lines to create a finite-volume release.

5.1. Experimental results and theoretical comparisons

The evolution of a representative experiment (run 4) is shown as a time-lapse sequence
in figure 12. The experiment is also shown in the supplementary movie. In agreement
with the theory, the current is initially close to symmetrical and subsequently develops a
shorter component flowing upstream against the background flow and a larger component
flowing downstream with the background flow. An approximately sharp interface between
the injected and ambient fluids is retained. Some slight fading at the downstream flow
front indicates a stronger effect of hydrodynamic dispersion in smearing the interface
for regions where the current displaces the ambient fluid. The theoretical height profiles
given by our numerical solution to the model (2.13)–(2.17) and (5.2) are overlaid as white
dashed curves; generally good agreement is observed.

Some discrepancies between the theory and the data occur mainly along the upstream
interface, where the theory overpredicts the distance propagated by the negative flow
front |x−|. This trend is illustrated for all of our continuous-input experiments in figure
13, where the positions of the positive and negative flow fronts measured from the digital
images and predicted by our theory are shown together. The experiments with larger
background flow tend to produce larger discrepancies. We conjecture that the discrepancy
is caused by stresses associated with vertical flow weakening the (Dupuit) approximation
of hydrostatic pressure; this hypothesis be considered in detail below. Since less fluid
propagates upstream than predicted by the theory, correspondingly more fluid flows
downstream. This explains the slight underprediction of the position of the downstream
flow front observed for each experiment.
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Figure 16. Scatter plot showing the correlation between the background strength parameter
S, as defined by (5.3), and the relative discrepancy between the final position of the negative
flow front as predicted by the theory xT

−
and the experimental data xE

−
, for runs 1–6. The

positive correlation indicates that the weakening of the Dupuit approximation of predominantly
horizontal flow, as measured by S, is responsible for the discrepancy.

A time-lapse sequence of the finite-volume experiment (run 7) is shown in figure 14. The
flow-front evolutions for both finite-volume experiments (runs 7 and 8) are shown in figure
15, where the times at which the input ceases are shown as vertical dashed lines. The
plots show good agreement with the theoretical predictions. Again, some discrepancies
occur near the negative flow front, which persist as the parcel advects downstream.
For run 8, the negative flow front x− propagates relatively further downstream and is
observed to leave small patches of the injected fluid behind its trailing edge. The patches
remain for a short period of time before being swept away by the ambient fluid. The
phenomenon is indicated by the step-like progression of x− that occurs for t > 600 s in
figure 15(b), which measures the distance furthest upstream at which a patch is observed
and lags intermittently behind the bulk of the parcel. We anticipate that these patches
arise as a consequence of localised regions of lower permeability in the bead pack, which
intermittently trap patches of the parcel as it passes through.

5.2. The role of vertical stresses

Analysis of the runs involving a continuous input revealed a persistent, if relatively small,
discrepancy between the data and the theory in the position of the negative flow fronts.
We anticipate that this discrepancy is a consequence of a weakening of the assumption of
predominantly horizontal flow (the Dupuit approximation) caused by a large interfacial
slope at the negative flow front. In the extreme limit of a large background flow, the
interaction between the ambient flow and the injected fluid would more closely approxi-
mate the flow around a locally vertical boundary created by the injected fluid, with the
ambient fluid just upstream of the negative flow front x− being directed vertically in a
stagnation-point flow. Stresses associated with this vertical flow weaken the assumption
of hydrostatic pressure (2.1b) underlying the theory.

