

Page 1 of 80

HOLOCENE

exacerbate the impacts of RSL rise in cc Sound. The current rate of RSL rise is the experienced for more than 1500 years a suggests that projections of 21st centur realized

> SCHOLARONE" Manuscripts

	58 59		
1			
2			
3			
4			
5			
F			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
1			
18			
19			
20			
21			
22			

RING THE PAST 1500 YEARS

Andrew C. Kemp^{1*}, Tr**P** D. Hill², Christopher H. Vane³, Niamh Cahill⁴, Philip M. Orton⁵,

Stefan A. Talke⁶, Andrew C. Parnell⁷, Kelsey Sanborn^{1,8}, and Ellen K. Hartig⁹

- 1. Department of Earth and Ocean Science, Tufts University, Medford, MA 02155, USA
- 2. Atlantic Ecology Division, United States Environmental Protection Agency, Narragansett, R 02882, USA
- 3. British Geologi gel Survey, Center for Environmental Geochemistry, Keyworth, Nottingham, NG12 5GG, UK
- 4. Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, MA, 01003, USA
- 5. Davidson Laboratory, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA
- 6. Department of *qvil and Environmental Engineering*, Portland State University, Portland, OR 97207, USA
- 7. School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- Geocoastal Research Group, School of Geosciences, University of Sydney, Sydney, NSW I
 2006, Australia N
- 9. New York City Department of Parks & Recreation, New York, NY 10023, USA E W

* Corresponding author; and rew.kemp@tufts.edu; 617-627-0869

or; ana O
R
K
С
Ι
Т
Y
D

U

R

http://mc.manuscriptcentral.com/holocene

4		58
2		
3 4 5	23	
6 7	24	
8 9	25	
10 11	2	
12 13 14	27	
15 16 17	28	
18 19	29	
20 21	30	
22 23 24	31	
24 25 26	32	
27 28	33	
29 30 31	34	
32 33	35	
34 35 36	36	
37 38	37	
39 40	38	
41 42 43	39	
44 45	40	
46 47	41	
48 49 50	42	
51 52 53	43	
54 55 56		
57 60		

global mean and has high concentrations of low-lying infrastructure and socio-economic

ABSTR	activity. To provide a long-term context for anticipated future trends, we reconstructed relative
ACT	sea-level change during the past \sim 1500 years using a sediment core from a salt marsh at Pelham
New	Bay in The Bronx. For aminifera and bulk-sediment $\delta^{13}C$ values $% \lambda^{13}C$ were used as sea-level
York	indicators, while the history of sediment accumulation was established by radiocarbon
City is	dating of plant macrofossils and recognition of pollution and land-use trends of known age in
at risk	down-core elemental, isotopic, and pollen profiles. The reconstruction was generated within a
from	Bayesian hierarchical model comprised of three modules (calibration, chronology, and process)
21 st	to accommodate multiple proxies and to provide a unified statistical framework for quantifying
centur	uncertainty. We show that relative sea level in New York City rose by \sim 1.70 m since \sim 575 CE,
у	of which ~0.38 m occurred after 1850 CE. The rate of relative
relativ	sea-level rise increased markedly between 1852 CE and 1911 CE, which coincides with other
e sea-	reconstructions along the U.S. Atlantic coast. A regional tidal model was used to investigate the
level	possible influence of tidal-range change in Long Island Sound on our reconstruction and we
rise	demonstrate that this effect was likely small. However, future tidal-range change could
becaus	exacerbate the impacts of RSL rise in communities bordering Long Island Sound. The current
e it is	rate of RSL rise is the fastest that New York City has experienced for more than 1500 years and
likely	its ongoing acceleration suggests that projections of 21 st century local relative sea-level rise will
to	be realized.
experie	
nce a	
region	
al	
trend	
that	
exceed	
s the	
60	

		58	
1 2		59	
3	44		
4			
5 6			
7	45		
8 0	16		
10	40		
11	47		
12 13			
14	48		
15 16	40		
17	49		
18	5		
20			
21	51		
22 23	50		
24	52		
25	52		
26 27	55		
28	54		
29			
30 31	55		
32	56		
33 34	50		
35	57		
36 27			
38	58		
39	50		
40 41	55		
42	60		
43 44			
45	6		
46 47	62		
48	02		
49			
50 51	63		
52			
53	64		
55			
56	65		
57			
60			5

	SL) rise is one of the most challenging consequences of climate change and its impact will
1. I N	strongest where (1) local RSL rise exceeds the global average; (2) high concentrations of socio-
T R	economic activity and infrastructure are located in low-lying coastal areas; and/or (3) coastal
O D	planners and government agencies lack the socio-economic or physical resources that are
U C	necessary for effective management and mitigation (e.g., Wong et al., 2014; Nurse et al., 2014).
T I	During the 21 st century New York City will experience RSL rise greater and faster than the
O N	global average (e.g., Horton et al., 2015; Miller et al., 2013; Kopp et al., 2014) because of
11	contributions from ongoing glacio-isostatic adjustment (GIA; e.g., Peltier, 2004; Davis and
	Mitrovica, 1996), changing patterns of ocean circulation (e.g. Yin et al., 2009; Levermann et al.,
	2005), and the fingerprint of Antarctic ice melt (e.g., Gomez et al., 2010; Mitrovica et al., 2009).
	Consequently, RSL rise in New York City may exceed the global average by as much as 32% at
	the end of this century (e.g., Miller et al., 2013; Kopp et al., 2014; Horton et al., 2015).
	Furthermore, the intense concentration of population, public and private infrastructure, cultural
	resources, and economic activity in New York City places it at high risk to RSL rise.
	Approximately \$25.9 bn of property, 93,000 people, seven hospitals, and 183 hazardous waste
	sites within New York City lie below the Miller et al. (2013) central projection of 0.96 m of local
	RSL rise by 2100 CE (Surging Seas Project;
	http://sealevel.climatecentral.org/).

R

e

1

а

t

i

v

e

S

e

а

1

e

V

e

1

(

Bo

Proxy reconstructions of Common Era (past ~2000 years) RSL trends help frame how anomalous current rates of rise are and provide a paleo constraint for calibrating and testing

1		58 59	
2			
2 4 5	66		
6	67		
8	68		
9 10	6		
11 12	70		
13 14	70		
15 16 17	71		
18	72		
20 21	73		
21 22 23	74		
24 25	75		
26 27	76		
28	70		
29 30 31	77		
32 33	78		
34 35 36	79		
37	80		
39 40	81		
41 42 43	82		
44	83		
45 46 47	84		
48 49 50	85		
50 51	86		
5∠ 53 54	87		
55 56 57	88		
60			7

sediment in which proxies for tidal elevation (termed sea-level indicators) such as foraminifera models and plants are preserved (e.g., Kemp et al., 2013a; Gehrels et al., 2005; Donnelly et al., 2004; that aim Kemp et al., 2015). Efforts to reconstruct Common Era RSL usually focus on rural sites because to of widespread disturbance and loss of urban saltmarshes. Therefore, existing proxy RSL provide reconstructions may not reflect trends in the urban centers that are most vulnerable areas to the regional socio-economic impacts of RSL rise. We address this issue by reconstructing RSL change during -scale the past ~1500 years in New York City using foraminifera and bulk-sediment δ^{13} C values in projecti a dated core of salt-marsh sediment from Pelham Bay (The Bronx; Long Island Sound). The ons. reconstruction was produced using a Bayesian hierarchical model that formally accommodates On the two independent sea-level indicators and provides a unified statistical framework for quantifying Atlantic uncertainty at all stages of the RSL reconstruction including the identification of temporal trends. coast of Due to tidal resonance, changes in the depth of Long Island Sound (e.g. due to RSL rise) cause North non-stationary tidal conditions (e.g., Wong, 1990). To assess the possible effect of tidal-range Americ change on our RSL reconstruction, we used archival data (Talke and Jay, 2013) and numerical a these modeling (Orton et al., 2012) to estimate the influence of increasing depth on tidal range. We reconstr conclude that our initial assumption of a constant tidal regime during the past 1500 years is uctions reasonable. In New York City, RSL rose by ~1.70 m since ~575 CE and a continuous are acceleration since ~1600 CE means that the current rate of rise is the fastest for more than 1500 primaril years. Our results indicate that recent projections of 21st-century rise requiring accelerated rise У are likely to be realized. develop ed from dated sequenc es of salt-**A**arsh

		58 50
1 2		59
3	89	
4 5		
6		
7	90	
8 9	91	
10		
11 12	92	
13		
14 15	93	
16	94	
17 19		
19	q	
20	06	
21	50	
23	97	
24 25		
<u>26</u>	98	
27 28	99	
29		
30 31	100	
32		
33 34	101	
35	102	
36 37	100	
38	103	
39	104	
40 41	104	
42	105	
43 44	400	
4	106	
46 47	107	
48		
49 50	108	
51		
52	109	
54	110	
55 56		
57	111	
60		
00		

and around New York City decreased rapidly (by ~80%) as the city expanded and coastal 2. S wetlands were drained and filled (e.g., Gornitz et al., 2001; Hartig et al., 2002). Along the Т U Hutchinson River in The Bronx, $\sim 0.79 \text{ km}^2$ of salt marsh remains in Pelham Bay Park (Figure 1) D Y and is managed by the New York City Department of Parks & Recreation. The modern salt S I marsh is experiencing erosion, resulting in a large, unvegetated tidal flat that is characterized by Т Е grey, clastic sediment and the presence of marine mollusks. Low salt-marsh zones vegetated by Spartina alterniflora are rare at Pelham Bay because of a pronounced (~1 m high), erosional step change in elevation that separates the tidal flat from the high salt-marsh platform. This high saltmarsh zone is vegetated by a peat-forming community of Spartina patens and Distichlis spicata and is typical of high salt-marsh ecosystems in the northeastern United States that exist between approximately mean high water (MHW) and mean higher high water (MHHW; e.g., van de Plassche, 1991; Redfield, 1972; Johnson and York, 1915). At the boundary between the salt marsh and surrounding, upland forest is a narrow vegetative zone dominated by *Phragmites* australis. This zone is found above the MHHW tidal datum. Peat forming in this environment is typically a black, amorphous organic matrix that hosts the rhizomes of *Phragmites australis* plants (e.g., Niering et al., 1977). Through time these rhizomes are commonly flattened and degraded, resulting in a homogenized peat. The halotype of *Phragmites* found on and around modern salt marshes in the northeastern United States is *invasive*, although native haloptypes existed prior to European colonization in this region (Saltonstall, 2002). Elsewhere this uppermost zone of marine influence may also be occupied by *Schoeneplectus* spp., *Typha* spp., and/or *Iva fructescens*. We estimated the great diurnal tidal range (mean lower low water, MLLW to MHHW) at the site to be 2.44 m using the VDatum

e a r

Т

h

a o f

S

а

l t m a r

S

h

i

n

60

http://mc.manuscriptcentral.com/holocene

1		58 59
2		
3 4 5	112	
6 7	113	
8	114	
9 10 1	115	
12 13	116	
14 15 16 17	117	
18	118	
20 21	119	
22 23	120	
24 25	121	
26 27	122	
28 29 30 31 32	123	
33 34	124	
35 36 27	125	
38 39	126	
40 41	127	
42 43	128	
44 45 46	129	
47 48 40	130	
49 50 51	131	
52 53	132	
54 55 56 57	133	
60		

	New Rochelle (2.41 m) and Kings Point (2.38 m) tide gauges (Figure 1). This tidal range is
transfor	greater than at The Battery (1.54 m) because of the tidal amplification of semi-diurnal tides in the
mation	western part of Long Island Sound (e.g., Wong, 1990). We later investigate whether RSL
tool	changes may have amplified tidal range over time. Historical tidal-range change was estimated
(Yang,	using the Willets Point tide gauge (NOAA gauge 8516990; 1931-2000) and one year of hourly
2008),	tide-gauge data measured in 1892 by the U.S. Coast and Geodetic Survey at Willets Point (Talke
which	and Jay, 2013). Within New York City, tide gauges at The Battery, Willets Point, Kings Point
is	and New Rochelle (Figure 1) measured the same RSL variability during the 20 th century (Figure
compar	2), indicating that annual to multi decadal-scale sea-level trends are geographically consistent
able to	between New York
values	Harbor and Long Island Sound.
measur	
ed by	
the	3. METHODS
Nation	3.1 Core collection and leveling
al	The sediment beneath the Pelham Bay salt marsh was described from hand-driven cores
Oceano	collected along two transects (Figure 1C, D). Core PBA-4 was selected for detailed analysis
graphic	because it included the thickest accumulation of peat and was therefore anticipated to provide the
and	longest RSL record and adequate material for radiocarbon dating. We consider PBA-4 to be
Atmosp	representative of the stratigraphy underlying the site and its paleoenvironmental history, including
heric	RSL changes. The core was collected in overlapping 50-cm long sections using a
Admini	Russian core to avoid compaction or contamination during sampling. Each core segment was
stration	
stration (NOA	
stration (NOA A) at	
stration (NOA A) at the	

1		58 59	
2 3	134		
4 5 6	135		
7 8	136		
9 10	127		
1 12	137		
13 14	138		
15 16 17	139		
18 19	140		
20 21	141		
22 23	142		
24 25	143		
26 27	144		
28 29 30	145		
31 32	146		
33 34 35	147		
36 37	148		
38 39	149		
40 41 42	150		
43 44	151		
45 46	152		
47 48 49	153		
50 51	154		
52 53	155		
54 55	156		
56 57			
60			1

eve, labeled, wrapped in plastic, and stored in refrigerated conditions prior to laboratory analysis.

Core top elevations were measured by leveling them to a local benchmark using a TopCon GPT-3200NW total station (vertical accuracy of 2 mm + 2 ppm). The benchmark elevation was established relative to the North American Vertical Datum of 1988 (NAVD88) using real time kinematic satellite navigation measurements by a professional surveyor. We deployed an automatic water-level logger (Solinst® Levelogger Edge) at Pelham Bay (Figure 1) and also leveled it to the benchmark. The logger measured water levels at six minute intervals (the same as those made at NOAA tide gauges) for 252 tidal cycles between 25 July and 12 December 2012. After correcting the water-level measurements for variations in atmospheric pressure measured simultaneously by a second logger, high tides and low tides at Pelham Bay were isolated from the water-level logger dataset. To account for the relatively short duration of water-level measurements at Pelham Bay, we correlated local high tides with those recorded by the nearby (~8 km) NOAA-operated tide gauge at Kings Point (station number 8516945). The relationship between Pelham Bay and Kings Point ($R^2 = 0.95$; Figure 2B) was used to generate a dataset of high tides at Pelham Bay from when the Kings Point tide gauge became operational (1999) to the year of core collection (2012). Tidal datums at Pelham Bay were estimated from this dataset.

3.2 Sea-level indicators

p

1

а

с

e

d

i

n

t

0

а

r

i

g

i

d

p

1

а

S

t

i

С

S

1

60

Studies of modern salt-marsh (and mangrove swamp) foraminifera at locations around the world repeatedly demonstrated that they have a systematic, quantifiable and predictable relationship to

1		58 59
2		
3 4 5	157	
6 7	158	
7 8 9	159	
10 1	160	
12 13	161	
14 15 16	162	
17 18	163	
19 20	164	
21 22 23	165	
24 25	166	
26 27 28	167	
28 29 30	168	
31 32	169	
33 34 35	170	
37	171	
39 40	172	
41 42	173	
43 44 45	174	
43 46 47	175	
48 49	176	
50 51	177	
52 53	178	
54 55 56 57	179	
60		

ds, 2006). The use of foraminifera as sea-level indicators is grounded in reasoning by analogy, where assemblages preserved in cores of

salt-marsh sediment are interpreted by comparison to modern assemblages. This approach relies elevati on the availability of an appropriate modern training set comprised of paired observations of tidal on elevation and species abundances. Since the composition of foraminiferal assemblages varies makin spatially in response to secondary environmental variables such as salinity and climate, it is g them necessary to use a suitable local- or regional-scale training set (Horton and Edwards, 2005; sea-Kemp et al., 2013b). Objective interpretations can be made using a transfer function to formalize level the relationship between foraminifera and tidal elevation using empirical observations (e.g., indicat Kemp and Telford, 2015). A variety of specific numerical methods are available to construct ors transfer functions (e.g., Juggins and Birks, 2012). This approach can resolve late Holocene RSL (e.g., changes on the order of 1-10s of centimeters where suitable sequences of salt-marsh sediment Scott exist (see, for example, reviews in Barlow et al., 2013; Gehrels and Woodworth, 2012). The and surface distribution of dead, salt-marsh foraminifera at 12 sites on the north coast of Long Island Medio Sound (including Pelham Bay) was described by Kemp et al. (2015) based on original and li, existing data (Edwards et al., 2004; Gehrels and van de Plassche, 1999; Wright et al., 2011). 1978; This regional-scale dataset of 254 samples provided the modern training set necessary to Edwar estimate paleomarsh elevation (PME), defined as the tidal elevation at which assemblages ds and preserved in PBA-4 were originally deposited. Due to differences in the tidal range among sites. Wrigh sample elevations in the modern training set were expressed as a standardized water level index t, (SWLI; e.g., Horton and Edwards, 2006), where a value of 100 corresponds to local MHHW and 2015: a value of 0 corresponds to local mean tide level (MTL). Gehrel

- s,
- 2000;

tidal

- Horto
- n and
- Edwar

1		58 59
2		
3 4 5	180	
6 7	181	
8	182	
9 10 1	183	
12 13	184	
14 15 16	185	
17 18 19	186	
20 21	187	
22 23	188	
24 25 26	189	
27 28 20	190	
29 30 31	191	
32 33	192	
34 35 26	193	
30 37 38	194	
39 40	195	
41 42	196	
43 44 4	197	
46 47	198	
40 49 50	199	
51 52	200	
53 54	201	
55 56 57	202	
60		1

d from 1-cm thick samples of core PBA-4 that were spaced every 2 cm to a depth of 1.60 m. Each sediment sample was washed over 63 µm and 500 µm sieves to separate and retain the foraminifera-bearing fraction. A minimum of 100 specimens suspended in water were counted under a binocular microscope. If fewer than 100 tests were present, the entire sample was counted. Species were identified by comparison to type slides of modern specimens. To ensure consistency with the modern training set, *Trochammina inflata* and *Siphotrochammina lobata* were combined into a single group prior to analysis (Wright et al., 2011). Down-core counts of foraminifera are presented in the supporting appendix.

The dominant source of organic material deposited on salt marshes in the northeastern U.S. is *in-situ* above and below ground biomass from plants (e.g., Chmura and Aharon, 1995; Middleburg et al., 1997). The ratio of stable carbon isotopes (δ^{13} C) in bulk sediment therefore reflects the dominant vegetation community at the time of deposition and can be used to verify or constrain estimates of PME made by transfer functions because plant communities on salt marshes are also sea-level indicators (e.g., Johnson et al., 2007; Kemp et al., 2012b; Waller, 2015; Shennan, 1986). On the U.S. mid-Atlantic and northeast coasts the MHHW tidal datum is the boundary between communities of salt-marsh plants dominated by C₃ (e.g., *Phragmites australis*) and C₄ (e.g., *Spartina patens* and *Distichlis spicata*) species (e.g., Kemp et al., 2012b; Middleburg et al., 1997). The difference in carbon isotope signatures between C₃ and C₄ plants is considerably larger than within-group variability and is therefore easily detectable (e.g., Peterson et al., 1985; Lamb et al., 2006; Tanner et al., 2007; Nydick et al., 1995). Consequently, an empirical dataset from a site in New Jersey with the same zonation of salt-marsh plants as

i

n

i

f

e

F

0

r

а

m

r a w

e

e

e

n

u

m

e

r

а

t

60

1		58 59	
2			
3 4 5	203		
6	204		
7 8 9	205		
10 1	206		
12 13	207		
14 15 16 17	208		
18	209		
20 21	210		
22 23 24	211		
25 26	212		
20 27 28	213		
29 30	214		
31 32	215		
33 34 35	216		
36 37 38 39	217		
40 41	218		
42 43 44	219		
45 46 47 48	220		
49 50	221		
50 51 52	222		
53 54 55	223		
56 57	224		
60		10	í

	% relative to the Pee Dee Belemnite (PDB) standard, while samples that formed above MHHW
Pelha	have δ^{13} C measurements that are more depleted than -22.0 % (Kemp et al., 2012b). We used
m Bay	these threshold values to identify intervals in core PBA-4 that were likely to have accumulated
demon	above or below the MHHW tidal datum following Cahill et al. (2016). We anticipate that local
strated	variability in threshold values is considerably smaller than the difference between bulk-
that	sediment values from environments dominated by C_3 and C_4 plants (compare for example
bulk-	Tanner et al., 2007; Johnson et al., 2007; Middleburg et al., 1997; Kemp et al., 2012b). Rather
sedim	than apply threshold values to individual samples in isolation, we divided the core into sections
ent	characterized by persistent δ^{13} C values.
sampl	This conservative approach further serves to dampen any potential influence of local-scale
es that	variability in threshold values. We measured δ^{13} C and total organic content (TOC) on
forme	undifferentiated (bulk), 1-cm thick sediment samples from core PBA-4 using standard methods
d	at the Yale University Analytical and Stable Isotope Center (tabulated data are provided in the
below	supporting appendix).
MHH	
W	
yielde	3.3 Age-depth markers
$d \delta^{13} C$	Discrete depths in PBA-4 were assigned ages using either radiocarbon dating of macrofossils
measu	(pre-1600 CE) or recognition of anthropogenic markers of known age (post-1600 CE). The
remen	macrofossils used for radiocarbon dating were isolated from the sediment matrix, washed with
ts that	deionized water, and identified using a reference collection of modern salt-marsh plants and
are	illustrated texts (e.g., Niering et al., 1977). Each sample was further cleaned under a binocular
less	
deplet	
ed	
than -	
18.9	
60	

1		58 59	
2 3 4	225		
5 6	226		
7 8 0	227		
9 10 1	228		
12 13 14	229		
15 16 17	230		
18 19 20	231		
21 22 23	232		
23 24 25	233		
26 27 28	234		
29 30	235		
31 32	236		
33 3 35	237		
36 37	238		
38 39 40	239		
41 42	240		
43 44	241		
45 46 47	242		
48 49 50	243		
51 52	244		
53 54 55	245		
56 5	246		
60			12

microsco pe to remove ingrowin g material and adhered sediment before being dried in an oven at 4 0

were submitted to the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratory for radiocarbon dating where they underwent standard acid-base-acid pretreatment. Sample δ^{13} C was measured on an aliquot of CO₂ collected during combustion. The radiocarbon ages reported by NOSAMS are presented in Table 1.

