

Article (refereed) - postprint

Liu, Zhaoyang; Lu, Yonglong; Shi, Yajuan; Wang, Pei; Jones, Kevin; Sweetman, Andrew J.; Johnson, Andrew C.; Zhang, Meng; Zhou, Yunqiao; Lu, Xiaotian; Su, Chao; Sarvajayakesavaluc, Suriyanarayanan; Khan, Kifayatullah. 2017. **Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China.** *Environment International*, 106. 37-47. https://doi.org/10.1016/j.envint.2017.05.014

© 2017 Elsevier Ltd.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This version available http://nora.nerc.ac.uk/id/eprint/517761/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

NOTICE: this is the author's version of a work that was accepted for publication in *Environment International.* Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Environment International*, 106. 37-47.

https://doi.org/10.1016/j.envint.2017.05.014

www.elsevier.com/

Contact CEH NORA team at noraceh@ceh.ac.uk

1	Crop bioaccumulation and human exposure of					
2	perfluoroalkyl acids through multi-media					
3	transport from a mega fluorochemical industrial					
4	park, China					
5	Zhaoyang Liu ^{a,b} , Yonglong Lu ^{a,b,*} , Yajuan Shi ^a , Pei Wang ^a , Kevin Jones ^c , Andrew					
6	J. Sweetman ^{c,d} , Andrew C. Johnson ^d , Meng Zhang ^{ab} , Yunqiao Zhou ^{ab} , Xiaotian Lu					
7	^{ab} , Chao Su ^{ab} , Suriyanarayanan Sarvajayakesavaluc ^e , Kifayatullah Khan ^{af}					
8	^a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-					
9	Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China					
10	^b University of Chinese Academy of Sciences, Beijing 100049, China					
11	^c Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK					
12	^d Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford					
13	Wallingford, Oxon,OX 10 8BB, UK					
14	^e SCOPE (Scientific Committee on Problems of the Environment) Beijng Office, P.O.					
15	Box 2871,18 Shuangqing Road, Haidian District, Beijing 100085 China					
16	^f Department of Environmental and Conservation Sciences, University of Swat, Swat					
17	19130, Pakistan					
18	Corresponding author:					
19	*Yonglong Lu					
20	Tel: 86-10-62917903					
21	Fax: 86-10-62918177					
22	E-mail: <u>yllu@rcees.ac.cn</u>					

ABSTRACT: Significant quantities of perfluoroalkyl acids (PFAAs) are released to the 23 environment from fluorochemical manufacturing processes through wastewater 24 discharge and air emission in China, which may lead to human exposure and health 25 risks through crop bioaccumulation from PFAAs-contaminated soil and irrigation water. 26 27 This paper systematically studied the distribution and transport of PFAAs in agricultural soil, irrigation water and precipitation, followed by crop bioaccumulation and finally 28 human exposure of PFAAs within a 10 km radius around a mega-fluorochemical 29 industrial park (FIP). Hotspots of contamination by PFAAs were found near the FIP 30 and downstream of the effluent discharge point with the maximum concentrations of 31 641 ng/g in agricultural soil, 640 ng/g in wheat grain, 509 ng/g in maize grain and 4,862 32 ng/L in precipitation. As the distance increased from the FIP, PFAAs concentrations in 33 34 all media showed a sharp initial decrease followed by a moderate decline. Elevated PFAA concentrations in soil and grains were still present within a radius of 10 km of 35 the FIP. The soil contamination was associated with the presence of PFAAs in irrigation 36 water and precipitation, and perfluorooctanoic acid (PFOA) was the dominant PFAA 37 component in soil. However, due to bioaccumulation preference, short-chain 38 perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), 39 became the major PFAA contaminants in grains of wheat and maize. The 40 bioaccumulation factors (BAFs) for both grains showed a decrease with increasing 41 chain length of PFAAs (approximately 0.5 log decrease per CF₂ group). Compared to 42 maize grain, wheat grain showed higher BAFs, possibly related to its higher protein 43 content. The PFCA (C4-C8) concentrations (on a log₁₀ basis) in agricultural soil and 44

45	grain were found to show a linear positive correlation. Local human exposure of PFOA
46	via the consumption of contaminated grains represents a health risk for local residents,
47	especially for toddlers and children.
48	KEYWORDS: PFAAs; agricultural soil; precipitation; crop bioaccumulation; human
49	exposure
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	

62 **1. Introduction**

Perfluoroalkyl acids (PFAAs) have been widely used in industrial processes and 63 household products, including performance chemicals, lubricants, pesticides, 64 surfactants, and surface protectors, owing to their excellent chemical stability, high 65 surface activity, with water and oil repellence (Giesy and Kannan, 2001; 2002). 66 However, their persistence, bioaccumulation, potential toxicity, and long-range 67 transport make them contaminants of emerging concern (Lescord et al., 2015; Liu et al., 68 2015; Wang et al., 2015b). As a result of their widespread use and resulting emissions, 69 PFAAs have been detected in numerous environmental compartments, such as air 70 (Taniyasu et al., 2013), water (Wang et al., 2012), soil (Meng et al., 2015), sediment 71 (Yeung et al., 2013), wildlife (Persson et al., 2013), plants (Vestergren et al., 2012) and 72 even human tissues (Kannan et al., 2004). Furthermore, due to their mobility in both 73 surface waters and the atmosphere, these two environmental media have become 74 primary carriers of PFAA transportation with soil considered as one of the major sinks 75 (Yamashita et al., 2008; Kwok et al., 2010; Liu et al., 2015). 76

Manufacturing and use facilities often lead to pollution hotspots of PFAAs in surrounding environments (Xiao et al., 2012; Xie et al., 2013; Liu et al., 2017). Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most frequently detected PFAAs in the environment (Wang et al., 2015a). The discharge of wastes from a manufacturing facility in Alabama, in the USA, has led to high levels of PFOA (598 ng/L) and PFOS (220 ng/L) in the nearby Tennessee River (Hansen et al., 2002; Newton et al., 2017). Affected by a former manufacturing facility in

84	Minneapolis-St. Paul, in the USA, PFAA levels in soil are still as high as 126 ng/g for
85	PFOA and 28.2 ng/g for PFOS (Xiao et al., 2015). PFAAs have been detected in
86	precipitation in regions associated with PFAA-related industries with reports of 152
87	ng/L in Weifang and 229 ng/L in Tianjin, China (Zhao et al., 2013b; Shan et al., 2015).
88	However, to date, most studies about PFAAs pollution from the manufacturing facilities
89	only focused on one or two media, mainly water body. A systematic research on
90	distribution and transport of PFAAs in multi-meida including water, soil, precipitation
91	and crops around a PFAA-related facility has yet to be carried out.
92	A human health concern may arise from the accumulation of PFAAs in food crops
93	(Zhang et al., 2017). Previous studies have demonstrated that PFAAs can be taken up
94	from contaminated soils, translocated and stored in different plant organs (Stahl et al.,
95	2009; Lechner and Knapp, 2011). Several experimental plots planted with maize, wheat
96	and vegetables in PFAA-spiked or bio-solids amended soils have indicated a
97	bioaccumulation potential of PFAAs. The bioaccumulation potential has been reported
98	to vary with PFAA concentrations in soil, functional group and chain length, soil
99	properties and plant species (Yoo et al., 2011; Blaine et al., 2013; Blaine et al., 2014a;
100	Wen et al., 2014; Krippner et al., 2015). However, to date, almost all studies on the
101	bioaccumulation of PFAAs in plants have been carried out in controlled plots or nutrient
102	solution experiments, which may not accurately reflect the weathered field conditions.
103	Risk assessments have confirmed that ingestion via diet is the most likely mechanism
104	for significant human exposure to PFAAs (D'Hollander et al., 2010; Vestergren et al.,
105	2012). This could occur from the consumption of crops grown in PFAA contaminated

soils or irrigated with contaminated water and precipitation (Blaine et al., 2014a; Wen
et al., 2014). In addition, the PFAAs contaminated crops can be used as fodder fed to
animals raised as food for humans and finally lead to human exposure of PFAAs
(Domingo, 2012; Kowalczyk et al., 2013).

Restriction agreements on the production of PFAAs in Europe and America, such as 110 the 2010/2015 PFOA Stewardship Program and Stockholm Convention, have led to a 111 large number of PFAA-related industries transferred to developing countries including 112 China to meet the continuing demands (UNEP, 2009; USEPA, 2013). One such site is 113 114 the mega-fluorochemical industrial park (FIP) studied here, which is a production center for PFAAs and fluoropolymers with an annual capacity of several hundred 115 thousand tons (Wang et al., 2016). PFAAs are usually used as processing aids during 116 production of fluoropolymers in the FIP, therefore PFAAs can be released to the 117 environment during direct production of PFAAs and fluoropolymers manufacturing 118 (Wang et al., 2014b). According to our investigation, PFAAs used in the FIP are 119 manufactured based on electrochemical fluorination, which was previously used by 120 major global producers. The linear PFAAs account for the vast majority of isomer 121 profiles of PFAAs, while the remaining is various branched isomers (Buck et al., 2011). 122 In this study, only linear PFAAs, the predominated isomer, were considered to analyze 123 the contamination and transport of PFAAs around the FIP. The FIP is located in an area 124 with large tracts of agricultural lands and scattered villages. Within a radius of 10km 125 from the FIP, a previous study has investigated the distribution and transport of PFAAs 126 in surface and ground water with the highest reported concentrations of 1,860 µg/L and 127

273 µg/L respectively (Liu et al., 2016). However, to systematically investigate multi-128 media contamination and transport of PFAAs from the FIP, PFAAs in other major media 129 including soil, precipitation and crops needs to be studied. These results can then be 130 associated with PFAAs present in local surface and ground water. Furthermore, the 131 assessment of bioaccumulation of PFAAs in crops under weathered field conditions is 132 of vital importance to produce a thorough risk assessment. This study provides an 133 assessment of the multi-media transport of PFAAs from the FIP to soil followed by crop 134 accumulation and consumption by local residents. 135

The objectives of this study were, therefore, to examine the contamination and risk from PFAAs around the FIP with particular emphasis on (i) geographic contamination patterns and decline processes for PFAAs in different environmental compartments, (ii) identification of transport pathways of PFAAs, (iii) assessment of bioaccumulation in locally produced wheat and maize, and (iv) conducting a human exposure estimation of PFAAs via consumption of local contaminated grains.

- 142 **2. Materials and methods**
- 143 2.1. Sampling design and collection

Fig.1 The map of the sampling locations for crop grain (wheat and maize), agricultural
soil, and rainfall collection around the FIP in Huantai County, Shandong Province,
China.

The study area surrounding the FIP is a major grain-producing region with large tracts 148 of agricultural lands and scattered villages, where wheat and maize provide the local 149 150 staple food source. With the FIP in Huantai County at the center, samples were collected in central areas (C) within a radius of 1km and in eight directions (East, E; Southeast, 151 SE; South, S; Southwest, SW; West, W; Northwest, NW; North, N; Northeast, NE) and 152 this was repeated with increasing distances from the site of 2 km, 4 km, 7km, and 10 153 km. The 44 sample locations required the collection of mature wheat and maize grain 154 and corresponding soil samples (Fig. 1). In addition, some agricultural soil samples in 155

the transverse direction of the Dongzhulong River were also collected to study the 156 influence of the contaminated river on PFAAs present in the soil. At each sampling site, 157 wheat grains from 20 plants were randomly sampled from the center and four corners 158 of an area of $10m \times 10m$, and mixed into one composite sample in June 2014. The 159 corresponding surface soils (top 0-20cm) around each plant were collected at the same 160 time with a stainless steel trowel that had been rinsed with methanol and mixed into 161 one composite sample. Maize grain and their corresponding soils were also sampled in 162 the same way in October 2014. The collected grain samples were wrapped in aluminum 163 164 foil and stored in clean paper bags. Large stones and roots were removed from the soil samples with methanol rinsed tweezers before being sealed in polypropylene (PP) bags. 165 According to the local wind frequency data in the recent twenty years, the primary 166 167 downwind directions are west and northeast, followed by southeast while the minor downwind direction is northwest, and the calm wind frequency is also at high level 168 (data from the Meteorological Bureau in Huantai County, Shandong Province, China). 169 Based on the above information, 20 rainwater samples from 6 precipitation events were 170 collected in pre-cleaned PP bottles close to the FIP and with a radius of 5km in the 171 northeast, southeast, west and northwest from October to November in 2014. Rainwater 172 parameters, including pH, dissolved oxygen, conductance and salinity, were determined 173 in situ using a HQd Portable and Benchtop Meter Configurator (HACH Company, USA) 174 (Table S1). All collected samples including grain, soil and rainwater were stored in an 175 icebox during transport. The site information and ambient description are presented in 176 Table S2. 177

After arriving at the laboratory, grain samples were washed carefully with Milli-Q 178 water followed by distilled water before freeze-drying at a temperature of -50 $\,^{\circ}C$ for 179 48 h in a lyophilizer. A sample of 100 g was then ground and homogenized in a knife 180 mill Grindomix GM 200 and then stored separately at -20°C before analysis. To avoid 181 cross-contamination during grinding, after each use, we cleared out the plant residue 182 carefully, and then rinsed the mill with 5ml Milli-Q water for four times followed by 183 5ml 100% methanol for four times. Some previous detected wheat and maize grains 184 with extremely low concentrations of PFAAs were used as procedure blanks to examine 185 if cross-contamination occurred during grinding. The soil samples were transferred to 186 PP boxes, dried in air, homogenized with a porcelain mortar and pestle, sieved with a 2 187 mm mesh, and stored in 250 mL PP bottles at room temperature until extraction. The 188 189 total carbon (TC) and total nitrogen (TN) contents of the soil samples were determined using an Elemental analyzer (Table S3). The soil organic matter was measured using 190 the Walkley-Black procedure (Nelson and Sommers, 1982) while pH was determined 191 at a soil to 0.01 M CaCl₂ solution ratio of 1:5 (w/v) (Table S3). Rainwater samples were 192 allowed to stand for 24 h to settle any sediment and then 400 mL of supernatant was 193 taken from each sample for analysis. All these rainwater samples were extracted within 194 1 week after arrival in the lab, and the rest were stored at -20 °C for long-term reference. 195

196 2.2 Standards and Reagents

12 PFAAs in all samples were analyzed, including perfluorobutanoic acid (PFBA),
perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorobutane

sulfonate (PFBS), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), 199 perfluorohexane sulfonate (PFHxS), perfluorononanoic (PFNA), 200 acid perfluorodecanoic sulfonate 201 acid (PFDA), perfluorooctane (PFOS), perfluoroundecanoate acid (PFUdA), and perfluorododecanoic acid (PFDoA) and 9 202 mass-labeled PFAAs, containing ¹³C₄PFBA, ¹³C₄PFHxA, ¹³C₄PFOA, ¹³C₄PFNA, 203 ¹³C₄PFDA, ¹³C₄PFUdA, ¹³C₂PFDoA, ¹⁸O₂PFHxS and ¹³C₄PFOS were purchased from 204 Wellington Laboratories with purities of >98% (Guelph, Ontario, Canada). More 205 detailed descriptions on standards and reagents are available in the Supporting 206 207 Information.

208 *2.3 Extraction and cleanup*

The rainwater, soil and plant samples were extracted mainly by solid phase extraction 209 (SPE) using methods with minor modifications described previously by Tanivasu et al. 210 (2005), Loi et al. (2011) and Felizeter et al. (2012) (Supporting Information). Individual 211 PFAAs were separated and quantified using Agilent 1290 Infinity HPLC System 212 equipped with an Agilent 6460 Triple Quadrupole MS/MS System (Agilent 213 Technologies, Palo Alto, CA, USA) in the negative electrospray ionization (ESI) mode. 214 The detailed descriptions of extraction and instrumental analysis are available in the 215 216 Supporting Information and Table S4.

217 2.4 Quality Assurance and Quality Control (QA/QC)

In order to avoid cross contamination during field sampling, the outside of the bottleswere washed with Milli-Q water after the samples were taken, wiped with a clean paper

towel and then kept in three-layers of sealed polyethylene bags. The soil samples were 220 kept in three-layers of sealed PP bags while grain samples were kept in three-layers of 221 sealed paper bags. Field blanks, transport blanks, procedure blanks and solvent blanks 222 were carried out with every sample set to examine if any external contamination 223 occurred during the sampling/extraction and analytical stages. The internal standard 224 calibration curve consisted of a concentration gradient (0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 225 and 100 ng/mL) of native standards, spiked with a 5 ng internal standard. These were 226 solvent based standard curves and not matrix matched extracted calibration curves. This 227 was prepared for quantification of the individual PFAA with coefficients (r^2) for all 228 target analytes exceeding 0.99. The limit of detection (LOD) and limit of quantification 229 (LOQ) were defined as the peak of analyte that needed to yield a signal-to-noise (S/N) 230 231 ratio of 3:1 and 10:1, respectively. When the concentrations of PFAAs in any extract that was greater than 100 ng/mL, the volume or amount of the samples would be 232 reduced and the samples would be extracted again to fit the range of the calibration 233 series. The different matrices were spiked with a standard solution and then analyzed 234 to determine the recovery of each target PFAA. The matrix spike recoveries (MSRs) 235 ranged from 79% to 109% for rainwater, 72% to 93% for soil and 66% to 102% for 236 plant material. Supporting Information and Table S5 describe detailed QA/QC 237 information. 238

239 2.5 Statistical and spatial analyses

240 Statistical analysis was performed using SPSS Statistics V22.0 (SPSS Inc. Quarry Bay,

LOQ, and those less than the LOD were assigned to values of $LOD/\sqrt{2}$ (Hornung and Reed, 1990; Bao et al., 2011; Wang et al., 2014). Spatial distributions of PFAAs were analyzed using the symbology tools including features, charts and multiple attributes in the ArcMap module of ArcGIS V10.2 software (ESRI, Redland, CA, USA).

