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Abstract

The timing of the annual phytoplankton spring bloom is likely to be altered in response

to climate change. Quantifying that response has, however, been limited by the typically

coarse temporal resolution (monthly) of global climate models. Here, we use higher res-

olution model output (maximum 5 days) to investigate how phytoplankton bloom tim-

ing changes in response to projected 21st century climate change, and how the

temporal resolution of data influences the detection of long-term trends. We find that

bloom timing generally shifts later at mid-latitudes and earlier at high and low latitudes

by ~5 days per decade to 2100. The spatial patterns of bloom timing are similar in both

low (monthly) and high (5 day) resolution data, although initiation dates are later at low

resolution. Themagnitude of the trends in bloom timing from 2006 to 2100 is very simi-

lar at high and low resolution, with the result that the number of years of data needed

to detect a trend in phytoplankton phenology is relatively insensitive to data temporal

resolution. We also investigate the influence of spatial scales on bloom timing and find

that trends are generally more rapidly detectable after spatial averaging of data. Our

results suggest that, if pinpointing the start date of the spring bloom is the priority, the

highest possible temporal resolution data should be used. However, if the priority is

detecting long-term trends in bloom timing, data at a temporal resolution of 20 days

are likely to be sufficient. Furthermore, our results suggest that data sources which

allow for spatial averaging will promote more rapid trend detection.
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1 | INTRODUCTION

Phenology refers to the characteristics of naturally recurring events,

such as the seasonal cycles of plants and animals. Phenology has

been recognised by the Intergovernmental Panel on Climate Change

(IPCC) as ‘perhaps the simplest process in which to track changes . . .

in response to climate change’ (Rosenzweig et al., 2007). In the

ocean, the seasonal cycle of primary production is dominated in

many regions by the annual phytoplankton spring bloom (Gran &

Braarud, 1935). In a meta-analysis of recorded climate change

impacts on marine species, Poloczanska et al. (2016) found that phy-

toplankton phenology was almost exclusively shifting earlier in the

year. Long time series of data (>30 years) are expected to be neces-

sary to distinguish a climate change-driven trend in phytoplankton
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populations from natural variability (Henson et al., 2010). However,

suitably long time series of phytoplankton data are restricted almost

entirely to the Northeast Atlantic where they have been collected

by the Continuous Plankton Recorder (Richardson et al., 2006).

These studies find that the timing of the spring bloom has advanced

by an average of 0.3 days per decade for some phytoplankton spe-

cies from 1976 to 2005 (Edwards & Richardson, 2004).

The timing of the bloom is hypothesised to be important to the

subsequent productivity of the marine ecosystem. The match-mis-

match hypothesis (Cushing, 1990) states that changes in phytoplank-

ton bloom timing may increase or decrease the survival of

zooplankton and fish larvae. This effect has been demonstrated, for

example, in observations of bloom initiation and haddock larvae in

the northwest Atlantic (Platt, Fuentes-Yaco, & Frank, 2003), where

earlier blooms led to increased survival of haddock larvae. The timing

of shrimp hatching throughout the North Atlantic has also been

shown to be coherent on interannual time scales with the timing of

the phytoplankton bloom (Koeller et al., 2009). Phytoplankton phe-

nology has also been hypothesised to affect the timing of oceanic

CO2 uptake in subpolar regions (Bennington, McKinley, Dutkiewicz,

& Ulman, 2009; Palevsky & Quay, 2017), and seasonal variability in

primary production alters the efficiency of carbon export and subse-

quent ocean storage (Lutz, Caldeira, Dunbar, & Behrenfeld, 2007).

Changes to the timing of the phytoplankton bloom associated with

climate warming are therefore expected to have impacts on the mar-

ine food web and carbon cycling.