In steady state, the flow along the upstream interface is tangential to the interface.
Therefore, we can anticipate that the significance of thre vertical flow is measured by the
magnitude of the gradient of the interface ∂h/∂x at the negative flow front x−. Using
(3.11b), the model prediction for the magnitude of this gradient is

∂h

∂x
= MB

H

L =
µ2Q2

∆ρgkH
≡ S, (5.3)

where S is a dimensionless number that we refer to as the background flow strength. The
self-consistency of the model depends on S ≪ 1, with larger values of S predicting a
larger deviation from hydrostatic pressure. A similar dimensionless parameter to (5.3)
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Parameter Symbol Unit Navajo injection Geological CO2 storage

Reservoir thicknessa H m 140 10–200

Porosityb φ 0.175 0.1–0.3

Permeabilityb k m2 5 ×10−13 10−14–10−12

Injectate densityc ρ1 kg m−3 1016 600–800

Ambient densityc ρ2 kg m−3 1004 1000

Injectate viscosityc µ1 Pa s 1.015 ×10−3 (0.5–1) × 10−4

Ambient viscosityc µ2 Pa s 1.006 ×10−3 (0.5–1)× 10−3

Input fluxd Q1 m2 s−1 2.1 ×10−6 10−5–10−4

Background fluxb Q2 m2 s−1 0.54 ×10−6 0–10−5

Viscosity ratio M 0.99 5–20

Flux ratio B 3.9 0–1

Table 2. Geophysical parameter estimates. The column for the Navajo case study lists specific

values measured or calculated from: a (Kampman et al. 2014), b (Kampman et al. 2009), c

using the concentrations measured by Kampman et al. (2014) in conjunction with the tables of

Dubacq et al. (2013), d (Maskell 2017). The column for CO2 storage lists generic representative

values for reservoirs in which CO2 sequestration may be applied.

was used by Pegler et al. (2013b) to explain discrepancies due to vertical stresses for the
related problem of a transition from a point-like radial injection towards gravitational
relaxation in a vertical Hele-Shaw cell. The value of S is evaluated for runs 1–6 in the final
row of table 1. In figure 16, we have plotted the relative discrepancy between the final
position of the negative flow front between theory, xT

−, and experiment, xE
− against S.

The plot indicates a positive correlation between the value of (5.3) and the degree of dis-
crepancy, indicating that the discrepancy is indeed due to a weakening of the assumption
of hydrostatic pressure.

6. Geophysical applications

Background flow arises in geological aquifers as a consequence of hydrostatic pressure
gradients from surface precipitation. This section applies the theoretical results to under-
stand the general effects of background flow on both dissolved contaminants and injected
fluid such as sequestered CO2.

6.1. Navajo Sandstone

As a case study, we consider the leaking of CO2-charged brine into the water-saturated
Navajo Sandstone in North America. The brine originates from a much deeper formation
saturated by CO2. The CO2-charged brine propagates from this aquifer through a per-
meable fault and, on its route to the surface, partially leaks into the Navajo Sandstone.
The leaked fluid is subsequently advected tens of kilometres (e.g. Kampman et al. 2009)
through this sandstone by a background flow of saturating water. Fluid samples taken
from the reservoir through the depth of the aquifer near the fault indicate that CO2-
charged brine spans the depth of the aquifer with a significant concentration gradient
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(Kampman et al. 2014). Measured or calculated parameters representing the aquifer and
fluids are provided in table 2, with references provided in the caption.

The dissolved CO2 and NaCl create a density difference of ∆ρ ≈ 12 kg m−3 and a
viscosity ratio of M = µ2/µ1 = 0.99. The flux ratio is B = Q2/Q1 ≈ 3.9, indicating a
significant role of background flow. Assuming that the input and ambient fluxes remain
approximately constant, we apply the theoretical results of §3. According to the the-
ory, the interface between the injected and ambient fluids approaches an approximately
horizontal interface along a height (3.9b) given dimensionally by

hH =
H

1 +MB
. (6.1)

For the values given above, hH ≈ 0.2H ≈ 30 m. The brine is therefore predicted to
occupy a region spanning one-fifth of the depth of the aquifer.