HK). During the analysis, concentrations less than the LOQ were set to one-half of the

246 2.6 Bioaccumulation Metrics and Daily Intake Estimation

241

Soil and grain samples in the study were dried before extraction and analysis of PFAAs, 247 therefore all concentration values of PFAAs in soil and grain are based on dry weights. 248 The bioaccumulation factors (BAFs), defined as ratios between the chemical 249 concentration determined on a dry weight basis in the grain and corresponding soil, 250 were calculated by Eq. (1) (Blaine et al., 2013). Due to the low volatility of PFAAs in 251 the environment, PFAAs entry into the stomata from the air was considered negligible 252 and all these substances in grain were assumed to be derived from uptake through the 253 roots. 254

255
$$BAF = \frac{PFAA \text{ concentration in grain } (ng/g \, dw)}{PFAA \text{ concentration in soil } (ng/g \, dw)}$$
 Eq. (1)

256
$$EDI = \frac{Daily \ consumption \ (g/d \ dw) \times PFAA \ concentration \ in \ grain \ (ng/g \ dw)}{Body \ weight \ (kg)}$$
Eq. (2)

The estimated daily intake (EDI, ng/kg·bw/day) of PFAAs through the consumption of wheat and maize can be calculated based on averaging the intake dose by body weight by Eq. (2). Further details are contained in Table S6. Considering that body weights and consumption rates vary by age, the EDIs were estimated for four age groups: toddlers (2-5 years), children (6-10 years), teenagers (11-17 years), and adults (\geq 18 years) (Zhai, 2008; Zhang et al., 2010). As for the EDI calculation for residents with different radius from the FIP, the average concentrations of PFAAs in wheat and maize grain collected in that radius were used.

265 **3. Results and discussion**

266 3.1 Multi-media distribution and transport of PFAAs around the FIP

267 3.1.1 Occurrence and distribution of PFAAs in agricultural soil

Fig. 2 The spatial distribution of Σ PFAAs and relative contribution of individual PFAA in agricultural soil with the increase in distance from the FIP [(a) and (c)]; the decline curve of Σ PFAAs in agricultural soil and groundwater with distance from the polluted river (b).

Note: CR represents contaminated riverfront along the wastewater river, the same as
below; due to the large variation of PFAA concentrations in soil, dual scales with two
different colored circles were used in each figure (a, b) to show the spatial distribution
of PFAAs.

The concentration of the sum of PFAAs (Σ PFAAs) ranged from 1.86 ng/g to 641 ng/g 277 in agricultural soils (Table S7-S8). Of the PFAAs, PFOA was the dominant component 278 279 with an average contribution of 86% of the Σ PFAAs, followed by C4-C7 short-chain perfluoroalkyl carboxylic acids (PFCAs) including PFBA (4.2%), PFPeA (2.7%), 280 PFHxA (2.5%) and PFHpA (1.2%). Long-chain PFCAs (C9-C12) and perfluoroalkane 281 sulfonic acids (PFSAs) including PFBS, PFHxS and PFOS were only observed at low 282 concentrations or below the LOD, which is most likely to be related to their limited 283 production and application of these components in this region (Wang et al., 2014a; 284 Wang et al., 2016). In most sampling locations, the concentration and composition of 285 PFAAs in wheat soil showed no significant differences from those in maize soil 286 (Independent samples T-test, p>0.05; n=44). To the best of our knowledge, the 287 maximum PFOA concentration in agricultural soil (623 ng/g) reported in this study is 288 the highest ever reported, which even exceeded soil receiving industrially contaminated 289

bio-solids as a soil amendment at 320 ng/g (Washington et al., 2010). Previous studies
of the area have confirmed the FIP as the only point source in the area, which included
not only PFCA production but also fluoropolymer manufacturing and processing (Liu
et al., 2016). Global source inventories demonstrated that releases of PFCAs are largely
attributed to these industrial processes (Wang et al., 2014b). Furthermore, the increasing
concentrations of PFAAs in soil with proximity to the FIP also supported it as the
principal source.

The contamination hotspots of PFAAs in soil were found near the FIP and the 297 Dongzhulong River, which receives wastewater from the FIP. As the distance increased 298 from these sources, the levels of PFAAs in soil decreased with an exponential trend, 299 showing a sharp initial decrease followed by a gentle decline. The average 300 concentrations of Σ PFAAs in wheat soil within 1km from the FIP was up to 88.7 ng/g, 301 then sharply decreased by about 81% to 16.8 ng/g at 2km and further fell by 13.4% to 302 4.94 ng/g within the distance of 2-10km; while those in maize soil within 1km were up 303 to 91 ng/g, then reduced by 79% to 19 ng/g at 2km and then slowly decreased by 16% 304 to 4.41 ng/g within the distance of 2-10km (Fig. 2a). For soil along the lateral direction 305 from the Dongzhulong River, the concentration of Σ PFAAs also rapidly dropped by 306 95% (from 239 ng/g to 11.9 ng/g) within a distance of 200-750m, then declined by 1.3% 307 to 8.79 ng/g within a distance of 750-3000m (Fig. 2b). Influenced by the presence of 308 the FIP, even the lowest concentrations of \sum PFAAs detected at a distance of 10km were 309 still above most reported soil concentrations in China (reviewed in Table S9). With the 310 increasing distance from the FIP, the shorter-chained PFAAs (C4-C6) increased in 311

proportion to PFOA (C8) in soil, due to the potential for enhanced volatility and 312 mobility of shorter-chained PFAAs in the environment (Ahrens et al., 2009; Ferrey et 313 al., 2009). PFAAs in agricultural soil may be associated with residues in local surface 314 and ground waters, which also showed a similar decline in concentration and 315 compositional change (Liu et al., 2016). The confluence of the effluent from the FIP 316 with the Xiaoqing River resulted in PFAAs concentrations that increased by 2-3 orders 317 of magnitude, while the concentrations in agricultural soil irrigated by the river also 318 increased by about 12 times. Compared to those in river water for irrigation, PFOA and 319 other longer-chained PFCAs in soil accounted for higher proportions of the total PFAAs 320 (Fig. 3d). The stronger adsorption to soil and less mobility for long-chained PFAAs 321 contributed to the soil accumulation of these chemicals from irrigation, dry and wet 322 323 deposition. In addition, it was noted that higher concentrations of PFAAs in the agricultural soil were also found primarily on the downwind (i.e. west and northeast) 324 side of the FIP, implying another likely contamination pathway through atmospheric 325 emission, transport and local deposition (Davis et al., 2007) (Fig. S1). Moreover, soil 326 erosion caused by wind is also considered as an important factor in the spatial trend of 327 PFAAs, showing movement downwind. 328

329 *3.1.2 Pollution association of PFAAs in irrigation water and agricultural soil*

Fig. 3 The relationship (a, b, c) between PFAAs, PFCAs and PFOA found in agricultural
soil and corresponding irrigation water and the different profiles (d) of PFAAs in
agricultural soil and irrigation water.

Note: C_{irrigation} represents concentrations of PFAAs in irrigation water; C_{soil} represents
 concentrations of PFAAs in agricultural soil.

The contamination of PFAAs in local surface and ground water, which are mainly used as irrigation water for agricultural lands, has been investigated in a previous study (Liu et al., 2016). Combining these results, the contamination associated PFAAs in agricultural soils and irrigation water will be discussed further. For Σ PFAAs and several main PFAA components, there was a significant linear positive correlation between the logarithm of concentrations in agricultural soils and corresponding

irrigation water (Fig. 3a, 3b and 3c). Thus, contaminated irrigation water was 342 considered as an important input of PFAAs in agricultural soils. However, it is worth 343 mentioning that the increases for longer-chain PFAAs yielded steeper slopes compared 344 to those for shorter-chain homologues (Fig. 3b, 3c; Table S10). This phenomenon can 345 be explained by stronger adsorption to soil by longer-chain PFAAs (Higgins and Luthy, 346 2006). With higher aqueous solubility and lower adsorption affinity (Ahrens et al., 2009; 347 Ferrey et al., 2009), shorter-chained PFAAs present in irrigation water are more likely 348 to leach through the soil profile compared to the more hydrophobic components. 349 350 Therefore, short-chain PFAAs were present at lower proportions in agricultural soils than those in corresponding irrigation water (Fig. 3d). 351

352 *3.1.3 PFAAs levels and composition in precipitation*

353

Fig. 4 The concentrations (a) and composition (b) of PFAAs in rainwater collected nearthe FIP.

As the most effective atmospheric removal mechanism for PFAAs (Taniyasu et al., 2013), rainwater was collected to examine the importance of local precipitation as a source of soil contamination near the FIP. High levels of PFAAs were found in

359	rainwater within 5km from the FIP with the concentrations of 60 to 4,862 ng/L (Fig. 4a;
360	Table S11). PFOA was predominant with the average relative contribution of 76%,
361	followed by PFBA (8.9%), PFHpA (6.6%), PFHxA (4.1%) and PFPeA (4.1%) (Fig. 4b).
362	The maximum concentration of PFOA (2,752 ng/L) found here was the highest ever
363	reported in precipitation, which far exceeded high values previously reported such as
364	in Tianjin (107 ng/L) and Dalian (65.8 ng/L) of China, in Yokohama (95.3 ng/L) of
365	Japan, in Albany (23.9 ng/L) of the USA and in the northern regions (45.5 ng/L) of
366	Germany (reviewed in Table S12). These contamination levels of PFAAs in rainwater
367	reported in this study were comparable to those in house dust (73-13,500 ng/g) and
368	street dust (5-9,495 ng/g) around this FIP, which were likely from dry deposition (Su et
369	al., 2016). High levels of PFAAs in both rainwater and dust around the FIP confirmed
370	it as the important source of local air emission of PFAAs. The airborne PFAAs released
371	from these manufacturing and use facilities were found to be mostly combined with
372	particulate matters (Barton et al., 2006; Harada et al., 2006; Shan et al., 2015), which
373	have limited long-ranged transport potential and are easily removed by precipitation
374	(McMurdo et al., 2008; Mader, 2009).

The levels of PFAAs in rainwater sharply reduced with distance from the FIP, especially for short-chained PFCAs and PFOA. The highest levels of PFAAs associated with precipitation occurred immediately around the FIP with an average concentration of 2,265 ng/L, but rapidly decreased by 45%-93% within only 5km. Other high concentrations of PFAAs in rainwater were found in the northeast (average 1,241 ng/L) and west (average 513 ng/L) of the FIP, followed by those in southeast (average 315

ng/L) and northwest (average 161 ng/L). This would be expected on the basis of the
prevailing wind in the area (Barton et al., 2006). PFAAs levels in house and street dust
around the FIP mainly from dry deposition followed a similar trend (Su et al., 2016).

- 384 3.2 Crop grain contamination and bioaccumulation of PFAAs around the FIP
- 385 *3.2.1 Occurrence of PFAAs in wheat and maize grain around the FIP*

386

Fig. 5 Spatial distribution (a, b), decline process (c), and profiles (d) of PFAAs in wheat
and maize grain with the increasing distance from the FIP.

Note: Due to the large variation of PFAA concentrations in grain, dual scales with two different colored circles were used in each figure (a, b) to show the spatial distribution of PFAAs.

The concentrations of Σ PFAAs ranged from 1.13 ng/g to 480 ng/g in wheat grain and 392 from 0.7 ng/g to 58.8 ng/g in maize grain within 10 km of the FIP (Table S13-S14). 393 Unlike irrigation water, agricultural soil and precipitation, short-chained PFCAs (C4-394 C7) were the major PFAA components in wheat and maize grains, indicating there must 395 be a bioaccumulation preference for these homologues (Krippner et al., 2014; Wen et 396 al., 2014). In the case of the grain, PFBA was the dominant form, representing, on 397 average, 61% in wheat grain and 46% in maize grain of the total PFAAs (Fig. 5d). 398 Long-chained PFCAs (C9-C12) and PFSAs were only found in trace amounts or below 399 the LOD. Compared to wheat grain, maize grain showed stronger bioaccumulation 400 tendency for PFHxA and PFHpA. 401

402 PFAAs concentrations in grains also showed a sharp decrease in a short distance from the FIP, followed by a gentle decline. The average concentrations of Σ PFAAs in wheat 403 grain within 1km from the FIP were as high as 161 ng/g, rapidly reducing by 89% to 17 404 ng/g at 2km followed by slower decrease by 6.9% to 5.94 ng/g within the distance of 2-405 10 km; while residues in maize grain within 1km were up to 76 ng/g, although falling 406 sharply by 94% to 4.34 ng/g at 2km with a further slower decline by 3% to 2.09 ng/g 407 408 within the distance of 2-10 km (Fig. 5c). Contamination hotspots of Σ PFAAs present in grains were also associated with plants grown along the banks of the heavily polluted 409

Dongzhulong River (Liu et al., 2016), with average concentrations of 223 ng/g for wheat grain and 10.5 ng/g for maize grain. Within the study area, Σ PFAAs levels in wheat grain were typically 11.3 fold higher than those in maize grain (Fig. 5a, 5b), which may be attributed to stronger PFAA bioaccumulation potential for wheat grain (Wen et al., 2014; Krippner et al., 2015).

416

Fig. 6 BAFs for several major PFCAs (a), correlations between log BAF and carbon
chain length (b, c), and bioaccumulation equations of PFAAs (d-i).

419

420	Soil properties such as organic matter content (20.2 \pm 3.79 g/kg) and pH (7.84 \pm 0.26)
421	across the study area were relatively similar (including both wheat and maize growing
422	areas) (Table S3). The bioaccumulation factors (BAF) for \sum PFAAs in wheat grain were
423	typically 11.6 times higher than those in maize grain (Fig. 6a). The uptake and migration
424	of PFAAs in plant mainly depended on transpiration stream (Blaine et al., 2013; Blaine
425	et al., 2014b). The transpiration coefficients for wheat (450-600) are generally higher
426	than those for maize (250-300), which may contribute to higher BAFs for PFAAs in
427	wheat grain (IGSNRR, 2006). In addition, the phenomenon may also be related to the
428	higher protein contents in wheat gain (14.1%) than those in maize grain (10.6%) (Zhang
429	1997; Wang et al., 2003). Previous studies have found the high affinity of PFAAs to
430	proteins and further confirmed the effect of protein content on the accumulation of
431	PFAAs in plants (Bischel et al., 2011; Wen et al., 2016; Xia et al., 2013).

In the wheat and maize grain, total concentrations of shorter-chained PFCAs (C4-C7) 432 were about 20-fold and 33-fold larger, respectively, than those of PFOA, despite the 433 434 soil concentrations of PFOA being more than an average of 19 times that of the shorterchained PFCA concentrations. The significant contrast of PFAA profiles in grain and 435 soil were mainly caused by crop bioaccumulation preference for short-chain PFAAs. In 436 437 fact, the BAF for wheat and maize grain showed a decreasing tendency with increasing chain length. PFBA (C4) showed the highest BAFs averaging 33.1 for wheat grain and 438 2.5 for maize grain while PFOA showed the lowest values averaging 0.12 for wheat 439 grain and 0.02 for maize grain (Fig. 6a). The log₁₀ BAFs for wheat and maize grain 440 were correlated with carbon chain length for several major PFCAs. The BAFs in both 441

grains decreased by approximately 0.5 log units per CF₂ group for these PFCAs (Fig. 442 6b, 6c). Similar results are also reported in vegetables, and the BAFs of PFAAs for 443 lettuce, tomato and pea in greenhouse decrease approximately 0.3, 0.5 and 0.6 log units 444 per CF₂ group (Blaine et al., 2013; Blaine et al., 2014b). The higher BAFs for shorter-445 chain PFAAs may be related to their lower sorption by soil particles and smaller 446 molecular size (Higgins and Luthy, 2006). This would have the effect of greater 447 availability to the plants as well as to a higher mobility and translocation rate within the 448 plants (Felizeter et al., 2012; Felizeter et al., 2014; Krippner et al., 2014). 449

The uptake and storage of PFAAs in wheat and maize grain unsurprisingly had a link 450 with agricultural soil concentrations. For Σ PFAAs and several main PFAA 451 components, the logarithms of concentrations in agricultural soil and grain showed 452 significant linear positive correlations (p<0.01) (Fig. 6). However, the slopes of soil-453 grain equations, which were closely associated with BAF, also showed a declining trend 454 with the increase of carbon chain length (Table S15). When soil concentration increased, 455 a steeper slope for short-chain PFCAs would result in a greater concentration increase 456 in grain. This can explain the proportional increase of short-chain homologues in grains 457 with proximity to the FIP. Moreover, higher slopes in soil-wheat equations than soil-458 459 maize equations further confirmed stronger bioaccumulation potential for wheat grain.