A plateau in the radiocarbon calibration curve results in multiple calibrated ages and large chronological uncertainty for samples that formed since ~1600 CE (Stuiver and Pearson, 1993). To address this limitation, we dated the more recently-deposited portion of PBA-4 by recognizing pollution and land-use trends of known age in down core profiles of elemental and isotopic abundance and pollen. We measured the concentrations of a suite of elements and lead isotopes on 1-cm thick, bulk-sediment samples using the methods and instruments described in Vane et al. (2011). The activity of ¹³⁷Cs was measured by gamma spectroscopy at Yale University using standard methods (e.g., Anisfeld et al., 1999). Samples for pollen analysis were prepared following the method outlined in Traverse (2007) and a minimum of 300 pollen grains were counted from each sample. Tabulated elemental measurements, isotopic measurements and pollen counts are presented in the supporting appendix.

e d

С

Т

h

r

y s

a

m p

1

e 60

http://mc.manuscriptcentral.com/holocene

Down core changes in elemental and isotopic concentrations were matched to local and regional

pollution patterns of known age to estimate the age of specific depths in PBA-4. We assumed

that industrial emissions were transported from their source by constant prevailing winds and

without further isotopic fractionation (e.g., Gobeil et al., 2013; Lima et al., 2005; Chillrud et al.,

1		58 59	
2 3	247		
4 5 6	248		
0 7 8	240		
9	249		
10 1 12	250		
12 13 14	251		
15 16	252		
17 18 19	253		
20 21	254		
22 23	255		
24 25	256		
26 27 28	257		
29 30 31 32	258		
33 3	259		
35 36	260		
37 38 39	261		
40 41	262		
42 43	263		
44 45 46	264		
47 48	265		
49 50	266		
51 52 53	267		
54 55	268		
56 57	269		
60		1	4

s assumes that pollution was delivered through direct deposition from the atmosphere and/or supplied by tidal water that was representative of regional pollution trends (e.g., Marshall, 2015; 1999; Varekamp, 1991; Cochran et al., 1998). Kemp However, this assumption may be invalidated in the case of localized pollution events such as et al., spills. Since emissions/discharge per unit of production likely changed through time, recognition 2012a of chronohorizons was based on trends rather than absolute values. All age markers were). assigned an age and depth uncertainty to reflect the lag time between emission/discharge and Since deposition and the range of possible depths in the core that correspond to an individual trend. the This approach yielded a suite of age-depth estimates (with individual vertical and temporal core uncertainties), all of which were retained in the age-depth model (section 3.4). site is locate d in a 3.4 The Bayesian hierarchical model high We reconstructed RSL using the Bayesian hierarchical model of Cahill et al. (2016). The model saltis comprised of three, linked modules that were implemented separately, but share a unified marsh numerical framework to provide consistency and appropriate propagation of uncertainty. enviro nment, (1) In the calibration module, we developed a Bayesian transfer function (B-TF) to formalize our the observed relationship between modern assemblages of foraminifera (expressed as raw interpr counts) and tidal elevation (expressed as a SWLI) using the regional dataset of 254 etation samples from 12 sites around Long Island Sound. The B-TF of Cahill et al. (2016) of assumes a multinomial model for foraminiferal assemblages, and uses a set of penalized eleme spline smoothing functions (Lang and Brezger, 2004) to describe the non-linear response ntal and isotopi с profile

1		58 59	
2 3 4 5	270		
	271		
6 7	271		
8 9	272		
10 1	273		
12 13	274		
14 15 16 17	275		
18 19	276		
20 21	277		
22 23 24	278		
25 26	279		
27 28	280		
29 30 31	281		
32 33	282		
34 35 36	283		
37	284		
39 40	285		
41 42 43	286		
44 45	287		
46 47	288		
48 49	289		
50 51	290		
52 53 54	291		
55 56 57	292		
60			16

pecies to tidal elevation. The parameters that describe each species response curve were estimated from the modern training set. Application of the B-TF to assemblages of foraminifera preserved in PBA-4 generated posterior estimates of PME with a 2σ , sample-specific uncertainty. When applied to core samples, the B-TF requires a prior specification for PME, which can be informed by the modern training data. In this study, the organic nature of the core sediment and presence of foraminifera indicated that all samples accumulated above MTL (SWLI = 0), but below the highest occurrence of foraminifera in the regional modern training set (SWLI = 154, rounded up to 155). Hence, the prior favors values between 0-155 SWLI.

Within the B-TF, measurements of δ^{13} C provided an additional, formalized constraint on PME. Intervals in the core where δ^{13} C values were more depleted than -22.0 ‰ were assumed to form at elevations between MHHW and the highest occurrence of foraminifera in the modern training set (SWLI = 100-155). For intervals where δ^{13} C values were less depleted than -18.9 ‰, we assumed that samples formed between MTL and MHHW (SWLI = 0-100). These additional constraints were not treated deterministically, but rather serve to reduce or increase the likelihood that PME lies above or below the thresholds. Parts of the core where bulk-sediment samples predominately had intermediate (-22.0 ‰ to -18.9 ‰), or variable, δ^{13} C values were not subject to any additional constraint (SWLI = 0-155). The height of RSL (rounded to the nearest centimeter) was reconstructed by subtracting the PME estimated by the B-TF from the measured altitude of the sample (depth in core, where the core top was leveled to local tidal datums) under an initial assumption that the tidal regime at Pelham Bay was

0

f

i

n

d

i

v

Í.

d

u

а

1

f

0

r

а

m

i

n

i

f

e

r

а

1 2	293	unchanged for the period under investigation. This ass
3 4 5	294	effect of tidal-range change is explored.
5 6 7	-	
8 9	295	
10 11 12	296	Performance of the B-TF was assessed using a cross valida
13 14	297	modern training set was divided into ten, randomly-drawn
15 16 17	298	folds). Each fold was removed from the modern training s
18 19	299	used to predict the elevations of the excluded samples with
20 21 22	300	repeated until every sample in the modern training set had
23 24 25	301	
26 27 28	302	The ecological plausibility of the PME reconstructions was
29 30	303	(Bray-Curtis) dissimilarity between each core sample and i
31 32 33	304	training set. If the closest analogue for a core sample excer
34 35	305	dissimilarity measured among all possible sample pairings
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57	306	classified as lacking an appropriate modern analogue and v
60		
		nttp://mc.manuscriptcentral.com/holocene

1		58 59	
23	315		
5 6	316		
7 8 9	317		
10 1	318		
12 13	319		
15 16	320		
17 18 19	321		
20	322		
22 23	323		
24 25	324		
26 27 28	325		
29 30	326		
31 32 33	327		
34 35	328		
30 37	329		
38 39	330		
40 41 42	331		
43 44	332		
45 46	333		
47 48 49	334		
50 51	335		
52 53	336		
55 56	337		
60			20

the resulting probability distributions. Chronohorizons identified from pollution and pollen trends were assigned a uniform probability within their stated age uncertainty. The Bchron model does not impose a pattern of sedimentation (linear or otherwise), but rather generated a large suite of equi-probable chronologies for PBA-4 using Markov Chain Monte Carlo simulation. From these possible chronologies, Bchron estimated the age of each 1-cm thick layer. We present and discuss the mean and 95% credible interval; all age estimates are rounded to the nearest whole year. Each sample with a valid PME reconstruction was an assigned the corresponding age (with uncertainty) from the Bchron age-depth model. In addition, we used the suite of possible chronologies generated by Bchron to provide a probabilistic history of sediment accumulation, in which mean annual sedimentation is estimated with uncertainty (reported as the 90% credible interval, expressed in mm/yr and rounded to one decimal place).

(3) The process module was an Errors-In-Variables Integrated Gaussian Process (EIV-IGP) model for estimating rates of sea-level change through time with uncertainty (Cahill et al., 2015a). This model accounts for the unique combination of age and vertical uncertainties (and their probability distributions) in each data point and their uneven spacing through time to estimate a continuous time series of RSL and rates of RSL change. We combined the new, proxy-based RSL reconstruction from Pelham Bay with decadal average tide-gauge measurements from The Battery to produce a RSL history for New York City. The EIV-IGP model was applied to this dataset. To complement results from the EIV-IGP model, we also used change-point analysis (Carlin et al., 1992; Cahill et al., 2015b) to objectively identify distinctive phases of RSL change in New York City. This approach models the RSL

i

а

1

,

2

0

1

3

)

а

n

d

В

с

h

r

0

n

r

e

t

а

n

- e
- ⁶⁰ d

http://mc.manuscriptcentral.com/holocene

1		58 59
2 3 4	338	
5 6	339	
7 8 0	340	
10 1	341	
12 13	342	
14 15 16	343	
17 18 19	344	
20 21	345	
22 23	346	
25	347	
20 27 20	348	
28 29 30	349	
32	350	
33 34 35 36	351	
30 37	352	
30 39 40	353	
41 42 43	354	
44	355	
43 46 47	356	
48 49	357	
50 51	358	
5∠ 53	359	
55 56 57	360	
60		2

nts. The number and timing of change points is estimated quantitatively and with uncertainty from the RSL data. Deviance information criterion (Spiegelhalter et al., 2002) combined with parameter convergence checks were used to detect the appropriate number of change points.

4. **RESULTS**

rec

ons

tru

cti

on

as

seq

uen

tial

lin

ear

tre

nds

tha

t

are

joi

ned

to

one

ano

the

4.1 Performance of the Bayesian transfer function

We judged the performance of the B-TF using cross validation of the modern training set (section 3.4). For 221 of the 254 samples, the elevation measured at the time of sample collection falls within the 95% credible interval of the elevation predicted by the B-TF (Figure 3A). The average difference between actual and mean predicted elevation was 5 SWLI (approximately 0.06 m at Pelham Bay). No visible structure (trends between residual values and actual elevation) was observed in these residuals, indicating that the B-TF did not systematically over or under predict PME and can accurately reconstruct PME across the sampled range of tidal elevations (Figure 3B).

4.2 Sea-level indicators in Pelham Bay core 4

Core PBA-4 comprised four distinct units of sediment. The basal unit is blue-brown sand and silt that we consider to be an incompressible, pre-Holocene substrate of glacial origin. At salt marshes along the northeastern U.S. Atlantic coast, the boundary between glacial substrate and overlying organic units almost always represents a hiatus of non-deposition and/or erosion spanning several thousand years (e.g., Donnelly, 2006; Nydick et al., 1995; van de Plassche, 1991; Gehrels, 1994; Donnelly and Bertness, 2001). At Pelham Bay the pre-Holocene substrate

- r at
- cha
- nge
- 60 poi

1		58 59	
2 3 4	361		
5 6	362		
7 8 0	363		
9 10 1	364		
12 13	365		
14 15 16	366		
17 18	367		
19 20 21	368		
21 22 23	369		
24 25	370		
26 27 28	371		
29 30	372		
32 32	373		
33 34 35	374		
30 37	375		
39 40	376		
41 42 43	377		
44 45	378		
46 47	379		
48 49 50	380		
50 51 52	381		
52 53 54	382		
55 56 57	383		
60			24
rganic silt with measured TOC content of <6% (Figure 4A). At depths from approximately 160 cm to 55 cm, the sediment was comprised of relatively dry black peat. In the lower part of this third unit only the remains of *Phragmites australis* were identified, while in the upper part the remains of *Spartina patens* and *Distichlis spicata* were increasingly present. The average TOC content of this unit was 34% and reached a maximum of 45.7%. The upper 55 cm of the core was characterized by a brown, high salt-marsh peat with abundant remains of *Spartina patens* and *Distichlis spicata*. The average TOC content of this unit was 23.6%. The boundary between these contrasting units of peat was not erosive and did not indicate a hiatus in sedimentation at any location where we described cores. The transition seen in plant macrofossils from *Phragmites australis* to *Spartina patens* and *Distichlis spicata* and reduced TOC values indicates a long-term RSL transgression at Pelham Bay. Measured TOC values are typical of modern and late Holocene high salt-marsh environments in the study region (e.g., Bricker-Urso et al., 1989; Nydick et al., 1995; Morris et al., 2016).

i

S

0

e

r

1

а

i

n

b

y

а

u

n

1

t

0

f

b

r

0

W

n

60

In PBA-4, foraminifera were absent at depths below 160 cm in the basal sand and silt and in the lowermost part of the brown, organic silt unit (Figure 4B). Between 160 cm and 40 cm the dominant species of foraminifera was *Jadammina macrescens* (average 81.7%). At depths above 40 cm, there was an increase in the abundance of *Trochammina inflata* and *Siphotrochammina lobata* (average 40.8% when combined) with a corresponding decline in the abundance of *Jadammina macrescens*. The average abundance of *Tiphotrocha comprimata* was 18.7% at depths above 64 cm compared to 4.4% below. These species of foraminifera are typical of peat-forming, high salt-marsh environments in the northeastern United States (e.g., Kemp et al., 2015; Gehrels, 1994; Wright et al., 2011) and maritime Canada (e.g., Scott and Medioli, 1980;

1		58 59
2 3 4	384	
5 6	385	
7 8	386	
9 10 1	387	
12 13	388	
14 15 16	389	
17	390	
20 21	391	
22 23 24	392	
24 25	393	
20 27 28	394	
29 30	395	
31	396	
33 34 35 36	397	
37	398	
39 40	399	
41 42 43	400	
44	401	
43 46 47	402	
48 49	403	
50 51	404	
52 53 54	405	
55 56 57	406	
60		2

154 cm, 156 cm, 158 cm and 160 cm) and were excluded from further analysis. Four of the remaining samples had counts from 66 to 99 individual foraminifera.

Scott

et al.,	
1981;	Bulk-sediment δ^{13} C values below 130 cm in PBA-4 were typical of C ₃ plants (average -27.1 ‰)
Wrigh	and were more depleted than the threshold (-22.0 ‰) used to identify sediment that accumulated
t et al	above MHHW (Figure 4C). The interval between 130 cm and 67 cm was characterized by
2011)	variable δ^{13} C values that ranged from -23.3 ‰ to -15.1 ‰. In the uppermost 63 cm of PBA-4,
2011). Siv	the average δ^{13} C value was -15.7 ‰ and all samples were less depleted than the threshold
51X	of -18.9 ‰ used to identify samples that accumulated below MHHW, with the exception of two
sampi	samples (at 1 cm and 4 cm) with intermediate values between those typical of C_3 and C_4
es (out of 85)	vegetation.
in the	4.3 Application of a Bayesian transfer function to reconstruct paleomarsh elevation
vialda	Application of the B-TF to assemblages of foraminifera enumerated from PBA-4 produced
yleide	reconstructions of PME with a 2σ , sample-specific uncertainty (Figure 4D). PME estimates
a	were constrained using $\delta^{13}C$ values to identify intervals where there was high likelihood that the
counts	sediment accumulated between MHHW and the highest occurrence of foraminifera (100-155
01	SWLI; below 127 cm in PBA-4), or between MTL and MHHW (0-100 SWLI; 7-67 cm in
tewer	PBA-4). The measured δ^{13} C values between 126 cm and 68 cm and above 6 cm did not provide
than	any additional information to constrain the PME reconstruction. Below 127 cm the average
50	reconstructed PME lay slightly above MHHW (115 SWLI) and had an average, 2σ uncertainty of
indivi	
duals	
(at	
100	
cm,	
102	
êfh,	2

1		58 59	
2 3 4	407		
5 6	408		
7 8 0	409		
10 1	410		
12 13	411		
14 15 1 <u>6</u>	412		
17 18	413		
20	414		
21 22 23	415		
24 25	416		
26 27 28	417		
28 29 30	418		
31 32 32	419		
33 34 35	420		
37	421		
38 39	422		
40 41 42	423		
44 45	424		
46 47	425		
48 49	426		
50 51	427		
52 53	428		
55 56 57	429		
60			28

 \pm 1 5 5 S W L I F r 0 m 1 2 6 С m t 0

8 c

6

m

, 60 reconstructed PME was more variable (means from 94.9 to 143.0 SWLI) and had larger average uncertainties (± 22.5 SWLI) than the underlying part of the core because intermediate δ^{13} C values did not provide an additional constraint on the reconstruction. Samples from 66 cm to 6 cm yielded average PME reconstructions of 89.7 SWLI with an average uncertainty of ± 9.0 SWLI, although the uncertainty for some samples was as low as ± 5.5 SWLI.

The ecological plausibility of reconstructed PME was judged by measuring dissimilarity between the assemblage of foraminifera in each core sample and its closest modern analog (section 3.4; Figure 4E). The closest modern analogs for the 79 samples in PBA-4 with counts exceeding 50 individuals were drawn from ten of the 12 sites in the regional-scale modern training set. Four core samples lacked a modern analog. The samples at 62 cm, 72 cm, and 76 cm had unusually high abundances of *Miliammina petila* (11-21%) compared to the modern training set in which this species had a maximum abundance of 6.3%. A similar study in New Jersey also recognized that relatively high abundances of Miliammina petila in core material resulted in no modern analogue outcomes (Kemp et al., 2013a). Finding the modern analogue to this assemblage would therefore be useful to support efforts to reconstruct RSL. The sample at 155 cm included 19% Tiphotrocha comprimata and 78% Jadammina macrescens. It likely lacked a modern analogue because the high concentration of samples close to MHHW (Figure 3) coupled with the low-diversity of foraminiferal assemblages in the modern training set resulted in a high degree of similarity among modern samples and consequently a low value for the 20th percentile dissimilarity threshold. This was highlighted as a possible limitation of this approach for assessing ecological plausibility by Kemp and Telford (2015).

1		58 59
- 2 3 4 5	430	
	430	
6 7	431	
8 9	432	
10 1	433	
12 13	434	
14 15 16 17	435	
18	436	
20 21	437	
22 23 24	438	
25 26	439	
20 27 28	440	
29 30 31	441	
32 33	442	
34 35 36	443	
37	444	
30 39 40	445	
41 42 43	446	
44 45	447	
46 47	448	
48 49	449	
50 51	450	
52 53 54 55 56	451	
57 60		2

	isotopes (²⁰⁶ Pb: ²⁰⁷ Pb), and measured ¹³⁷ Cs activity (Figure 5A). The late 19 th century onset of
	regional-scale lead pollution was obscured in PBA-4 by a pronounced peak in concentration at
4.4 Core chron	50-60 cm that we interpreted as a local event of unknown provenance, since it was not present at
ology and	locations in New Jersey (Kemp et al., 2012a), Connecticut (Kemp et al., 2015; Varekamp, 1991;
sedim entati	Varekamp et al., 2005), or elsewhere in New York City (Chillrud et al., 1999). Based on its
ON rates	estimated timing (~1730 CE to ~1830 CE) possible sources include tanneries, which were
Region	common in New York City during this interval (Burrows and Wallace, 1999) and frequently
al-scale	produce waste that includes high concentrations of metals including lead (e.g., Haroun et al.,
pollutio	2007; Walraven et al., 1997). A small peak in lead concentration at ~39 cm was interpreted as
n	the expansion of production and consumption following World War I, while a decline at \sim 27 cm
markers	corresponds to reduced industrial production (and consequently pollution) during the Great
were	Depression. The peak in lead concentration at ~11 cm marks the introduction of the Clean Air
recogni	Act and was assigned an age of 1974 CE. National production records indicate that the onset of
zed in	copper pollution occurred at ~1900 CE, which is recorded in PBA-4 at ~33 cm. Maximum
down	copper concentration occurred at depths between approximately 10 cm and 20 cm, which
core	correspond to peaks in national production and consumption at ~1970 CE. Sedimentary records
concent	from nearby salt marshes in Connecticut confirm the presence and timing of these features in the
rations	study region (Varekamp et al., 2005; Varekamp, 1991). A peak in Vanadium concentration at
of lead,	~11 cm was assigned an age of ~1970
copper,	
and	
vanadiu	
m, the	
ratio of	
stable	
lead 60	2:

1		58 59	
2 3 4	452		
5 6	453		
7 8	454		
9 10 1	455		
12 13	456		
14 15 16	457		
17 18	458		
20	459		
21 22 23	460		
24 25	461		
26 27 28	462		
20 29 30	463		
32	464		
33 34 35	465		
37	466		
30 39 40	467		
41 42 43	468		
44	469		
45 46 47	470		
47 48 49	471		
50 51	472		
52 53	473		
54 55 56	474		
57 60			22

С

Е

r

e

f

1

e

с

t

i

n

g

t

h

e

1

0

С

а

1

t

0

r

e

<u>6</u>0

The changing ratio of stable lead isotopes in PBA-4 identified four chronohorizons. The increased ²⁰⁶Pb:²⁰⁷Pb ratio at ~50 cm reflects the onset of lead production in the Upper Mississippi Valley at ~1827 CE (Doe and Delevaux, 1972; Heyl et al., 1966). The emissions from this early industrial activity were carried to the Atlantic coast of North America by prevailing winds (e.g. Graney et al., 1995; Lima et al., 2005; Gobeil et al., 2013; Kelly et al., 2009) and caused a change in stable lead isotope ratios because of the unusual composition of the galena ore used at that time (Heyl et al., 1966; Heyl et al., 1974) coupled with low background concentrations of lead. The peak at ~40 cm in PBA-4 reflects the time (~1857 CE) when the Upper Mississippi Valley made its highest proportional contribution to national lead production. A decline in the 206 Pb: 207 Pb ratio to a minimum at ~15 cm was caused by the introduction of leaded gasoline (after 1923 CE; Facchetti, 1989) with a low ²⁰⁶Pb:²⁰⁷Pb signature of ~1.165 (Hurst, 2000). The rise in 206 Pb: 207 Pb ratio to a peak at ~5 cm (~1980 CE) was caused by the increasing use of lead ore from Missouri in gasoline and the phasing out of all leaded gasoline (by 1993 CE U.S. lead emissions from gasoline were 1% of those in 1970 CE; Bollhöfer and Rosman, 2001). The first detectable horizon of 137 Cs activity (~11 cm) was assigned an age of 1954 CE, corresponding to the start of widespread, above ground testing of nuclear weapons which peaked in 1963 CE (\sim 7 cm in PBA-4).