The corresponding prediction for the interstitial flow rate of the brine is

u1 =
Q1

φhH
= (1 +MB)

Q1

φH
, (6.2)

which is evaluated as u1 ≈ 4.2 × 10−7 m s−1 ≈ 13 m yr−1. Based on this, the injected
fluid is estimated to span the 20 km length of the Navajo Sandstone in approximately
1500 years. The prediction for the distance that the flow extends upstream against the
background flow, as given by (3.11b), has the dimensional form

|x−| =
1

2

[

1−
(

1− 1

1 +MB

)2
]

∆ρgkH2

µ2Q2
. (6.3)

This distance is evaluated as approximately 400 m. This value is consistent with the
measurements of downhole fluid samples taken 100 m upstream of the fault (Kampman
et al. 2014), indicating a limit to the extent of propagation of the brine against the
groundwater flow. The result is also consistent with observations of bleaching of the
exposed Entrada Sandstone related to previous inputs of CO2-rich brines (Wigley et al.

2012). The bleaching occurs in the basal 20 m of the formation, extends less than 500 m
upstream, and approximately 10 km downstream of the fault, which are consistent with
our theoretical predictions.

6.2. CO2 injection

Next, we apply the results to investigate the effect of background flow on pure CO2

injected into the subsurface for geological carbon storage. For this, we consider generic
ranges of representative values for typical sandstone aquifers where geological carbon
storage may be applied. These values are listed in the final column of table 2. For typical
ranges of reservoir temperatures and fluid compositions, the CO2 will be M = 5–20
times less viscous than the ambient water in the host rock. Given a representative input
rate per unit width of Q1 = 10−4 m2 s−1 and a typical background flow rate of Q2 =
10−4 m, we estimate that B can be of order unity. The case of no background flow,
B = 0, may be more applicable to marine aquifers (such as the Sleipner project in the
North Sea), for which precipitation cannot generate long-range hydrostatic imbalances.
However, background flow can be driven in that case by poroelastic deformation due to
the weight of the overlying rock. Below, we determine the magnitude of such motion
necessary for an appreciable effect on the migration of CO2.

In accordance with the result of (3.10), the leading front of the CO2 current is predicted
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to propagate in the direction of the background flow at the rate of

u1 = M(1 +MB)
Q1

φH
≈ M2Q2

φH
≈ M2u2, (6.4)

where the last two approximations apply for MB ≫ 1. The injected fluid thus moves
approximately M2 times faster than the ambient fluid. The significant quadratic de-
pendence on M2 stems from the dual effect of the viscosity ratio for M > 1 in both
reducing the effective height of confinement of the current [given by (6.1)] and increasing
the horizontal length of the convex similarity solution describing the injected current.
For geological carbon storage, the CO2 could travel as much as M2 = 400 times faster
than the background flow. A relatively small background flow may therefore be sufficient
to have a significant impact on CO2 spreading. Using a characteristic flow rate of the
injected fluid of u1 ≈ 1.9× 10−6 m s−1 ≈ 60 m yr−1 obtained from measurements of the
CO2 plume at Sleipner (Boait et al. 2012) and the viscosity ratio M ≈ 13, we determine
that a background flow rate of just u2 ≈ u1/M

2 ≈ 1.2 × 10−8 m s−1 ≈ 0.37 m yr−1

would be necessary to affect the migration of CO2 significantly.

For the evolution of a parcel of CO2 after its input ceases, we apply the predictions
of the theory of §4. The result of (4.1) predicts that the parcel of injected CO2 is sub-
sequently advected at the slower rate of a single factor of M times the background flow
rate, u1 = Mu2. The horizontal extent of the asymptotic similarity solution (4.11) arising
under a background flow (4.12) has the dimensional form