460 3.3 Human exposure estimation of PFAAs for local residents

461 Some high concentrations of PFOA in agricultural soil near the FIP and along the462 heavily polluted Dongzhulong River exceeded the predicted non-effect concentration

(PNEC) of 160 ng/g (Amundsen et al., 2008), indicating a potential ecological risk to 463 soil organisms. However, such soil levels were still much lower than the residential soil 464 screening level (16,000 ng/g for PFOA) recommended by the USEPA, indicating that 465 health risk via ingestion, inhalation and dermal exposure of contaminated soil would be 466 very low (USEPA, 2014). However, an exposure pathway for PFAAs of greater concern 467 for human health would be through the diet (Vestergren et al., 2012). In the study area, 468 wheat and maize account for 73% and 7%, respectively, of staple food, and most local 469 residents consume their grains from their own cereal crops (Bureau of Statistics of 470 471 Shandong Province, China, 2015). The EDIs of PFAAs for different age groups via consumption of contaminated wheat and maize grain were calculated to assess health 472 risks to local residents (Table S16-S17). 473

For local residents, the EDIs of PFAAs through wheat consumption was about 83 474 times higher than that through maize consumption (Table S16). The EDIs of major 475 PFAA components via consumption of wheat and maize varied, depending on the 476 distance and the age group of the residents living around the FIP (Table S17). Consistent 477 with PFAAs distribution in grains, the highest EDIs of PFAAs for the different age 478 groups occurred within 1km from the FIP and along the river receiving the wastewater 479 discharge. For residents within 1 km from the FIP, the average exposure of Σ PFAAs via 480 consumption of these grains were estimated to be 1,219 ng/kg·bw/day for toddlers and 481 1,228 ng/kg·bw/day for children, followed by teenagers (934 ng/kg·bw/day) and adults 482 (828 ng/kg·bw/day) (Table S17). Similar high values of EDI were also found to be 998 483 ng/kg·bw/day for adults near a PFAAs production facility in Hubei Province, China, 484

which further confirmed that PFAAs-related facilities were important sources of high 485 human exposure of PFAAs for nearby residents (Zhang et al., 2017). As expected, for 486 major components and Σ PFAAs in all sampling locations of this study, the EDI for 487 toddlers and children were also comparable, but both higher than those for teenagers 488 and adults. The higher food consumption per body weight for toddlers and children 489 compared to teenagers and adults can explain this difference (Klenow et al., 2013). 490 Similar results were also found in China from consumption of meat and eggs with 491 PFOA EDIs of 15.9 to 19.7 ng/kg·bw/day for toddlers and 7.75 to 10.5 ng/kg·bw/day 492 for adults (Zhang et al., 2010), and in Belgium through multiple foodstuffs with PFOA 493 EDIs ranging from 0.28 to 0.39 ng/kg·bw/day for children and 0.19 to 0.23 494 ng/kg·bw/day for adults (Klenow et al., 2013). 495

As far as we are aware, the tolerable daily intake (TDI) values are only available for 496 PFOA. Compared to current recommended TDI values of 100 to 1,500 ng/kg·bw/day 497 for PFOA proposed by several countries (Fig.7), the EDI of PFOA via consumption of 498 wheat and maize alone for residents in the study area are less than these thresholds. 499 However, it is noteworthy that the EDI values of PFOA via wheat and maize 500 consumption for toddlers (72.3 ng/kg·bw/day), children (72.8 ng/kg·bw/day), teenagers 501 (55.4 ng/kg·bw/day), adults (49.2 ng/kg·bw/day) within 1km from the FIP were close 502 to the TDI value of 100 ng/kg·bw/day recommended by the Federal Environment 503 Agency, Germany (TWK, 2006) (Fig. 7). Besides consumption of wheat and maize 504 grain, other exposure pathways exist. Groundwater is used as a source of local drinking 505 water, and at this location PFOA levels in groundwater within a radius of 1km from the 506

FIP were up to 1-4 orders of magnitude higher than the Health Advisory (HA, 70 ng/L) 507 recommended by the USEPA (USEPA, 2016; Liu et al., 2016). Within 2km from the 508 FIP, the EDIs of PFOA via dust ingestion and dermal absorption has also been estimated 509 to be 26 ng/kg·bw/day for toddlers, 10.5 ng/kg·bw/day for children, 5.52 ng/kg·bw/day 510 for teenagers and 4.42 ng/kg·bw/day for adults (Su et al., 2016). Moreover, 511 consumption of potentially contaminated vegetables and fruits, also grown in the area, 512 although not studied here, may also contribute to the dietary load. When combined with 513 these exposure pathways, the EDIs of PFOA for residents, especially toddlers and 514 515 children, within 1km from the FIP are likely to exceed the TDI value of 100 ng/kg·bw/day from Germany, indicating a potential human health risk. Residents along 516 the Dongzhulong River downstream of the FIP were exposed to the next highest level 517 518 of PFOA-contaminated soil and water.

520 Fig. 7 Estimated daily intakes (EDI) of PFOA via consumption of wheat and maize

519

521 $(ng/kg \cdot bw/day)$ for various age groups.

health risk of these short-chain homologues cannot be assessed due to shortage of their

TDI values, which was a result of a paucity of human and ecological toxicological data for these chemicals (USEPA, 2017). So health risk from consumption of PFAAs in wheat and maize crops for local residents may go further than just PFOA. Moreover, PTFE production has been expanded in the FIP with an average annual growth rate of 25% since 2001 (Wang et al., 2016). If without suitable substitutes for PFAAs in the production of most fluoropolymers or improvement in the 'quality' of local food sources, local residents may face continuous or even higher exposure.

549 **4. Conclusions and perspectives**

550 Overall, the results of this study indicate that:

• The highest concentrations of Σ PFAAs in agricultural soil were observed near the FIP (max 402 ng/g) and along the banks of the FIP effluent dominated river (max 641 ng/g). As the distance increased from these sources, PFAAs levels in soil showed a sharp initial decrease followed by a slower decline. Higher PFAAs concentrations in agricultural soil showed positive correlation with the prevailing wind direction.

The use of contaminated irrigation water and the influence of contaminated precipitation are two of the dominant pollution pathways of PFAAs to agricultural soil. Longer-chained PFAAs in irrigation water were more susceptible to adsorption to soil particles. For precipitation, unprecedented levels of ΣPFAAs were found immediately near the FIP with an average concentration of 2,265 ng/L, although they decreased sharply beyond 5km. In these abiotic media, PFOA (C8)

was the predominant PFAA, followed by shorter-chained PFCAs (C4-C7).

563

A pollution signal from the FIP could be found as far away as 10 km within cereals
 with concentrations ranging from 1.13-480 ng/g in wheat grain to 0.7-58.8 ng/g in
 maize grain. The hotspot distribution and decline process of Σ PFAAs in grain
 were similar to those in soil. The shorter chain varieties such as PFBA (C4) were
 accumulated by these crops preferentially, accounting for an average of 61% in
 wheat grain and 46% in maize grain, followed by other short-chained PFCAs (C5 C7) and PFOA (C8).

The uptake and storage of PFAAs in wheat and maize grain showed a decreasing
 tendency with the increase of carbon chain length and the BAFs in both grains
 decreased by approximately 0.5 log units per CF₂ group. The BAF of Σ PFAAs in
 wheat grain were on average 11.6 times higher than those in maize grain, which
 may be linked to higher protein contents in wheat grain. Significant linear positive
 correlations were found between the logarithms of PFCA (C4-C8) concentration in
 agricultural soil and grain.

High concentrations of PFOA in agricultural soil may lead to potential soil
ecological risks. Consumption of contaminated grain grown within a radius of 1km
from the FIP and downstream of effluent dominated river could have impacts on
human health. The group most at risk would be toddlers and children due to their
weight relative to exposure.

• Based on crop bioaccumulation preference for short-chained PFCAs, it may be

worthwhile to consider whether it is desirable to substitute longer-chain PFAAs 584 with shorter-chain compounds in industrial processes. Therefore, more 585 toxicological studies on short-chained PFAAs are urgently needed for a more 586 comprehensive assessment of health and ecological risks. Moreover, further 587 consideration is also required for hazards of consuming aquatic products, livestock 588 and poultry, tuber crops, and various vegetables contaminated by these chemicals. 589 In addition, the accumulation and bio-magnification of the PFAAs into insects, 590 birds and small mammals should also be considered to study ecological hazards of 591 592 PFAAs to local species.

This study has linked the high local contamination with polluted wastewater
 discharge from the FIP and airborne emissions. These sources could potentially be
 reduced with granular activated carbon wastewater treatment plants and an exhaust
 gas purification system (Hintzer et al., 2006; Rumsby et al., 2009). In addition,
 non-fluorinated alternatives that are neither persistent nor toxic should be also
 developed to eliminate the PFAA risk from the source.

599

600 Acknowledgments

This study was supported by the National Natural Science Foundation of China under Grant No. 414201040045 and No. 41371488, the International Scientific Cooperation Program with Grant No. 2012DFA91150, the National Fundamental Field Study Program (No.2013FY11110), and the Key Project of the Chinese Academy of Sciences under Grant No. KZZD-EW-TZ-12. We would like to thank the editors and reviewers

606	for their valuable	e comments and	suggestions.	The UK	authors are	grateful	for support
						0	

from the Newton Fund provided by NERC.

608 609

- Ahrens, L., Yamashita, N., Yeung, L. W., Taniyasu, S., Horii, Y., Lam, P. K., Ebinghaus, R. 2009.
 Partitioning behavior of per-and polyfluoroalkyl compounds between pore water and sediment in
 two sediment cores from Tokyo Bay, Japan. Environmental science & technology. 43(18): 6969 6975.
- Amundsen, C., Forfang, I., Aasen, R., Eggen, T., Sørheim, R., Hartnik, T., Næs, K. Screening of
 polyfluorinated organic compounds at four fire training facilities in Norway. Rapport utført av
 Bioforsk Jord og miljø AS for Klima-og forurensningsdirektoratet. SFT rapport nr. TA-2444; 2008.
- Barton, C. A., Butler, L. E., Zarzecki, C. J., Flaherty, J., Kaiser, M. 2006. Characterizing
 perfluorooctanoate in ambient air near the fence line of a manufacturing facility: comparing
 modeled and monitored values. Journal of the Air & Waste Management Association. 56(1): 4855.
- Bao, J., Liu, W., Liu, L., Jin, Y., Dai, J., Ran, X., Zhang, Z., Tsuda, S. 2011. Perfluorinated compounds
 in the environment and the blood of residents living near fluorochemical plants in Fuxin, China.
 Environ Sci Technol. 45(19): 8075-8080.
- Benford, D., Boer, J., Carere, A., Domenico, A., Johansson, N., Schrenk, D., Schoeters, G., Voogt, P.,
 Dellatte, E. 2008. Opinion of the scientific panel on contaminants in the food chain on
 perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA Journal.
 (653): 1-131.
- 6. Bischel, H. N., MacManus Spencer, L. A., Zhang, C., Luthy, R. G. 2011. Strong associations of
 short chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms.
 Environmental toxicology and chemistry. 30(11): 2423-2430.
- Blaine, A. C., Rich, C. D., Hundal, L. S., Lau, C., Mills, M. A., Harris, K. M., Higgins, C. P. 2013. Uptake
 of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies.
 Environ Sci Technol. 47(24): 14062-14069.
- Blaine, A. C., Rich, C. D., Sedlacko, E. M., Hyland, K. C., Stushnoff, C., Dickenson, E. R., Higgins, C. P.
 2014a. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa)
 irrigated with reclaimed water. Environ Sci Technol. 48(24): 14361-14368.
- Blaine, A. C., Rich, C. D., Sedlacko, E. M., Hundal, L. S., Kumar, K., Lau, C., Mills, M. A., Harris, K. M.,
 Higgins, C. P. 2014b. Perfluoroalkyl acid distribution in various plant compartments of edible crops
 grown in biosolids-amended soils. Environ Sci Technol. 48(14): 7858-7865.
- BfR (Bundesinstitut für Risikobewertung, German Federal Institut for Risk Assessment), 2006. High
 levels of perfluorinated organic surfactants in fish are likely to be harmful to human health.
 <u>http://www.bfr.bund.de/en/press information/2006/21/high levels of perfluorinated organic</u>
 surfactants in fish are likely to be harmful to human health-8172.html (accessed 02.16.17).
- Bureau of Statistics of Shandong Province, China, 2015. Shandong Statistical Yearbook.
 <u>http://www.stats-sd.gov.cn/tinj/nj2015/indexch.htm</u>.
- Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan,
 K., Mabury, S. A., van Leeuwen, S. P. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the

- 648 environment: terminology, classification, and origins. Integrated environmental assessment and 649 management. 7(4): 513-541.
- 650 13. COT (Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment), 2009. 651 COT statement on the tolerable daily intake for perfluorooctanoic acid. 652 https://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2009/cot200902 653 (accessed 02.16.17).
- b'Hollander, W., de Voogt, P., De Coen, W., Bervoets, L., 2010. Perfluorinated substances in human
 food and other sources of human exposure. Reviews of Environmental Contamination and
 Toxicology Volume 208. Springer, 179-215.
- 15. Davis, K. L., Aucoin, M. D., Larsen, B. S., Kaiser, M. A., Hartten, A. S. 2007. Transport of ammonium
 perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility.
 Chemosphere. 67(10): 2011-2019.
- 16. Domingo, J. L. 2012. Health risks of dietary exposure to perfluorinated compounds. Environment
 international. 40: 187-195.
- Felizeter, S., McLachlan, M. S., de Voogt, P. 2012. Uptake of Perfluorinated Alkyl Acids by
 Hydroponically Grown Lettuce (Lactuca sativa). Environmental Science & Technology. 46(21):
 11735-11743.
- Felizeter, S., McLachlan, M. S., De Voogt, P. 2014. Root uptake and translocation of perfluorinated
 alkyl acids by three hydroponically grown crops. J Agric Food Chem. 62(15): 3334-3342.
- Ferrey, M., Adair, C., Wilson, J. 2009. Sorption of PFOA and PFOS to aquifer sediment. Reproductive
 Toxicology. 27(3): 416.
- Fromme, H., Schlummer, M., Möller, A., Gruber, L., Wolz, G., Ungewiss, J., Böhmer, S., Dekant, W.,
 Mayer, R., Liebl, B. 2007. Exposure of an adult population to perfluorinated substances using
 duplicate diet portions and biomonitoring data. Environmental science & technology. 41(22):
 7928-7933.
- 673 21. Giesy, J. P., Kannan, K. 2001. Global distribution of perfluorooctane sulfonate in wildlife.
 674 Environmental science & technology. 35(7): 1339-1342.
- 675 22. Giesy, J. P., Kannan, K. 2002. Peer reviewed: perfluorochemical surfactants in the environment.
 676 Environmental science & technology. 36(7): 146A-152A.
- 477 23. Hansen, K.-J., Johnson, H., Eldridge, J., Butenhoff, J., Dick, L. 2002. Quantitative characterization of
 brace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology. 36(8):
 brace 1681-1685.
- 4. Harada, K., Nakanishi, S., Sasaki, K., Furuyama, K., Nakayama, S., Saito, N., Yamakawa, K., Koizumi,
 A. 2006. Particle Size Distribution and Respiratory Deposition Estimates of Airborne
 Perfluorooctanoate and Perfluorooctanesulfonate in Kyoto Area, Japan. Bulletin of Environmental
 Contamination & Toxicology. 76(2): 306-310.
- Haug, L. S., Thomsen, C., Brantsæter, A. L., Kvalem, H. E., Haugen, M., Becher, G., Alexander, J.,
 Meltzer, H. M., Knutsen, H. K. 2010. Diet and particularly seafood are major sources of
 perfluorinated compounds in humans. Environment international. 36(7): 772-778.
- 687 26. Higgins, C. P., Luthy, R. G. 2006. Sorption of perfluorinated surfactants on sediments.
 688 Environmental Science & Technology. 40(23): 7251-7256.
- 689 27. Hornung, R. W., Reed, L. D. 1990. Estimation of Average Concentration in the Presence of
 690 Nondetectable Values. Applied Occupational & Environmental Hygiene, 1990, 5(1):46-51.
- 691 28. IGSNRR (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of

692		Sciences). 2006. What is transpiration and transpiration coefficient?						
693		http://www.igsnrr.ac.cn/kxcb/dlyzykpyd/zybk/qhzy/200610/t20061008_2155322.html (accessed						
694		04.16.17).						
695	29.	Kärrman, A., Harada, K. H., Inoue, K., Takasuga, T., Ohi, E., Koizumi, A. 2009. Relationship between						
696		dietary exposure and serum perfluorochemical (PFC) levels—a case study. Environment						
697		international. 35(4): 712-717.						
698	30.	Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K. S., Loganathan, B. G., Mohd, M. A.,						
699		Olivero, J., Wouwe, N. V., Yang, J. H. 2004. Perfluorooctanesulfonate and related fluorochemicals						
700		in human blood from several countries. Environmental science & technology. 38(17): 4489-4495.						
701	31.	Klenow, S., Heinemeyer, G., Brambilla, G., Dellatte, E., Herzke, D., de Voogt, P. 2013. Dietary						
702		exposure to selected perfluoroalkyl acids (PFAAs) in four European regions. Food Additives &						
703		Contaminants: Part A. 30(12): 2141-2151.						
704	32.	Kowalczyk, J., Ehlers, S., Oberhausen, A., Tischer, M., Fürst, P., Schafft, H., Lahrssen-Wiederholt, M.						
705		2013. Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS,						
706		and PFOA by dairy cows fed naturally contaminated feed. Journal of agricultural and food chemistry.						
707		61(12): 2903-2912.						
708	33.	Krippner, J., Brunn, H., Falk, S., Georgii, S., Schubert, S., Stahl, T. 2014. Effects of chain length and						
709		pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere.						
710		94: 85-90.						
711	34.	Krippner, J., Falk, S., Brunn, H., Georgii, S., Schubert, S., Stahl, T. 2015. Accumulation potentials of						
712		perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea						
713		mays). J Agric Food Chem. 63(14): 3646-3653.						
714	35.	Kwok, K. Y., Taniyasu, S., Yeung, L. W., Murphy, M. B., Lam, P. K., Horii, Y., Kannan, K., Petrick, G.,						
715		Sinha, R. K., Yamashita, N. 2010. Flux of perfluorinated chemicals through wet deposition in Japan,						
716		the United States, and several other countries. Environmental science & technology. 44(18): 7043-						
717		7049.						
718	36.	Lechner, M., Knapp, H. 2011. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane						
719		sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in						
720		cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers						
721		(Cucumis Sativus). J Agric Food Chem. 59(20): 11011-11018.						
722	37.	Lescord, G. L., Kidd, K. A., De Silva, A. O., Williamson, M., Spencer, C., Wang, X., Muir, D. C. 2015.						
723		Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.						
724		Environ Sci Technol. 49(5): 2694-2702.						
725	38.	Liu, S., Lu, Y., Xie, S., Wang, T., Jones, K. C., Sweetman, A. J. 2015. Exploring the fate, transport and						
726		risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.						
727		Environment international. 85: 15-26.						
728	39.	Liu, Z., Lu, Y., Wang, P., Wang, T., Liu, S., Johnson, A. C., Sweetman, A. J., Baninla, Y. 2017. Pollution						
729		pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid						
730		(PFOA) in central and eastern China. Science of the Total Environment. 580: 1247-1256.						
731	40.	Liu, Z., Lu, Y., Wang, T., Wang, P., Li, Q., Johnson, A. C., Sarvajayakesavalu, S., Sweetman, A. J. 2016.						
732		Risk assessment and source identification of perfluoroalkyl acids in surface and ground water:						
733		Spatial distribution around a mega-fluorochemical industrial park, China. Environment						
734		international. 91: 69-77.						
735	41.	Loi, E. I., Yeung, L. W., Taniyasu, S., Lam, P. K., Kannan, K., Yamashita, N. 2011. Trophic magnification						
- of poly-and perfluorinated compounds in a subtropical food web. Environmental science &
 technology. 45(13): 5506-5513.
- Mader, B. T. 2009. Comment on "Aerosol enrichment of the surfactant PFO and mediation of the
 water- air transport of gaseous PFOA". Environmental science & technology. 43(4): 1232-1233.
- 43. McMurdo, C. J., Ellis, D. A., Webster, E., Butler, J., Christensen, R. D., Reid, L. K. 2008. Aerosol
 enrichment of the surfactant PFO and mediation of the water- air transport of gaseous PFOA.
 Environmental science & technology. 42(11): 3969-3974.
- 44. Meng, J., Wang, T., Wang, P., Zhang, Y., Li, Q., Lu, Y., Giesy, J. P. 2015. Are levels of perfluoroalkyl
 substances in soil related to urbanization in rapidly developing coastal areas in North China?
 Environ Pollut. 199: 102-109.
- 45. Nelson, D., Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. Methods of soil
 analysis Part 2 Chemical and microbiological properties. (methodsofsoilan2): 539-579.
- 46. Newton, S., McMahen, R., Stoeckel, J. A., Chislock, M., Lindstrom, A., Strynar, M. 2017. Novel
 Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of
 Manufacturing Facilities near Decatur, Alabama. Environmental Science & Technology. 51(3): 15441552.
- Wang, H., Zhi, M. A., Cao, L., Sun, D., Xue, L. I., Min, D., 2003. Status quo and problem of winter
 wheat quality in china. Journal of Northwest Sci-Tech University of Agriculture and Forestry.
 31(4):34-40.
- Persson, S., Rotander, A., Karrman, A., van Bavel, B., Magnusson, U. 2013. Perfluoroalkyl acids in
 subarctic wild male mink (Neovison vison) in relation to age, season and geographical area.
 Environment international. 59: 425-430.
- 49. Schecter, A., Colacino, J., Haffner, D., Patel, K., Opel, M., Päpke, O., Birnbaum, L. 2010.
 Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide
 contamination in composite food samples from Dallas, Texas, USA. Environmental Health
 Perspectives. 118(6): 796.
- 50. Sepulvado, J. G., Blaine, A. C., Hundal, L. S., Higgins, C. P. 2011. Occurrence and fate of
 perfluorochemicals in soil following the land application of municipal biosolids. Environmental
 Science & Technology. 45(19): 8106-8112.
- 51. Shan, G., Chen, X., Zhu, L. 2015. Occurrence, fluxes and sources of perfluoroalkyl substances with
 isomer analysis in the snow of northern China. Journal of Hazardous Materials. 299: 639-646.
- 52. Stahl, T., Heyn, J., Thiele, H., Huther, J., Failing, K., Georgii, S., Brunn, H. 2009. Carryover of
 perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives
 of environmental contamination and toxicology. 57(2): 289-298.
- 53. Su, H., Lu, Y., Wang, P., Shi, Y., Li, Q., Zhou, Y., Johnson, A. C. 2016. Perfluoroalkyl acids (PFAAs) in
 indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for
 human exposure. Environment international.
- Taniyasu, S., Kannan, K., So, M. K., Gulkowska, A., Sinclair, E., Okazawa, T., Yamashita, N., Higgins,
 C. P., Luthy, R. G. 2005. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short-and longchain perfluorinated acids in water and biota: Sorption of perfluorinated surfactants on sediments.
 Journal of Chromatography A. 1093(1): 89-97.
- Taniyasu, S., Yamashita, N., Moon, H. B., Kwok, K. Y., Lam, P. K., Horii, Y., Petrick, G., Kannan, K. 2013.
 Does wet precipitation represent local and regional atmospheric transportation by perfluorinated
 alkyl substances? Environment international. 55: 25-32.