Knowledge of contemporary interannual variability in phytoplank-

ton phenology has principally originated from satellite ocean colour

observations which provide the necessary temporal and spatial resolu-

tion to quantify the key features of the seasonal cycle. Despite a multi-

tude of different approaches to determining the timing of bloom

initiation (eg Brody, Lozier, & Dunne, 2013; Ji, Edwards, Mackas,

Runge, & Thomas, 2010), there is general agreement on the large-scale

patterns of phytoplankton phenology. The satellite-derived data

demonstrate that the phytoplankton spring bloom starts ~ April in the

subpolar North Atlantic, shifts to an autumn bloom (~ October) in the

subtropics, and in the Southern Ocean starts ~ September (eg Cole,

Henson, Martin, & Yool, 2012; Racault, Le Quere, Buitenhuis, Sathyen-

dranath, & Platt, 2012). In addition, the timing of the spring bloom dis-

plays substantial interannual variability in response to meteorological

and oceanographic conditions (Henson, Dunne, & Sarmiento, 2009;

Taboada & Anadon, 2014). The phytoplankton seasonal cycle is

expected to be altered by climate change, principally via increasing

stratification in response to warming (Doney, 2006). This is expected

to lead to earlier bloom timing in subpolar regions, as light limitation is

alleviated earlier in the growing season (Henson, Cole, Beaulieu, &

Yool, 2013). In the North Atlantic, a dramatic decrease in PP is pre-

dicted, associated with a transition from the current spring blooming

regime to an autumn blooming regime by the end of the century (Hen-

son et al., 2013), driven principally by increased stratification and the

accompanying reduction in nutrient supply.

Analyses of future phytoplankton phenology have to date been

restricted by the coarse temporal resolution (typically monthly) of

climate model output. Monthly resolution data are known, however,

to result in reduced accuracy and precision in bloom timing esti-

mates in satellite data, compared to weekly or daily resolution data

(Ferreira, Visser, MacKenzie, & Payne, 2014). In Henson et al.

(2010), an analysis of modelled annual PP found that ~30–40 years

of data would be needed to distinguish a climate change trend from

the background natural variability. The authors suggested that other

indicators, such as phenology, may allow trends to be more rapidly

detected than in annual PP. However, Henson et al. (2013) found,

using monthly mean model output, that climate change trends in the

seasonal amplitude of PP was no more rapidly detectable, still requir-

ing ~30–40 years of data. The monthly resolution of the model out-

put was, however, assumed to be hampering characterisation of the

seasonal cycle and to be too coarse to pinpoint the start of the

bloom. Hence, the authors suggested that monthly data were not

suited to robust assessment of climate change trends in bloom tim-

ing, and that higher temporal resolution data could allow more rapid

detection of climate change trends.

Here, we analyse model output from a coupled climate run over

the period 2006–2100 at a range of temporal resolutions, from 5 to

30 days, to determine how estimates of bloom timing and climate

change trends are affected by sampling frequency. In addition, we

assess how the temporal and spatial resolution of observations may

affect the ability to detect future trends in phytoplankton bloom

initiation.

2 | MATERIALS AND METHODS

2.1 | Model output

We use the MEDUSA-2.0 biogeochemical model (Yool, Popova, &

Anderson, 2013) coupled to the NEMO ocean model. MEDUSA is a

medium-complexity model which includes two phytoplankton and

two zooplankton groups. Surface chlorophyll concentration is the

sum of separate and dynamic diatom and non-diatom chlorophyll

components. The model was run at ¼° (~19 km) horizontal resolu-

tion, with 75 vertical levels increasing in thickness from 1 m at the

surface to 200 m at abyssal depths. The simulation used a 24 min

time-step, and output was saved as means of 5, 10, 15, 20 and

30 days. The model was forced at the surface using output from a

simulation of the HadGEM2-ES Earth System Model (Jones et al.,

2011). The forcing simulation was run between 2006 and 2100

under Representative Concentration Pathway 8.5 (RCP8.5), the high

emissions end-member of IPCC’s AR5 scenarios (Riahi et al., 2011).

A full description of the model formulation and validation against

observations can be found in Yool et al. (2013), Yool, Popova, and

Coward (2015).