∆x(t) =
2[M(M − 1)Q2Vt]1/2

φH
, (6.5)

where V is the volume per unit width of fluid released. For illustrative values of H = 10 m,
φ = 0.2, M = 10, Q2 = 10−5 m2 s−1 and V = 103 m2, (6.5) predicts that ∆x ≈ 0.95 t1/2.
This implies a horizontal extent of 280 m in 1 day, 5.3 km in 1 year and 170 km in
103 years. It should be noted that this result assumes negligible residual trapping, an
approximation that may apply in the case of a pure CO2 parcel only if the aquifer
contains an existing residual of CO2 from a previous injection; a detailed evaluation of
the effect of residual trapping is provided in the following subsection. The surface area
of the interface between the injected CO2 and the ambient water predicted by (6.5) may
provide an ultimate constraint on the rate at which a parcel of CO2 dissolves into the
ambient water to become permanently secured.

6.3. Residual trapping

If the injectate is immiscible or only partially miscible in the ambient fluid, as applies
to pure CO2 injected into a saline aquifer, a certain proportion of fluid can be retained
in the porous matrix as a residue trailing the parcel (Hesse et al. 2008). The primary
effect of this trapping is to reduce the mass of the parcel of CO2 over time. Let R denote
the proportion of the porous matrix occupied by residual CO2 in the wake of the parcel;
a typical value is R ≈ 0.2. Let V (t) denote the volume of the pure CO2 parcel. To
investigate the effects of residual trapping, we model the loss to the capillary trail as
being proportional to the height of the current multiplied by its leading-order rate of
horizontal propagation,

V̇ (t) ∼ −Rhmax(t)ẋ−(t), (6.6)
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where hmax(t) ≡ maxx[h(x, t)]. Using the asymptotic solution (4.20) to evaluate hmax

and (4.1) to evaluate ẋ−, we obtain the ordinary differential equation

V̇ ∼ −RH

(

2V

Ωt

)1/2 [
MQ2

φH

]

. (6.7)

On integrating this equation, we obtain the evolution of the volume of the parcel,

V (t) =

{

1− R

φ

[

MQ2t

|M − 1|V0

]1/2
}2

V0, (6.8)

where V0 ≡ V (0) is the total volume of CO2 input. This analytical result yields an efficient
means to assess the effect of capillary retention for mobilisation of a packet of sequestered
CO2 over time. Setting V = 0 in (6.8) yields the total time tres and horizontal distance
xres = x± at which the CO2 becomes fully residually trapped given by

tres =
|M − 1|

M

φ2

R2

V0

Q2
, xres =

|M − 1|φV0

R2H
, (6.9a,b)

respectively. Using the values for our numerical example given in §6.2 above, we evaluate
tres ≈ 3 yr, which indicates that a packet of CO2 will become fully trapped by capillary
retention after a few years. It is interesting that the distance propagated by the parcel xres

given by (6.9b) does not depend on the background flux Q2. The ‘favourable’ cancellation
of Q2 in deriving this result is caused by the coincidence that a faster background flow
rate simultaneously increases both the rate of propagation of the parcel and the rate of
mass loss. For our illustrative parameter values, the total distance propagated by the
parcel is xres ≈ 4.5 km.

Residual trapping is likely to be a significant effect for a first-time finite (post-injection)
release of CO2. It should be noted, however, that it does not occur in the case of a
constant-flux input (§3) because, in that case, the current only grows (∂h/∂t > 0) and
thus cannot leave a trail. This case may be of greater relevance to industrial-scale CO2,
for which the aim would be to use the full aquifer for storage, as opposed to releasing
a finite volume that occupies a relatively small proportion of the total available storage
space. Residual trapping is also not relevant if the injectate is miscible (R = 0), as applies
to the migration of dissolved CO2 or contaminants through aquifers.