- Thayer, K., Houlihan, J. 2002. Perfluorinated chemicals: Justification for inclusion of this chemical
 class in the national report on human exposure to environmental chemicals. Environmental
 Working Group, Washington, DC.
- 57. TWK (Drinking Water Commission of the German Ministry of Health at the German Federal Environment Agency). 2006. Provisional evaluation of PFT in drinking water with the guide substances perfluorooctanoid acid (PFOA) and perfluorooctane sulfonate (PFOS) as examples.
 <u>http://www.umweltbundesamt.de/ubainfo-presse-e/hintergrund/pft-in-drinking-water.pdf</u> (accessed 02.16.17).
- 58. UNEP, 2009. The conference of the parties 4 of the Stockholm Convention (COP-4) in Geneva
 placed perfluorooctane sulfonate and perfluorooctane sulfonyl fluoride (PFOS and PFOSF) in
 Annex
 B.
- 791 <u>http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-</u>
 792 <u>US/Default.aspx2009</u> (accessed 02.16.17).
- 59. USEPA, 2013. The 2010/2015 PFOA Stewardship Program. <u>https://www.epa.gov/assessing-and-</u>
 managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program (accessed
 02.16.17).
- VSEPA. 2016. Drinking Water Health Advisories for PFOA and PFOS. <u>https://www.epa.gov/ground-</u>
 water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos (accessed 04.16.17).
- 798 61. USEPA. 2017. The ecotoxicology database (ECOTOX). <u>https://cfpub.epa.gov/ecotox/</u> (accessed
 799 04.16.17).
- 800 62. Vestergren, R., Berger, U., Glynn, A., Cousins, I. T. 2012. Dietary exposure to perfluoroalkyl acids
 801 for the Swedish population in 1999, 2005 and 2010. Environment international. 49: 120-127.
- 802 63. Wang, P., Lu, Y., Wang, T., Fu, Y., Zhu, Z., Liu, S., Xie, S., Xiao, Y., Giesy, J. P. 2014a. Occurrence and
 803 transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with
 804 concentrated fluoropolymer facilities. Environmental Pollution. 190: 115-122.
- 805 64. Wang, P., Lu, Y., Wang, T., Meng, J., Li, Q., Zhu, Z., Sun, Y., Wang, R., Giesy, J. P. 2016. Shifts in
 806 production of perfluoroalkyl acids affect emissions and concentrations in the environment of the
 807 Xiaoqing River Basin, China. Journal of Hazardous Materials. 307: 55-63.
- 808 65. Wang, T., Khim, J. S., Chen, C., Naile, J. E., Lu, Y., Kannan, K., Park, J., Luo, W., Jiao, W., Hu, W., Giesy,
 809 J. P. 2012. Perfluorinated compounds in surface waters from Northern China: comparison to level
 810 of industrialization. Environment international. 42: 37-46.
- 811 66. Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J. S., Giesy, J. P. 2015a. A review of sources,
 812 multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere.
 813 129: 87-99.
- 814 67. Wang, Z., Cousins, I. T., Scheringer, M., Buck, R. C., Hungerbuhler, K. 2014b. Global emission
 815 inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part
 816 I: production and emissions from quantifiable sources. Environment international. 70: 62-75.
- 817 68. Wang, Z., Cousins, I. T., Scheringer, M., Hungerbuehler, K. 2015b. Hazard assessment of fluorinated
 818 alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing
 819 challenges and possible solutions. Environment international. 75: 172-179.
- 820 69. Washington, J. W., Yoo, H., Ellington, J. J., Jenkins, T. M., Libelo, E. L. 2010. Concentrations,
 821 Distribution, and Persistence of Perfluoroalkylates in Sludge-Applied Soils near Decatur, Alabama,
 822 USA. Environmental Science & Technology. 44(22): 8397-8402.
- 823 70. Wen, B., Li, L., Zhang, H., Ma, Y., Shan, X. Q., Zhang, S. 2014. Field study on the uptake and

- translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolidsamended soils. Environ Pollut. 184: 547-554.
- Wen, B., Wu, Y., Zhang, H., Liu, Y., Hu, X., Huang, H., Zhang, S. 2016. The roles of protein and lipid
 in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate
 (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution. 216: 682-688.
- Xia, X., Rabearisoa, A. H., Jiang, X., Dai, Z. 2013. Bioaccumulation of perfluoroalkyl substances by
 Daphnia magna in water with different types and concentrations of protein. Environmental science
 & technology. 47(19): 10955-10963.
- Xiao, F., Simcik, M. F., Gulliver, J. S. 2012. Perfluoroalkyl acids in urban stormwater runoff: influence
 of land use. water research. 46(20): 6601-6608.
- Xiao, F., Simcik, M. F., Halbach, T. R., Gulliver, J. S. 2015. Perfluorooctane sulfonate (PFOS) and
 perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: Migration and
 implications for human exposure. Water research. 72: 64-74.
- Xie, S., Wang, T., Liu, S., Jones, K. C., Sweetman, A. J., Lu, Y. 2013. Industrial source identification
 and emission estimation of perfluorooctane sulfonate in China. Environment international. 52: 18.
- Yamashita, N., Taniyasu, S., Petrick, G., Wei, S., Gamo, T., Lam, P. K., Kannan, K. 2008. Perfluorinated
 acids as novel chemical tracers of global circulation of ocean waters. Chemosphere. 70(7): 12471255.
- Yeung, L. W., De Silva, A. O., Loi, E. I., Marvin, C. H., Taniyasu, S., Yamashita, N., Mabury, S. A., Muir,
 D. C., Lam, P. K. 2013. Perfluoroalkyl substances and extractable organic fluorine in surface
 sediments and cores from Lake Ontario. Environment international. 59: 389-397.
- 846 78. Yoo, H., Washington, J. W., Jenkins, T. M., Ellington, J. J. 2011. Quantitative determination of
 847 perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using
 848 LC/MS/MS and GC/MS. Environmental science & technology. 45(19): 7985-7990.
- Zhai, F. Y. 2008. A prospective study on dietary pattern and nutrition transition in China. Science
 Press: Beijing, China.
- 85.1 80. Zhang, L., Ren, X.-M., Guo, L.-H. 2013. Structure-based investigation on the interaction of
 85.2 perfluorinated compounds with human liver fatty acid binding protein. Environmental science &
 85.3 technology. 47(19): 11293-11301.
- 81. Zhang, Z. 1997. Analysis of Kernel Nutrient Substances of Hybrid Corn Different in Decadal period.
 855 Chinese Agriculturalence Bulletin. 13(4): 11-28.
- 856 82. Zhang, T., Sun, H. W., Wu, Q., Zhang, X. Z., Yun, S. H., Kannan, K. 2010. Perfluorochemicals in meat,
 857 eggs and indoor dust in China: assessment of sources and pathways of human exposure to
 858 perfluorochemicals. Environmental Science & Technology. 44(9): 3572-3579.
- 859 83. Zhang, H., Vestergren, R., Wang, T., Yu, J., Jiang, G., Herzke, D. Geographical differences in dietary
 860 exposure to perfluoroalkyl acids between manufacturing and application regions in China. DOI:
 861 10.1021/acs.est.7b00246
- 862 84. Zhao, L., Zhou, M., Zhang, T., Sun, H. 2013a. Polyfluorinated and perfluorinated chemicals in
 863 precipitation and runoff from cities across eastern and central China. Arch Environ Contam Toxicol.
 864 64(2): 198-207.
- 85. Zhao, L., Zhou, M., Zhang, T., Sun, H. 2013b. Polyfluorinated and perfluorinated chemicals in
 precipitation and runoff from cities across Eastern and Central China. Archives of environmental
 contamination and toxicology. 64(2): 198-207.

Supporting Information

2	Crop bioaccumulation and human exposure of
3	perfluoroalkyl acids through multi-media
4	transport from a mega fluorochemical industrial
5	park, China
6	Zhaoyang Liu ^{a,b} , Yonglong Lu ^{a,b,*} , Yajuan Shi ^a , Pei Wang ^a , Kevin Jones ^c , Andrew
7	J. Sweetman ^{c,d} , Andrew C. Johnson ^d , Meng Zhang ^{ab} , Yunqiao Zhou ^{ab} , Xiaotian Lu
8	^{ab} , Chao Su ^{ab} , Suriyanarayanan Sarvajayakesavaluc ^e , Kifayatullah Khan ^{af}
9	^a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-
10	Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
11	^b University of Chinese Academy of Sciences, Beijing 100049, China
12	^c Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
13	^d Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford
14	Wallingford, Oxon,OX 10 8BB, UK
15	^e SCOPE (Scientific Committee on Problems of the Environment) Beijng Office, P.O.
16	Box 2871,18 Shuangqing Road, Haidian District, Beijing 100085 China
17	^f Department of Environmental and Conservation Sciences, University of Swat, Swat
18	19130, Pakistan
19	Corresponding author:
20	*Yonglong Lu

21 Tel: 86-10-62917903

22	Fax:	86-10	-6291	8177
----	------	-------	-------	------

- 23 E-mail: <u>yllu@rcees.ac.cn</u>
- 24

25 Content

- 26 Standards and Reagents
- 27 Instrumental analysis and quantitation
- 28 Quality Assurance and Quality Control (QA/QC)
- 29 Sample extraction
- 30 Detailed explanations about the calculation methods of available TDI values of PFOA
- 31 Tables
- 32 Table S1. Parameters measured along with rainwater samples in situ
- 33 Table S2. Site information and ambient description
- Table S3. Some parameters measured in wheat soil and maize soil.
- 35 Table S4. Target analytes and optimized MS/MS parameters used for identifying and
- 36 quantifying individual PFAAs
- 37 Table S5. Analyses of 12 PFASs measured in the study with QA/QC information
- 38 Table S6. Parameters used for calculation of daily intake of PFAAs by infants, toddlers,
- children, teenagers and adults via consumption of wheat and maize grain inthis study.
- 41 Table S7. Concentrations of PFAAs (ng/g) in wheat soil.
- 42 Table S8. Concentrations of PFAAs (ng/g) in maize soil.
- 43 Table S9. PFOS/PFOA concentrations (ng/L) in soil previously reported in China.

- 44 Table S10 Concentration relationship of PFAAs in irrigation water and soil
- 45 Table S11. Concentrations of PFAAs (ng/L) in rainwater.
- 46 Table S12. Comparison of PFOS/PFOA concentrations (ng/L) in precipitation from
- 47 available studies by other groups.
- 48 Table S13. Concentrations of PFAAs (ng/g) in wheat grain.
- 49 Table S14. Concentrations of PFAAs (ng/g) in maize grain.
- 50 Table S15. Bioaccumulation equations of PFAAs in wheat and maize grain
- 51 Table S16. Estimated Daily Intake (EDI, ng/kg.bw/day) of PFAAs via consumption of
- 52 wheat and maize separately for various age groups
- 53 Table S17. The total estimated daily intake (EDI, ng/kg·bw/day) of PFAAs via
- 54 consumption of wheat and maize for residents around the FIP.

55 Figures

- 56 Figure S1 The concentrations of PFAAs in wheat and maize soil in different directions
- 57 and their corresponding wind frequencies.

58 **References**

59 Standards and Reagents

60	A total of 12 native PFAAs, containing perfluorobutanoic acid (PFBA),
61	perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA),
62	perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic
63	acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA),
64	perfluorododecanoic acid (PFDoA), perfluorobutane sulfonate (PFBS),
65	perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and 9 mass-
66	labeled PFAAs, containing ¹³ C ₄ PFBA, ¹³ C ₄ PFHxA, ¹³ C ₄ PFOA, ¹³ C ₄ PFNA, ¹³ C ₄ PFDA,
67	¹³ C ₄ PFUdA, ¹³ C ₂ PFDoA, ¹⁸ O ₂ PFHxS and ¹³ C ₄ PFOS were purchased from Wellington
68	Laboratories with purities of >98% (Guelph, Ontario, Canada). Mixed standards were
69	prepared in 100% methanol and stored at 4 $^\circ C$. Methanol and acetonitrile of HPLC
70	grade were purchased from J.T. Baker (Phillipsburg, NJ, USA). Ammonium acetate
71	(~98%) and ammonium hydroxide solutions (28%~30% NH3 basis) were purchased
72	from Sigma-Aldrich Co. (St. Louis, MO, USA). Milli-Q water was obtained from a
73	Milli-Q synthesis A10 (Millipore, Bedford, MA, USA).

74 Instrumental analysis and quantitation

An Agilent 1290 Infinity HPLC System equipped with an Agilent 6460 Triple Quadrupole LC/MS System (Agilent Technologies, Palo Alto, CA, USA) in the negative electrospray ionization (ESI) mode was used for separation of all target analytes. The HPLC was fitted with a Aglient ZORBAX Eclipse Plus C18 (2.1×100 mm, 3.5μ m particle size) analytical column, and a suitable guard column (Agilent 1290 Infinity In-line filter with 0.3μ m SS frit) was used to prevent instrument background

contamination. 2 mM ammonium acetate (A) and acetonitrile (B) were used as mobile 81 phases. Gradient conditions were used at 0.3 mL/min flow rate and 5 µl of the sample 82 was injected, starting with 80% A and 20% B. Initial conditions were held for 0.5 min 83 and then decreased to 10% A at 12 min, held till 14 min, returned to initial condition at 84 16 min, and finally held constant until 20 min. The temperature of the column oven was 85 kept constant at 40 °C. Chromatograms were recorded using a multiple reaction 86 monitoring mode (MRM). The following instrument parameters were used: source gas 87 temperature (350 °C), source gas flow rate (9 L/min), nebulizer pressure (40 psi), 88 89 capillary (3500 V negative), delta EMV(-) (200V). The optimal settings for collision energies and declustering potential were determined for each analyte's transitions. 90

91 Quality Assurance and Quality Control (QA/QC)

92 All laboratory consumables and solvents were routinely checked for contamination and one procedural blank sample was conducted in every batch of seven samples. 93 Polytetrafluoroethylene (PTFE) or other fluoropolymer materials were avoided to be 94 used during sample collection and extraction to minimize the background 95 contamination. Field blank, transport blank and procedure blank were prepared using 96 Milli-O water and routinely analyzed to check for contamination during sampling and 97 extraction. All procedural and field blank samples were consistently below LOQ. The 98 solvent blank was prepared using 100% methanol and run after 10 samples during 99 instrumental analysis to minimize cross contamination and to monitor the background 100 101 contamination of the instrument. Concentrations greater than the LOD in blanks were not used to correct sample concentrations in present study. Replicate experiments 102

including sample replicates and injection replicates were performed. Sample replicates
were conducted using another same volume or amount of the sample in the same
samples; and injection replicates were conducted by measuring the extract twice during
instrumental analysis. Four replicates for each replicate experiment were carried out
during the analysis, with RSD% less than 10%.

108 Instrumental drift was monitored by injecting a calibration standard (10 ng/mL) after every 10 injections and a new calibration curve was constructed if a deviation of $\pm 20\%$ 109 from its initial value was observed. When the concentrations of PFAAs in any extract 110 111 that was initially more than 100 ng/mL, the volume or amount of the samples would be reduced and the samples would be extracted again to fit the range of the calibration 112 series. Matrix spike recovery tests were performed to evaluate the accuracy and 113 precision of reported data (Loi et al., 2011), 20 ng mixtures of 12 native PFAAs 114 standards were spiked into 400mL water samples (in small concentrations of PFAAs) 115 via 4 duplicates, respectively. Table S3 listed detailed QA/QC measures of PFAAs in 116 117 water.