The location of Pelham Bay within New York City results in the presence of local-scale pollution markers. According to Walsh et al. (2001), the use of municipal refuse incinerators

1		58 59
2		
3 4 5	475	
6 7	476	
8 9	477	
10 1	478	
12 13	479	
14 15 16	480	
17 18	481	
19 20 21	482	
21 22 23	483	
24 25 26	484	
20 27 28	485	
29 30	486	
32	487	
34 35 36	488	
37	489	
39 40	490	
41 42 43	491	
44 45	492	
46 47	493	
48 49	494	
50 51	495	
52 53 54	496	
55 56 57	497	
60		2

ators peaked at ~1937 CE and the emitted ash included anomalously high concentrations of arsenic, cadmium, selenium, tin and nickel compared to the crust. In PBA-4, we identified a peak in these elements at ~21 cm that likely corresponds to the incineration of refuse (Figure 5B).

Prior to industrialization, anthropogenic modification of the landscape in the northeastern United City States consisted of land clearance to provide raw materials for building and space for grazing and generat agriculture (e.g., Brugam, 1978; McAndrews, 1988; Fuller et al., 1998). This activity increased ed airthe amount of pollen from weeds such as Ambrosia and a corresponding decline in native forest borne species. In addition, deforestation likely mobilized sediment that was eroded from upland polluti regions and transported to the coast. According to Kirwan et al. (2011), this process delivered on that large quantities of titanium and potassium to coastal marshes. In PBA-4, we identified a land was clearance horizon at ~60 cm from the rise of Ambrosia and Pinus pollen, the decline of Carya subseq (hickory) pollen, and increased concentrations of titanium and potassium (Figure 5C). The rise of uently *Plantago* and *Amaranthaceae* also indicates extensive land clearance from this time onward. This deposit horizon was assigned an age of 1680 CE \pm 25 years based on the history of settlement in the study ed region (e.g., Pederson et al., 2005; Burrows and Wallace, 1999). directl

All radiocarbon dates and age markers in PBA-4 were combined and used as the input to the

Bchron age-depth model (section 3.4; Figure 5). The average age uncertainty (95% credible

interval) for a 1-cm thick interval of PBA-4 was \pm 50 years and ranged from \pm 115 years at 1.14

m to \pm 3 years at 0.08-0.10 m. Prior to ~1800 CE, the mean annual accumulation rate in PBA-4

y from

throug

hout

New

York

the

atmosp

here.

The

dischar

ge

from

these

finciner

http://mc.manuscriptcentral.com/holocene

1		58 59	
2 3 4	498		
5 6	499		
7 8	500		
9 10 1	501		
12 13	502		
14 15	503		
16 17			
18 19	504		
20 21	505		
22 23	506		
24 25	507		
20 27 28	508		
20 29 30	509		
31 32	510		
33 34 35	511		
36 37	512		
38 39	513		
40 41 42	514		
43 44	515		
45 46 47	516		
47 48 49	517		
50 51	518		
52 53	519		
54 55	520		
56 57			
60			26

90% credible interval of 0.2 to 2.3 mm/yr (Figure 6A). There was short-lived pulse of sedimentation at ~1820-1845 CE (up to 2.0 mm/yr). From ~1890 CE onwards, mean annual sedimentation rates increased sharply to achieve an average 20th century rate of 3.0 mm/yr (90% credible interval of 0.8-13.0 mm/yr). To provide a direct comparison with Pelham Bay we reanalyzed sedimentation rates from representative salt marshes in Connecticut (East River Marsh; Kemp et al., 2015) and southern New Jersey (Cape May Courthouse; Kemp et al., 2013a: ; Figure 6B). In Connecticut, the pre-1800 CE sedimentation rate was ~0.6 mm/yr. A sediment shortly after 1850 CE was followed by an average 20th century rate of 1.9 mm/yr (90% credible interval of 0.5-11.2 mm/yr). In New Jersey, the mean annual, pre-1800 CE sedimentation rate was 1.0 mm/yr (90% credible interval of 0.3-4.7 mm/yr). A pulse of sedimentation occurred at \sim 1820-1870 CE and the average rate of sedimentation during the 20th century was 2.6 mm/vr (90% credible interval of 0.8-10.7 mm/yr; Figure 6B). This temporal evolution is typical of salt marshes along the Atlantic coast of North America (e.g., Kemp et al., 2015; Varekamp et al., 1992; van de Plassche et al., 1998; Donnelly et al., 2004; Nydick et al., 1995; Engelhart et al., 2009; Kemp et al., 2014; Kemp et al., 2011; Kemp et al., 2013a) where sedimentation rates on multi-decadal and longer timescales are closely linked to the rate of RSL rise (e.g., Morris et al., 2002; Kirwan and Murray, 2007; Kirwan and Murray, 2008). The long-lived background rates of sedimentation reflect RSL rise driven primarily by spatially-variable GIA, while recent rates of rise occur because of the salt marsh response to accelerated RSL rise beginning in the late 19th century. For example, at salt marshes on the Connecticut and New York coasts of Long Island Sound (including a different core from Pelham Bay), Hill and Anisfeld (2015) reported that regional, decadal-scale sediment accretion rates increased from ~1.0 mm/yr at 1900 CE to current rates of \sim 3.6 mm/yr in response to accelerating

a n a

W

а

S

0

5

m

m

у

r

W

i

t

h

g

e

r

а

http://mc.manuscriptcentral.com/holocene

1		58 59	
2 3 4	521		
5 6	522		
7 8 0	523		
9 10 1	524		
12 13	525		
14 15 16	526		
17 18	527		
19 20	528		
21 22 23	529		
24 25	530		
26 27	531		
28 29 30	532		
31 32 33	533		
34 35	534		
37	535		
39 40	536		
41 42 43	537		
44 45	538		
46 47	539		
48 49	540		
50 51	541		
52 53	542		
54 55 5	543		
57 60		2	28

conducted in this region (e.g., Harrison and Bloom, 1977; Roman et al., 1997; McCaffery and
Thomson, 1980). We conclude that the history of sediment accumulation estimated for PBA-4
is typical of salt marshes in Long Island Sound and that our RSL reconstruction is not a
reflection of local and anomalous sediment accumulation arising from its location in an urban salt marsh.

annua

ar

4.5 Relative sea-level change at Pelham Bay

The new proxy-based RSL reconstruction from Pelham Bay is comprised of 75 data points with decad an average, 2σ vertical uncertainty of ± 0.19 m and an average 2σ chronological uncertainty of \pm al 50 years (Figure 7A; tabulated in supporting appendix). It shows that RSL rose continuously rates from approximately -1.7 m at 575 CE to 0 m at present. Change point analysis divided the RSL of record into three linear phases separated by significant changes in rate at 1015-1238 CE salt-(secondary change) and 1852-1911 CE (primary change; Figure 7B). The EIV-IGP model marsh described the continuous evolution of RSL change and estimated that the rate of RSL rise was sedim ~0.5 mm/yr at 600-1000 CE, increased to a peak of 1.52 mm/yr (1.19-1.85 mm/yr; 95% credible ent interval) at ~1400 CE, and subsequently slowed to 1.37 mm/yr (1.07-1.67 mm/yr; 95% credible accret interval) at ~1630 CE. Since this minimum the rate of RSL rise increased continuously to attain a ion in current rate of 2.98 mm/yr (2.13-3.84 mm/yr; 95% credible interval), which is the fastest rate in the the last ~1500 years and in agreement with the average rate measured in New York Harbor from 20^{th} 1900 CE to 2012 CE (2.7-3.3 mm/yr; Kopp, 2013). centur

y are

5. DISCUSSION

report

also

ed by

other

studie

60

http://mc.manuscriptcentral.com/holocene

1		58 59	
2 3 4	544		
5 6	545		
7 8	546		
9 10 1	547		
12 13	548		
15 16	549		
17 18 19	550		
20 21	551		
22 23	552		
24 25	553		
26 27 28	554		
29 29 30	555		
31 32	556		
33 34 35	557		
30	558		
38 39 40	559		
40 41 42	560		
43 44	561		
45 46 47	562		
47 48 49	563		
50 51	564		
52 53	565		
54 55 56	566		
57			22
60			30

(among the longest and most complete records in the world) measured an average, linear RSL rise of 2.83 mm/yr between 1856 CE and 2014 CE, including 3.0 ± 0.3 mm/yr from 1900 CE to 5.1 *Late* Holo 2012 CE (Figures 2A and 7C; Kopp, 2013). This instrumental rate of RSL rise exceeds the cene relati long-term (~4000 years before present to 1900 CE) average estimated from compilations of ve sea-RSL reconstructions from the Hudson River $(1.2 \pm 0.1 \text{ mm/yr})$ and Long Island $(1.0 \pm 0.3 \text{ mm/yr})$ level trend mm/yr) regions that are adjacent to New York City (Engelhart and Horton, 2012; Engelhart et s in New al., 2011). The similarity between these long-term rates of RSL rise and continuous York City measurements made by GPS stations $(1.1 \pm 0.2 \text{ mm/yr} \text{ for Hudson River and } 1.0 \pm 0.2 \text{ mm/yr} \text{ for}$ Т Long Island) indicates that late Holocene RSL change was driven primarily by GIA-induced h subsidence (Karegar et al., 2016). This difference exists at locations with tide-gauge records e and RSL reconstructions along the U.S. Atlantic coast (e.g., Engelhart et al., 2009; Kopp, 2013) В and elsewhere (e.g., Shennan and Woodworth, 1992; Woodworth et al., 2009). а t The relatively coarse resolution and fragmentary nature of Holocene sea-level index points (e.g., Engelhart and Horton, 2012) prohibits using them to precisely constrain the when modern rates of t e RSL rise were initiated. Near-continuous and high-resolution records of RSL change produced r from salt-marsh sediment and spanning the last ~500 years or more provide a means to investigate when this change in rate began and how its expression varies among regions. Change point y t analysis of the Pelham Bay RSL reconstruction shows that the rate of rise increased at 1852-1911 1 CE (95% credible interval), which is consistent with other salt-marsh reconstructions d from the U.S. Atlantic coast in Florida (1834-1922 CE). North Carolina (1865-1892 CE). New e Jersey (1830-1873 CE), and Connecticut (1850-1886 CE; Figure 7B). Kemp et al. (2015)

g

а

u

g

e 60

1		58 59	
2 3 4	567		
5 6	568		
7 8 0	569		
9 10 1	570		
12 13	571		
14 15 16	572		
17 18	573		
19 20	574		
21 22 23	575		
24 25	576		
26 27	577		
28 29 30	578		
31 32	579		
33 34 35 36	580		
37	581		
38 39	582		
40 41 42	583		
43	584		
45 46 47	585		
47 48 49	586		
50 51	587		
52 53	588		
54 55 56	589		
57			З,
60			3

	these locations was markedly faster than any century-scale trend reconstructed in the late
identifi	Holocene. The Pelham Bay RSL further supports this interpretation. Similarly, the global mean
ed the	sea-level reconstruction of Kopp et al. (2016) demonstrated that historic rates of sea-level
comm	rise were initiated around 1860 CE and led to the 20 th century experiencing a faster rise than any
on	of the preceding 27 centuries. We conclude that the increased rates of RSL rise reconstructed
interva	and observed along the U.S. Atlantic coast are the regional expression of a global sea-level rise
l for	caused primarily by thermal expansion and the melting of mountain glaciers (Church et al.,
this	2013) in response to warming that began in the
change	mid-19 th century (e.g., Mann et al., 2008).
in rate	
as	Prior to the onset of modern rates of sea-level rise in the middle to late 19 th century, the Pelham
1865-	Bay RSL reconstruction includes periods when the rate of RSL rise was accelerating
1873	(approximately 800-1400 CE) and decelerating (approximately 1400-1800 CE; Figure 7C). A
CE	reconstruction from Connecticut identified a rate of rise in excess of background GIA at
and	approximately 500-1100 CE, compared to 100-1000 CE in southern New Jersey and 900-1400
showe	CE in North Carolina. Intervals of RSL rise less than background GIA occurred at approximately
d that	1200-1700 CE in Connecticut, 1000-1600 in New Jersey, and 1400-1800 CE in North Carolina.
the	In contrast, both of these features were absent in a reconstruction from northeastern Florida
recent	(summarized in figure 8 of Kemp et al., 2015). This spatial pattern of sea-level variability in the
(last	mid-Atlantic and northeastern United States compared to relative stability along the southeastern
100-	coast is characteristic of ocean dynamic effects predicted by models (Levermann et al., 2005;
150	Yin et al., 2009) and is observed in instrumental data on annual to decadal timescales (Ezer,
years)	
rate of	
RSL	
rise at	
each of 60	3

1		58 59	
2 3 4	590		
5 6	591		
7 8 9	592		
10 1	593		
12 13 14	594		
15 16 17	595		
18 19	596		
20 21	597		
22 23 24	598		
25	599		
26 27 28	600		
29 30	601		
31 32 33	602		
34 35 36	603		
37	604		
38 39 40 41 42 43	605		
	606		
44	607		
45 46 47 48 49	608		
	609		
50 51 52	610		
52 53	611		
55 56 57	612		
60			34

2 0 1 5 G 0 d d а r d e t а 1 2 0 1 5) S 60 ecifically, accelerating/decelerating sea-level rise at locations north of Cape Hatteras occurs when the dynamic sea-level gradient sustained by geostrophic flow of the Gulf Stream is relaxed/enhanced. The Pelham Bay reconstruction indicates that late Holocene rates of RSL rise varied on century timescales and conform to a broad spatial pattern which suggests that dynamic ocean circulation was a driver of regional sea-level trends during the past 1500 years. However, the asynchronous timing of late Holocene trends among sites north of Cape Hatteras complicates this interpretation and may be the product of local-scale processes at some sites.

5.2 Tidal-range change

The RSL reconstruction from Pelham Bay assumed that no-tidal range change occurred during the period under consideration (i.e. that the modern, observable tidal range has persisted for at least the past ~1500 years). Modeling of paleotides on the U.S. Atlantic coast indicates that this assumption is reasonable at the basin scale since ~7000 years ago (Hill et al., 2011; Griffiths and Hill, 2015). However, at smaller spatial scales (including Long Island Sound) this assumption has not been evaluated. To investigate the potential magnitude of tidal-range change at Pelham Bay, we ran a series of 35-day tidal simulations for Long Island Sound using the Stevens Institute Estuarine and Coastal Ocean model (sECOM) on the New York Harbor Observing and Prediction System (NYHOPS) domain (Georgas and Blumberg, 2009; Georgas et al., 2014; Orton et al., 2012). Theses simulations included only the astronomical constituents (M2, S2, N2, K2, K1, O1, Q1) and shallow-water, overtide constituents (M4, M6) that are provided to this model domain as open-boundary conditions at the edge of the continental shelf. In 16 model runs, we changed RSL in Long Island Sound by 0.25 m increments from -2.5 m (lower than

1		58 59
2 3 4	613	
5 6	614	
7 8	615	
9 10 1	616	
12 13	617	
14 15 1 <u>6</u>	618	
17 18 10	619	
20 21	620	
22 23	621	
24 25	622	
26 27 28	623	
28 29 30	624	
31 32	625	
33 34 35	626	
30 37	627	
39 40	628	
40 41 42	629	
44	630	
45 46 47	631	
47 48 49	632	
50 51	633	
52 53	634	
55 56 57	635	
60		36

friction changes from sediment infilling and/or anthropogenic activities (e.g., Brandon et al., 2016), i.e. the change in RSL is equal to the change in depth.

nt) to	From each simulation we used the constituent amplitudes and phases (extracted by the Matlab
+1.25	program t_tide; Pawlowicz et al., 2002; Leffler and Jay, 2009) to construct a full 19-year nodal
m	cycle tidal prediction dataset at Kings Point from which tidal datums such as MHHW were
(high	calculated. These simulations indicate that there is a strong ($r^2 > 0.99$), positive and near-linear
er	relationship between the bathymetric depth of Long Island Sound and the great diurnal tidal
than	range at Kings Point (Figure 8A). A linear regression between -2.5 m and 0 m relative depth
prese	estimates that great diurnal tidal range increases at ~0.09 m per meter change in depth.
nt)	Instrumental measurements at Willets Point show that a ~0.35 m RSL rise since 1892 CE
and	increased great diurnal tidal range by ~ 0.05 m, which is broadly comparable with our model
assum	results. Based on model simulations and historic tidal data we infer that RSL rise likely
ed	increased tidal range in Long Island Sound over the last 1500 years.
that	
these	To estimate the possible impact of tidal-range change on the Pelham Bay RSL reconstruction, we
chang	generated a "base" RSL history (Figure 8B) by assuming that RSL rise since 1850 CE occurred
es	at 2.84 mm/yr (the linear rate recorded by the Battery tide gauge) compared to 1.2 mm/yr for the
were	period from ~500 CE to 1850 CE (e.g., Engelhart et al., 2009; Kopp et al., 2014; Karegar et al.,
not	2016). For each year in this time series we estimated a paleo tidal range at Kings Point from our
acco	simulations. These time-varying tidal statistics were then applied to the PME reconstructions
mpani	generated by the Bayesian transfer function (taking the mean, reconstructed sample age as true) to
ed by	produce a RSL reconstruction that is adjusted for the effects of non-stationary tides (Figure
bathy	
metri	
c or	
botto	

<u>60</u>-

prese

HOLOCENE

		52	
1			
2	626		
4	636		
5			
6	637		
7			
ð O	638		
9 10			
1	639		
12	640		
13 14	640		
15	6/1		
16	041		
17			
18	642		
20	643		
21	015		
22	644		
23 24			
24	645		
26			
27	646		
28 29	_		
30	647		
31			
32	648		
33 34	6 4 0		
35	649		
36			
37	650		
38	654		
39 40	651		
41	652		
42	002		
43	650		
44 45	653		
46	654		
47			
48	655		
49 50			
51	656		
53	657		
54			
55 56			
50 57			
58			
59			20
60			29

n an average difference between the RSL reconstructions of 0.05 m (up to 0.11 m; Figure 8C), but does not materially alter the reconstructed RSL trends.

Considering that the average (2σ) uncertainty in the original RSL reconstruction with stationary tides was ± 0.19 m, the two RSL reconstructions in Figure 8b are statistically indistinguishable from one another. Furthermore, the modeled changes in bathymetric depth (and hence changes to tidal statistics through time) are likely over-estimated because they do not consider sedimentation and our estimate of tidal-range change is therefore pessimistic. Late Holocene RSL rise in Long Island Sound was likely accompanied by sediment accretion at rates of up to ~1 mm/yr (e.g., Lewis and Mary, 2000; Varekamp et al., 2000; Kim and Bokuniewicz, 1991; Benoit et al., 1979; Bokuniewicz et al., 1976), which is sufficient to keep pace with long-term rates of RSL rise driven by GIA. On recent and shorter timescales, sediment supply to Long Island Sound probably spiked during regional deforestation (e.g., Kirwan et al., 2011) as evidenced by an increased rate of sediment accumulation at Pelham Bay from ~1600 CE onwards (Figure 5D). The rate of RSL since the late 19th century (Figure 7) likely exceeds sediment supply rates and resulted in depth changes, as indicated by the historical tidal-range measurements at Willets Point (Figure 8A). However, other anthropogenic changes such as loss of wetlands may also be contributing to measured tidal range changes. Therefore, the non-stationary tide RSL reconstruction (Figure 8B) is an outer bound estimate and the likely difference between the scenarios is smaller than depicted in Figure 8C. We conclude that the original reconstruction with stationary tides is representative of long-term, century-scale RSL trends.