6.4. Model applicability

We end by summarising the applicability of our theoretical results. Three sources of
additional physical effects not included by our model include those identified by our lab-
oratory study, namely, the possible role of vertical stresses, as measured by the parameter
(5.3), the role of time-dependent variations in fluxes caused by the gradual accumula-
tion of less viscous fluid in the reservoir, and the effect of localised patches of fluid left
in the wake of the parcel inside local regions of low permeability. Perhaps the primary
limitation of the solutions we describe is as a model for the localised continuous injection
of CO2 at a point source. In such cases, it is permissible for the CO2 to expand to fill
the depth of the aquifer at the injection site because the ambient fluid can flow laterally
around the injection zone, a feature that cannot occur for the infinite line source we have
assumed. The input of brine into the Navajo Sandstone is introduced through a linear
fault along a length of approximately 2 km. We anticipate that the flow near the input
may approximate that of a linear source but, for scales much larger than the fault, the
flow will approach an asymptotic regime that is effectively fed by a point source. Some
lateral spreading of the flow will also occur under gravity in the direction perpendicular
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to the background flow, which is not addressed by our analysis. Other three-dimensional
effects may stem from the fact that the fault is aligned at an angle to the prevailing
background flow, as well as being partially sealing. For the finite-volume release, we an-
ticipate that the asymptotic regimes we describe do also apply to leading order in the
case of a three-dimensional parcel released into a linear background flow because the
control of the flow deformation by the background flow will dominate at long times over
lateral spreading of the parcel under gravity. An exploration of these three-dimensional
phenomena may provide interesting directions for future analysis.

7. Conclusions

We have developed a theory describing regimes of contaminant transport in geological
reservoirs by a background flow, tested its predictions using experimental data, and
applied the results to assess the significance of background flow in natural examples. The
results show that background flow, and far-field asymmetries, have dominant controls on
released fluids in typical subsurface environments.

For a continuous injection along a line source into the interior of an aquifer, the in-
jection initially flows symmetrically with equal parts flowing upstream and downstream.
Asymmetry quickly arises as the effects of a background flow or, in the case of no back-
ground flow, the asymmetries in the far-field boundary conditions take hold. A dedicated
analysis of the special regimes arising for the case of no imposed background flow was
conducted, which provides a model of the injection into an aquifer bounded between
a sealing fault and a permeable fault. Fluid was found to propagate predominantly to-
wards the permeable fault as t and, in this direction, ultimately approaches the equivalent
asymptotic regimes found previously for a one-sided injection. The component flowing
towards the sealing fault instead forms a self-similar flow growing as t1/2 with a prefactor
dependent on the viscosity ratios. This growth predicts that the entire aquifer ultimately
becomes saturated by the injected fluid, but with the region between the input and the
sealing fault taking considerably longer. The filling towards the sealing fault occurs more
slowly when the injected fluid is less viscous compared with the ambient because of a
dominant effect of the stresses associated with mobilising a return flow of ambient fluid in
order to conserve mass. In the limit of small injectate viscosity, the t1/2 similarity solution
contains a boundary layer at the flow front in which the injectate viscosity ultimately
intervenes to constrain the rate of propagation.

Background flow was found to cap a continuously injected current below a depth given
by (6.1). The regimes arising downstream of the input are equivalent to those of a one-
sided injection into a shallower aquifer with the effective thickness (6.1). Upstream, the
flow approaches a steady state of finite extent (6.3), contrasting with the indefinite t1/2

expansion occurring in the case of no background flow. For injected fluid less viscous
than the ambient fluid, the background flow drives an injected fluid at a rate that can
be considerably faster than the background flow rate itself. That contribution is equal
to the speed of the background flow rate multiplied by the square of the viscosity ratio
(6.4), a factor which can be as high as 400 for CO2 injected into a saline aquifer.