118 Sample extraction

Water samples were extracted by OASIS WAX-SPE using a previously described method (Taniyasu et al., 2005) with minor modification and optimization. Briefly, the Oasis WAX cartridges (6 cc, 150 mg, 30 mm, Waters, Milford, MA, USA) was sequentially preconditioned with 4 mL of 0.1% NH4OH in methanol, 4 mL methanol and 4 mL Milli-Q water. The 400-mL aliquot of water sample was spiked with 5 ng internal standard (¹³C4PFBA, ¹³C4PFHxA, ¹³C4PFOA, ¹³C4PFNA, ¹³C4PFDA,

¹³C₄PFUdA, ¹³C₂PFDoA, ¹⁸O₂PFHxS and ¹³C₄PFOS), mixed thoroughly and then 125 loaded into the cartridges. The cartridges were washed with 4 mL of 25 mM ammonium 126 acetate (pH 4), air-dried overnight, and successively eluted with 4 mL of methanol and 127 4 mL of 0.1% NH₄OH in methanol. The eluents were collected and concentrated to 1 128 mL under a gentle stream of high-purity nitrogen (99.999%, Haidian District, Beijing, 129 130 China), then filtered through a nylon filter (13 mm, 0.2 mm, Chromspec, Ontario, Canada) into a 1.5-mL polypropylene (PP) snap top auto-sampler vial with 131 polyethylene (PE) septa. 132

133 Soil samples were extracted based on published methods (Loi et al., 2011) with minor modification and optimization. 2 g soil samples were placed into a 50 mL PP centrifuge 134 tube, and spiked with 10 ng mass-labelled internal standards. Sediment was digested 135 136 with 2 mL of 100 mM NaOH in MeOH (8:2/MeOH:Milli-O water), and ultra-sonicated for 30 min. 20 mL MeOH was added to the mixture and shaken for 30 min at 250 rpm. 137 0.1 mL of 2M HCl was added to the mixture and the sediment was separated by 138 139 centrifugation at 3000 rpm for 15 min. The supernatant was transferred into a new 50 140 mL tube. The extraction procedure was repeated once except that 10 mL of MeOH was used instead of 20 mL. Both supernatants were combined into the same tube and 141 142 reduced to 1 mL under a gentle stream of high purity nitrogen. The 1 mL extracts were 143 further purified by using Supelco ENVI-Carb and Oasis WAX cartridges. The Supelco ENVI-Carb cartridges (250mg, 3mL, Sigma-Aldrich, St. Louis, USA) were 144 145 preconditioned by passing through 1 mL MeOH three times, and then the extracts were loaded and collected. Analytes were washed with another three aliquots of 1 mL MeOH 146

and collected together with the extracts. After ENVI-Carb cleanup, all the extracts were
diluted to 100 mL with Milli-Q water and subjected to OASIS WAX-SPE cleanup with
the same procedure as water samples. The final 1 mL extracts were filtered by a 13
mm/0.2 um nylon filter, and transferred into a 1.5 mL PP snap top brown glass vial with
silica septa.

Plant samples were extracted according to the previous methods (Felizeter et al., 152 2012) with minor modification and optimization. 1g dry plant were placed into a 50 mL 153 PP centrifuge tube, and spiked with 10 ng mass-labelled internal standards and 6 mL 154 155 NaOH solution (0.4 mol/L). The tube was put in the freezer overnight after vortex. 4 mL TBAHS (0.5 mol/L) and 8 mL Na₂CO₃-NaHCO₃ buffer solution (0.25 mol/L) was 156 added successively, and then the samples were vortexed. 10 mL MTBE was added to 157 158 the mixture and shaken for 5 min at 700 rpm and then ultra-sonicated for 10 min. The plant was separated by centrifugation at 3000 rpm for 10 min. The extraction procedure 159 was repeated once except that 5 mL of MTBE was used instead of 10 mL. Both 160 supernatants were combined into the same tube and reduced to 1 mL under a gentle 161 stream of high purity nitrogen. The 1 mL extracts were further purified by using The 162 Florisil-SEP cartridges. The Florisil-SEP cartridges were preconditioned by passing 163 through 10 mL MeOH and 10 mL MTBE. The extracts were loaded through the 164 cartridges and the tube was washed three times by MeOH. The cartridges were washed 165 with 10 mL MTBE and 10 mL MeOH-MTBE (30:70, V:V), respectively. The flow 166 velocity was kept at 1 drop per second in the whole process. The elution was reduced 167 to 1 mL under a gentle stream of high purity nitrogen. The 1 mL solution was further 168

purified by using Supelco ENVI-Carb cartridges. The Supelco ENVI-Carb cartridges were preconditioned by passing through 1 mL MeOH three times, and then the extracts were loaded and collected. Analytes were washed with another three aliquots of 1 mL MeOH and collected together with the extracts. All the solution in the tube was reduced to 1 mL under a gentle stream of high purity nitrogen. The final 1 mL extracts were filtered by a 13 mm/0.2 um nylon filter, and transferred into a 1.5 mL PP snap top brown glass vial with silica septa.

Detailed explanations about the calculation methods of available TDI values of PFOA

The TDI value of 1.5 µg/kg for PFOA was recommended by Committee on Toxicity of 178 Chemicals in Food, Consumer Products and the Environment (COT), UK and the 179 180 European Food Safety Authority (EFSA) (Benford et al., 2008; COT, 2009). The lowest no-observed-adverse-effect level (NOAELs) identified of 0.06 mg/kg per day, 181 originated from a sub-chronic study in male rats, whereas results from long-term studies 182 indicated higher NOAELs for effects on the liver. The Scientific Panel on Contaminants 183 in the Food Chain (CONTAM) used modelling of the dose-response data of effects on 184 185 liver from mice and male rats to calculate the lower confidence limits of the benchmark 186 dose for a 10% effect size (BMDL10). The Panel noted that the 95% lower confidence limit of the benchmark dose for a 10% increase in effects on the liver (BMDL10) values 187 from a number of studies in mice and male rats were in the region of 0.3 - 0.7 mg/kg 188 b.w. per day. Therefore, the CONTAM Panel concluded that the lowest BMDL10 of 0.3 189 190 mg/kg b.w. per day was an appropriate point of departure for deriving a TDI. The

191 CONTAM Panel established a TDI for PFOA of 1.5 μ g/kg b.w. per day by applying an 192 overall UF of 200 to the BMDL10. An UF of 100 was used for inter- and intra-species 193 differences and an additional UF of 2 to compensate for uncertainties relating to the 194 internal dose kinetics. The TDI value of 1.5 μ g/kg for PFOA is used to assess the 195 potential significance of the total human exposure to PFOA.

The TDI value of 333 ng/kg for PFOA is derived from National Institute of 196 197 Environmental Health Sciences (NIEHS), USA (Thayer and Houlihan, 2002). The value is a reference dose (RfD) based on a rat multigenerational study. The lowest dose 198 199 tested in this study, 1 mg/kg/d, has unambiguously been interpreted as a Lowest Observed Adverse Effect Level (LOAEL). Significant changes in liver, kidney, spleen, 200 and seminal vesicle weight were observed in adult F1 generation male rats. Again, we 201 note that control animals in this study - as in other studies - have significant 202 background levels of PFOA. We estimated a RfD of 0.333 µg/kg/mg for PFOA by 203 dividing 1 mg/kg/d LOAEL by 3000. This incorporates a 10× factor to account for a 204 205 lack of a NOAEL for both the reproduction and chronic toxicity/carcinogenicity studies.

The TDI value of 100 ng/kg for PFOA is recommended by German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung, BfR) and the Drinking Water Commission (Trinkwasserkommission, TWK) of the German Ministry of Health at the Federal Environment Agency (BfR, 2006; TWK, 2006). According to the Draft Risk Assessment of EPA, there are several LOAELs (lowest observed adverse effect levels) and NOAELs (no observed adverse effect levels) for PFOA at various toxic end points.

212	A two-year study mentioned there with male and female Sprague-Dawley rats detected
213	a LOAEL of approximately 15 mg/kg/day and a NOAEL of approximately 1.5
214	mg/kg/day. A LOAEL for toxicity on reproduction as measured in F0 and F1 rat
215	generations is considered to be 1 mg/kg/day. Therefore, the lowest NOAEL for PFOA
216	in animal studies is considered to be in the range $0.1 < 1.0 \text{ mg/kg/day}$. If the lower range
217	limit is used as the point of departure (PoD) for a preliminary PFOA toxicity assessment,
218	using an extrapolation factor4 EFcd of $10 \times 10 = 100$ and an additional uncertainty
219	factor of 10 (to compensate for the extremely long half-life of PFOA in humans
220	compared to rats), a tolerable daily intake of 0.1 μ g/kg/day is obtained for all risk groups,
221	which of course include infants and pregnant women. The TDI is the estimate of the
222	amount of PFOA which can be ingested daily over a lifetime by a human, irrespective
223	of his age, without any significant risk to health.

Sites	Precipitation	DO(ma/L)	Solinity (DSU)	CD(us/am)	nЦ
Siles	event	DO (Ing/L)	Samily (PSU)	CD (µs/cm)	рп
P1	Oct. 12	8.22	0.18	349	7.01
P1	Oct. 19	6.7	1.2	2152	8.75
P1	Oct. 20	8.3	0.16	318	6.86
P1	Oct. 30	7.62	0.28	538	7.88
P1	Nov. 15	7.38	0.31	593	7.37
P1	Nov. 27	8.39	0.1	198	7.06
P2	Oct. 19	8.01	0.24	465	6.5
P2	Oct. 21	7.7	0.35	643	6.44
P2	Oct. 30	7.36	0.3	582	6.55
P3	Oct. 12	7.84	0.36	679	7.36
P3	Oct. 19	7.53	0.31	570	8.31
P3	Oct. 30	8.5	0.14	267	7.73
P3	Nov. 27	8.11	0.04	82.7	6.06
P4	Oct. 20	8.59	0.2	381	7.12
P4	Oct. 30	7.92	0.16	313	7.53
P4	Nov. 27	8.69	0.02	34.9	5.51
P5	Oct. 12	8.5	0.03	51.8	6.15
P5	Oct. 19	8.52	0.05	104.2	6.33
P5	Oct. 30	8.34	0.03	35.4	5.43
P5	Nov. 15	7.62	0.14	271	5.16

231 Table S1. Parameters measured along with rainwater samples in situ

232 Note: DO, dissolved oxygen; CD, conductivity.

Classification	Sites	Longitude	Latitude	Ambient description
Central area	C1	118.03128	36.96253	400m from the FIP; 170m from a village;
within 1km				groundwater irrigation
from the FIP	C2	118.02225	36.96568	200m from the FIP; 300m from a village;
				groundwater irrigation
	C3	118.02155	36.97594	300m from central facility of the FIP; 300m
				from a village; groundwater irrigation
	C4	118.02995	36.97749	within the FIP; 150m from central facility;
				groundwater irrigation
	C5	118.04534	36.98298	200m from a village; 300m from a power plant;
				groundwater irrigation
	C6	118.04527	36.97198	200m from a village; groundwater irrigation
	C7	118.01318	36.98135	170m from a village; groundwater irrigation
	C8	118.01436	36.99742	150m from a village; groundwater irrigation
	C9(D)	118.04222	36.99164	360m from a village: irrigated by a canal from
	()			the Dongzhulong River for a long time
	C10(D)	118.03290	37.00110	200m from the Dongzhulong River and
	()			irrigated by the river for a long time
2 km from	E1	118.05902	36.97896	500m from a village: woodland and
the FIP				greenhouse: groundwater irrigation
	SE1	118.05511	36.96139	360m from a few residential buildings:
				groundwater irrigation; orchard
	S 1	118.02766	36.94964	300m from a village; groundwater irrigation
	SW1	118.00440	36.96227	350m from a village: groundwater irrigation
	W1	118.00229	36.97826	Large tracts of farmland: groundwater
				irrigation
	NW1	118.00381	37.00189	180m from a village; groundwater irrigation
	N1(D)	118.03384	37.01217	500m from a village; 300m from the
				Dongzhulong River and irrigated by the river
				for a long time
	NE1(D)	118.05568	36.99688	300m from a village; 100m from a plastic
				plant; irrigated by a canal from the
				Dongzhulong River for a long time
4km from the	E2	118.07721	36.97993	Large farmland patches; groundwater irrigation
FIP	SE2	118.06641	36.94647	Near the county town; groundwater irrigation
	S2	118.02859	36.92846	400m from a village; groundwater irrigation
	SW2	117.98295	36.94511	250m from a village; groundwater irrigation
	W2	117.97882	36.97943	200m from a village; groundwater irrigation
	NW2	117.99043	37.01767	Large tracts of farmland; groundwater
				irrigation

241 Table S2. Site information and ambient description

		110.02446	27.02014	
	N2(D)	118.03446	37.03814	600m from the Dongznulong River and
	NEO	110.07050	27 01 72 1	200 se from a suite au annum destata invitantian
71 6 41	INE2	118.00839	37.01731	200m from a village, groundwater irrigation
/km from the	E3	118.11406	36.98405	150m from a village; groundwater irrigation
FIP	SE3	118.09//1	36.92545	500m from the county town; groundwater
	G2	110.0000	2600004	irrigation; a few small workshops;
	83	118.02836	36.90204	Large tracts of farmland; groundwater
	SW3	117 96747	36 92615	400m from a village: groundwater irrigation
	W3	117 94491	36 98299	300m from a village: groundwater irrigation
	NW3	117.96588	37.03752	400m from a village: groundwater irrigation
	N3(V1)	118 04102	37.06661	300m from a village: 700m from the
	113(11)	110.04102	57.00001	Dongzhulong River: irrigated by diverted
				Vellow River water
	N3(Y2)	118 04682	37.06662	500m from a village: 180m from the
	113(12)	110.01002	57.00002	Dongzhulong River: irrigated by diverted
				Yellow River water
	NE3	118 09364	37 03454	Large tracts of farmland: groundwater
	1,20	110.0700	0,100.01	irrigation
10km from	E4	118.14289	36.98178	400m from a village; groundwater irrigation
the FIP	SE4	118.12281	36.90909	350m from a village; groundwater irrigation
	S4	118.02996	36.87795	400m from a village; groundwater irrigation
	SW4	117.94326	36.90314	250m from a village; groundwater irrigation
	W4	117.92265	36.98439	500m from a village; groundwater irrigation
	NW4	117.94297	37.05457	500m from a village; groundwater irrigation
	N4(X2)	118.05234	37.10292	1000m after the confluence of the
				Dongzhulong River and Xiaoqing River;
				irrigated by the Xiaoqing River
	N4(X1)	118.03384	37.09437	1000m before the confluence of the
				Dongzhulong River and Xiaoqing River;
				irrigated by the Xiaoqing River
	NE4	118.11949	37.05190	300m from a village group; groundwater
				irrigation
Transverse	F1	118.03178	37.00111	300m from the river; groundwater irrigation
samples from	F2	118.02942	37.00110	500m from the river; groundwater irrigation
the	F3	118.02662	37.00115	750m from the river; groundwater irrigation
Dongzhulong	F4	118.02384	37.00119	1000m from the river; groundwater irrigation
River	F5	118.01818	37.00130	1500m from the river; groundwater irrigation

242 Note: D, the sites irrigated by the Dongzhulong River; X, the sites irrigated by the

243 Xiaoqing River; Y, the sites irrigated by diverted Yellow River water.

	Whea	at				Ma	ize		
Sites		SOM	ТС	TN	-		SOM	TC	TN
	рН	(g/kg)	(%)	(%)		рН	(g/kg)	(%)	(%)
C1	7.73	23.5	2.36	0.13		7.96	20.1	2.32	0.12
C2	7.67	17.2	1.36	0.11		7.73	18.3	1.40	0.11
C3	7.84	14.6	1.23	0.10		7.80	13.3	1.12	0.09
C4	7.83	19.5	1.46	0.11		7.96	18.3	1.42	0.11
C5	7.97	20.6	1.66	0.12		7.93	19.4	1.59	0.12
C6	8.08	18.6	1.67	0.11		8.16	19.3	1.73	0.12
C7	7.62	18.8	1.41	0.14		7.73	19.8	1.43	0.13
C8	8.19	22.4	1.62	0.13		7.96	20.3	1.67	0.13
C9(D)	7.59	18.0	1.54	0.11		7.24	25.7	2.11	0.17
C10(D)	7.87	20.4	1.69	0.12		7.87	20.0	1.75	0.12
E1	7.60	21.6	1.96	0.15		8.02	19.5	1.72	0.12
E2	8.18	23.1	1.94	0.14		8.02	19.0	1.68	0.12
E3	8.06	22.9	1.70	0.13		8.14	20.5	1.51	0.12
E4	7.69	22.3	2.23	0.14		8.31	22.9	1.92	0.14
N1(D)	7.85	12.3	1.51	0.09		8.03	25.9	2.11	0.15
N2(D)	7.49	30.0	2.62	0.17		7.90	20.0	2.39	0.13
N3(Y1)	7.99	16.1	1.72	0.10		7.75	21.2	2.06	0.12
N3(Y2)	8.02	19.2	2.02	0.12		7.75	14.1	2.05	0.08
N4(X1)	8.07	11.6	2.07	0.07		7.73	12.3	1.85	0.08
N4(X2)	8.06	16.9	2.29	0.10		7.91	13.5	1.89	0.09
NE1(D)	7.77	18.1	1.38	0.11		7.80	22.6	1.69	0.14
NE2	7.79	22.8	1.96	0.14		7.99	19.4	1.59	0.12
NE3	8.05	19.3	1.67	0.12		8.25	18.4	1.83	0.11
NE4	8.11	14.9	2.00	0.09		8.24	20.7	2.45	0.13
NW1	7.91	22.2	1.79	0.13		7.81	26.1	2.12	0.16
NW2	7.94	20.8	2.00	0.14		8.20	24.6	2.10	0.14
NW3	8.07	24.1	2.23	0.13		7.95	20.3	1.78	0.11
NW4	7.92	22.6	1.89	0.13		8.03	23.1	1.99	0.13
S 1	7.57	21.5	1.63	0.13		7.33	36.0	2.58	0.20
S2	7.54	18.8	1.67	0.12		7.43	20.1	2.12	0.13
S3	7.09	21.3	1.73	0.15		7.31	14.3	1.80	0.10
S4	7.70	17.9	1.50	0.12		7.56	14.1	1.54	0.09
SE1	7.75	21.2	1.90	0.12		8.01	20.5	1.83	0.12
SE2	7.94	18.7	1.49	0.12		7.52	20.0	1.65	0.12
SE3	8.00	21.6	1.75	0.13		7.76	13.7	1.53	0.09
SE4	7.95	21.9	1.84	0.13		8.00	17.5	1.41	0.06
SW1	7.97	20.6	1.50	0.12		7.42	22.9	1.66	0.15
SW2	7.55	21.2	1.77	0.14		7.79	20.6	1.54	0.13

Table S3. Some parameters measured in wheat soil and maize soil.