- 657
- 54 55 56 57

8

В

)

Т

h

i

S

с

0

r

r

e

с

t

i

0

n

r

e

S

u

БЗ

		52
1		
2 3	658	
4	050	
5	659	
7	035	
8	660	
9 10		
1	661	
12 13	662	
14	002	
15	663	
16 17		
18	664	
19 20	665	
21	005	
22	666	
23 24		
25	667	
26 27	668	
28		
29 30	669	
31		
32	670	
33 34	671	
35		
30	672	
38	•••	
39 40	673	
40	674	
42 43		
43 11	675	
45		
46 47	676	
48	677	
49 50		
51	678	
53 54	679	
54 55		
56		
57 58		
59		
60		

	(Atlantic City and Sandy Hook, NJ; The Battery, NY; New Haven, CT; Figure 8D). These	
То	results show that changing bathymetric depth has little effect on great diurnal tidal range	
ascert	outside of Long Island Sound (with the caveat that we did not consider changes in wetland	
ain	area). We therefore conclude that RSL reconstructions from the coast of New Jersey (e.g.,	
wheth	Kemp et al., 2013a) are unlikely to be distorted by tidal-range change, but that its possible	
er	effect on records from Long Island Sound (e.g., Donnelly et al., 2004; Nydick et al., 1995;	
other	Kemp et al., 2015; van de Plassche et al., 1998) should be evaluated when reconstructing RSL.	
nearb		
у	5.3 Implications for 21 st century sea-level change in New York City	
locati	The amount of RSL rise projected for New York City by 2100 CE exceeds the global mean	
ons	because of local- to regional-scale contributions from ongoing GIA (e.g., Roy and Peltier, 2015),	,
are	the fingerprint of West and East Antarctic ice-sheet melt (e.g., Mitrovica et al., 2009), ocean	
affect	dynamics (e.g., Ezer et al., 2013; Yin and Goddard, 2013; Levermann et al., 2005), and	
ed by	spatially-variable thermal expansion arising from uneven uptake of heat by the oceans (e.g.,	
chang	Krasting et al., 2016). Under three climate scenarios, Miller et al. (2013) predicted RSL rise at	
es in	The Battery by 2100 CE to be 0.64 m, 0.96 m, and 1.68 m above a 2000 CE baseline under their	•
tidal	low, central, and high scenarios respectively. These projections are similar to those made by	
range,	other groups for The Battery including the New York Panel on Climate Change (Horton et al.,	
we	2015; Kopp et al., 2014).	
repeat		
ed		
this		
analy		
573 for679 54 55 58ur 57 58 her		
59 Sites		40
	http://mc.manuscriptcentral.com/holocene	

1 2			
3 4	680		
5 6	681		
7 8	682		
9 10 1	683		
12	684		
14 15 16 17	685		
18	686		
19 20 21	687		
22 23 24	688		
25	689		
20 27 20	690		
20 29 30	691		
32	692		
33 34 35 36	693		
37	694		
39 40	695		
41 42 43	696		
44	697		
46 47	698		
48 49	699		
50 51	700		
53 54	701	response to such short-lived trends and because the sediment slices used to produce the	
55 56 57 58 59	702	reconstruction are time averaged (for example, the average amount of time represented by a	21
60			51

		, low-end scenario for 2100 CE the rate of RSL rise in New York City must accelerate during	the
Т		21 st century. The validity of such RSL projections has been challenged in some quarters becau	use
0		the fitting of quadratic regressions to individual and compiled tide-gauge records often yields	sea-
а		level accelerations that cannot be distinguished from zero (e.g., Houston and Dean, 2011; Ma	ul,
с		2015). However, this approach to analyzing tide-gauge records for evidence of an acceleration	n is
h		hampered by the length of the available record (or selective use of start date) and the degree to)
i		which a quadratic form is appropriate for describing the sea-level trend under consideration (e	.g.,
е		Rahmstorf and Vermeer, 2011). Haigh et al. (2014) showed that the acceleration of RSL rise	at
v		The Battery was $\sim 0.008 \text{ mm/yr}^2$ over the period 1856-2009 CE, but was indistinguishable from	n
e		zero (i.e. no detectable acceleration) if only data from 1880-2009 CE (for example) were	
e		analyzed. They concluded that individual	
v		tide-gauge records shorter than ~130 years were unlikely to show accelerations because of the	
e		noise introduced by annual to decadal variability. By simulating noisy tide-gauge data to 2100	
n		CE under scenarios of global sea-level rise, they concluded that accelerations in the rate of RSI	
t		rise at specific locations would only become widely detectable in the 2020s or 2030s.	
h			
e		Proxy RSL reconstructions from salt marshes have two distinct advantages over tide gauge	
0		records for detecting accelerations in the rate of RSL rise. Firstly, they do not preserve the	
р		high-resolution (annual to decadal) "noise" that characterizes individual tide-gauge records (and	d
t		to a lesser extent global compilations; e.g., Church and White, 2011; Hay et al., 2015) because	
i		biological sea-level proxies such as foraminifera and plants do not achieve an equilibrium	
m			
i			
S			
53 54	701	response to such short-lived trends and because the sediment slices used to produce the	
55 56 57	702	reconstruction are time averaged (for example, the average amount of time represented by a	
58 69			
60			31

http://mc.manuscriptcentral.com/holocene

		52	
1 2			
3	703		
4 5			
6	704		
7 8	705		
9	705		
10 1	706		
12			
13 14	707		
15	708		
16 17			
18	709		
19 20	710		
21	/ _0		
22 23	711		
24	74.0		
25 26	/12		
27	713		
28 29	71/		
30	/ 14		
31 32	715		
33			
34 35	/16		
36	717		
37 38	/1/		
39 40	718		
40 41	719		
42 43			
44	720		
45 46	721		
40 47	/21		
48 40	722		
49 50			
51 53	723 724	risk from RSL rise in communities hordering Long Island Sound because the elevation of high	
54	724	Tisk from ROL fise in communities bordering Long Island Sound because the elevation of high	
วว 56	725	tides will increase more than RSL. For example, at Willet's Point, the modeled increase in	
57			
58 59			
60			3

e only multi-decadal trends (e.g., Kemp et al., 2011; Barlow et al., 2013). Secondly, they are 1-cm available record length, meaning that it could be possible to detect unhindered by the thick accelerating sea-level rise now rather than waiting for additional years of measurements, which slice of may delay efforts to plan for, or manage the effects of, future sea-level rise. Unlike the PBA-4 fitting of quadratic or polynomial functions, the EIV-IGP and change-point models that we used is to quantify sea-level trends at Pelham Bay account for temporal and vertical uncertainties and the approxi uneven distribution of data points through time to provide continuous estimates of rate with mately uncertainty (Cahill et al., 2015a). Analysis of the Pelham Bay reconstruction shows that the rate one of RSL rise increased (i.e. sea-level rise accelerated) continually since ~1700 CE due decade) to natural warming at the end of the Little Ice Age and then from additional forcing by recent climate change. A similar analysis of global tide-gauge records (Church and White, 2011; Reconst Jevreieva et al., 2008) also showed acceleration throughout the 20th century (Cahill et al., 2015a; : ructions Figure 8A). Contrary to simple analysis of tide-gauge records, we conclude that the significant ofRSL acceleration necessary for RSL in New York City to reach the heights projected for 2100 CE and from beyond is already underway. salt marsh In contrast to the late Holocene, future RSL rise in New York City is likely to exceed the rate of sedime sediment accumulation in Long Island Sound and cause an increase in bathymetric depth. nt are Observational data from Willets Point and our tidal simulations suggest that future deepening of conseq Long Island Sound will increase tidal range (Figure 8). This change will exacerbate the flood uently naturall y-53tered 24 risk from RSL rise in communities bordering Long Island Sound because the elevation of high 54 55 fecord**\$**25 tides will increase more than RSL. For example, at Willet's Point, the modeled increase in 57 Hagat 59 32 **p**eserv http://mc.manuscriptcentral.com/holocene

1		58 59	
2 3 4	726		
5 6	727		
7 8 9	728		
9 10 1 12 13	729		
	730		
14 15 16	731		
17 18 19	732		
20 21 22	733		
23 24	734		
25 26	735		
27 28	736		
29 30 31	737		
32 33	738		
35 36	739		
37 38 20	740		
40 41	741		
42 43	742		
44 4 46 47 48	743		
	744		
49 50 51	745		
52 53	746		
54 55 56 57	747		
60			33

se of ~ 1 m (the central projection of Miller et al., 2013), while the increase at New Haven is $\sim 8\%$. In contrast, the increase at the Battery in New York Harbor is $\sim 3\%$. Therefore local-scale planning for 21^{st} -century RSL rise within New York City should include explicit consideration of tidal-range change which will result in spatially-variable flood risk.

6. CONCLUSIONS

Low-lying areas of New York City are at risk from regional relative sea-level rise that will exceed the global mean. To understand the late Holocene sea-level history of New York City we produced a relative sea-level reconstruction using a sediment core collected from an urban salt marsh in Pelham Bay (The Bronx). Within a Bayesian hierarchical model foraminifera and bulk-sediment δ^{13} C values were employed as sea-level indicators and an age-depth model was generated from a composite of chronology comprised of radiocarbon ages and marker horizons identified from elemental, isotopic and pollen profiles that reflect pollution and land-use trends of known age. The resulting reconstruction shows that RSL rose by ~1.70 m since ~575 CE. Modeling of the relationship between the depth of Long Island Sound and tidal range at Pelham Bay indicates that paleo tidal-range change is unlikely to have materially affected the new reconstruction. A pronounced acceleration in the rate of relative sea-level rise began at 1852-1911 CE and is consistent with other reconstructions and measurements made in the western North Atlantic Ocean. The current rate of rise is the fastest to have occurred for at least 1500 years and the strong acceleration of RSL rise that is necessary to realize projections for 2100 CE is likely underway. Future tidal-range change caused by deepening of Long Island

60

Μ

Η

Η

W

i

S

6

%

g

r

e

а

t

e

r

t

h

а

n

а

R

S

L

r

i

1		58 59						
2 3	740							
4 5	748							
6 7	749							
8								
9 10								
12								
13								
15 16								
17								
19 20 21								
21								
23 24 25								
25 26 27								
28 29								
20 30 31								
32 33								
34 35								
36 37								
38 39								
40 41								
42 43								
44 45								
46 47								
48 49								
50 51								
52 53								
54 55								
56 57								
60								

most vulnerable to flooding by high tides.

Sound	
will	
likely	
cause	
local-	
scale	
differe	
nces	
in	
flood	
risk	
within	
New	
York	
City	
with	
comm	
unities	
border	
ing	
Long	
Island	
Sound	
being	
the 60	

HOLOCENE

750 751 752 753 754 755 756 757 758 759 759 760 761 756 757 758 759 769 770 781 762 759 761 759 759 750 751 752 758 759 759 750 751 752 753 754 755 755 759 750 751 752 753 754 755 755 756 757 758 759 759 751 752 7	1		58 59	
1 73 7 751 9 752 10 733 11 733 12 751 14 754 15 755 16 755 17 771 18 766 20 758 24 758 25 759 26 759 27 758 28 759 29 759 20 759 21 758 22 759 23 758 24 759 25 759 26 759 27 759 28 759 29 759 201 759 21 759 22 759 23 759 24 759 25 759 26 759 27 759 28	2 3	750		
7 751 7 752 7 753 75 756 7 756 7 757 758 759 759 759 781 759 783 759 784 759 785 759 786 759 787 759 788 759 789 759 789 759 781 759 783 759 784 759 785 759 786 759 787 759 788 759 789 759 780 759 781 759 783 759 784 759 785 759 786 759 787 759 788 759 789 759 780 759 781 759	4 5	750		
6 752 752 753 753 754 754 755 757 756 71 757 73 758 759 759 759 759 759 759 759 759 780 759 781 759 783 759 784 759 785 759 786 759 787 759 788 759 789 759 780 759 781 759 783 759 784 759 785 759 786 759 787 759 788 759 789 759 789 759 780 759 781 759 783 759 784 759 785 759 784 759 </td <td>6 -7</td> <td>751</td> <td></td> <td></td>	6 -7	751		
9 752 11 753 12 755 13 756 14 757 15 758 16 759 17 758 18 759 19 759 10 759 11 757 12 758 13 759 14 759 15 759 16 759 17 759 18 759 19 759 10 759 11 750 12 759 13 759 14 759 15 759 16 759 17 759 18 759 19 759 11 759 12 759 13 759 14 759 15 759 16 759	/ 8	751		
7 733 14 754 15 755 17 756 10 1 12 758 24 759 25 79 26 79 29 9 30 1 31 1 32 38 39 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 41 1 42 1 43 1 44 1 45<	9 10	/52		
13 754 16 755 17 756 10 757 17 758 17 759 17 759 18 759 19 759 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10	11	753		
16 755 17 756 10 1 11 757 12 758 13 759 14 1 15 1 16 759 17 1 18 1 19 1 12 1 13 1 14 1 15 1 14 1 15 1 14 1 15 1 16 1 17 1 18 1 19 1 14 1 15 1 16 1 17 1 18 1 19 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 <td rowspan="2">13 14 15 16 17</td> <td>754</td> <td></td> <td></td>	13 14 15 16 17	754		
8 756 21 757 23 758 24 759 25 759 26 759 27 759 28 759 29 759		755		
21 757 23 758 26 759 29 9 30 1 32 33 33 1 34 1 35 1 36 1 37 1 38 1 39 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 41 1 42 1 43 1 44 1 45 1 46 1 47	18 1	756		
22 758 759 759 77 759 78 759 79 759 71 759 73 759 74 759 750 759 <	20 21	757		
24 759 27 7 30 7 31 7 32 7 33 7 34 7 35 7 36 7 37 8 39 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 <	22 23	758		
26 759 27 28 29 30 31 32 33 34 34 35 35 36 37 38 39 40 41 42 42 43 44 44 45 46 46 47 47 48 48 49 50 57 51 52 53 54 56 57 57 57	24 25			
60 37	$\begin{array}{c} 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	759		
	60			37
r Bernhardt (USGS) for his assistance with the pollen analysis. Kemp thanks a post-doctoral fellowship from the Yale University Climate and Energy Institute, the mentoring of Shimon Anisfeld, NOAA award NA11OAR4310101 and NSF award OCE-MGG- 1458921. Talke was funded by the U.S. Army Corps of Engineers (Award W1927N-14-2-0015) and NSF awards 1455350 and OCE-1155610. Orton was funded under NOAA's Regional Integrated Sciences and Assessments (RISA) program (award NA10OAR4310212). This work is a contribution to PALSEA 2 and IGCP Project 639, "*Sea-level change from minutes to millennia*". Access to the Pelham Bay study site was facilitated by the New York City Department of Parks & Recreation.

M E N T S

7. A C

K N

0 W

L E

D G

Е

- W
- e
- t
- h a
- n
- k
- С

h

r

i

S

t o

р

h

1		58 59					
2 3	760						
4	700						
5 6							
7 8							
9 10							
11							
12							
14 15							
16 17							
18							
20 21							
22	761						
23 24	762 763						
25 26	764 765						
27	766						
28 29	,						
30 31							
32 33							
34 35							
36 37							
38							
39 40							
41 42							
43 44							
45 46							
47							
48 49							
50 51							
52 53							
54 55							
56 57							
57							
60							

4. δ^{13} C was measured on a CO₂ aliquot from the combusted sample and is expressed relative to the Vienna Pee Dee Belemnite (VPDB) standard. All samples underwent standard acid-base-acid pretreatment prior to radiocarbon measurement by accelerator mass spectrometry.

Table One: Radiocar bon dates from Pelham Bay core 4 (PBA-4).

Depth	Sample ID	Age	Age Error	δ ¹³ C (‰,	Sample Description
in Core		(¹⁴ C years)	(¹⁴ C years)	VPDB)	
(cm)					
60	OS-102551	165	25	-13.91	Distichlis spicata rhizome
70	OS-108259	380	30	-23.56	Unidentified rhizome
81	OS-108260	285	25	-25.21	Phragmites australis stem
95	OS-102552	770	30	-12.92	Distichlis spicata rhizome
105	OS-115123	695	20	-24.82	Phragmites australis stem
123	OS-109016	1420	30	-14.19	Distichlis spicata rhizome
127	OS-115122	1120	15	-13.45	Distichlis spicata rhizome
137	OS-102598	1180	35	-25.50	Acorn cupule
155	OS-102553	1560	25	-28.43	Phragmites australis stem
161	OS-102554	1630	35	-27.92	Small piece of wood
Radio carbo n ages report ed by the Natio nal Ocean				C	

Radio
carbo
n ages
report
ed by
the
Natio
nal
Ocean
Scien
ces
Mass
Spect
romet
ry
labora
tory
for
macro
fossil
sampl
es
isolat
ed
from
₿₿A-

	58 59	
767		
768		
769		
770		
771		
772		
773		
774		
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
		41
	767 768 769 770 771 772 773 774 775 776 777 778 777 778 779 780 781 781 782 783 781 782 783 784 785 784 785 786	53 767 768 779 774 775 776 777 778 779 780 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 780 781 782 783 784 785 786 787 788 789

the Pelham Bay study site in The Bronx, New York City (NYC) and National Oceanic and Atmospheric Administration (NOAA) tide gauges (numbered blue circles in panel A). The inset FIGUR E in panel A shows the location of NYC and other proxy relative sea-level reconstructions CAPTI ONS (Connecticut, New Jersey, North Carolina and Florida) on the U.S. F Atlantic coast. (D) Sediment beneath the Pelham Bay salt marsh described from cores recovered i along two transects (A-A' and B-B'). Core number 4 (PBA-4) was selected for detailed analysis because it included the thickest sequence of peat and was representative of the stratigraphy at the g u site. r e Figure 2: (A) Relative sea level measured by tide gauges in New York City. Annual data from 1 The Battery, Willets Point and New Rochelle up to and including 2014 were downloaded from : the Permanent Service for Mean Sea Level. The Battery is located at the southern tip of (Manhattan and measures RSL in New York Harbor. The instruments at Willets Point and New А Rochelle record RSL in Long Island Sound. Average RSL over the period 1960-1969 CE is the reference period for each tide gauge series. Monthly data (January 1999 to December 2014) for С Kings Point were downloaded from the National Ocean and Atmospheric Administration and) used to generate annual averages that in turn were referenced the RSL at The Battery. (B) L Correlation between tides measured at the Pelham Bay field site using an automated water logger 0 (relative to the North American Vertical Datum of 1988; NAVD88) and those measured by the с NOAA-operated tide gauge at Kings Point with respect to local mean higher high water а (MHHW). At Willets Point MHHW lies 1.13 m above NAVD88. t

i

0

n

0

1		58 59
2 3 4	790	
5 6	791	
7 8 0	792	
9 10 1	793	
12 13	794	
14 15 16	795	
17 18	796	
19 20 21	797	
22 23	798	
24 25	799	
26 27 28	800	
29 29 30	801	
31 32	802	
33 34 35 36	803	
37	804	
30 39 40	805	
41 42	806	
44	807	
46 47	808	
48 49	809	
50 51	810	
52 53	811	
54 55 56	812	
60		43

comprised of 254 samples from 12 salt marshes (including Pelham Bay) on the Long Island
 Sound coast of New York and Connecticut. (A) Comparison of actual elevations measured at
 the time of sample collection and predicted by the B-TF with 95% credible intervals. Dashed
 e 3:
 line represents parity between actual and predicted elevations. (B) Difference between actual
 and mean predicted elevations. MTL = mean tide level, MHHW = mean higher high water,
 HOF = highest occurrence of foraminifera in the modern training set, SWLI = standardized
 water level index.