For the release of a parcel of fixed volume, we found that a background flow advects
the parcel as a whole at a rate given by the background flow speed multiplied by the
viscosity ratio. Moving the governing equations into the frame of the parcel revealed that
background flow not only advects the parcel as a whole but also controls the deformation
of the parcel itself. The phenomenon occurs as a consequence of contrasts in the rates at
which the two fluid species are driven by the background pressure gradient. It generally
provides the dominant control on deformation. The only exception is when the injected
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and ambient fluids have equal viscosity, in which case gravitational dynamics uniquely
remains dominant. In all other cases, gravitational spreading becomes negligible. The
leading-order equation describing the deformation due to the background pressure gradi-
ent is a nonlinear wave equation with a height-dependent advective prefactor. Similarity
solutions to this equation show that the asymptotic extent under this effect grows as t1/2.
The rate of horizontal growth is faster than occurs under gravity alone (or in the case of
equal viscosities), for which the parcel relaxes as t1/3. The self-similar asymptotic profile
contains a triangular cross-section with a steep shock at the downstream or upstream
flow front for an injectate that is more or less viscous than the ambient, respectively.
Wave breaking at the shock is suppressed by a short region in which gravity intervenes
to prevent the overturning of the interface. For a parcel more viscous than the ambient,
there is an ‘optimal’ rate of stretching of the horizontal extent when the injected fluid is
exactly twice as viscous as the ambient.

We developed new analytical results describing the asymptotic effects of capillary re-
tention on the evolution of an immiscible or partially immiscible fluid parcel in a porous
medium, such as applied to pure CO2 released into a saline aquifer. The analysis yields
analytical expressions for the volume of the parcel over time, and the total time and
distance by which a parcel of CO2 becomes fully retained. Interestingly, even though the
analysis depends on the asymptotic regimes arising under a driving background pres-
sure, the distance propagated by the parcel in that time, given by (6.9b), is completely
independent of the background flow rate.

Our experimental data showed generally good agreement with the theoretical predic-
tions. Some discrepancies at the upstream flow front were found to correlate with a
dimensionless parameter grouping (5.3) that is larger for larger background fluxes Q2,
and indicated that the discrepancies can be attributed to the significance of vertical
stresses caused by large interfacial gradients near the upstream flow front. Finite-volume
experiments show that the parcel leaves a trail of residual patches of fluid as it prop-
agates. We attribute this effect to pore-scale trapping of the injected fluid in localised
regions of small permeability within the heterogeneous pore structure.

The results were applied to geological examples, demonstrating their determination of
the relative significance of background flow, the flow rate induced by background flow, an
assessment of the minimum background flow necessary to have a significant impact, the
time scales on which its effects have an impact, and the effects of capillary retention. We
considered both a case study of the contamination of the Navajo Sandstone by a source of
dissolved CO2-charged brine and general examples of the migration of pure CO2 following
its injection into a saline aquifer. In the former case, background flow advects the brine
at approximately 10 m yr−1 and occupies an effective depth of confinement in the lower
fifth of the reservoir. The prediction for the distance propagated against the background
flow (400 m) is consistent with the extent of observed bleaching of exposed sections of
the formation. For geological carbon storage, the significantly smaller viscosity of the
injected fluid compared to the ambient water can have considerable implications for the
effects of a background flow. The injected fluid is predicted to propagate as much as 400
times faster than the ambient fluid during the input stage or 20 times faster after the
input ceases. These results indicate that background flow can have a strong independent
control of injected CO2 and can play a vitally important role in geological environments
where CO2 sequestration may be applied.
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Appendix A. Numerical method for time integration

This appendix provides the details of our numerical method used to solve the time-
dependent equations (2.13)–(2.17). We first recast the equations into a new coordinate
system in which the two flow fronts and the point of input are temporally fixed, then
apply a partially implicit finite-difference scheme to the resulting system. The rescaling
eliminates any numerical issues with the transition to zero thickness at the flow fronts
(2.16a) and (2.17a), and additionally allows the numerical grid size to scale directly with
the current, thereby resolving the large interfacial gradients associated with the early-
time t2/3 similarity solution (3.1) used for initialisation. Similar numerical schemes were
used in the previous analyses of Pegler et al. (2014a,b), wherein further validation by
comparison with asymptotic similarity solutions and laboratory experiments is provided.