2.2 | Bloom timing metric

To calculate the date of bloom initiation we use the approach of

Hopkins, Henson, Painter, Tyrrell, and Poulton (2015), which elimi-

nates the use of annual median chlorophyll concentration to define a
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threshold value (as previously commonly used, eg, Siegel, Doney, &

Yoder, 2002; Henson et al., 2009). Brody et al. (2013) found that

using annual median chlorophyll as a threshold results in bloom initi-

ation estimates that are sensitive to the duration of the bloom, so

that long-lasting blooms appear to have later start dates. The use of

an annual median chlorophyll threshold poses a particular problem

for satellite-based estimates of bloom timing as data can be com-

pletely absent during the winter months (Ferreira, Hatun, Counillon,

Payne, & Visser, 2015). Although this issue does not affect model

output, which has no gaps, to enable comparison of modelled bloom

timing with satellite-derived estimates we use an adaptation of the

annual median approach proposed by Hopkins et al. (2015). For each

calendar year we first identified the date of peak chlorophyll concen-

tration and then concatenated the preceding and following

6 months. The bloom threshold was defined as the pre-peak mini-

mum chlorophyll concentration plus 5% of the difference between

the minimum and maximum concentrations. The global-scale patterns

of bloom timing are not sensitive to the choice of threshold (tested

between 1% and 20%; Hopkins, 2014), therefore to be consistent

with previous work (eg Siegel et al., 2002), a value of 5% is also

used here. The date of bloom initiation is then the first data point

above the threshold occurring prior to peak concentration. A dia-

gram illustrating the approach can be found in Figure 1 of Hopkins

et al. (2015).

2.3 | Satellite data

For comparison with model results we calculate bloom timing from

satellite-derived chlorophyll concentration data following the same

methodology, applied to MODIS-Aqua data for the period July

2002–December 2015. Daily, 9 km chlorophyll concentration data

were downloaded from http://oceancolor.gsfc.nasa.gov/ and then

averaged into 5, 10, 15, 20 and 30 day resolution. The data were

spatially interpolated onto the same ¼° grid as the model output.

A comparison of the satellite-derived and modelled bloom start

date for 2007–2015 calculated on 5-day resolution data is shown

in Fig. S1. Generally, the modelled start date is later than the

satellite-derived date if the bloom occurs in boreal spring, and ear-

lier than the satellite-derived date if the bloom occurs in austral

spring.

2.4 | Trend calculations

The linear trend in bloom start date was calculated using:

Yt ¼ lþ xXt þ Nt (1)

where Yt is the time series of bloom start date, l is a constant term

(the intercept), Xt is the time in years, x is the magnitude of the

trend (the slope) and Nt is the residual, or unexplained part of the
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F IGURE 1 Median day of year of bloom initiation for years 2006–2025 in (a) 5 day resolution model output and (b) 30 day resolution
output. Difference in day of year of bloom initiation by the end of the century (median of 2081–2100 minus median of 2006–2025) in (c)
5 day resolution model output and (d) 30 day resolution output. Biome boundaries are plotted in (b) and define: 1. High latitude North Pacific,
2. Oligotrophic North Pacific, 3. Equatorial Pacific, 4. Oligotrophic South Pacific, 5. Southern Ocean – Pacific sector, 6. High latitude North
Atlantic, 7. Oligotrophic North Atlantic, 8. Equatorial Atlantic, 9. Oligotrophic South Atlantic, 10. Southern Ocean - Atlantic sector, 11. Arabian
Sea, 12. Bay of Bengal, 13. Oligotrophic Indian Ocean, 14. Southern Ocean – Indian sector, and 15. Arctic Ocean [Colour figure can be viewed
at wileyonlinelibrary.com]
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time series. To prevent artefacts in trend estimates due to apparent

discontinuities in the time series (ie a bloom starting on time-step 1

(starting 1st January) and a bloom starting on the last time step

(ending 31st December) are only separated by 1 day, not 365 days),

the cyclic nature of the calendar is accounted for, following Cole

(2013).

The number of years of data needed to detect a trend against

the background of natural variability is calculated following Tiao

et al. (1990) and Weatherhead et al. (1998). To detect a trend with

a probability of 90%, the number of years of data required (n*), is:

n� ¼ 3:3rN

jxj

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ /
1� /

s" #2=3

(2)

where rN is the standard deviation of the noise (ie the residuals from

the trend fitting), x is the estimated trend and / is the auto-correlation

of the AR(1) noise represented by / = Corr (Nt, Nt�1).