Figure 4: Sea-level indicators and paleomarsh elevation (PME) reconstructions from PBA-4. (A) transf Total organic carbon measured on bulk-sediment samples. (B) Relative abundance of the four er most common species of foraminifera. For consistency with the modern training set, counts of functi Trochammina inflata and Siphotrochammina lobata were combined prior to analysis. Samples on's represented by grey bars had counts of fewer than 50 foraminifera and were excluded from the (Bfinal relative sea level reconstruction. (C) Measurements of δ^{13} C in bulk-sediment samples TF) relative to the Vienna Pee Dee Belemnite (VPDB) standard. Shaded areas denote values perfor associated with environments dominated by C₄ and C₃ plant species. Symbol shading denotes the manc prior constraint placed on PME in the Bayesian transfer function based on the modern distribution e of C₄ and C₃ plant communities on and around salt marshes in New Jersey, USA. using (D) Paleomarsh elevation (mean with 95% credible interval) estimated using the Bayesian cross transfer function including the prior constraint provided by bulk sediment δ^{13} C measurements. valida Symbol shading denotes the prior placed on each sample based on bulk-sediment δ^{13} C tion. measurements. SWLI = standardized water level index, HOF = highest occurrence of The moder

n

ian

- traini
- ng set
- €0as

1		58 59	
- 2 3 4	813		
5 6	814		
7 8	815		
9 10 1	816		
12 13	817		
14 15 16	818		
17 18	819		
19 20 21	820		
22 23	821		
24 25	822		
20 27 28	823		
29 30	824		
31 32 32	825		
34 35 36	826		
37	827		
39 40	828		
41 42 43	829		
44	830		
46 47	831		
48 49	832		
50 51	833		
52 53	834		
54 55 56 57	835		
60			45

er high water. (E) Dissimilarity between core samples and their closest modern analogue in the modern training set measured using the Bray Curtis metric. Dashed vertical lines represent percentiles of dissimilarity measured for all possible pairs of modern samples. Core samples exceeding the 20% threshold were excluded from the reconstruction (grey shaded area). The 10% threshold is shown for comparison. Symbol colors denote the site that provided the closest modern analogue. CIC = Canfield Island Cove, PBB = Pelham Bay, HRM = Hammock River Marsh, PAT = Pattagansett, MKA = Menunketesuk, ERM = East River Marsh, EBD = East Branford, MC = Marsh Conservancy, GPE= Gulf Pond East,

DB = Double Beach.

f

0

r

а

m

i

n

1

f

e

r

а

Μ

Η

Η

W

=

m

e

а

n

h

i

g

60

Figure 5: Chronology for PBA-4. Measurement uncertainties are smaller than symbols. Shaded envelopes represent the depth (with uncertainty) of each chronohorizon. Assigned ages with uncertainty are listed. **(A)** Elemental and isotopic profiles used to identify regional-scale pollution markers. **(B)** Suite of elemental profiles used to identify a local-scale pollution marker caused by incineration of domestic waste at sites throughout New York City in the early 20th century. **(C)** Recognition of a land-use marker horizon associated with clearance by European settlers from pollen profiles and the down core concentration of titanium and potassium. **(D)** Bchron age-depth model developed for PBA-4 (mean and 95% credible interval). Calibrated (2σ) radiocarbon ages are represented by grey bars thicknesses that are proportional to their probability. Inset shows last ~200 years in more detail.

Figure 6: (A) Annual sedimentation rates for core PBA-4 estimated from the suite of chronologies generated by the Bchron age-depth model. Results are the mean (solid line) and

http://mc.manuscriptcentral.com/holocene

1		58 59
2 3 4	836	
5 6	837	
7 8 0	838	
9 10 1	839	
12 13	840	
14 15 16	841	
17 18 10	842	
20 21	843	
22 23	844	
24 25 26	845	
20 27 28	846	
29 30	847	
31 32	848	
33 34 35 36	849	
37	850	
39 40	851	
41 42 43	852	
44	853	
46 47	854	
48 49	855	
50 51	856	
52 53	857	
54 55 56 57	858	
60		40

ation rates from salt marshes in Connecticut, New York City and southern New Jersey. Sedimentation rates were estimated by applying the same approach to each dataset. For clarity of presentation only mean estimates are presented and details of sedimentation rates during the past ~250 years are shown in detail in the inset panel.

inter

ble

90%

credi

Figure 7: Relative sea level (RSL) reconstruction from Pelham Bay in New York City. (A) val Proxy reconstructions are represented by boxes that encompass vertical and chronological (5^{th}) uncertainties. Only 1σ uncertainties are shown for clarity, but subsequent analysis used the 2σ to uncertainties. Annual RSL measurements from The Battery tide gauge were reduced to decadal 95th averages (red line) and combined with the salt-marsh reconstruction from PBA-4 to provide a perce proxy and instrumental record of RSL change in New York City. (B) Results from the Errors-inntiles Variables Integrated Gaussian Process (EIV-IGP) model displayed as a mean with shading denoting the 68% and 95% credible intervals. For clarity of presentation reconstructions are shad represented by their mid points only. Vertical shaded regions show the timing of significant ed change points at 1015-1238 CE and 1852-1911 CE (95% credible ranges). Red bars show timing envel of historic change points identified in proxy RSL reconstructions from Connecticut (CT), New ope). Jersey (NJ), North Carolina (NC) and Florida (FL) and reported by Kemp et al. (2015). (C) Rate (B) of RSL change estimated by the EIV-IGP model presented as a mean with shaded 68% and 95% Com credible intervals. Positive values refer to RSL rise. The green shaded envelope marks the paris average rate of RSL rise measured by The Battery tide gauge from 1900-2012 and reported by on of Kopp (2013), while the dashed red line marks the average linear rate of rise reported by the late National Ocean and Atmospheric Administration (NOAA). Dashed grey lines (mean) and Holo

cene

annu

al

sedi

ment

1		58 59	
2			
3 4 5	859		
6 7	860		
8 9	861		
10 1	862		
12 13 14	863		
15 16 17	864		
18 19	865		
20 21	866		
22 23 24	867		
25 26	868		
27 28	869		
29 30 31	870		
32 33	871		
34 35 36	872		
37	873		
39 40	874		
41 42 43	875		
44 45	876		
46 47	877		
48 49	878		
50 51 52	879		
53 54			
55 56 57			
60			42

S h а d e d g r e y а r e а (u n С e r t а i n t

60

) represent the regional background rates of late Holocene RSL rise estimated by Engelhart and Horton (2012) for the Hudson River ($1.25 \pm 0.1 \text{ mm/yr}$) and Long Island ($1.0 \pm 0.3 \text{ mm/yr}$) regions and attributed primarily to ongoing glacio-isostatic adjustment.

Figure 8: (A) Great diurnal tidal range (mean lower low water to mean higher high water) simulated for Kings Point using the Coastal Ocean model (open circles) with sea level varying from -2.5 m (shallower depths than present) to +1.25 m (deeper than present). Historic measurements from the Willets Point tide gauge (filled diamonds) are shown for comparison, where measured relative sea level (RSL) change is assumed to correspond to a change in depth. (B) Effect of tidal-range change on the Pelham Bay RSL. The original RSL reconstruction assumes a constant tidal range during the past 1500 years (open circles). This reconstruction was adjusted for non-stationary tides (filled circles) by using an assumed RSL history (dashed line) in which the pre-1850 trend is driven solely by glacio-isostatic adjustment at 1.2 mm/yr and the post-1850 trend is provided by RSL measurements at the Battery in New York City. A paleo tidal range was estimated for each year in the "base" RSL history using the tidal simulations for Kings Point under the assumption that RSL change caused a corresponding depth change in Long Island Sound. (C) Difference in RSL between the original reconstruction and the one conservatively adjusted for possible tidal-range change. (D) Percentage change in great diurnal tidal range (negative values indicate a smaller tidal range than present) simulated to occur at five tide-gauge locations when water depth is varied by -2.5 to +1.25 m. The current range at each location is provided in the legend.

3

6

Anisfeld SC, Tobin MJ and Benoit G. (1999) Sedimentation rates in flow-restricted and restored salt

REFERENCES

marshes in Long Island Sound. Estuaries 22: 231-244. Barlow NLM, Shennan I, Long AJ, et al. (2013) Salt marshes as late Holocene tide gauges. Global and Planetary Change 106: 90-110. Benoit GJ, Turekian KK and Benninger LK. (1979) Radiocarbon dating of a core from Long Island sound. Estuarine and Coastal Marine Science 9: 171-180. Bokuniewicz HJ, Gebert J and Gordon RB. (1976) Sediment mass balance of a large estuary, Long Island Sound. Estuarine and Coastal Marine Science 4: 523-536. Bollhöfer A and Rosman KJR. (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochimica et Cosmochimica Acta 65: 1727-1740. Brandon CM, Woodruff JD, Orton PM, et al. (2016) Evidence for elevated coastal vulnerability following large-scale historical oyster bed harvesting. Earth Surface Processes and Landforms: n/a-n/a. Bricker-Urso S, Nixon SW, Cochran JK, et al. (1989) Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12: 300-317. Brugam RB. (1978) Pollen indicators of land-use change in southern Connecticut. Quaternary Research 9: 349-362. Burrows EG and Wallace M. (1999) Gotham: a history of New York City to 1898, New York, New York: Oxford University Press. Cahill N, Kemp AC, Horton BP, et al. (2015a) Modeling sea-level change using errors-in-variables intergrated Gaussian processes. Annals of Applied Statistics 9: 547-571. Cahill N, Kemp AC, Parnell AC, et al. (2016) A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates. Climate of the Past 12: 525-542. Cahill N, Rahmstorf S and Parnell AC. (2015b) Change points of global temperature. Environmental Research Letters 10: 084002. Carlin BP, Gelfand AE and Smith AFM. (1992) Hierarchical Bayesian analysis of changepoint problems. Applied Statistics 41: 389-405. Chillrud SN, Bopp RF, Simpson HJ, et al. (1999) Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environmental Science & Technology 33: 657-662. Chmura GL and Aharon P. (1995) Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. Journal of Coastal Research 11: 124-135. Church JA, Clark PU, Cazenave A, et al. (2013) Sea-level change. In: Stocker TF, D. Qin D, Plattner GK, et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1137-1216. Church JA and White NJ. (2011) Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32: 585-602. Cochran JK, Hirschberg DJ, Wang J, et al. (1998) Atmospheric deposition of metals to coastal waters (Long Island Sound, New York U.S.A.): evidence from saltmarsh deposits. Estuarine, Coastal and Shelf Science 46: 503-522. Davis JL and Mitrovica JX. (1996) Glacial isostatic adjustment and the anomalous tide gauge record of

е Donnelly JP. (2006) A revised late Holocene sea-level record for northern Massachusetts, USA. Journal of а S

Coastal Research 22: 1051-1061.

- t
- e
- r n
- Ν
- 0 r
- t
- h
- А
- m
- е
- r
- i
- С
- а
- .
- Ν
- а
- t и
- r
- е
- 3
- 7
- 9
- :
- 3 3
- 1
- -
- 3
- 3 3

Doe BR and

- Economic Geology
 - 6
 - 7:
 - 4 0
- 60

1		
23	926	Dependent ID and Berthoss MD (2001) Banid charaward encroachment of salt marsh cordgrass in
4	027	pointerry JP and Berthess MD. (2001) Rapid shoreward encroachiment of sait marsh condigrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the
5	927	Linited States of America 98: 1/218-1/223
6	928	Donnelly IP Cleary P Newby P et al. (2004) Counting instrumental and geological records of sea-level
/ 8	929	change: evidence from southern New England of an increase in the rate of sea-level rise in the
9	930	late 10th contury. Coonducical Pacagreh Latters 21: LOE202
10	932	Edwards PL and Wright AL (2015) Eproprint for a In: Shannan L Long AL and Horton PD (ods) Handbook of
11	933	Edwards KJ and Wright AJ. (2015) Foral mininera. In: Sheiman I, Long AJ and Horton BP (eds) Hundbook OJ
12		Seu-Level Reseurch. John Wiley & Sons, 191-217.
13	934	from Connecticut, USA: modern analogues for high resolution soa lovel studies. Marine
14	935	Misrongloontology E1: 1.21
15	950	Iviici opuleonitology 51. 1-21.
17	957	Engemart SE and Horton BP. (2012) Holocene sea level database for the Atlantic coast of the Onited
18	920	States. Quaternary Science Reviews 54: 12-25.
19	939	Engemant SE, Horton BP, Douglas BC, et al. (2009) Spatial variability of falle Holocene and 20th century
2	940	Sea-level rise along the Atlantic coast of the Onited States. <i>Geology</i> 37: 1115-1118.
21	941	Engeinart SE, Horton BP and Kemp AC. (2011) Holocene sea level changes along the United States
22	942	Atlantic Coast. <i>Oceanography</i> 24: 70-79.
23	943	Ezer T. (2015) Detecting changes in the transport of the Guif Stream and the Atlantic overturning
24	944	circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated
26	945	Variations for 1935–2012. Global and Planetary Change 129: 23-36.
27	940	Ezer T, Atkinson LP, Coriett WB, et al. (2013) Guif Stream's induced sea level rise and variability along the
28	947	U.S. mid-Atlantic coast. Journal of Geophysical Research: Oceans 118: 685-697.
29	948	Facchetti S. (1989) Lead in petrol. The isotopic lead experiment. Accounts of Chemical Research 22: 370-
30	949	
31	950	Fuller LJ, Foster RD, McLachlan SJ, et al. (1998) Impact of human activity on regional forest composition
33	951	and dynamics in central New England. <i>Ecosystems</i> 1: 76-95.
34	952	Genrels WR. (1994) Determining relative sea-level change from salt-marsh foraminifera and plant zones
35	955	on the coast of Maine, U.S.A. <i>Journal of Coastal Research</i> 10: 990-1009.
36	954	Genrels WR. (2000) Using foraminiferal transfer functions to produce high-resolution sea-level records
37	955	from salt-marsh deposits, Maine, USA. The Holocene 10: 367-376.
38	956	Genreis WR, Kirby JR, Prokoph A, et al. (2005) Onset of recent rapid sea-level rise in the western Atlantic
39 40	957	Ocean. Quaternary Science Reviews 24: 2083-2100.
41	958	Genrels WR and van de Plassche O. (1999) The use of Jadammina macrescens (Brady) and Balticammina
42	959	pseudomacrescens Brönnimann, Lutze and Whittaker (Protozoa: Foraminiferida) as sea-level
4	960	indicators. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 89-101.
44	961	Gehrels WR and Woodworth PL. (2012) When did modern rates of sea-level rise start? Global and
45	962	Planetary Change 100: 263-277.
46	963	Georgas N and Blumberg AF (2009) Establishing Confidence in M
47	964	Skill Assessment of the New York Harbor Observation and
48	965	v3) Eleventh International Conference in Estuarine and C
50		57 973
5 0	067	50
51	968	
52 53	969	
54	970	
55	971	
56	972	
60		4
00		

	hase on Hurricane Sandy's flooding around New York City and Long Island Sound. <i>Journal of</i>
	EXTREME EVENTS 1: 1450006. Cobail C. Tassiar A and Couture P. M. (2012) Upper Mississippi Phase a mid 1800s chronostratigraphic
e	marker in sediments from seasonally apovic lakes in Eastern Canada. <i>Geochimica et</i>
0	Cosmochimica Acta 113: 125-135
r a	Goddard PB. Yin I. Griffies SM. et al. (2015) An extreme event of sea-level rise along the Northeast coast
g	of North America in 2009–2010. Nature Communications 6
d c	
N	
, O	
r	
t	
0	
n	
Р	
,	
В	
I 	
u m	
h	
e	
r	
g	
А	
,	
е	
t	
a	
I	
(
2	
0	
1	
4	
)	
Т	
h	
e :	
I m	
n	
р а	
c	
t	
0	
f	
t	
i	
d	
a ı	
ı n	47
Р	

G

1 2 3 4 5 6 7	974 975 976 977	 Gomez N, Mitrovica JX, Tamisiea ME, et al. (2010) A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. <i>Geophysical Journal International</i> 180: 6 634. Gornitz V, Couch S and Hartig EK. (2001) Impacts of sea level rise in the New York City metropolitan and provide the sectors of the sectors of sea level rise in the New York City metropolitan and provide the sectors of the sectors of sea level rise in the New York City metropolitan and provide the sectors of the sectors of sea level rise in the New York City metropolitan and provide the sectors of the sectors of sea level rise in the New York City metropolitan and provide the sectors of the sectors of the sectors of sea level rise in the New York City metropolitan and the sectors of the	23- rea.
8 9	978 979	Global and Planetary Change 32: 61-88. Graney JR, Halliday AN, Keeler GJ, et al. (1995) Isotopic record of lead pollution in lake sediments from	n
10 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 30	980 981 982 983 984 985 986 987 988 989 990 991 992 993 991 992 993 994 995 996 997	 the northeastern United States. <i>Geochimica et Cosmochimica Acta</i> 59: 1715-1728. Griffiths SD and Hill DF. (2015) Tidal Modeling. In: Shennan I, Long AJ and Horton BP (eds) <i>Handbook of Sea-Level Research.</i> John Wiley and Sons, 438-451. Haigh ID, Wahl T, Rohling EJ, et al. (2014) Timescales for detecting a significant acceleration in sea lever rise. <i>Nature Communications</i> 5: 1-11. Haroun M, Idris A and Syed Omar SR. (2007) A study of heavy metals and their fate in the composting tannery sludge. <i>Waste Management</i> 27: 1541-1550. Harrison EZ and Bloom AL. (1977) Sedimentation rates on tidal salt marshes in Connecticut. <i>Journal of Sedimentary Research</i> 47. Hartig E, Gornitz V, Kolker A, et al. (2002) Anthropogenic and climate-change impacts on salt marshes Jamaica Bay, New York City. <i>Wetlands</i> 22: 71-89. Haslett J and Parnell A. (2008) A simple monotone process with application to radiocarbon-dated dep chronologies. <i>Journal of the Royal Statistical Society: Series C (Applied Statistics)</i> 57: 399-418. Hay C, Morrow E, Kopp RE, et al. (2015) Probabilistic reanalysis of twentieth-century sea-level rise. <i>Nature</i> 517: 481-484. Heyl AV, Delevaux MH, Zartman RE, et al. (1966) Isotopic study of galenas from the upper Mississippi Valley, the Illinois-Kentucky, and some Appalachian Valley mineral districts. <i>Economic Geology</i> 61: 933-961. 	of of of th
31 32 33	998 999 1000	Heyl AV, Landis GP and Zartman RE. (1974) Isotopic Evidence for Mineral Deposits: A Review. <i>Economic Geology</i> 69: 992-: Hill DF Griffiths SD Peltier WR et al. (2011) High-resolution num	
 35 36 37 38 39 40 41 42 4 45 46 47 	1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012	 Research 116. Hill TD and Anisfeld SC. (2015) Coastal wetland response to sea level rise in Connecticut and New York Estuarine, Coastal and Shelf Science 163, Part B: 185-193. Horton BP and Edwards RJ. (2005) The application of local and regional transfer functions to the reconstruction of Holocene sea levels, north Norfolk, England. Holocene 15: 216-228. Horton BP and Edwards RJ. (2006) Quantifying Holocene sea-level change using intertidal foraminiferal lessons from the British Isles. Cushman Foundation for Foraminiferal Research, Special Publication 40: 97. Horton R, Little C, Gornitz V, et al. (2015) New York City Panel on Climate Change 2015 Report Chapter Sea Level Rise and Coastal Storms. Annals of the New York Academy of Sciences 1336: 36-44. Houston JR and Dean RG. (2011) Sea-level acceleration based on U.S. tide gauges and extensions of 	د. a: r 2:
48 49 50 51 52 60	1013 1014 1015 1016	53 1017 54 1018 55 1019 56 1020 57	48

previous global-gauge analyses. Journal of Coastal Research: 409-417.

- Hurst RW. (2000) Applications of anthropogenic lead archaeostratigraphy (ALAS model) to hydrocarbon remediation. *Environmental Forensics* 1: 11-23.
- Jevrejeva S, Moore JC, Grinsted A, et al. (2008) Recent global sea level acceleration started over 200 years ago? *Geophysical Research Letters* 35: L08715.

Johnson BJ, Moore KA, Lehmann C, et al. (2007) Middle to late Holocene fluctuations of C₃ and C₄ vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine. *Organic Geochemistry* 38: 394-403.

1		58 59	
2 3	1021		
4 5	1021		
6 7	1023 1024		
8	1024		
9 10	1026 1027		
12	1028		
13 14	1029 1030		
15 16	1031 1032		
17 18	1032		
19	1034 1035		
2 21	1036		
22 23	1037 1038		
24 25	1039 1040		
26 27	1040		
28	1042 1043		
29 30	1043		
31 32	1045 1046		
33 34	1047 1048		
35 36	1049		
37 38	1050 1051		
39 40	1051		
40	1053 1054		
42 4	1055		
44 45	1056 1057		
46 47	1058 1059		
48 49	1060		
50	1061		
51 52	1063		
53 54	1064 1065		
55 56	1066 1067		
57	1007		

evels; a study of factors affecting the distribution of marine plants, Washington, D.C.: Carnegie Institution of Washington.

- Juggins S and Birks HJB. (2012) Quantiative environmental reconstructions from biological data. In: Birks HJB, Lotter AF, Juggins S, et al. (eds) *Tracking environmental change using lake sediments: Data handling and numerical techniques*. Springer, 431-494.
- h Kamenov GD, Brenner M and Tucker JL. (2009) Anthropogenic versus natural control on trace element
 n and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ~1500 AD to
 s present. *Geochimica et Cosmochimica Acta* 73: 3549-3567.
- Karegar MA, Dixon TH and Engelhart SE. (2016) Subsidence along the Atlantic Coast of North America:
 Insights from GPS and late Holocene relative sea level data. *Geophysical Research Letters* 43:
 3126-3133.
- Kelly AE, Reuer MK, Goodkin NF, et al. (2009) Lead concentrations and isotopes in corals and water near
 Bermuda, 1780-2000. *Earth and Planetary Science Letters* 283: 93-100.
- Kemp AC, Bernhardt CE, Horton BP, et al. (2014) Late Holocene sea- and land-level change on the U.S.
 southeastern Atlantic coast. *Marine Geology* 357: 90-100.

Y Kemp AC, Hawkes AD, Donnelly JP, et al. (2015) Relative sea-level change in Connecticut (USA) during
 the last 2200 years. *Earth and Planetary Science Letters* 428: 217-229.