SW3	7.09	21.8	1.61	0.16	7.91	22.4	1.59	0.13
SW4	7.17	19.8	1.43	0.13	7.65	24.6	1.66	0.14
W1	7.88	18.9	1.55	0.12	7.85	21.6	1.57	0.14
W2	8.11	18.0	1.45	0.11	7.96	23.4	1.71	0.15
W3	8.07	22.9	1.80	0.14	8.08	24.0	2.06	0.13
W4	7.91	24.8	1.89	0.15	7.98	19.6	1.55	0.12

246 Note: SOM, soil organic matter; TC, total carbon; TN, total nitrogen.

260 Table S4. Target analytes and optimized MS/MS parameters used for identifying and

261	quantifying	individual	PFAAs
-----	-------------	------------	-------

Analyte	Acronym	Carbon number	MS/MS transition	Frag (V)	CE (V)	Type of Quantification
Perfluoroalkyl carboxylic acids	PFCAs					
Perfluorobutanoic acid	PFBA	C4	$213.0 \rightarrow 169.1$	57	1	¹³ C ₄ PFBA internal
Perfluoropentanoic acid	PFPeA	C5	$263.0 \rightarrow 218.9$	68	2	¹³ C ₄ PFBA internal
Perfluorohexanoic acid	PFHxA	C6	$313.0 \rightarrow 269.0$	68	3	¹³ C ₄ PFHxA internal
			313.0 → 119.0	62	15	
Perfluoroheptanoic acid	PFHpA	C7	$363.0 \rightarrow 318.9$	68	4	¹³ C ₄ PFHxA internal
			363.0 → 169.0	70	9	
Perfluorooctanoic acid	PFOA	C8	$413.0 \rightarrow 368.9$	82	4	¹³ C ₄ PFOA internal
			413.0 → 169.0	82	12	
			413.0 → 219.0	82	10	
Perfluorononanoic acid	PFNA	C9	$463.0 \rightarrow 419.0$	82	3	¹³ C ₄ PFNA internal
			463.0 → 169.0	66	15	
Perfluorodecanoic acid	PFDA	C10	$513.0 \rightarrow 468.9$	86	3	¹³ C ₄ PFDA internal
			513.0 → 219.0	78	13	
Perfluoroundecanoic acid	PFUnDA	C11	$563.0 \rightarrow 519.0$	90	5	¹³ C ₄ PFUnDA internal
			563.0 → 319.0	84	15	
Perfluorododecanoic acid	PFDoDA	C12	$613.0 \rightarrow 569.0$	90	5	¹³ C ₂ PFDoDA internal
			613.0 → 169.0	80	23	
Perfluoroalkane sulfonic acids	PFSAs					
Perfluorobutane sulfonate	PFBS	C4	$299.0 \rightarrow 80.0$	135	32	¹⁸ O ₂ PFHxS internal
			299.0 → 99.0	132	24	
Perfluorohexane sulfonate	PFHxS	C6	$399.0 \rightarrow 80.0$	150	40	¹⁸ O ₂ PFHxS internal

			399.0 → 99.0	146	34	
Perfluorooctane sulfonate	PFOS	C8	$498.9 \rightarrow 80.0$	154	47	¹³ C ₄ PFOS internal
			498.9 → 99.0	150	42	
Internal standards						
¹³ C ₄ Perfluorobutanoic acid	¹³ C ₄ PFBA	-	$217.0 \rightarrow 172.0$	57	1	-
¹³ C ₄ Perfluorohexanoic acid	¹³ C ₄ PFHxA	-	$315.0 \rightarrow 270.0$	68	3	-
¹³ C ₄ Perfluorooctanoic acid	¹³ C ₄ PFOA	-	$417.0 \rightarrow 372.0$	82	4	-
¹³ C ₄ Perfluorononanoic acid	¹³ C ₄ PFNA	-	468.0 → 423.0	82	3	-
¹³ C ₄ Perfluorodecanoic acid	¹³ C ₄ PFDA	-	$515.0 \rightarrow 470.0$	86	3	-
¹³ C ₄ Perfluoroundecanoic acid	¹³ C ₄ PFUnDA	-	$565.0 \rightarrow 520.0$	90	5	-
¹³ C ₂ Perfluorododecanoic acid	¹³ C ₂ PFDoDA	-	$615.0 \rightarrow 570.0$	90	5	-
¹⁸ O ₂ Perfluorohexane sulfonate	¹⁸ O ₂ PFHxS	-	$403.0 \rightarrow 103.0$	150	40	-
¹³ C ₄ Perfluorooctane sulfonate	¹³ C ₄ PFOS	-	$503.0 \rightarrow 99.0$	154	47	-

262 Note: The terminology used in this study was based on (Buck et al., 2011); Frag,263 fragment voltage; CE, collision energy.

264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	

	Ra	ain wate	er/(ng/L)		Soil/(n	g/g)		Plant/(ng/g)			
Analytes	LOD	100	MSR	DF	LOD	1.00	MSR	DF	LOD	1.00	MSR	DF
	LUD	LUQ	(%)	(%)	LOD	LUQ	(%)	(%)	LOD	LUQ	(%)	(%)
PFCAs												
PFBA	0.08	0.22	109	100	0.01	0.04	73.3	98.9	0.1	0.5	81.2	100
PFPeA	0.05	0.15	88.2	100	0.01	0.03	72.5	98.9	0.05	0.15	66.4	95.5
PFHxA	0.04	0.15	90.1	100	0.004	0.01	79.4	100	0.02	0.07	77.7	100
PFHpA	0.06	0.15	79.0	100	0.006	0.02	75.8	100	0.03	0.1	102	65.9
PFOA	0.05	0.19	104	100	0.002	0.01	72.4	100	0.01	0.05	78.9	100
PFNA	0.06	0.13	87.4	100	0.002	0.01	80.0	100	0.01	0.05	75.5	81.8
PFDA	0.05	0.15	100	100	0.004	0.01	75.2	100	0.02	0.07	78.2	67.1
PFUnDA	0.03	0.08	97.8	65	0.008	0.02	77.4	85.2	0.04	0.1	73.2	34.1
PFDoDA	0.05	0.13	88.8	40	0.005	0.02	83.2	58.0	0.02	0.06	78.4	38.6
PFSAs												
PFBS	0.03	0.09	83.5	35	0.004	0.01	93.0	5.68	0.02	0.05	81.4	18.2
PFHxS	0.01	0.06	83.5	75	0.004	0.01	79.7	3.41	0.02	0.04	81.8	5.68
PFOS	0.03	0.10	92.2	75	0.004	0.01	85.3	87.5	0.02	0.05	78.6	65.9

Table S5. Analyses of 12 PFASs measured in the study with QA/QC information

278 **Note:** LOD, the limit of detection; LOQ, the limit of quantification; MSR, matrix spike 279 recoveries; DF, detection frequencies.

- Table S6. Parameters used for calculation of daily intake of PFAAs by infants, toddlers,
- 281 children, teenagers and adults via consumption of wheat and maize grain in this study
- 282 (Bureau of Statistics of Shandong Province, China, 2015; Zhai, 2008; Yang et al., 2005;
- 283 Zhang et al., 2010).

	DC _{wheat}	DC _{maize}	BW
	(g/d)	(g/d)	(kg)
Toddlers (2-5 yrs)	123	11.8	16.5
Children (6-10 yrs)	216	20.7	28.6
Teenagers (11-17 yrs)	277	26.6	48.3
Adults (≥18 yrs)	308	30.0	60.5

sites	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFBS	PFHxS	PFOS	Σ PFAAs
C1	1.04	0.70	0.59	0.96	59.5	0.09	0.07	0.04	< 0.02	< 0.01	< 0.01	0.10	63.2
C2	0.12	0.64	0.45	0.60	69.0	0.11	0.27	0.07	0.12	< 0.01	< 0.01	< 0.01	71.4
C3	4.76	2.86	1.53	0.71	83.2	0.04	0.06	< 0.02	0.04	< 0.01	< 0.01	0.14	93.3
C4	3.69	4.08	4.04	4.51	380.6	0.23	0.19	0.06	0.03	0.02	< 0.01	4.27	402
C5	0.96	0.70	0.61	0.34	16.3	0.02	0.08	0.07	< 0.02	< 0.01	< 0.01	0.18	19.3
C6	1.18	0.70	0.51	0.24	15.7	0.06	0.06	0.05	< 0.02	< 0.01	< 0.01	0.07	18.6
C7	2.31	2.01	1.10	0.28	21.7	0.04	0.06	0.20	< 0.02	< 0.01	< 0.01	< 0.01	27.7
C8	0.42	0.36	0.34	0.08	10.7	0.07	0.03	< 0.02	0.02	< 0.01	< 0.01	1.97	14.1
C9(D)	2.68	3.69	4.72	5.83	623	0.48	0.14	0.04	< 0.02	< 0.01	< 0.01	0.10	641
C10(D)	3.08	3.67	3.10	2.11	242	0.11	0.08	0.02	0.03	< 0.01	< 0.01	0.24	254
E1	0.89	0.46	0.35	0.16	10.1	0.16	0.05	0.06	0.03	< 0.01	< 0.01	0.13	12.4
E2	0.45	0.32	0.19	0.09	5.81	0.05	0.03	0.06	< 0.02	< 0.01	< 0.01	0.05	7.07
E3	0.37	0.22	0.07	0.04	4.53	0.05	0.06	0.02	< 0.02	< 0.01	< 0.01	0.03	5.40
E4	0.22	0.07	0.09	< 0.02	2.95	0.01	< 0.01	< 0.02	0.02	0.05	< 0.01	0.08	3.51
N1(D)	3.23	4.86	4.74	2.35	498	0.23	0.06	0.03	0.02	< 0.01	< 0.01	0.15	513
N2(D)	1.99	3.11	4.46	2.13	291	0.18	0.10	0.07	0.04	< 0.01	< 0.01	0.39	304
N3(Y1)	0.51	0.42	0.52	0.26	46.9	0.04	0.05	< 0.02	0.04	< 0.01	< 0.01	0.18	48.9
N3(Y2)	0.61	0.54	0.51	0.36	123.6	0.20	0.06	0.03	< 0.02	< 0.01	< 0.01	0.13	126
N4(X1)	0.09	< 0.03	0.10	0.04	2.17	0.15	0.13	0.10	0.05	< 0.01	< 0.01	0.09	2.94
N4(X2)	0.21	0.50	0.93	0.69	32.1	0.42	1.30	0.48	0.23	< 0.01	< 0.01	0.61	37.4
NE1(D)	2.93	4.53	4.25	2.15	217	0.07	0.07	0.02	< 0.02	< 0.01	< 0.01	0.05	231
NE2	0.84	0.55	0.57	0.22	15.1	0.09	0.08	0.07	0.05	< 0.01	< 0.01	0.17	17.7
NE3	0.52	0.45	0.41	0.20	12.4	0.05	0.05	0.03	0.03	< 0.01	< 0.01	0.13	14.3

285 Table S7. Concentrations of PFAAs (ng/g) in wheat soil.

NE4	0.42	0.20	0.34	0.09	6.85	0.03	0.03	0.03	< 0.02	< 0.01	< 0.01	0.07	8.09
NW1	0.26	0.24	0.26	0.08	7.36	0.05	0.05	0.03	< 0.02	< 0.01	< 0.01	0.06	8.40
NW2	0.24	0.17	0.18	0.11	4.25	0.04	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.04	5.06
NW3	0.28	0.04	0.25	0.05	3.99	0.08	0.06	0.08	0.05	< 0.01	< 0.01	0.05	4.93
NW4	0.12	0.14	0.14	< 0.02	3.71	0.06	0.03	0.03	0.03	< 0.01	< 0.01	0.10	4.37
S 1	0.74	0.48	0.59	0.30	25.3	0.07	0.12	0.03	0.13	< 0.01	< 0.01	0.20	28.0
S2	0.61	0.43	0.39	0.11	7.44	0.08	0.06	0.04	0.09	< 0.01	< 0.01	0.15	9.41
S3	0.44	0.16	0.21	0.06	5.08	0.02	0.03	0.03	< 0.02	< 0.01	< 0.01	0.03	6.08
S4	0.29	0.05	0.13	0.06	2.51	0.01	0.05	< 0.02	< 0.02	< 0.01	< 0.01	0.03	3.15
SE1	1.00	0.99	0.70	0.23	16.4	0.06	0.09	0.03	0.08	< 0.01	< 0.01	0.03	19.6
SE2	0.38	0.18	0.20	0.03	5.86	0.07	0.06	0.07	0.03	< 0.01	< 0.01	< 0.01	6.88
SE3	0.43	0.31	0.20	0.26	10.9	0.07	0.06	0.03	0.03	< 0.01	< 0.01	0.07	12.4
SE4	0.26	0.03	0.07	< 0.02	3.54	0.02	0.03	0.04	0.02	< 0.01	< 0.01	0.11	4.14
SW1	0.59	0.64	0.46	0.17	14.5	0.05	0.09	0.02	< 0.02	< 0.01	< 0.01	0.03	16.5
SW2	0.52	0.29	0.21	0.16	9.86	0.06	0.06	< 0.02	< 0.02	< 0.01	< 0.01	0.02	11.2
SW3	0.25	0.11	0.14	0.06	6.07	0.10	0.05	0.05	0.02	< 0.01	< 0.01	0.08	6.93
SW4	0.27	0.18	0.16	0.06	4.45	0.07	0.07	0.03	< 0.02	< 0.01	< 0.01	< 0.01	5.31
W1	0.60	0.59	0.33	0.13	13.8	0.07	0.08	< 0.02	< 0.02	< 0.01	< 0.01	0.09	15.7
W2	0.48	0.42	0.35	0.09	16.0	0.03	0.07	0.04	< 0.02	< 0.01	< 0.01	0.46	18.0
W3	0.47	0.42	0.37	0.13	11.3	0.02	0.10	< 0.02	0.04	< 0.01	< 0.01	0.04	12.9
W4	0.19	0.27	0.14	0.05	5.12	0.04	0.07	< 0.02	0.02	< 0.01	< 0.01	0.10	6.02

Note: "<" means the value below LOQ (the same below).

sites	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFBS	PFHxS	PFOS	Σ PFAAs
C1	0.85	0.79	0.51	0.62	65.0	0.13	0.11	0.04	< 0.02	< 0.01	< 0.01	0.02	68.1
C2	2.36	1.54	0.90	1.12	78.7	0.19	0.09	0.05	< 0.02	< 0.01	< 0.01	0.17	85.1
C3	4.55	2.53	1.39	1.53	92.8	0.13	0.10	0.05	0.03	< 0.01	< 0.01	0.07	103
C4	3.12	4.04	2.46	1.84	341	0.33	0.13	0.02	< 0.02	< 0.01	0.05	35.5	388
C5	1.90	1.28	1.04	0.65	22.9	0.01	0.11	0.03	< 0.02	< 0.01	< 0.01	< 0.01	27.9
C6	1.13	0.73	0.55	0.26	15.6	0.04	0.10	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	18.4
C7	1.44	1.09	0.84	0.48	24.3	0.07	0.07	< 0.02	< 0.02	< 0.01	< 0.01	0.07	28.4
C8	0.43	0.32	0.23	0.13	7.51	0.05	0.08	0.03	< 0.02	< 0.01	< 0.01	0.19	8.97
C9(D)	2.50	1.67	1.83	1.17	294	0.33	0.17	0.06	< 0.02	< 0.01	< 0.01	0.18	302
C10(D)	3.07	3.01	2.49	1.31	214	0.18	0.07	< 0.02	< 0.02	< 0.01	< 0.01	0.43	224
E1	1.22	0.82	0.98	0.38	26.4	0.07	0.05	0.03	< 0.02	< 0.01	< 0.01	0.06	30.0
E2	0.72	0.49	0.41	0.17	7.45	0.02	0.02	< 0.02	< 0.02	< 0.01	< 0.01	0.02	9.32
E3	0.40	0.22	0.19	0.08	3.61	0.04	0.03	0.02	< 0.02	< 0.01	< 0.01	< 0.01	4.60
E4	0.36	0.19	0.13	0.11	3.78	0.03	0.03	< 0.02	< 0.02	0.04	< 0.01	0.03	4.72
N1(D)	2.07	3.16	3.94	2.81	608	0.42	0.25	0.01	< 0.02	< 0.01	< 0.01	7.03	627
N2(D)	0.77	1.05	1.10	0.59	108	0.09	0.13	0.03	< 0.02	< 0.01	< 0.01	0.59	112
N3(Y1)	0.38	0.18	0.43	0.17	25.5	0.05	0.06	< 0.02	< 0.02	< 0.01	< 0.01	2.68	29.4
N3(Y2)	2.06	0.74	1.21	0.39	49.0	0.05	0.20	0.08	< 0.02	< 0.01	< 0.01	1.01	54.8
N4(X1)	0.19	0.09	0.14	0.16	2.46	0.17	0.52	0.16	0.12	< 0.01	< 0.01	0.10	4.11
N4(X2)	0.44	0.43	0.87	0.38	53.0	0.10	0.12	0.06	< 0.02	< 0.01	< 0.01	0.11	55.6
NE1(D)	2.48	2.71	2.04	1.32	260	0.30	0.15	< 0.02	< 0.02	< 0.01	< 0.01	0.14	269
NE2	0.73	0.43	0.40	0.25	12.8	0.08	0.08	0.09	< 0.02	< 0.01	< 0.01	0.15	15.1
NE3	0.92	0.51	0.37	0.23	13.0	0.04	0.05	< 0.02	< 0.02	< 0.01	< 0.01	0.02	15.2