For the case of a continuous input, we apply the transformation

X =

{

x/|x−(t)| for x−(t) ≤ x ≤ 0,
x/x+(t) for 0 < x ≤ x+(t),

(A 1a,b)

which maps x− (t) to the fixed point X = −1, x+ (t) to the fixed point X = 1, and the
source point x = 0 to the fixed point X = 0.

In terms of the new coordinate system (X, t), for X > 0 equation (2.13) becomes

ht −
ẋ+

x+
XhX = − 1

x+

(

MQ(X, t)− x−1
+ (1− h)hX

Mh+ (1− h)

)

X

, (A 2)

where the X and t subscripts denote partial derivatives. A similar equation with |x−| in
place of x+ and ẋ− in place of ẋ+ applies for X < 0. Condition (2.14) becomes

x−1
+ hX(0+, t)− |x−|−1hX(0−, t) =

(

M − h (0, t)
−1
)

I(t). (A 3)

and (2.16) and (2.17) become

h(1, t) = 0, ẋ+ = M [I(t) +B]− x−1
+ hX (1, t) , (A 4a,b)

h(−1, t) = 0, ẋ− = MB − |x−|−1hX (−1, t) . (A 5a,b)

We now discretise the system. Let hk
i denote the thickness at the ith spatial node and

kth time step, h(Xi, tk), where Xi is a nodal grid with X1 = −1, XS = 0 and XN = 1,
and tk is the time at the kth time step. Here, i = S denotes the source node XS = 0.
The nodal grid Xi is imposed in two regions: one region is upstream of the input point,
1 ≤ i < S, with step size δX−; the second is downstream of the input point, S < i ≤ N ,
for which the step size is δX+. For simplicity, the step size in the two domains was
typically taken as equal δX = δX− = δX+.

For every node i (other than those where a boundary condition is applied, namely, 1, S
and N), we applied a semi-implicit centred finite-difference scheme to approximate the
spatial derivatives in (A 2). Thus, we rewrite (A 2) as

δt ht = α(h)δX2hXX + β(h, hX) (2δX)hX , (A 6)
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where δt is the time step, δX is the length step and

α(h) =
δt

δX2x2
+

[

Mh (1− h)

Mh+ (1− h)

]

(A 7)

β(h, hX) =
δt

2δXx+

[

M
(

M −B − 2Mh− h2 +Mh2hX/x+

)

[Mh+ (1− h)[
2 + ẋ+X

]

, (A 8)

and apply the difference approximations

hX ≈ (hk+1
i+1 − hk+1

i−1 )/(2δX), (A 9)

hXX ≈ (hk+1
i+1 − 2hk+1

i + hk+1
i−1 )/(δX

2). (A 10)

ht ≈ (hk+1
i − hk

i )/δt. (A 11)

A nonlinearity in derivatives arises because of the hX term in β given in (A 8). In order
to maintain a numerically linear discretised problem, we evaluate the hX term in β using
the current time step k. This results in a partially implicit scheme, which is satisfactorily
stable in practice. With the discretisations of (A 9) substituted, (A 6) becomes

hk+1
i − hk

i = αk
i (h

k+1
i+1 − 2hk+1

i + hk+1
i−1 ) + βk

i (h
k+1
i+1 − hk+1

i−1 ) (A 12)

where αk
i = α(hk

i ) and βk
i = β[hk

i , (hX)ki ]. First-order approximations can be applied to
discretise (A 3), which becomes

1

x+

(

hk+1
i+1 − hk+1

i

δX

)

− 1

|x−|

(

hk+1
i − hk+1

i−1

δX

)

=

(

M − 1

hk
i

)

I(t), (A 13)

and conditions (A 4a) and (A5a) become

h1 = hN = 0. (A 14)

Equations (A 12), (A 13) and (A14) form a tridiagonal linear system for hk+1
i , which we

solved using Matlab’s internal linear inversion routine.
For the solutions of §4, the source is abruptly ceased at t = V . Beyond that time, there

is no need to fix the position of the input. For this case, we applied a modified rescaling
to a single fixed domain via the alternative rescaling

X ′ =
x− x−(t)

x+(t)− x−(t)
, (A 15)

which maps the current onto the fixed interval of X ′ given by [0, 1]. The transformed sys-
tem is omitted here for brevity. A transfer of the solution to the new nodal representation
over a regular grid of X ′ at t = V was conducted using a cubic spline.