- Kemp AC, Horton B, Donnelly JP, et al. (2011) Climate related sea-level variations over the past two
 millennia. *Proceedings of the National Academy of Sciences* 108: 11017-11022.
- H Kemp AC, Horton BP, Vane CH, et al. (2013a) Sea-level change during the last 2500 years in New Jersey,
 H USA. Quaternary Science Reviews 81: 90-104.
- Kemp AC, Sommerfield CK, Vane CH, et al. (2012a) Use of lead isotopes for developing chronologies in
 recent salt-marsh sediments. *Quaternary Geochronology* 12: 40-49.
- Kemp AC and Telford RJ. (2015) Transfer Functions. In: Shennan I, Long AJ and Horton BP (eds)
 Handbook for Sea-Level Research. Wiley, 470-499.
- Kemp AC, Telford RJ, Horton BP, et al. (2013b) Reconstructing Holocene sea-level using salt-marsh foraminifera and transfer functions: lessons from New Jersey, USA. *Journal of Quaternary Science* 28: 617-629.
- *T* Kemp AC, Vane CH, Horton BP, et al. (2012b) Application of stable carbon isotopes for reconstructing
 h salt-marsh floral zones and relative sea level, New Jersey, USA. *Journal of Quaternary Science* 27:
 e 404-414.
- *r* Kim B-H and Bokuniewicz HJ. (1991) Estimates of sediment fluxes in Long Island Sound. *Estuaries* 14:
 237-247.
- Kirwan ML and Murray AB. (2007) A coupled geomorphic and ecological model of tidal marsh evolution.
 Proceedings of the National Academy of Sciences of the United States of America 104: 6118 6122.
- *i* Kirwan ML and Murray AB. (2008) Tidal marshes as the disequilibrium landscapes: lags between
 o morphology and Holocene sea level change. *Geophysical Research Letters* 35: L24401.
- nKirwan ML, Murray AB, Donnelly JP, et al. (2011) Rapid wetland expansion during European settlementoand its implication for marsh survival under modern sediment delivery rates. Geology 39: 507-f510.
- *P* Kopp RE. (2013) Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean
 I dynamic variability? *Geophysical Research Letters* 40: 3981-3985.
- *a* Kopp RE, Horton RM, Little CM, et al. (2014) Probabilistic 21st and 22nd century sea-level projections at
 n a global network of tide-gauge sites. *Earth's Future* 2: 383-406.
 t Kopp RE, Kemp AC, Bitterman K, et al. (2016) Temperature-driven global sea-level variability in the
 - Kopp RE, Kemp AC, Bitterman K, et al. (2016) Temperature-driven global sea-level variability in the Common Era. *Proceedings of the National Academy of Sciences* 113: E1434-E1441.

S

t o

- t i
- d

Ι

- е

60

1

1		58 59					
2 3	1000						
4	1068						
5 6	1005						
7 8	1071 1072						
9 10	1073						
11 12	1074						
13	1076						
14 15	1077						
16 17	1079 1080						
18 19	1081						
2	1082 1083						
22	1084						
23 24	1085						
25 26	1087 1088						
27 28	1089						
29 30	1090 1091						
31 32	1092						
33 24	1093 1094						
34 35	1095						
36 37	1096 1097						
38 39	1098 1099						
40 41	1100						
42	1101						
4 44	1103						
45 46	1104 1105						
47 48	1106 1107						
49 50	1108						
51	1109 1110						
5∠ 53	1111						
54 55	1112 1113						
56 57	1114						

ea-level rise relative to the Pacific under high carbon emission rates. Nature Geoscience 9: 210-214. Lamb AL, Wilson GP and Leng MJ. (2006) A review of coastal palaeoclimate and relative sea-level Krastin reconstructions using δ^{13} C and C/N ratios in organic material. *Earth-Science Reviews* 75: 29-57. Lang S and Brezger A. (2004) Bayesian P-splines. Journal of computational and graphical statistics 13: g J 183-212. Ρ Leffler KE and Jay DA. (2009) Enhancing tidal harmonic analysis: robust (hybrid L1/L2) solutions. Continental Shelf Research 29: 78-88. D Levermann A, Griesel A, Hofmann M, et al. (2005) Dynamic sea level changes following changes in the u thermohaline circulation. Climate Dynamics 24: 347-354. n Lewis RS and Mary D-C. (2000) A review of the geologic framework of the Long Island Sound basin, with n some observations relating to postglacial sedimentation. Journal of Coastal Research 16: 522e 532. J Lima AL, Bergquist BA, Boyle EA, et al. (2005) High-resolution historical records from Pettaquamscutt Ρ River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochimica et Cosmochimica Acta 69: 1813-1824. S Mann ME, Zhang Z, Hughes MK, et al. (2008) Proxy-based reconstructions of hemispheric and global t surface temperature variations over the past two millennia. Proceedings of the National 0 Academy of Sciences 105: 13252-13257. u Marshall W. (2015) Chronohorizons: indirect and unique event dating methods for sea-level f reconstructions. In: Shennan I, Long AJ and Horton BP (eds) Handbook of Sea-Level Research. f Wiley, 373-385. Maul GA. (2015) Florida's rising seas: a report in feet per century for coastal interests. Florida Scientist е 78: 64-87. r R McAndrews JH. (1988) Human disturbance of North American forests and grasslands: The fossil pollen J record. In: Huntley B and Webb T (eds) Vegetation history. Dordrecht: Springer Netherlands, 673-697. e McCaffery RJ and Thomson J. (1980) A record of accumulation of sediment and trace metals in a t Connecticut salt marsh. In: Saltzman B (ed) Estuarine physics and chemistry: studies in Long а Island Sond. 22 ed. New York: Academic Press, 165-237. Ι Middleburg JJ, Nieuwenhuize J, Lubberts RK, et al. (1997) Organic carbon isotope systematics of coastal marshes. Estuarine Coastal and Shelf Science 45: 681-687. Miller KG, Kopp RE, Horton BP, et al. (2013) A geological perspective on sea-level rise and its impacts (2 along the U.S. mid-Atlantic coast. Earth's Future. 0 Mitrovica JX, Gomez N and Clark PU. (2009) The Sea-Level Fingerprint of West Antarctic Collapse. 1 Science 323: 753. 6 Morris JT, Barber DC, Callaway JC, et al. (2016) Contributions of organic and inorganic matter to) sediment volume and accretion in tidal wetlands at steady state. Earth's Future 4: 110-121. Е Morris JT, Sundareshwar PV, Nietch CT, et al. (2002) Response of coastal wetlands to rising sea level. n Ecology 83: 2869-2877. h Niering WA, Warren RS and Weymouth CG. (1977) Our dynamic tidal marshes: vegetation changes as а revealed by peat analysis. The Connecticut Arboretum Bulletin. 22 ed., 12. n Nurse LA, McLean RF, Agard J, et al. (2014) Small islands. In: Barros VR, Field CB, Dokken DJ, et al. (eds) С Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel е d of Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University А Press, 1613-1654. t I а n t i С 60 s

1 2 3 4 5 6 7	1115 1116 1117 1118	Nydick KR, Bidwell AB, Thomas E, et al. (1995) A sea-level rise curve from Guilford, Connecticut, USA. <i>Marine Geology</i> 124: 137-159. Orton P, Georgas N, Blumberg A, et al. (2012) Detailed modeling of recent severe storm tides in estuaries of the New York City region. <i>Journal of Geophysical Research</i> 117: C09030.
5 6 7 8 9 10 £ 13456789 222222222222222222222222222222222222	1117 1118 1119 1120 1121 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155	Orton P, Georgas N, Blumberg A, et al. (2012) Detailed modeling of recent severe storm tides in estuaries of the New York City region. <i>Journal of Geophysical Research</i> 117: C09030. Parnell AC, Haslett J, Allen JRM, et al. (2008) A flexible approach t using Bayesian reconstructions of sedimentation history. 1885 57 1162 59
50 51 52 53 54 55 56	1155 1156 1157 1158 1159 1160 1161	
nυ		

	t DM, Kurdyla D, et al. (2005) Medieval Warming, Little Ice Age, and European impact on the
in	environment during the last millennium in the lower Hudson Valley, New York, USA.
M	Quaternary Research 63: 238-249.
A	Peltier WR. (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model
TL	and GRACE. Annual Review of Earth and Planetary Sciences 32: 111-149.
А	Peterson BJ, Howarth RW and Garritt RH. (1985) Multiple stable isotopes used to trace the flow of
В	organic matter in estuarine food webs. Science 227: 1361-1363.
us	Rahmstorf S and Vermeer M. (2011) Discussion of: Houston, J.R. and Dean, R.G., 2011. Sea-level
in	acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses.
g	Journal of Coastal Research, 27(3), 409–417. Journal of Coastal Research 27: 484-487.
T	Reavie E and Juggins S. (2011) Exploration of sample size and diatom-based indicator performance in three North American phosphorus training sets. Aquatic Ecology 45: 529-528
	Podfield AC (1972) Development of a New England salt marsh. Ecological Managraphs 42: 201 227
	Reimer DL Bard F. Bayliss A. et al. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves O-
D -	50 000 Vears cal RD. Radiocarbon 55: 1860-1887
E.	Roman CT Peck IA Allen L et al. (1997) Accretion of a New England (LISA) salt marsh in response to inlet
C	migration storms and sea-level rise Estugrine Coastal and Shelf Science 45: 717-727
0	Roy K and Peltier WR (2015) Glacial isostatic adjustment relative sea level history and mantle viscosity.
m n	Reconciling relative sea level model predictions for the U.S. East coast with geological
р t	constraints Geophysical Journal International 201: 1156-1181
ul or	Saltonstall K. (2002) Cryptic invasion by a non-native genotype of the common reed. Phragmites
ei c	australis, into North America. Proceedings of the National Academy of Sciences 99: 2445-2449.
s &	Scott DB and Medioli FS. (1978) Vertical zonations of marsh foraminifera as accurate indicators of
a G	former sea levels. Nature 272: 528-531.
0 0	Scott DB and Medioli FS. (1980) Quantitative Studies of Marsh Foraminiferal Distributions in Nova
د مد	Scotia: Implications for Sea Level Studies. Cushman Foundation for Foraminiferal Research 17.
ci	Scott DB, Williamson MA and Duffett TE. (1981) Marsh foraminifera of Prince Edward Island: their recent
ρ	distribution and application for former sea-level studies. Maritime Sediments and Atlantic
n	Geology 17: 98-129.
n CP	Shennan I. (1986) Flandrian sea-level changes in the Fenland. II: Tendencies of sea-level movement,
s	altitudinal changes, and local and regional factors. Journal of Quaternary Science 1: 155-179.
2	Shennan I and Woodworth PL. (1992) A comparison of late Holocene and twentieth-century sea-level
8:	trends from the UK and North Sea region. Geophysical Journal International 109: 96-105.
9	Simpson GL. (2012) Analogue methods. In: Birks HJB, Lotter AF, Juggins S, et al. (eds) Data Handling and
2	Numerical Techniques. Springer, 495-522.
9-	Spiegelhalter DJ, Best NG, Carlin BP, et al. (2002) Bayesian measures of model complexity and fit. Journal
9	of the Royal Statistical Society: Series B (Statistical Methodology) 64: 583-639.
3	Stuiver M and Pearson GW. (1993) High precision bidecadal calibration of the radiocarbon timescale, AD
7.	1950-500 BC and 2500-6000BC. Radiocarbon 35: 1-23.
e	
d	
e	
r	

Ρ

s o n D C

, P e t

е

60

1		58 59	
1 2		00	
3	1163		
4	1100		
5	1164		
6	1165		
1	1100		
0 9	1169		
10	1169		
11	1170		
12			
13	1171		
14	1172 1172		
16	1173		
17	1175		
18	1176		
19	1177		
2	1170		
21	1170		
22 23	1180		
24	1181		
25	1182		
26	1183		
27	118/		
28	1185		
29 30	1186		
31	1187		
32	1188		
33	1189		
34 35	1190		
36	1191		
37	1192		
38	1193		
39	1194		
40 11	1195		
41 42	1196		
4	1197		
44	1198		
45	1199		
46	1200		
47 48	1201		
49	1202		
50	1203		
51	1204		
52	1205		
53	1206		
54 55	1207		
56	1208		
57	1203		

		ific tidal data: lost or just forgotten? <i>Journal of Coastal Research</i> 29: 118-127. Tanner BR, Uhle ME, Kelley JT, et al. (2007) C₃/C₄ variations in salt-marsh sediments: An application of
Talke S		compound specific isotopic analysis of lipid biomarkers to late Holocene paleoenvironmental research. Organic Geochemistry 38: 474-484
	а	Traverse A (2007) Paleonalynology: Springer
	n	van de Plassche O (1991) Late Holocene sea-level fluctuations on the shore of Connecticut inferred from
	d	transgressive and regressive overlap boundaries in salt-marsh denosits. <i>Journal of Constal</i>
	J	Research 11: 159-179
	a	van de Plassche O. van der Borg K and de Jong AFM. (1998) Sea level-climate correlation during the past
	v	1400 vr. <i>Geology</i> 26: 319-322.
	, D	Vane CH. Chenery SR. Harrison I. et al. (2011) Chemical signatures of the Anthropocene in the Clyde
	А	estuary, UK: sediment-hosted Pb, 207/206Pb, total petroleum hydrocarbon, polyaromatic
	;	hydrocarbon and polychlorinated biphenyl pollution records. <i>Philosophical Transactions of the</i>
	(Royal Society A: Mathematical, Physical and Engineering Sciences 369: 1085-1111.
	2	Varekamp J, Thomas E and van de Plassche O. (1992) Relative sea-level rise and climate change over the
	0	last 1500 years. <i>Terra Nova</i> 4: 293-304.
	1	Varekamp JC. (1991) Trace element geochemistry and pollution history of mudflat and marsh sediments
	3	from the Connecticut coastline. Journal of Coastal Research: 105-123.
)	Varekamp JC, Brink MRBt, Mecray EL, et al. (2000) Mercury in Long Island Sound sediments. Journal of
	IN	Coastal Research 16: 613-626.
	I	Varekamp JC, Mecray EL and Maccalous TZ. (2005) Once spilled, still found: metal contamination in
	n	Connecticut coastal wetlands and Long Island Sound sediment from historic industries. In:
	e	Whitelaw DM and Visgilio GR (eds) America's Changing Coasts. Cheltenham, UK: Edward Elgar
	t	Publishing, 122-147.
	е	Waller M. (2015) Techniques and applications of plant macrofossil analysis in sea-level studies. In:
	e	Shennan I, Long AJ and Horton BP (eds) Handbook of Sed-Level Research. Wiley-Blackwell, 183-
	n +	190. Malanan Nasar Os Billa Klavan CT, at al. (1997) Trans alamant an antatican and atable land instance.
	l h	wairaven N, Van Os BJH, Klaver GT, et al. (1997) Trace element concentrations and stable lead isotopes
	n C	In soils as tracers of lead pollution in Graft-De Rijp, the Netherlands. <i>Journal of Geochemical Exploration</i> 59: 47-58.
	е	Walsh DC, Chillrud SN, Simpson HJ, et al. (2001) Refuse incinerator particulate emissions and
	n	combustion residues for New York City during the 20th century. Environmental Science &
	t	Technology 35: 2441-2447.
	u	Watcham EP, Shennan I and Barlow NLM. (2013) Scale considerations in using diatoms as indicators of
	r	sea-level change: lessons from Alaska. Journal of Quaternary Science 28: 165-179.
	У	Wong K-C. (1990) Sea level variability in Long Island Sound. <i>Estuaries</i> 13: 362-372.
	Ν	Wong PP, Losada IJ, Gattuso JP, et al. (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR,
	0	Dokken DJ, et al. (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
	r	Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of
	t	the Intergovernmental Panel of Climate Change. Cambridge, United Kingdom and New York, NY,
	h	USA: Cambridge University Press, 361-409.
	A	Woodworth PL, Teferle FN, Bingley RM, et al. (2009) Trends in UK mean sea level revisited. <i>Geophysical</i>
	m	Journal International 176: 19-30.
	е	Wright AJ, Edwards RJ and van de Plassche O. (2011) Reassessing transfer-function performance in sea-
	r	level reconstruction based on benthic salt-marsh foraminifera from the Atlantic coast of NE
	1	North America. Marine Micropaleontology 81: 43-62.
	С	
	а	
	n	
	d	
	и А	
	u D	
	r a	
60	a C	۲.
00	C	

1		58 59
2 3	1210	
4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1210 1211 1212 1213 1214 1215 1216 1217	

Bay, and New York Bight tidal datums, marine grids, and sea surface topography. Silver Spring, MD: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Coast Survey, Coast Survey Development Laboratory.

Yin J and Goddard PB. (2013) Oceanic control of sea level rise patterns along the East coast of the United States. *Geophysical Research Letters* 40: 5514-5520.

Yin J, Schlesinger ME and Stouffer RJ. (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. *Nature Geoscience* 2: 262-266.

Ζ (2 0 0 8) ٧ D а t u m f 0 r t h е L 0 n g L S Ι а n d S 0 u n d Ν а r r а g а n S е t

60

t

Υ

а

n

g

Peer

Figure 1: (A-C) Location of the Pelham Bay study site in The Bronx, New York City (NYC) and National Oceanic and Atmospheric Administration (NOAA) tide gauges (numbered blue circles in panel A). The inset in panel A shows the location of NYC and other proxy relative sea level reconstructions (Connecticut, New Jersey, North Carolina and Florida) on the U.S. Atlantic coast. (D) Sediment beneath the Pelham Bay salt marsh described from cores recovered along two transects (A-A' and B-B'). Core number 4 (PBA-4) was selected for detailed analysis because it included the thickest sequence of peat and was representative of the stratigraphy at the site.

103x56mm (300 x 300 DPI)

Figure 2: (A) Relative sea level measured by tide gauges in New York City. Annual data from The Battery, Willets Point and New Rochelle up to and including 2014 were downloaded from the Permanent Service for Mean Sea Level. The Battery is located at the southern tip of Manhattan and measures RSL in New York
Harbor. The instruments at Willets Point and New Rochelle record RSL in Long Island Sound. Average RSL over the period 1960-1969 CE is the reference period for each tide gauge series. Monthly data (January 1999 to December 2014) for Kings Point were downloaded from the National Ocean and Atmospheric Administration and used to generate annual averages that in turn were referenced the RSL at The Battery. (B) Correlation between tides measured at the Pelham Bay field site using an automated water logger (relative to the North American Vertical Datum of 1988; NAVD88) and those measured by the NOAA operated tide gauge at Kings Point with respect to local mean higher high water (MHHW). At Willets Point MHHW lies 1.13 m above NAVD88.

64x22mm (300 x 300 DPI)

Figure 3: Assessment of the Bayesian transfer function's (B-TF) performance using cross validation. The modern training set was comprised of 254 samples from 12 salt marshes (including Pelham Bay) on the Long Island Sound coast of New York and Connecticut. (A) Comparison of actual elevations measured at the time of sample collection and predicted by the B-TF with 95% credible intervals. Dashed line represents parity between actual and predicted elevations. (B) Difference between actual and mean predicted elevations. MTL = mean tide level, MHHW = mean higher high water, HOF = highest occurrence of foraminifera in the modern training set, SWLI = standardized water level index.

146x290mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/holocene

Figure 4: Sea-level indicators and paleomarsh elevation (PME) reconstructions from PBA-4. (A) Total organic carbon measured on bulk-sediment samples. (B) Relative abundance of the four most common species of foraminifera. For consistency with the modern training set, counts of Trochammina inflata and
Siphotrochammina lobata were combined prior to analysis. Samples represented by grey bars had counts of fewer than 50 foraminifera and were excluded from the final relative sea level reconstruction. (C)
Measurements of δ13C in bulk sediment samples relative to the Vienna Pee Dee Belemnite (VPDB) standard. Shaded areas denote values associated with environments dominated by C4 and C3 plant
species. Symbol shading denotes the prior constraint placed on PME in the Bayesian transfer function based on the modern distribution of C4 and C3 plant communities on and around salt marshes in New Jersey, USA. (D) Paleomarsh elevation (mean with 95% credible interval) estimated using the Bayesian transfer function including the prior constraint provided by bulk sediment δ13C measurements. SWLI = standardized water level index, HOF = highest occurrence of foraminifera, MHHW = mean higher high water. (E) Dissimilarity between core samples and their closest modern analogue in the modern training set
measured using the Bray Curtis metric. Dashed vertical lines represent percentiles of dissimilarity measured for all possible pairs of modern samples. Core samples exceeding the 20% threshold were excluded from the reconstruction (grey shaded area). The 10% threshold is shown for comparison. Symbol colors denote the site that provided the closest modern analogue. CIC = Canfield Island Cove, PBB = Pelham Bay, HRM = Hammock River Marsh, PAT = Pattagansett, MKA = Menunketesuk, ERM = East River Marsh, EBD = East

Branford, MC = Marsh Conservancy, GPE= Gulf Pond East, DB = Double Beach.