288 Table S8. Concentrations of PFAAs (ng/g) in maize soil.

NE4	0.43	0.29	0.30	0.14	8.27	0.04	0.06	0.05	< 0.02	< 0.01	< 0.01	0.08	9.67
NW1	0.43	0.30	0.28	0.17	7.94	0.02	0.01	0.04	< 0.02	< 0.01	< 0.01	< 0.01	9.20
NW2	0.48	0.18	0.14	0.09	5.49	0.08	0.03	< 0.02	< 0.02	< 0.01	< 0.01	0.06	6.57
NW3	0.36	0.21	0.28	0.08	5.02	0.04	0.04	0.02	< 0.02	< 0.01	< 0.01	0.30	6.38
NW4	0.21	0.09	0.15	0.07	3.20	0.01	0.05	< 0.02	< 0.02	< 0.01	< 0.01	0.02	3.81
S 1	0.32	0.23	0.19	0.10	10.5	0.07	0.06	0.07	< 0.02	< 0.01	< 0.01	0.20	11.7
S2	0.41	0.31	0.34	0.12	7.58	0.09	0.12	< 0.02	< 0.02	< 0.01	0.02	0.47	9.46
S3	0.20	0.09	0.16	0.09	4.37	0.04	0.09	0.02	< 0.02	< 0.01	< 0.01	0.18	5.24
S4	0.27	0.11	0.17	0.03	2.41	0.05	0.05	0.03	< 0.02	< 0.01	< 0.01	0.08	3.20
SE1	0.93	0.66	0.35	0.24	11.4	0.05	0.03	< 0.02	0.03	< 0.01	< 0.01	< 0.01	13.7
SE2	0.24	0.13	0.21	0.05	3.13	0.01	0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	3.84
SE3	0.29	0.16	0.15	0.07	3.45	0.04	0.03	< 0.02	< 0.02	< 0.01	< 0.01	0.07	4.28
SE4	0.21	0.07	0.11	0.05	1.29	0.06	0.02	< 0.02	< 0.02	< 0.01	< 0.01	0.04	1.86
SW1	1.01	0.70	0.51	0.30	22.8	0.06	0.08	< 0.02	< 0.02	< 0.01	< 0.01	0.05	25.5
SW2	0.46	0.23	0.15	0.12	6.62	0.04	0.05	0.02	< 0.02	< 0.01	< 0.01	0.05	7.75
SW3	0.38	0.21	0.10	0.10	5.70	0.05	0.04	< 0.02	< 0.02	< 0.01	< 0.01	0.08	6.68
SW4	0.01	0.12	0.08	0.08	2.82	0.06	0.04	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	3.23
W1	1.04	0.76	0.57	0.32	20.6	0.10	0.11	0.04	< 0.02	< 0.01	< 0.01	0.09	23.7
W2	0.75	0.53	0.49	0.17	12.8	0.07	0.04	0.03	< 0.02	< 0.01	< 0.01	0.05	14.9
W3	0.35	0.34	0.14	0.08	7.42	0.05	0.07	< 0.02	< 0.02	< 0.01	< 0.01	0.02	8.49
W4	0.18	0.13	0.09	0.09	3.75	0.04	0.07	< 0.02	< 0.02	< 0.01	< 0.01	0.03	4.39

Regions	Cities	PFOS	PFOA	∑PFAAs	Ref ^b
Northeast China	Dandong	nd	nd	0.30 ^a	(1)
	Dalian	nd	nd	0.12 ^a	(1)
	Yingkou	0.26 ^a	0.08 ^a	1.10 ^a	(1)
	Panjin	nd	0.05 ^a	0.23 ^a	(1)
	Jinzhou	0.01 ^a	0.21 ^a	0.63 ^a	(1)
	Huludao	0.11 ^a	0.20 ^a	0.74 ^a	(1)
North China	Guanting Reservoir	nd-0.86	nd-2.8	0.13-8.50	(2)
	Beijing	0.40 ^a	0.30 ^a	-	(3)
	Tianjin Binhai area	1.88 ^a	0.41 ^a	3.55 ^a	(1)
	Qinhuangdao	0.09 ^a	nd	0.30 ^a	(1)
	Tangshan	nd	nd	0.04 ^a	(1)
East China	Dezhou	0.15 ^a	0.25 ^a	0.55 ^a	(1)
	Binzhou	0.11 ^a	0.58 ^a	0.91 ^a	(1)
	Dongying	0.10 ^a	2.32 ^a	2.60 ^a	(1)
	Weifang	0.12 ^a	0.33 ^a	0.59 ^a	(1)
	Yantai	0.13 ^a	0.14 ^a	0.42 ^a	(1)
	Weihai	0.11 ^a	0.06 ^a	0.31 ^a	(1)
	Qingdao	0.17 ^a	0.26 ^a	0.73 ^a	(1)
	Shanghai	8.58-10.4	3.28-47.5	141-237	(4)
Central China	Huaihe Watershed	nd-0.21	nd-0.2	nd-1.22	(5)
South China	Guangzhou	0.05-0.83	0.02-0.09	0.09-1.02	(3)
	Dongguan	0.12-1.48	0.05-0.48	0.19-1.96	(3)
	Shenzhen	0.07-2.41	0.03-0.53	0.11-2.58	(3)
	Zhuhai	0.05-1.21	0.03-1.24	0.09-2.45	(3)

291 Note: a, the average concentration; b, references: (1) Meng et al. (2015); (2) Wang et

al. (2011); (3) Guo-Cheng et al. (2013); (4) Li et al. (2010); (5) Meng et al. (2013).

293

294

295

Component	Carbon chain length	Equations	R ²	р
PFBA	4	$Log_{10}C_{soil} = 0.19 \times Log_{10}C_{irrigation} - 0.48$	0.60	< 0.01
PFPeA	5	$Log_{10}C_{soil} = 0.21 \times Log_{10}C_{irrigation} - 0.61$	0.60	< 0.01
PFHxA	6	$Log_{10}C_{soil} = 0.22 \times Log_{10}C_{irrigation} - 0.64$	0.71	< 0.01
PFHpA	7	$Log_{10}C_{soil} = 0.26 \times Log_{10}C_{irrigation} - 0.89$	0.77	< 0.01
PFOA	8	$Log_{10}C_{soil} = 0.30 \times Log_{10}C_{irrigation} + 0.51$	0.81	< 0.01
∑PFAAs		$Log_{10}C_{soil} = 0.30 \times Log_{10}C_{irrigation} + 0.50$	0.82	<0.01

297 Table S10 Concentration relationship of PFAAs in irrigation water and soil (n=30)

sites	Precipitation	PFRA	ϷϝϷͼϪ	PFH _x Δ	PFHnA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFRS	PFH _x S	PFOS	$\sum PFAAs$
51105	event	11 DA	1110/1	1111/1	11111/1	110/1	11111		11 OIID/1	11D0D/1	1105	ППЛО	1105	
P1	Oct. 12	447	111	81.2	130	1451	4.62	3.58	0.67	0.14	< 0.09	< 0.06	< 0.1	2229
P1	Oct. 19	227	260	554	944	2627	9.79	7.39	0.62	< 0.13	< 0.09	0.67	0.78	4631
P1	Oct. 20	85.9	30.1	25.7	54.6	1432	2.45	2.25	0.26	< 0.13	< 0.09	< 0.06	0.71	1634
P1	Oct. 30	97.9	42.0	37.8	120	1358	4.10	3.50	0.60	0.18	1.21	0.15	0.51	1666
P1	Nov. 15	804	420	376	498	2752	4.96	4.28	1.58	0.39	< 0.09	0.10	0.44	4862
P1	Nov. 27	10.1	4.93	3.55	3.58	53.7	0.15	0.18	< 0.08	< 0.13	< 0.09	0.12	< 0.1	76.4
P2	Oct. 19	94.5	29.8	57.4	175	1285	1.56	1.18	0.09	< 0.13	0.31	0.83	0.93	1646
P2	Oct. 21	3.90	52.2	41.3	91.8	713	1.68	0.63	0.09	< 0.13	1.33	4.46	0.57	911
P2	Oct. 30	91.5	28.9	51.6	146	844	3.79	0.25	< 0.08	< 0.13	0.17	1.26	0.55	1168
P3	Oct. 12	66.8	26.5	32.4	47.2	666	5.41	1.51	< 0.08	< 0.13	< 0.09	0.07	0.29	846
P3	Oct. 19	7.84	4.73	4.01	5.47	176	0.39	0.41	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	199
P3	Oct. 30	9.96	4.42	4.59	4.38	61.0	0.48	0.26	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	85.2
P3	Nov. 27	13.4	4.79	3.88	4.82	102	0.14	0.28	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	129
P4	Oct. 20	122	71.6	57.9	40.3	1065	1.44	1.33	0.09	< 0.13	< 0.09	0.11	0.41	1360
P4	Oct. 30	58.9	32.5	35.6	64.4	564	1.31	1.05	0.29	< 0.13	0.32	< 0.06	0.45	759
P4	Nov. 27	6.94	3.21	2.41	2.03	44.7	0.14	< 0.15	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	59.6
P5	Oct. 12	10.1	4.56	4.28	5.31	101	1.27	0.32	< 0.08	< 0.13	< 0.09	0.08	0.21	127
P5	Oct. 19	9.76	3.91	2.96	3.11	223	< 0.13	< 0.15	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	243
P5	Oct. 30	5.40	2.84	2.57	3.72	45.0	0.31	0.03	< 0.08	< 0.13	< 0.09	< 0.06	< 0.1	60.0
P5	Nov. 15	30.4	6.57	4.66	5.73	164	0.46	0.21	0.10	< 0.13	< 0.09	0.10	1.35	213

299 Table S11. Concentrations of PFAAs (ng/L) in rainwater.

Country	Region	PFOS	PFOA	Σ PFAAs	Precipitation type	Sampling location	Ref ^f
China	Hong Kong	nd-0.7	0.2-0.41	11.2 ^b	Rain	Urban	(1)
	Shenyang	nd-51	0.82-13	-	Snow	Urban	(2)
	Dalian	26.9-545	8.08-65.8	-	Snow	Urban	(3)
		9.92-113	32.9-40.8	-	Rain	Urban	(3)
	Weifang	-	-	152 ^{a, b}	Rain	Urban	(4)
	Changchun	-	-	92.6 ^b	Rain	Urban	(4)
	Beijing	15.4 ^b	30.9 ^b	105 ^b	Snow	Urban	(5)
	Tianjin	33 ^b	107 ^b	229 ^b	Snow	Urban	(5)
USA	Albany,NY	nd-1.93	nd-19.6	0.91-23.9	Snow	Urban	(6)
		nd-1.51	nd-7.27	0.91-13.2	Rain	Urban	(6)
		nd-0.29	0.26-9.42	15.5 ^b	Rain	Urban ^c	(1)
	Slingerlands	nd-0.64	0.25-3.3	9.82 ^b	Rain	Urban ^d	(1)
Japan	Yokohama	0.16 ^b	95.3 ^b	-	Snow	Urban	(7)
		0.12 ^b	1.55 ^b	-	Rain	Urban	(7)
	Tsukuba	nd-1.34	0.11-11	18.1 ^b	Rain	Urban ^d	(1)
	Kawaguchi	nd-4.21	0.23-8.84	14.0 ^b	Rain	Urban ^e	(1)
Germany	Northern region	0.1-3.3	0-9.3	0.8-45.5	Rain	Rural	(8)
France	Toulouse	nd-0.23	0.21	3.22 ^b	Rain	Urban	(1)
India	Patna	nd-0.08	0.05-0.43	1.40 ^b	Rain	Urban	(1)

301 Table S12. Comparison of PFOS/PFOA concentrations (ng/L) in precipitation from

303 Note: a, concentration of $\sum PFAAs$ dominated by PFOA; b, the average concentration;

304 c, sampling sites are located in business area; d, sampling sites are located in residential

area; e, sampling sites are located in industrial area; f, references:(1) Kwok et al. (2010);

306 (2) Liu et al. (2009a); (3) Liu et al. (2009b); (4) Zhao et al. (2013); (5) Shan et al. (2015);

307 (6) Kim and Kannan (2007); (7) Salam et al. (2009); (8) Dreyer et al. (2010).

sites	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFBS	PFHxS	PFOS	Σ PFAAs
C1	68.7	9.24	1.68	1.02	4.42	0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	85.1
C2	0.79	24.7	7.58	0.70	2.49	0.06	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	36.3
C3	342	47.1	9.21	1.25	6.68	0.09	0.08	0.11	< 0.06	< 0.05	0.05	0.18	406
C4	256	55.6	23.6	5.75	39.3	0.13	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	380
C5	56.8	9.45	2.38	1.46	4.10	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	74.1
C6	137	30.5	2.03	0.59	3.58	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	174
C7	75.1	11.6	4.47	0.94	3.78	0.09	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	95.9
C8	5.98	0.97	0.20	0.18	1.11	< 0.05	< 0.07	< 0.1	0.07	< 0.05	< 0.04	0.28	8.79
C9(D)	260	54.0	39.6	3.83	12.4	0.06	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	370
C10(D)	202	35.7	10.3	1.18	9.71	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	259
E1	7.00	1.71	0.78	0.36	3.15	0.05	< 0.07	< 0.1	< 0.06	0.06	< 0.04	< 0.05	13.1
E2	5.79	1.53	0.99	0.23	2.32	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	10.9
E3	5.96	1.32	0.04	0.12	1.92	0.06	0.09	< 0.1	< 0.06	0.09	< 0.04	0.08	9.68
E4	2.78	0.73	0.45	< 0.1	0.85	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.05	4.94
N1(D)	339	83.2	49.0	2.06	6.79	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	480
N2(D)	66.2	13.1	6.37	0.58	2.37	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.15	88.7
N3(Y1)	37.3	9.96	3.61	0.50	2.87	0.05	< 0.07	< 0.1	< 0.06	0.05	< 0.04	< 0.05	54.3
N3(Y2)	111	18.8	3.26	1.12	5.24	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.06	140
N4(X1)	0.39	< 0.15	0.20	< 0.1	0.39	0.08	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.07	1.13
N4(X2)	7.84	5.99	5.78	0.78	2.55	0.63	0.13	0.15	0.17	< 0.05	< 0.04	0.21	24.2
NE1(D)	123	24.7	10.1	0.63	2.58	0.13	0.07	0.13	< 0.06	< 0.05	0.08	0.12	162
NE2	22.2	9.03	2.86	0.11	1.44	0.08	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	35.8
NE3	16.9	3.92	0.84	< 0.1	0.58	0.06	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.05	22.3

308 Table S13. Concentrations of PFAAs (ng/g) in wheat grain.

NE4	5.35	1.32	0.41	0.10	0.72	< 0.05	< 0.07	< 0.1	< 0.06	0.09	< 0.04	0.07	8.06
NW1	2.38	0.85	0.14	< 0.1	0.56	0.05	0.06	< 0.1	< 0.06	< 0.05	< 0.04	0.07	4.11
NW2	0.82	0.44	0.09	< 0.1	0.28	0.07	< 0.07	< 0.1	< 0.06	< 0.05	0.04	0.07	1.80
NW3	0.78	0.17	0.12	0.12	0.25	0.20	< 0.07	0.25	< 0.06	0.05	< 0.04	0.86	2.79
NW4	0.65	< 0.15	< 0.07	< 0.1	0.30	0.20	< 0.07	0.15	< 0.06	< 0.05	< 0.04	0.29	1.59
S 1	11.4	1.82	1.14	0.29	1.74	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	16.4
S2	9.56	1.36	0.76	< 0.1	0.89	0.11	< 0.07	< 0.1	0.06	< 0.05	< 0.04	< 0.05	12.7
S3	1.88	0.36	0.16	< 0.1	0.56	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	3.02
S4	0.78	< 0.15	< 0.07	<0.1	0.61	0.11	0.09	< 0.1	< 0.06	< 0.05	< 0.04	0.06	1.65
SE1	11.7	3.62	1.55	0.35	3.09	0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	20.4
SE2	2.22	0.36	0.12	0.11	0.41	0.06	0.11	< 0.1	0.08	< 0.05	< 0.04	0.11	3.58
SE3	2.10	0.55	0.13	0.15	0.58	< 0.05	0.09	< 0.1	0.06	< 0.05	< 0.04	< 0.05	3.65
SE4	0.84	0.24	0.17	< 0.1	0.52	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.84
SW1	20.0	3.23	1.15	0.26	2.35	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	27.0
SW2	8.29	1.40	0.48	< 0.1	0.68	0.11	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.80	11.8
SW3	0.91	< 0.15	0.09	< 0.1	0.31	< 0.05	< 0.07	< 0.1	0.07	< 0.05	< 0.04	0.09	1.45
SW4	0.96	< 0.15	0.10	<0.1	0.34	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.07	1.47
W1	12.9	2.89	1.51	< 0.1	3.10	< 0.05	0.09	< 0.1	< 0.06	< 0.05	< 0.04	0.09	20.5
W2	8.27	1.73	0.39	0.23	1.01	0.09	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	11.8
W3	2.30	0.59	0.13	< 0.1	0.70	0.07	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.14	3.92
W4	3.40	0.95	0.29	0.23	1.39	0.05	< 0.07	< 0.1	< 0.06	< 0.05	0.07	0.09	6.48

sites	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFBS	PFHxS	PFOS	Σ PFAAs
C1	6.31	1.26	1.48	<0.1	0.17	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	9.36
C2	2.44	0.36	2.24	< 0.1	0.16	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	5.37
C3	37.37	7.65	13.04	< 0.1	0.40	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.23	58.8
C4	8.69	1.44	2.19	0.07	0.17	0.02	< 0.07	< 0.1	< 0.06	0.02	< 0.04	0.04	12.7
C5	5.84	1.58	3.54	< 0.1	0.31	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	11.4
C6	7.65	2.76	3.06	< 0.1	0.32	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	14.0
C7	0.79	0.20	0.47	< 0.1	0.16	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.79
C8	2.13	0.73	0.95	0.14	0.07	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	4.13
C9(D)	6.79	0.33	1.39	< 0.1	0.24	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.14	9.04
C10(D)	34.63	3.28	3.54	1.02	0.70	< 0.05	0.07	< 0.1	< 0.06	0.08	< 0.04	< 0.05	43.4
E1	1.39	0.36	0.78	< 0.1	0.13	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	2.90
E2	0.83	0.40	1.03	< 0.1	0.13	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	2.55
E3	0.96	0.24	0.89	< 0.1	0.12	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	2.35
E4	0.60	0.53	0.99	< 0.1	0.07	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	2.32
N1(D)	2.33	0.49	2.27	0.20	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	5.59
N2(D)	1.07	0.75	0.33	0.12	0.15	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.21	2.77
N3(Y1)	0.90	0.16	0.49	0.16	0.11	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.96
N3(Y2)	2.31	0.50	0.37	< 0.1	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	3.52
N4(X1)	<0.5	< 0.15	0.13	< 0.1	0.11	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.05	0.78
N4(X2)	< 0.5	0.19	0.30	< 0.1	0.15	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.13	1.23
NE1(D)	6.78	0.24	0.92	< 0.1	0.26	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	8.34
NE2	0.54	0.36	0.31	< 0.1	0.10	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	1.55
NE3	0.68	< 0.15	0.26	< 0.1	0.09	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.28