Appendix B. Boundary-layer structure for small injectate viscosity

This appendix analyses the boundary-layer structure underlying the self-similar flow
towards the sealed section of a geological reservoir (the case of zero background flow
illustrated in figure 5), as described by (3.5) and (3.6), in the limit of small injectate
viscosity ǫ ≡ M−1 → 0. In terms of the more convenient variables (ξ, ξN ) ≡ ǫ1/2(η, ηN ),
equation (3.5) can be expressed as

−1

2
ξh′ =

[

h(1 − h)h′

h+ ǫ(1− h)

]′
(B 1)
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and conditions (3.6a, b) as

h(0) = 1, h(−ξN ) = 0, h′(−ξN ) = 1
2ǫ ξN . (B 2a,b,c)

We first seek a regular leading-order expansion in the limit ǫ → 0 under the assumption
that h = O(1). In this limit, (B 1) reduces to

− 1
2ξh

′ ∼ [(1− h)h′]′, (B 3)

which describes the motion of the interface under the assumption that it is resisted
predominantly by the ambient flow. By integrating (B 3) numerically subject to (B 2)
using a similar scheme to that used for (3.5), we obtain the outer solution shown as a
dotted red curve in figure 5. For h → 0, equation (B 3) reduces asymptotically to

− 1
2ξh

′ ∼ h′′ and hence h ∼ 2K√
π

erf

(

ξ

2

)

∼ Ke−ξ2/4

−ξ
(B 4a,b)

as ξ → −∞, where erf is the error function, K is a constant of integration and we have
used the leading-order asymptotic approximation for erf in the limit of large argument.
To find where this outer solution predicts its own asymptotic inconsistency, it should be
noted that the term of O(ǫ) in the denominator of (B 1) becomes important wherever
h = O(ǫ) or, using (B 4b), for −ξ = O(λ), where λ ≡ [log(1/ǫ)]1/2. This observation
motivates a leading-order asymptotic approximation for the extent given by ξN = aλ,
where a is a constant to be determined.

The predicted importance of the O(ǫ) term in (B 1) indicates the existence of a bound-
ary layer near −ξN in which the viscosity of the injectate becomes leading order. To
determine the leading-order reduction of (B 1) near −ξN , we re-express it in terms of the
scaled inner coordinates

z = λ−1(ξN + ξ), h = MF (z). (B 5a,b)

In terms of these variables, (B 1) and (B 2b, c) become

−aF ′ =

(

FF ′

F + 1

)′
, F (0) = 0, F ′(0) = 1

2a, (B 6a,b)

where higher-order terms have been neglected and a prime here implies differentiation
with respect to z. On integrating (B 6), we obtain the inner solution

F = −1 + e(a/2)z or h = M
[

−1 + e(a/2)λ
−1(ξN+ξ)

]

(B 7a,b)

when expressed back in terms of the outer coordinates using (B 5).

Finally, we match (B 4) and (B 7). By comparing the logarithms of the reduced forms
of (B 4b) and of the inner solution (B 7b) in the intermediate region λ ≫ −ξ ≫ 1 (the
latter being given by neglecting just the −1 term), we deduce that a = 2 and hence
ξN = 2λ, from which (3.7) follows. The inner solution (B 7) with a = 2 is plotted as a
dashed curve in figure 5 and is confirmed to match to the flow front consistently.
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