83x35mm (300 x 300 DPI)

Figure 5: Chronology for PBA-4. Measurement uncertainties are smaller than symbols. Shaded envelopes represent the depth (with uncertainty) of each chronohorizon. Assigned ages with uncertainty are listed. (A) Elemental and isotopic profiles used to identify regional-scale pollution markers. (B) Suite of elemental profiles used to identify a local-scale pollution marker caused by incineration of domestic waste at sites throughout New York City in the early 20th century. (C) Recognition of a land-use marker horizon associated with clearance by European settlers from pollen profiles and the down core concentration of titanium and potassium. (D) Bchron age-depth model developed for PBA-4 (mean and 95% credible interval). Calibrated (20) radiocarbon ages are represented by grey bars thicknesses that are proportional to their probability. Inset shows last ~200 years in more detail.

228x348mm (300 x 300 DPI)

Figure 6: (A) Annual sedimentation rates for core PBA-4 estimated from the suite of chronologies generated by the Bchron age-depth model. Results are the mean (solid line) and 90% credible interval (5th to 95th percentiles; shaded envelope). (B) Comparison of late Holocene annual sedimentation rates from salt marshes in Connecticut, New York City and southern New Jersey. Sedimentation rates were estimated by applying the same approach to each dataset. For clarity of presentation only mean estimates are presented and details of sedimentation rates during the past ~250 years are shown in detail in the inset panel.

82x77mm (300 x 300 DPI)

Figure 7: Relative sea level (RSL) reconstruction from Pelham Bay in New York City. (A) Proxy reconstructions are represented by boxes that encompass vertical and chronological uncertainties. Only 10 uncertainties are shown for clarity, but subsequent analysis used the 20 uncertainties. Annual RSL measurements from The Battery tide gauge were reduced to decadal averages (red line) and combined with the salt-marsh reconstruction from PBA-4 to provide a proxy and instrumental record of RSL change in New York City. (B) Results from the Errors-in-Variables Integrated Gaussian Process (EIV-IGP) model displayed as a mean with shading denoting the 68% and 95% credible intervals. For clarity of presentation reconstructions are represented by their mid points only. Vertical shaded regions show the timing of significant change points at 1015-1238 CE and 1852-1911 CE (95% credible ranges). Red bars show timing of historic change points identified in proxy RSL reconstructions from Connecticut (CT), New Jersey (NJ), North Carolina (NC) and Florida (FL) and reported by Kemp et al. (2015). (C) Rate of RSL change estimated by the EIV-IGP model presented as a mean with shaded 68% and 95% credible intervals. Positive values refer to RSL rise. The green shaded envelope marks the average rate of RSL rise measured by The Battery

HOLOCENE

tide gauge from 1900-2012 and reported by Kopp (2013), while the dashed red line marks the average linear rate of rise reported by the National Ocean and Atmospheric Administration (NOAA). Dashed grey lines (mean) and shaded grey area (uncertainty) represent the regional background rates of late Holocene RSL rise estimated by Engelhart and Horton (2012) for the Hudson River ($1.25 \pm 0.1 \text{ mm/yr}$) and Long Island ($1.0 \pm 0.3 \text{ mm/yr}$) regions and attributed primarily to ongoing glacio-isostatic adjustment.

137x214mm (300 x 300 DPI)

HOLOCENE

Figure 8: (A) Great diurnal tidal range (mean lower low water to mean higher high water) simulated for Kings Point using the Coastal Ocean model (open circles) with sea level varying from -2.5 m (shallower depths than present) to + 1.25 m (deeper than present). Historic measurements from the Willets Point tide gauge (filled diamonds) are shown for comparison, where measured relative sea level (RSL) change is assumed to correspond to a change in depth. (B) Effect of tidal-range change on the Pelham Bay RSL. The original RSL reconstruction assumes a constant tidal range during the past 1500 years (open circles). This reconstruction was adjusted for non-stationary tides (filled circles) by using an assumed RSL history (dashed

line) in which the pre-1850 trend is driven solely by glacio-isostatic adjustment at 1.2 mm/yr and the post-1850 trend is provided by RSL measurements at the Battery in New York City. A paleo tidal range was estimated for each year in the "base" RSL history using the tidal simulations for Kings Point under the assumption that RSL change caused a corresponding depth change in Long Island Sound. (C) Difference in

RSL between the original reconstruction and the one conservatively adjusted for possible tidal range change. (D) Percentage change in great diurnal tidal range (negative values indicate a smaller tidal range than present) simulated to occur at five tide-gauge locations when water depth is varied by -2.5 to + 1.25 m. The current range at each location is provided in the legend.

90x46mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/holocene

Page	60	of	80
------	----	----	----

1	Depth (cm)	Elevation (m, MTL)	BP	Hs	JM	TISL	
2	2	1.16	0	6	13	41	
3	4	1.14	6	4	25	41	
4	6	1.12	0	8	14	46	
5	8	1.1	0	10	35	32	
6	10	1.08	0	3	20	69	
7	12	1.06	0	9	17	71	
2	14	1.04	0	5	35	58	
0 0	16	1.02	0	4	27	59	
10	18	1	0	1	50	36	
10	20	0.98	0	0	23	26	
10	22	0.96	0	0	37	22	
12	24	0.94	4	0	69	26	
13	26	0.92	0	0	23	38	
14	28	0.9	0	1	40	57	
10	30	0.88	0	0	45	49	
10	32	0.86	0	0	58	28	
17	34	0.84	0	0	50	40	
10	36	0.82	0	0	67	20	
19	38	0.8	0	0	38	38	
20	40	0.78	0	0	33	54	
21	42	0.76	0	0	68	6	
22	44	0.74	0	0	82	2	
23	46	0.72	0	0	80	5	
24	48	0.7	0	0	61	10	
25	50	0.68	0	0	69	7	
26	52	0.66	1	0	62	7	
27	54	0.64	0	2	30	23	
28	56	0.62	0	0	54	5	
29	58	0.6	1	1	70	11	
30	60	0.58	0	2	58	8	
31	64	0.54	0	0	83	3	
32	66	0.52	0	0	80	2	
33	68	0.5	0	0	87	5	
34	70	0.48	0	0	91	0	
35	74	0.44	0	0	81	3	
36	78	0.4	0	0	103	1	
37	80	0.38	0	1	94	0	
38 39	81	0.37	0	0	94	0	

HOLOCENE

1						
2	123	-0.05	1	1	60	7
3	124	-0.06	0	3	95	0
4	126	-0.08	3	0	96	0
5	128	-0.1	0	0	90	0
6	130	-0.12	0	3	75	10
7	132	-0.14	0	0	88	3
8	134	-0.16	0	1	95	0
g	136	-0.18	0	0	96	1
10	137	-0.19	0	0	98	0
11	138	-0.2	0	1	95	1
12	140	-0.22	0	1	86	2
12	142	-0 24	Ω	6	59	10
14						
14						

HOLOCENE

1	AI	MP	Interpretation	SWLI Prediction	1
2	0	2	Intermediate	105.46	
2	0	0	Intermediate	113.06	
J ⊿	0	2	Intermediate	105.57	
5	0	5	Below MHHW	89.49	
6	0	1	Below MHHW	88.65	
7	0	0	Below MHHW	88.92	
0	0	0	Below MHHW	88.65	
0	0	0	Below MHHW	89.48	
9	0	0	Below MHHW	88.32	
10	0	2	Below MHHW	88.17	
10	0	0	Below MHHW	87.88	
12	0	0	Below MHHW	89.77	
13	0	0	Below MHHW	87.20	
14	0	0	Below MHHW	89.45 🔪	
15	0	0	Below MHHW	84.33	
16	0	0	Below MHHW	88.02	
17	0	0	Below MHHW	87.14	
18	0	0	Below MHHW	87.43	
19	0	1	Below MHHW	88.65	
20	0	0	Below MHHW	87.12	
21	0	6	Below MHHW	90.52	
22	0	0	Below MHHW	90.12	
23	0	0	Below MHHW	90.43	
24	0	0	Below MHHW	90.29	
25	0	0	Below MHHW	90.28	
26	0	5	Below MHHW	91.11	
27	0	4	Below MHHW	88.51	
28	0	3	Below MHHW	90.35	
29	0	8	Below MHHW	91.54	
30	0	5	Below MHHW	91.30	
31	0	12	Below MHHW	90.12	
32	0	17	Below MHHW	89.92	
33	0	13	Below MHHW	90.86	
34	0	9	Intermediate	142.57	1
35	0	8	Intermediate	94.88	
36	0	2	Intermediate	110.46	
37	0	0	Intermediate	105.14	
38	0	0	Intermediate	101.91	
39					

1				
2	0	1	Intermediate	110.09
3	0	1	Intermediate	120.77
4	0	0	Intermediate	131.17
5	2	9	Intermediate	119.93
6	0	4	Above MHHW	110.96
7	0	7	Above MHHW	111.66
8	0	3	Above MHHW	116.07
a	0	2	Above MHHW	112.22
10	0	2	Above MHHW	142.29
10	0	2	Above MHHW	113.21
10	0	9	Above MHHW	112.87
12	0	R		112 22
13				
14				

1	RSL Error (m, 2σ)	AD2.5	AD10	AD50	
2	0.220	2006	2003	1994	
2	0.249	2000	1995	1986	
4	0.195	1985	1980	1973	
5	0.118	1968	1966	1965	
6	0.153	1966	1965	1963	
7	0.126	1960	1959	1956	
2	0.112	1958	1957	1954	
0 0	0.108	1957	1955	1952	
10	0.128	1955	1953	1949	
10	0.117	1952	1949	1943	
10	0.125	1947	1944	1938	
12	0.118	1943	1940	1935	
13	0.118	1940	1937	1932	
14	0.105	1935	1932	1925	
10	0.224	1929.775	1926	1919	
10	0.126	1923	1920	1912	
10	0.131	1918	1914	1907	
10	0.152	1916	1913	1905	
19	0.119	1915	1911	1902	
20	0.143	1905.775	1899	1874	
21	0.073	1893	1882	1860	
22	0.076	1878	1867	1852	
23	0.079	1866	1857	1845	
24	0.084	1857	1849	1838	
25	0.081	1847	1840	1831	
26	0.070	1830	1826	1813	
27	0.124	1820	1813	1789	
28	0.075	1810	1798	1766	
29	0.068	1790	1777	1744	
30	0.073	1762	1748	1704	
31	0.072	1710.775	1692	1659	
32	0.076	1694	1673	1644	
33	0.039	1673	1654	1629	
34	0.277	1637.775	1627	1609	
35	0.165	1611	1601	1580	
36	0.459	1590	1578	1556	
37	0.335	1575	1564	1543	
38	0.341	1564	1551.1	1533	
39					

1				
2	0.180	979	959	936
3	0.204	954	938	927
4	0.234	940	929	912
5	0.353	921	912	889
6	0.159	911	897	868
0 7	0.180	900	885	849
8	0.181	886	868	828.5
g	0.171	868	846	807
10	0.200	855	830	790
11	0.160	834	811	769
12	0.167	814	788.1	739
13	0 171	701	765	711
14				

Dep	th (cm) 1 4 7	δ15N (‰) 6.16	δ13C (‰)				
	1 4 7	6.16		% N	% N	CN ratio	
	4 7		-20.50	1.60	24.04	15.02	
	7 10	5.79	-19.33	1.60	28.09	17.58	
	10	5.31	-17.38	1 16	22 70	19.58	
	10	5.00	-16.79	1.15	24.55	21.36	
	13	4.54	-15.71	1.07	29.03	27.18	
	15	2.70	-15.64	1.14	27.96	24.43	
	18	1.89	-15.60	1.21	34.81	28.84	
	21	3.59	-16.39	0.95	22.03	23.15	
	24	1.63	-14.26	1.03	22.57	22.00	
	27	0.79	-13.81	1.04	23.25	22.41	
	30	0.69	-14.05	1.10	22.47	20.45	
	33	-0.08	-14.04	1.15	24.32	21.22	
	36	-0.51	-14.08	1.29	28.34	21.95	
	39	-0.65	-14.05	1.16	26.41	22.85	
	42	-0.24	-13.86	1.18	28.31	24.02	
	45	-0.36	-13.95	1.10	25.49	23.18	
	48	-0.30	-14.78	0.89	16.95	18.97	
	50	-0.24	-14.66	1.06	21.87	20.72	
	51	-0.39	-15.01	1.05	17.38	16.51	
	52	-0.45	-14.81	0.98	18.06	18.44	
	53	-0.46	-15.46	1.10	19.37	17.66	
	54	0.01	-16.58	1.05	18.72	17.79	
	55	0.32	-16.41	1.03	17.02	16.61	
	56	-0.16	-15.47	1.30	24.01	18.48	
	57	0.58	-16.62	1.44	22.83	15.85	
	58	0.32	-16.08	1.25	22.26	17.84	
	59	0.03	-16.22	1.58	30.50	19.25	
	60	0.06	-16.34	1.54	29.13	18.92	
	61	0.01	-14.86	1.38	28.35	20.50	
	63	0.09	-16.93	1.83	32.60	17.83	
	67	-0.07	-18.12	2.03	37.45	18.43	
	70	0.04	-20.40	1.92	32.02	16.68	
	73	-0.17	-23.24	2.03	35.66	17.57	
	76	-0.28	-23.28	1.99	34.55	17.33	
	79	-0.79	-20.04	2.06	41.67	20.19	
	82	-0.36	-18.30	2.10	39.09	18.62	
	85	-0.33	-18.47	2.41	42.15	17.52	
	88	-0.45	-19.04	2.51	45.72	18.25	
	91	-0.40	-18.83	2.43	43.93	18.11	
	94	-0.30	-20.33	2.42	44.99	18.60	
	97	-0.31	-22.38	2.23	41.79	18.77	
	100	-0.68	-21.89	2.34	42.83	18.29	
	103	-0.87	-19.61	2.30	42.87	18.60	
	106	-0.95	-19.54	2.39	44.28	18.50	
	109	-1.20	-20.10	2.20	42.82	19.43	
	112	-1.12	-16.91	2.08	45.35	21.81	
				mup://mc	.manuscri		

HOLOCENE

1							
2	115	-0.93	-15.14	1.89	45.70	24.16	
3	118	-0.55	-15.28	1.90	39.62	20.83	
4	121	2.66	-17.42	1.49	30.94	20.71	
5							
<u>6</u>	124	-0.21	-15.48	1.89	45.03	23.87	
7	127	-0.10	-19.04	2.02	41.06	20.34	
8	130	-0.41	-22.87	1.98	45.18	22.87	
3	133	-0.41	-22.65	2.08	42.16	20.23	
10	126	0.17	24.06	2 12	20.00	10 72	
11	130	-0.17	-24.00	2.13	34.90	17 55	
13	140	0.04	24.70	2 10	25.02	16.67	
14	142	0.40	-20.25	2.10	55.05	10.07	
15	145	0.37	-27.43	0.32	6.73	20.98	
16	148	0.51	-27.34	0.82	16.98	20.78	
17	151	0.10	-27.72	0.93	27.49	29.66	
18	154	0.39	-27.91	0.83	23.24	27.87	
19	155	0.77	-28.61	0.90	26.01	28.80	
20							
21	156	0.78	-27.98	0.86	20.90	24.43	
22	157	1.17	-28.04	0.55	13.88	25.26	
23	158	0.34	-28.25	0.62	17.53	28.35	
24	159	0.93	-27.87	0.25	7.24	28.50	
25	400	4.07	00.40	0.00	5 70	05.00	
26	160	1.37	-20.10	0.23	5.79	25.63	
27	101	2.14	-28.53	0.25	6.08 -	24.44	
29	102	2.17	-28.46	0.24	5.63	23.93	
30	163	2.11	-28.45	0.22	5.13	23.83	
00	164	2.09	-28.50	0.22	5.25	23.93	
31	167	3.63	-28.05	0.09	2.21	23.57	
33	170	4.13	-27.36	0.07	1.52	21.53	
34							

2	Element	Li	Ве	Na	Mg
3	Detection Level (mg/kg)	<0.8	<0.2	<45	<7
4	Depth (cm)	mg/kg	mg/kg	mg/kg	mg/kg
5	1	19.49	0.66	62058.47	14527.42
6	2				
7	3	22.34	1.15	58267.03	13628.87
8	4				
9	5	26.10	1.41	51534.73	11773.49
10	6				
11	7	50.32	1.82	38973.73	12129.70
12	8				
13	9	31.19	1.71	40564.61	9158.72
14	10				
15	11	29.41	1.19	39742.34	9429.88
16	12				
17	13	29.69	1.38	39769.84	8830.58
18	15	36.23	1.57	36048.49	9928.96
19	15	35.35	1.61	36749.83	<mark>9</mark> 898.74
20	17	30.47	1.16	40642.63	8297.56
21	19	27.62	1.77	44825.27	9262.02
22	19	27.15	1.50	44176.50	9748.58
22	21	27.04	1.19	50000.36	11631.27
20	23	26.22	1.45	48114.82	10780.27
24	25	29.06	1.29	50844.72	10200.50
20	27	26.45	1.40	52529.95	9714.70
20	29	25.84	0.94	54340.76	10422.01
20	31	33.61	0.95	51271.53	10830.39
20	33	37.74	1.29	49365.64	10582.26
20	35	27.85	0.50	52471.31	10220.54
31	37	29.14	0.71	55074.77	10342.63
20	39	24.24	1.18	58759.38	10591.48
3Z 22	41	26.56	1.04	59151.61	10474.38
24	41	26.34	1.29	59922.88	10471.91
25	43	27.75	1.02	67971.17	10643.12
20	45	36.35	1.00	76513.59	11772.86
30	47	40.21	0.88	72516.98	11901.42
31	49	41.55	0.72	74762.79	13742.39
30	51	45.39	0.88	57901.13	11330.30
39	50	00 70	4 4 0	F0000 0F	40074 04
40					
41					
/1 /					

1							
2	ĸ	Са	Ti	v	Cr	Mn	
3	<23	<10	<0.6	<0.4	<0.3	<0.6	
4	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
5	11357.77	6636.42	1088.13	48.74	51.73	260.70	
6							
7	12473.57	5925.09	1293.28	57.18	40.02	181.83	
8							
9	13145.81	5184.74	1684.75	65.07	55.14	191.33	
10							
11	19271.34	4999.52	2712.23	94.97	94.48	272.22	
12	10,100,00		1050 50	400 70	50.44	450.05	
13	12490.20	3919.24	1852.56	130.70	59.44	152.05	
14	40004.00	0004 74	4700.05	450.04	00.07	4.40.00	
15	12224.90	3964.74	1782.25	159.01	60.67	143.89	
16	40007.05	0050 44	4000.00	400.00	50.00	100.00	
17	10667.85	3959.41	1666.23	133.92	53.62	123.93	
18	13097.09	4480.78	2085.56	106.68	58.43	166.73	
19	12976.00	4248.86	2120.62	106.79	58.74	167.01	
20	9825.63	3906.05	1578.53	84.89	43.95	105.88	
21	9949.34	5036.04	1561.91	81.14	43.03	116.59	
22	10246.49	5528.63	1623.09	82.56	43.94	119.84	
23	12724.46	6772.13	1874.59	84.47	47.07	167.52	
24	15527.30	6544.13	2318.59	69.95	49.91	135.46	
25	16490.68	6024.00	2320.75	60.01	47.66	117.83	
26	10000.00	5428.57	2240.21	63.17	40.00	100.83	
27	14420.97	55/8.27 5502 72	1910.00	57.04	42.57	101.74	
28	14010.21	5050 14	1496 22	52 20	42.00	134.02	
29	10376.60	5107.61	1354 00	56.40	31 56	01.70	
30	12088.24	5185.85	1640.44	62.62	36.25	91.70 86.51	
31	12000.24	5453.00	1570.06	71 70	36.33	72 78	
32	11245 16	5260 47	1573.00	68.88	36.22	78.53	
33	11/16 61	5308 70	1650.60	70.42	37.25	70.55	
34	11022.64	5127 72	1608 74	64 71	37.25	69.70	
35	12721 64	5/31 67	1706 53	68 38	40.76	76 51	
36	12807.82	5100.26	1835 74	62.07	30.70	77.28	
37	14017 00	5556 31	1926 60	62.86	<u>41</u> 41	98.46	
38	11511 08	5143 19	1594 48	60.96	37.32	105.40	
39	0500.40	E 407 70	4040.00	50.00	01.02	100.02	

Page 70) of 80
---------	---------

Cu	Zn	Ga	As	Se	Rb	S	
<0.07	<0.3	<0.03	<0.08	<0.07	<0.05	<0	
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/	
47.39	63.84	5.78	8.02	0.78	38.56	113	
40.05	05.00	0.05	7.04	0.07	40.04	400	
48.05	85.03	6.25	7.94	0.97	43.01	106	
71.30	106.80	8.04	7.72	0.90	52.72	100	
102.94	116.97	13.96	7.42	0.85	89.15	105	
02.80	00.74	0.24	10.29	1 15	52.00	70	
92.80	90.74	9.34	10.38	1.15	52.90	78.	
110.95	92.55	9.61	13.93	1.84	51.95	80.	
110 11	07.40	0.00	47.00	0.05	10.00	05	
113.14	87.49	9.89	17.39	2.25	42.80	80. 00	
99.11	94.28	12.19	16.59	2.58	58.89	92.	
98.60	93.49	12.40	16.66	2.58	57.40	91.	
122.38	73.39	11.37	20.54	3.28	39.19	84.	
91.43	86.24	11.17	23.31	3.77	38.19	94.	
89.81	89.98	11.73	23.72	3.93	40.88	96.	
41.75	111.87	12.41	28.38	3.42	52.39	113	
39.30	67.68	13.86	13.37	2.98	63.94	118	
40.36	36.21	13.26	10.72	2.86	65.88	118	
42.43	26.87	11.69	8.14	2.36	63.38	111	
35.92	28.85	9.71	10.86	2.05	59.14	108	
19.24	38.34	9.37	11.20	1.33	61.23	103	
13.76	47.54	7.17	11.10	0.82	45.10	92.	
10.99	42.97	6.81	9.99	0.82	41.30	93.	
10.93	51.58	8.57	8.13	0.87	49.50	97.	
11.49	78.03	8.06	10.43	0.90	45.37	100	
10.77	110.64	7.68	10.02	0.90	44.98	97.	
11.00	110.93	7.91	9.88	0.85	44.73	95.	
11.23	84.50	8.06	8.88	0.93	43.07	96.	
8.75	56.99	8.77	7.02	0.92	50.04	102	
7.95	41.88	9.20	6.43	0.71	53.64	98.	
7.14	40.87	9.74	5.59	0.75	61.01	104	
8 91	70 73	7 92	4 73	0 85	52 21	94	