311 Table S14. Concentrations of PFAAs (ng/g) in maize grain.

NE4	< 0.5	< 0.15	0.43	< 0.1	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.06	1.09
NW1	1.00	< 0.15	0.42	0.12	0.16	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	1.99
NW2	0.72	0.23	0.46	< 0.1	0.12	< 0.05	< 0.07	< 0.1	0.10	0.07	< 0.04	< 0.05	1.85
NW3	0.75	0.17	0.39	< 0.1	0.06	0.09	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.09	1.71
NW4	< 0.5	< 0.15	0.14	0.18	< 0.05	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.06	0.83
S 1	< 0.5	< 0.15	0.52	< 0.1	0.13	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.13
S2	< 0.5	< 0.15	0.48	< 0.1	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.09
S3	< 0.5	< 0.15	0.21	< 0.1	0.11	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	0.79
S4	<0.5	< 0.15	0.14	< 0.1	0.05	< 0.05	0.10	< 0.1	< 0.06	< 0.05	< 0.04	0.09	0.84
SE1	4.15	1.48	1.40	0.64	0.19	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	7.99
SE2	0.50	0.65	1.21	< 0.1	0.12	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.07	2.71
SE3	0.56	0.15	0.45	< 0.1	0.09	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	1.46
SE4	< 0.5	< 0.15	0.16	< 0.1	0.09	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	0.70
SW1	3.40	0.86	1.52	< 0.1	0.31	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.11	6.34
SW2	1.85	0.31	0.97	0.20	0.11	0.45	0.09	0.60	< 0.06	< 0.05	< 0.04	0.69	5.33
SW3	0.58	< 0.15	0.12	< 0.1	0.12	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.07	1.11
SW4	<0.5	< 0.15	0.16	< 0.1	0.09	0.17	< 0.07	0.22	< 0.06	< 0.05	< 0.04	0.10	1.18
W1	1.98	0.73	1.13	< 0.1	0.12	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.11	4.25
W2	3.78	0.51	0.98	< 0.1	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	0.10	5.67
W3	0.56	0.21	0.63	0.24	0.16	< 0.05	< 0.07	0.21	< 0.06	< 0.05	< 0.04	0.07	2.21
W4	< 0.5	< 0.15	0.22	< 0.1	0.14	< 0.05	< 0.07	< 0.1	< 0.06	< 0.05	< 0.04	< 0.05	0.83

	(Component	Carbon chain length	Bioaccumulation equations	R ²	р
	Wheat	PFBA	4	$Log_{10}C_{grain} = 1.84 \times Log_{10}C_{soil} + 1.43$	0.82	< 0.01
		PFPeA	5	$Log_{10}C_{grain} = 1.31 \times Log_{10}C_{soil} + 0.85$	0.78	< 0.01
		PFHxA	6	$Log_{10}C_{grain} = 1.48 \times Log_{10}C_{soil} + 0.47$	0.78	<0.01
		PFHpA	7	$Log_{10}C_{grain} = 0.73 \times Log_{10}C_{soil} - 0.14$	0.62	<0.01
		PFOA	8	$Log_{10}C_{grain} = 0.61 \times Log_{10}C_{soil} - 0.57$	0.66	< 0.01
	_	∑PFAAs		$Log_{10}C_{grain} = 1.06 \times Log_{10}C_{soil} - 0.14$	0.81	< 0.01
	Maize	PFBA	4	$Log_{10}C_{grain} = 1.30 \times Log_{10}C_{soil} + 0.32$	0.72	< 0.01
		PFPeA	5	$Log_{10}C_{grain} = 0.84 \times Log_{10}C_{soil} - 0.24$	0.50	< 0.01
		PFHxA	6	$Log_{10}C_{grain} = 0.65 \times Log_{10}C_{soil} + 0.08$	0.40	< 0.01
		PFOA	8	$Log_{10}C_{grain} = 0.22 \times Log_{10}C_{soil} - 1.14$	0.37	< 0.01
		∑PFAAs		$Log_{10}C_{grain} = 0.50 \times Log_{10}C_{soil} - 0.17$	0.48	< 0.01
315						
316						
317						
318						
319						
320						
321						
322						

Table S15. Bioaccumulation equations of PFAAs in wheat and maize grain (n=44)

			The ED	Is via con	sumption of	of wheat			The EDIs via consumption of maize						
Location	Objectives	PFBA	PFPeA	PFHxA	PFHpA	PFOA	∑PFAAs	PFBA	PFPeA	PFHxA	PFHpA	PFOA	∑PFAAs		
CR	Toddlers	1219.24	256.39	141.47	10.11	44.93	1674.14	5.63	0.48	0.96	0.16	0.15	7.53		
	Children	1228.09	258.25	142.50	10.19	45.25	1686.29	5.67	0.48	0.96	0.17	0.15	7.59		
	Teenagers	934.12	196.43	108.39	7.75	34.42	1282.63	4.32	0.37	0.73	0.13	0.12	5.77		
	Adults	828.78	174.28	96.16	6.87	30.54	1138.00	3.83	0.33	0.65	0.11	0.10	5.12		
1km	Toddlers	887.91	177.16	55.61	13.08	72.18	1208.00	6.41	1.44	2.61	0.03	0.15	10.75		
	Children	894.36	178.45	56.01	13.17	72.70	1216.77	6.45	1.45	2.63	0.03	0.15	10.82		
	Teenagers	680.27	135.73	42.60	10.02	55.30	925.51	4.91	1.10	2.00	0.02	0.11	8.23		
	Adults	603.56	120.43	37.80	8.89	49.06	821.14	4.35	0.98	1.77	0.02	0.10	7.30		
2km	Toddlers	81.56	17.64	7.84	1.36	17.48	127.46	1.46	0.43	0.91	0.10	0.11	3.15		
	Children	82.15	17.77	7.89	1.37	17.61	128.39	1.47	0.43	0.91	0.10	0.11	3.17		
	Teenagers	62.49	13.51	6.00	1.04	13.39	97.66	1.12	0.33	0.69	0.08	0.08	2.41		
	Adults	55.44	11.99	5.33	0.93	11.88	86.64	0.99	0.29	0.62	0.07	0.08	2.14		
4km	Toddlers	61.14	16.55	6.08	0.85	7.53	95.19	1.18	0.26	0.53	0.04	0.10	2.42		
	Children	61.59	16.67	6.12	0.86	7.58	95.88	1.19	0.26	0.53	0.04	0.10	2.44		
	Teenagers	46.85	12.68	4.66	0.65	5.77	72.93	0.90	0.20	0.40	0.03	0.08	1.85		
	Adults	41.56	11.25	4.13	0.58	5.12	64.71	0.80	0.18	0.36	0.03	0.07	1.64		
7km	Toddlers	32.98	7.47	2.10	0.60	5.24	51.63	0.45	0.10	0.30	0.04	0.09	1.13		
	Children	33.22	7.53	2.11	0.60	5.28	52.01	0.45	0.10	0.30	0.04	0.09	1.14		
	Teenagers	25.27	5.73	1.61	0.46	4.02	39.56	0.34	0.08	0.23	0.03	0.07	0.87		
	Adults	22.42	5.08	1.43	0.41	3.56	35.10	0.30	0.07	0.21	0.03	0.06	0.77		

323 Table S16. Estimated Daily Intake (EDI, ng/kg.bw/day) of PFAAs via consumption of wheat and maize separately for various age groups
10km	Toddlers	15.79	3.72	1.60	0.56	5.07	29.15	0.22	0.09	0.20	0.04	0.09	0.79
	Children	15.90	3.74	1.61	0.57	5.11	29.36	0.22	0.09	0.20	0.04	0.09	0.80
	Teenagers	12.10	2.85	1.22	0.43	3.88	22.33	0.17	0.07	0.15	0.03	0.07	0.61
	Adults	10.73	2.53	1.09	0.38	3.45	19.82	0.15	0.06	0.13	0.03	0.06	0.54

324

Note: The estimated daily intake (EDI, ng/kg·bw/day) of PFAAs through the consumption of wheat and maize can be calculated based on averaging the intake dose by body weight. The details of the calculation and data sources are shown in Table S6. Considering that body weights and consumption rates vary by age, the EDIs were estimated for four age groups: toddlers (2-5 years), children (6-10 years), teenagers (11-17 years), and adults (\geq 18 years). As for the EDI calculation for residents with different radius from the FIP, the average concentrations of PFAAs in wheat and maize grain collected in that radius were used.

330

Location	Objectives	PFBA	PFPeA	PFHxA	PFHpA	PFOA	∑PFAAs
CR	Toddlers	1225	257	142	10.3	45.1	1682
	Children	1234	259	143	10.4	45.4	1694
	Teenagers	938	197	1094	7.87	34.5	1288
	Adults	833	175	96.8	6.99	30.6	1143
1km	Toddlers	894	179	58.2	13.1	72.3	1219
	Children	901	180	58.6	13.2	72.8	1228
	Teenagers	685	137	44.6	10.0	55.4	934
	Adults	608	121	39.6	8.91	49.2	828
2km	Toddlers	83.0	18.1	8.74	1.47	17.6	131
	Children	83.6	18.2	8.81	1.48	17.7	132
	Teenagers	63.6	13.8	6.70	1.12	13.5	100
	Adults	56.4	12.3	5.94	1.00	12.0	88.8
4km	Toddlers	62.3	16.8	6.61	0.89	7.63	97.6
	Children	62.8	16.9	6.65	0.90	7.69	98.3
	Teenagers	47.7	12.9	5.06	0.68	5.85	74.8
	Adults	42.4	11.4	4.49	0.61	5.19	66.4
7km	Toddlers	33.4	7.58	2.40	0.64	5.33	52.8
	Children	33.7	7.63	2.42	0.65	5.37	53.2
	Teenagers	25.6	5.81	1.84	0.49	4.08	40.4
	Adults	22.7	5.15	1.63	0.44	3.62	35.9

Table S17. The total estimated daily intake (EDI, ng/kg·bw/day) of PFAAs via
consumption of wheat and maize for residents around the FIP.

10km	Toddlers	16.0	3.81	1.79	0.60	5.16	29.9
	Children	16.1	3.83	1.81	0.61	5.19	30.2
	Teenagers	12.3	2.92	1.37	0.46	3.95	22.9
	Adults	10.9	2.59	1.22	0.41	3.51	20.4

Note: toddlers (2-5 years), children (6-10 years), teenagers (11-17 years), and adults

334 (\geq 18 years).

335 Figures

Fig S1. The concentrations of PFAAs in wheat and maize soil in different directionsand their corresponding wind frequencies.

339

340

341

- Benford, D., Boer, J., Carere, A., Domenico, A., Johansson, N., Schrenk, D., Schoeters, G., Voogt, P.,
 Dellatte, E. 2008. Opinion of the scientific panel on contaminants in the food chain on
 perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA Journal.
 (653): 1-131.
- BfR (Bundesinstitut für Risikobewertung, German Federal Institut for Risk Assessment), 2006. High
 levels of perfluorinated organic surfactants in fish are likely to be harmful to human health.
 http://www.bfr.bund.de/en/press_information/2006/21/high_levels_of_perfluorinated_organic
 surfactants_in_fish_are_likely_to_be_harmful_to_human_health-8172.html (accessed
 02.16.17).
- Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan,
 K., Mabury, S. A., van Leeuwen, S. P. 2011. Perfluoroalkyl and polyfluoroalkyl substances in
 the environment: terminology, classification, and origins. Integrated environmental assessment
 and management. 7(4): 513-541.
- 355 COT (Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment), 2009.
 356 COT statement on the tolerable daily intake for perfluorooctanoic acid.
 357 https://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2009/cot200902 (accessed
 358 02.16.17).
- Dreyer, A., Matthias, V., Weinberg, I., Ebinghaus, R. 2010. Wet deposition of poly-and perfluorinated
 compounds in Northern Germany. Environmental Pollution. 158(5): 1221-1227.
- Felizeter, S., McLachlan, M. S., de Voogt, P. 2012. Uptake of Perfluorinated Alkyl Acids by
 Hydroponically Grown Lettuce (Lactuca sativa). Environmental Science & Technology. 46(21):
 11735-11743.
- Guo-Cheng, H. U., Zheng, H., Zhang, L. J., Zhen-Cheng, X. U., Chen, L. G., De-Chun, H. E., Hua-Shou,
 L. I. 2013. Contamination characteristics of perfluorinated compounds in soil from Pearl River
 Delta, South China. China Environmental Science.
- Kim, S.-K., Kannan, K. 2007. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative
 importance of pathways to contamination of urban lakes. Environmental science & technology.
 41(24): 8328-8334.
- Kwok, K. Y., Taniyasu, S., Yeung, L. W., Murphy, M. B., Lam, P. K., Horii, Y., Kannan, K., Petrick, G.,
 Sinha, R. K., Yamashita, N. 2010. Flux of perfluorinated chemicals through wet deposition in
 Japan, the United States, and several other countries. Environmental science & technology.
 44(18): 7043-7049.
- Li, F., Zhang, C., Qu, Y., Chen, J., Chen, L., Liu, Y., Zhou, Q. 2010. Quantitative characterization of
 short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. The Science of
 the total environment. 408(3): 617-623.
- Liu, W., Dong, G., Jin, Y., Sasaki, K., Saito, N., Sato, I., Tsuda, S., Nakayama, S. F. 2009a. Occurrence
 of perfluoroalkyl acids in precipitation from Shenyang, China. Chinese Science Bulletin. 54(14):
 2440-2445.
- Liu, W., Jin, Y., Quan, X., Sasaki, K., Saito, N., Nakayama, S. F., Sato, I., Tsuda, S. 2009b.
 Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China. Environment
 international. 35(4): 737-742.
- Loi, E. I., Yeung, L. W., Taniyasu, S., Lam, P. K., Kannan, K., Yamashita, N. 2011. Trophic magnification
 of poly-and perfluorinated compounds in a subtropical food web. Environmental science &
 technology. 45(13): 5506-5513.

- Meng, J., Wang, T., Wang, P., Giesy, J. P., Lu, Y. 2013. Perfluorinated compounds and organochlorine
 pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China.
 Environ Sci Pollut Res Int. 20(6): 3965-3974.
- Meng, J., Wang, T., Wang, P., Zhang, Y., Li, Q., Lu, Y., Giesy, J. P. 2015. Are levels of perfluoroalkyl
 substances in soil related to urbanization in rapidly developing coastal areas in North China?
 Environ Pollut. 199: 102-109.
- Salam, M., Hossain, M., Haq, M., Parvez, M. 2009. Deposition flux of perfluorinated compounds in wet
 deposition samples in Yokohama, Japan. Journal of Bio-Science. 17: 7-12.
- Shan, G., Chen, X., Zhu, L. 2015. Occurrence, fluxes and sources of perfluoroalkyl substances with
 isomer analysis in the snow of northern China. Journal of Hazardous Materials. 299: 639-646.
- Taniyasu, S., Kannan, K., So, M. K., Gulkowska, A., Sinclair, E., Okazawa, T., Yamashita, N. 2005.
 Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain
 perfluorinated acids in water and biota. Journal of chromatography A. 1093(1-2): 89-97.
- Thayer, K., Houlihan, J. 2002. Perfluorinated chemicals: Justification for inclusion of this chemical class
 in the national report on human exposure to environmental chemicals. Environmental Working
 Group, Washington, DC.
- 402 TWK (Drinking Water Commission of the German Ministry of Health at the German Federal
 403 Environment Agency). 2006. Provisional evaluation of PFT in drinking water with the guide
 404 substances perfluorooctanoid acid (PFOA) and perfluorooctane sulfonate (PFOS) as examples.
 405 http://www.umweltbundesamt.de/ubainfo-presse-e/hintergrund/pft-in-drinking-water.pdf.
- Wang, T., Chen, C., Naile, J. E., Khim, J. S., Giesy, J. P., Lu, Y. 2011. Perfluorinated compounds in water,
 sediment and soil from Guanting Reservoir, China. Bulletin of environmental contamination
 and toxicology. 87(1): 74-79.
- Yang, X., Li, Y., Ma, G., Hu, X., Wang, J., Cui, Z., Wang, Z., Yu, W., Yang, Z., Zhai, F. 2005. Study on
 weight and height of the Chinese people and the differences between 1992 and 2002. Chinese
 Journal of Epidemiology. 26(7): 489-493.
- Zhang, T., Sun, H. W., Wu, Q., Zhang, X. Z., Yun, S. H., Kannan, K. 2010. Perfluorochemicals in meat,
 eggs and indoor dust in China: assessment of sources and pathways of human exposure to
 perfluorochemicals. Environmental science & technology. 44(9): 3572-3579.
- Zhao, L., Zhou, M., Zhang, T., Sun, H. 2013. Polyfluorinated and perfluorinated chemicals in
 precipitation and runoff from cities across Eastern and Central China. Archives of
 environmental contamination and toxicology. 64(2): 198-207.
- Bureau of Statistics of Shandong Province, China. 2015. Shandong Statistical Yearbook.
 http://www.stats-sd.gov.cn/tjnj/nj2015/indexch.htm.
- Zhai, F. Y. 2008. A prospective study on dietary pattern and nutrition transition in China. Science Press:
 Beijing, China.
- 422