58	6.83	12.70	3.24	1.35	0.88	16.51	112.10	6.80	16.82	2.07

 HOLOCENE

1	Mo <0.03	Ag <0.09	Cd <0.009	Sn <0.04	Sb <0.02	Cs <0.03	B ; <0	
2	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/	
3	4.89	0.26	0.54	5.19	1.15	1.71	125.	
4								
5	5.42	0.22	0.77	6.60	0.84	2.00	139.	
6	-	-	-					
1	7.50	0.48	0.79	8.51	0.79	2.52	175.	
8								
9	6.14	0.74	0.70	13.31	0.88	4.16	303.	
10								
11	9.31	0.60	0.77	14.49	1.94	2.61	184.	
12								
13	10.47	0.43	0.77	19.05	4.36	2.52	177.	
14								
15	10.60	0.51	0.73	18.60	2.46	2.11	153.	
16	14.44	0.44	0.65	19.28	2.68	2.72	213.	
17	14.23	0.44	0.66	20.29	3.08	2.75	206.	
18	18.03	0.44	0.72	19.08	2.86	2.07	147.	
19	11.74	0.21	0.97	14.46	2.11	2.01	142.	
20	11.89	0.21	0.95	14.49	2.14	2.05	148.	
21	5.86	0.14	1.24	15.76	1.65	2.58	177.	
22	4.59	0.18	0.77	12.96	1.47	3.06	238.	
23	4.75	0.19	0.45	8.71	1.29	2.87	257.	
24	4.71	0.14	0.26	6.16	1.10	2.77	249.	
25	4.69	0.20	0.23	4.33	1.03	2.46	215.	
26	4.26	0.05	0.22	2.53	0.76	2.71	216.	
27	5.57	0.04	0.27	1.51	0.81	2.05	154.	
28	5.96	0.02	0.35	1.35	0.87	1.89	140.	
29	6.86	0.02	0.56	1.69	0.87	2.23	171.	
30	8.89	0.07	1.21	1.42	1.19	2.00	159.	
31	9.43	0.00	1.61	1.53	1.27	1.87	149.	
32	9.38	0.05	1.66	1.65	1.24	1.90	149.	
33	9.49	0.04	1.08	1.49	1.15	1.96	142.	
34	7.98	0.03	0.47	1.62	0.95	2.30	169.	
35	5.94	0.07	0.31	1.53	0.64	2.55	174.	
36	6.10	0.05	0.18	1.50	0.62	2.82	193.	
37	12 65	0 02	0.32	1.30	0.53	2.56	162	
38								
39								
40								
41								
42								
43								

5.63 0.01 0.13 0.48 0.12 0.63 72.43 9.46 16.68 2.35

58	5.63	0.01	0.13	0.48	0.12	0.63	72.43	9.46	16.68	2.35

Page 1	72	of	80
--------	----	----	----

0.89

0.77

0.71

0.64

0.56

0.54

0.44

0.45

0.41

0.45

0.64

1	Nd <0.04	Sm <0.02	Eu <0.005	Tb <0.004	Gd <0.004	Dy <0.005	Н (<0.0		
2 3 4	mg/kg 11.40	mg/kg 2.27	mg/kg 0.45	mg/kg 0.26	mg/kg 1.80	mg/kg 1.47	mg/ 0.2		
5 6	13.15	2.65	0.52	0.29	2.04	1.65	0.2		
7 8	17.78	3.53	0.65	0.38	2.75	2.17	0.4		
9 10	26.12	5.09	0.99	0.57	4.04	3.14	0.5		
11 12	17.81	3.51	0.72	0.41	2.93	2.39	0.4		
13 14 15	17.69	3.54	0.70	0.39	2.85	2.33	0.4		
10	16.10	3.28	0.63	0.38	2.72	2.23	0.4		
10	19.83	3.83	0.81	0.47	3.24	2.64	0.4		
17	19.38	3.77	0.78	0.44	3.12	2.65	0.4		
18	14.78	3.02	0.60	0.34	2.45	2.08	0.3		
19	14.96	3.05	0.61	0.38	2.60	2.16	0.3		
20	16.18	3.05	0.65	0.36	2.63	2 23	0.3		
21	16.02	3.45	0.66	0.00	2.00	2.27	0.0		
22	10.02	3 70	0.00	0.00	3.00	2.27	0.4		
23	18.72	3.78	0.70	0.42	2.00	2.37	0.4		
24	10.75	3.70	0.73	0.39	2.90	2.30	0.4		
25	17.57	3.44	0.74	0.30	2.59	2.15	0.3		
26	10.07	3.02	0.69	0.30	2.05	2.11	0.3		
27	19.54	3.92	0.75	0.42	2.94	2.37	0.4		
28	18.38	3.65	0.71	0.43	3.02	2.57	0.4		
29	17.47	3.03	0.72	0.44	2.89	2.47	0.4		
30	17.83	3.75	0.71	0.42	2.96	2.49	0.4		
31	17.00	3.43	0.71	0.41	2.88	2.37	0.4		
32									
32									
33									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
48	12 59	2 45	0.49	0.31	2.23	1 88	0.35	1 01	0.14
49	11 10	2.40	0.45	0.31	1.07	1.00	0.30	0.00	0.14
50	10.92	2.29	0.47	0.27	1.37	1.04	0.30	0.90	0.12
51	10.00	1 00	0.43	0.20	1.70	1.00	0.20	0.02	0.11
52	0.70	1.33	0.30	0.23		1.00	0.20	0.75	0.10
53	0.10	1.74	0.31	0.20	1.44	1.23	0.23	0.64	0.09
55	1.91	1.50	0.30	0.18	1.28	1.02	0.20	0.50	0.08
54 55	5.78	1.15	0.23	0.14	0.97	0.85	0.16	0.47	0.07
55	6.70	1.28	0.27	0.15	1.08	0.91	0.16	0.47	0.07
56	6.59	1.19	0.24	0.14	1.05	0.80	0.17	0.50	0.07
57	7.36	1.41	0.24	0.15	1.18	0.97	0.18	0.52	0.07
58	9.40	1.72	0.36	0.22	1.56	1.33	0.25	0.73	0.10
59									
60									

http://mc.manuscriptcentral.com/holocene

48	12.59	2.45	0.49	0.31	2.23	1.88	0.35	1.01	0.14	0.89
49	11.19	2.29	0.47	0.27	1.97	1.64	0.30	0.90	0.12	0.77
50	10.83	2.13	0.43	0.25	1.78	1.53	0.28	0.82	0.11	0.71
51	10.06	1.99	0.38	0.23	1.58	1.38	0.26	0.75	0.10	0.64
52	8.76	1.74	0.31	0.20	1.44	1.23	0.23	0.64	0.09	0.56
53	7.97	1.50	0.30	0.18	1.28	1.02	0.20	0.56	0.08	0.54
54	5.78	1.15	0.23	0.14	0.97	0.85	0.16	0.47	0.07	0.44
55	6.70	1.28	0.27	0.15	1.08	0.91	0.16	0.47	0.07	0.45
56	6.59	1.19	0.24	0.14	1.05	0.80	0.17	0.50	0.07	0.41
57	7.36	1.41	0.24	0.15	1.18	0.97	0.18	0.52	0.07	0.45
58	9.40	1.72	0.36	0.22	1.56	1.33	0.25	0.73	0.10	0.64
59										

59 60 0.09

0.51

0.14

0.24

HOLOCENE

1 2 3 4	Lu <0.003 mg/kg 0.09	Hf <0.02 mg/kg 0.55	Ta <0.02 mg/kg 0.25	W <0.002 mg/kg 1.21	TI <0.07 mg/kg 0.23	Pb <0.05 mg/kg 74.94	Bi <0.00 mg/k 0.38	
5 6	0.11	0.64	0.30	1.43	0.27	105.05	0.43	
7 8	0.13	0.79	0.38	2.12	0.34	188.26	0.54	
9 10	0.20	1.37	0.61	2.64	0.51	209.69	0.97	
11 12	0.17	0.87	0.41	3.19	0.41	291.42	0.81	
13 14	0.16	0.92	0.39	4.24	0.46	298.12	0.99	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	0.14 0.18 0.18 0.16 0.13 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.14 0.16	0.76 1.04 1.05 0.85 0.84 0.87 0.88 1.10 1.18 1.17 0.99 1.05 0.78 0.70 0.86 0.84	0.36 0.44 0.35 0.33 0.33 0.53 0.54 0.51 0.43 0.44 0.33 0.30 0.37 0.35	3.77 2.73 3.04 1.60 1.74 1.78 2.17 2.20 1.92 1.50 1.12 0.79 0.49 0.46 0.60 0.62	0.48 0.51 0.49 0.45 0.41 0.42 0.37 0.34 0.29 0.31 0.24 0.22 0.28 0.28	263.37 181.58 180.82 169.90 157.68 157.99 121.37 100.57 79.89 51.97 58.24 58.54 74.33 76.78 80.70 98.22	0.71 0.81 0.80 1.00 0.83 0.84 0.74 1.01 0.69 0.45 0.31 0.18 0.16 0.15 0.13 0.17	
41 42 43 44 45 46 48 49 50 51 52 53 54 55 56 57	0.13 0.11 0.09 0.07 0.07 0.06 0.07 0.05 0.06	0.49 0.49 0.48 0.46 0.40 0.37 0.26 0.31 0.29 0.30	0.19 0.24 0.20 0.19 0.17 0.14 0.10 0.13 0.12 0.12	0.32 0.35 0.35 0.25 0.20 0.16 0.19 0.18 0.18	0.13 0.18 0.12 0.15 0.12 0.14 0.07 0.08 0.08 0.09	8.33 6.44 5.09 4.50 6.16 4.26 3.82 4.71 4.75 6.04	0.03 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04	2.81 3.05 2.75 2.74 2.27 1.89 1.37 1.69 1.56 1.68

http://mc.manuscriptcentral.com/holocene

7.01

0.05

2.06

0.14

9.57

8.27

8.14

7.86

6.28

5.13

4.18

4.29

4.42

4.54

5.37

1.193

1.198

1.195

1.205

1.192

1.205

1.200

1.201

1.198

1.214

1.203

48	0.13	0.49	0.19	0.32	0.13	8.33	0.03	2.81	9.57	1.193
49	0.11	0.49	0.24	0.35	0.18	6.44	0.03	3.05	8.27	1.198
50	0.11	0.48	0.20	0.35	0.12	5.09	0.02	2.75	8.14	1.195
51	0.09	0.46	0.19	0.32	0.15	4.50	0.04	2.74	7.86	1.205
52	0.07	0.40	0.17	0.25	0.12	6.16	0.04	2.27	6.28	1.192
53	0.07	0.37	0.14	0.20	0.14	4.26	0.04	1.89	5.13	1.205
54	0.06	0.26	0.10	0.16	0.07	3.82	0.04	1.37	4.18	1.200
55	0.07	0.31	0.13	0.19	0.08	4.71	0.04	1.69	4.29	1.201
56	0.05	0.29	0.12	0.18	0.08	4.75	0.04	1.56	4.42	1.198
57	0.06	0.30	0.12	0.18	0.09	6.04	0.04	1.68	4.54	1.214
58	0.09	0.51	0.14	0.24	0.14	7.01	0.05	2.06	5.37	1.203
59										
60										
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 9 20 21 23 24 26 27 28 9 30 31 23 34 5 36 7 38 9 40 41 45 45 45 45 26 27 28 9 30 31 32 33 45 36 7 38 9 40 41 45 45 45 45 45 26 27 28 9 30 31 32 33 45 36 7 38 9 40 41 45 45 45 45 45 56 27 28 9 30 31 32 33 45 56 7 8 9 40 41 45 45 45 45 56 78 9 30 31 32 33 45 56 78 9 40 41 45 45 56 78 9 40 41 45 55 55 55 55 55 55 55 55 55	137Cs mBq/g 2.50 3.60 5.08 14.40 55.72 19.43 5.19 3.06 2.14 2.25 2.74 2.45									
---	---	--								
51 52 53 54 55 56 57 58 59		http://mc.manuscriptcentral.com/holocene								

1

HOLOCENE

1	Depth (erre)	Dinue	Duereue	Comio	Liquidenshe	Murriss	Pal
2		125	Quercus				Sal
3	5	120	20	24	0	1	1
4	8	76	48	16	0	1	0
5	11	54	85	24	1	2	0
6 7	14	32	66	12	1	1	0
1	1	35	69	14	3	1	1
8	20	109	5	88	0	0	0
9	26	63	34	52	0	1	ů 0
10	29	53	39	32	0	0	0
11	32	66	52	34	2	4	0
12	35	67	67	27	1	3	0
13	38	47	47	38	1	1	0
14	41	43	48	24	2	1	0
15	44	40	55	29	0	1	0
10	47	36	51	25	1	1	0
10	50	18	81	25	3	3	0
10	55	10	80	10	Ω	2	1
19							
20							
21							
22							
23							
24 25							
20							
20							
28							
29							
30							
31							
32							
33							
34							
35							
36							

	Ambrosia	Asteraceae	тст	Ericaceae	Cyperaceae	Typha	Fabaceae	olvgonacea	P03	PC3
	11	4	0	0	1	0	1	0	0	1
	12	11	1	1	1	3	0	0	0	4
	12	4	0	0	4	1	0	0	2	2
	26	10	0	0	1	3	1	0	1	1
	42	13	1	0	4	1	0	0	1	1
	55	10	0	0	5	1	0	0	0	0
	27	9	0	0	1	1	0	0	1	0
C	74	8	0	0	1	0	0	0	0	0
1	113	5	0	0	1	0	1	0	2	1
2	72	6	0	0	2	0	0	0	2	3
3	54	3	0	0	0	0	0	1	1	5
4	49	2	0	0	0	0	1	0	1	0
5	60	2	0	0	1	0	2	0	2	1
6	46	0	0	0	0	1	0	0	0	0
7	57	2	0	0	1	0	0	0	1	1
3	60	3	0	0	0	0	2	0	1	2
9	23	6	0	0	3	0	1	0	0	2
C	10	7	0	0	3	3	0	0	1	1
1	4	10	1	0	31	3	0	0	2	0
2	3	13	0	0	32	0	1	0	0	0
3	0	7	1	0	110	0	0	0	0	0
4	11	8	0	0	61	0	1	0	0	1
_	2	1	0	1	25	0	0	0	0	3
5	4	6	0	0	4	0	0	0	2	3
7	36	15	0	0	22	0	0	0	0	1
3										
9										
C										
1										
2										
3										
4										
5										
6										
7										

HOLOCENE

1							
2	PC0	SC0	SA0	Osmunda	Crumpled	Betula	Ulm
3	0	2	9	1	0	6	0
4	2	1	9	2	2	1	0
5	1	1	1	2	4	11	0
6	1	2	3	1	3	14	5
7	4	0	6	1	1	6	5
8	1	0	2	0	0	12	9
9	0	0	9	4	0	1	4
10	0	0	1	1	0	9	3
11	2	0	0	0	2	14	2
12	3	0	0	0	3	8	1
13	1	0	3	1	2	11	4
14	1	0	0	0	0	12	0
15	2	0	0	0	0	6	0
16	0	0	0	0	0	9	2
17	0	0	2	1	0	7	1
18	2	0	0	1	0	8	1
19	1	Λ	6	Λ	∩ _	11	3
20							
21							
22							
23							
24							
25							
26							
20							
28							
20							
20 79							
21							
20							
ວ∠ ວວ							
24							
34 25							
35							
36							

2	Plantago	O/C	Rosaceae	Coylus	Vitis	iriodendro	rthenociss	podium(nat	fagus	Juglans
3	0	0	0	0	0	0	0	0	0	1
4	0	0	0	0	2	0	0	0	0	7
5	1	0	0	0	0	0	0	0	1	0
6	0	1	0	0	0	0	0	1	3	1
7	2	0	0	0	0	0	0	0	0	1
8	2	1	0	1	0	0	0	0	5	5
9	0	1	0	0	0	2	0	0	0	0
10	0	0	0	0	0	0	0	0	4	7
11	2	1	0	0	0	1	0	0	3	0
12	6	0	0	0	0	0	0	0	6	4
13	1	0	1	0	0	0	0	0	3	5
14	5	0	0	0	0	0	2	0	11	2
15	2	0	0	0	0	0	0	0	3	0
16	2	0	0	1	0	0	0	0	5	2
17	1	0	0	0	0	0	0	0	2	3
18	1	0	0	0	1	0	0	0	2	0
19	0	3	0	0	0	0	0	0	11	0
20	0	1	0	0	0	0	0	0	2	0
21	0	0	0	1	0	0	0	0	3	0
22	0	0	0	0	0	0	0	0	7	0
23	0	2	0	0	0	0	0	0	1	2
24	0	1	0	0	0	0	1	0	3	0
(5	0	0	0	0	0	0	0	0	1	1
20	0	0	0	0	0	0	0	0	2	0
27	0	0	0	0	0	10	0	0	1	0
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										

HOLOCENE

1			• • •	~ .		-	<u>.</u>			
2	Picea	tilia	Artemesia	Solanaceae	IVA	Isuga	Olaceae	Euphorb	ables	waitheria
3	12	0	0	0	29	12	2	1	0	0
4	12	0	0	0	26	10	0	0	0	0
5	7	1	2	0	11	7	0	1	0	0
6	5	0	0	1	21	4	0	2	0	0
7	2	0	0	0	11	1	0	0	0	0
8	8	0	0	0	6	2	0	0	2	1
9	12	0	0	0	2	2	0	0	0	0
10	3	0	0	0	0	16	0	0	0	0
11	10	0	0	0	0	22	0	0	0	0
12	7	0	0	0	1	19	0	0	0	0
13	5	0	0	0	1	9	0	0	0	0
14	9	0	0	0	0	16	0	0	0	0
15	3	0	0	0	0	12	0	0	0	0
16	2	0	0	0	0	13	0	1	0	0
17	3	0	0	0	2	10	0	0	1	0
18	3	0	0	2	0	4	0	0	0	0
19	1	0	0	0	1	4	0	0	0	0
20	11	0	0	0	1	16	0	0	0	0
21	5	0	0	0	0	9	0	0	0	0
22	3	0	0	0	1	19	0	0	0	0
23	7	0	0	0	1	13	0	0	0	0
24	0	0	0	0	4	7	0	0	0	0
	4	0	0	0	0	3	0	0	0	0
20	3	0	0	0	0	3	0	0	0	0
∠₀ 27	1	0	0	0	0	4	0	0	0	0
28 29 30										

Depth (cm)
Elevation (m, MTL)
BP
Hs
JM
TiSL
тс
MF
AM
Rs
AI
MP
Interpretation
SWLI Prediction
195
u95
RSL (m)
RSL Error (m, 2σ)
AD2.5
AD10
AD50
AD90
AD97.5
Pelham Bay d13C
Pelham Bay Pollution
Pelham Bay Pollen

HOLOCENE

1	
2	Measured depth in core
3	Sample elevation with respect to modern mean tide level at Pelham Bay
4	Balticammina pseudomacrescens
5	Haplophragmoides spp.
6	Jadammina macrescens
7	Trochammina inflata + Siphotrochammina lobata
8	Tiphotrocha comprimata
9	Miliammina fusca
10	Arrenoparella mexicana
11	Reophax spp.
12	Ammoastuta inepta
13	Miliammina petila
14	Prior information provided to Bayesian transfer function based on bulk-sediment δ13C values. Intermediate indicates no additio
15	Standardized water level index predicted by Bayesian transfer function
16	Lower limit of the 95% confidence interval predicted by the Bayesian transfer function
17	Upper limit of the 95% confidence interval predicted by the Bayesian transfer function
18	Relative sea level with respect to present
19	Relative sea level uncertainty
20	Sample age (years AD), 2.5% confidence level
21	Sample age (years AD), 10% confidence level
22	Sample age (years AD), 50% confidence level
23	Sample age (years AD), 90% confidence level
24	Sample age (years AD), 97.5% confidence level
25	Downcore measurements of bulk-sediment δ13C, δ15N, %N, %C and C:N
26	Downcore elemental and isotopic data
27 28	Downcore pollen counts (raw abundance)
29	
30	
31	

nal prior