2.5 | Spatial averaging

To investigate the influence of temporal resolution on n* on a basin

scale, we use the biomes defined in Henson et al. (2010). The

boundaries and names of the fourteen biomes are shown in Fig-

ure 1b. To assess the influence of spatial averaging on trend detec-

tion, we also compare n* calculated at single locations with that

calculated from data spatially averaged over a representative area.

The locations selected are ocean observing stations that include a

biogeochemical component (http://www.oceansites.org). The repre-

sentative area (or ‘footprint’) of a station is considered to be the

region that has a similar mean and variability (within �2 standard

deviations) as the time series at the station itself (full methodological

details can be found in Henson, Beaulieu, & Lampitt, 2016). Here,

we calculate the footprint for each station using the monthly

MEDUSA chlorophyll concentration. We refer to n* calculated at a

single station (ie single pixel) as ‘spatially discrete’ and n* calculated

over a footprint as ‘spatially averaged’. To calculate spatially aver-

aged n*, the time series of bloom start dates is first averaged over

the relevant footprint, and then the trend and thence n* are calcu-

lated.

3 | RESULTS

3.1 | Effect of temporal resolution on bloom timing
estimates

The median bloom start date (for 2006–2025) calculated on both

the 5 day and 30 day resolution model output is shown in Fig-

ure 1a,b (results for all temporal resolutions are shown in Fig. S2).

The global-scale patterns are broadly similar in the two resolutions.

High latitude blooms begin in spring (March-April in the northern

hemisphere and October-November in the southern hemisphere). In

temperate and subtropical regions blooms start in autumn/winter

(November-December in the northern hemisphere and July-August

in the southern hemisphere). These large-scale patterns are similar

to the satellite-derived estimates (Fig. S1), although the model tends

to estimate spring bloom start dates that are ~50 days later than

estimated from the satellite data. The model also estimates the

southern hemisphere subtropical bloom start date to be ~50 days

earlier than the satellite estimate. In both cases, the oligotrophic

gyres are the regions which exhibit the greatest discrepancy

between the satellite-derived and model-derived bloom timing esti-

mates, possibly because oligotrophic gyres tend to have a relatively

weak seasonal cycle in chlorophyll concentration and so satellite-

derived estimates of bloom timing are somewhat ambiguous (eg

Cole et al., 2012). Due to the potential errors in satellite-based

bloom timing estimates in gyre regions, it is unclear whether the

model-based estimates are robust. We therefore do not disregard

the model-derived bloom timing estimates in these regions in our

subsequent analyses.

Decreasing the temporal resolution of the model output does

not alter the broad-scale patterns of bloom timing, but locally there

are differences. Pixels where the average bloom timing is statistically

similar (ANOVA, p > .05) in the 5 day and 30 day output comprise

only 31% of pixels. In the majority of the ocean therefore, the tem-

poral resolution of the time series does affect the estimated bloom

start date. Almost universally (85% of pixels), 30 day resolution data

results in later estimated bloom start date than the 5 day resolution

output by, on average, 25 days. A probability density plot of the

bloom start date for all temporal resolutions demonstrates that the

30 day resolution data also has a substantially different distribution

from the 5 day data (Figure 2a), partly because the 30 day data is

constrained to take one of only 12 values (ie 15th January, 15th

February etc.). However, for temporal resolution up to 20 days, the

distribution of start dates is very similar to the highest resolution

data. A similar effect is seen in the satellite data (Fig. S1d), where

30 day resolution data results in bloom initiation estimates ~20 days

later than in the 5 day resolution data.

3.2 | Climate change-driven trends in bloom timing

The change in bloom start date between the first 20 years (2006–

2025) and the last 20 years (2080–2099) of the model run forced

with the IPCC RCP8.5 scenario shows that bloom initiation is gener-

ally predicted to become later in the northern hemisphere subtropics

(ie. shifting from a spring to an autumn start) and earlier in the trop-

ics and the Southern Ocean (Figure 1c,d). Changes in bloom timing

by the end of the century are typically of the order of �20 days,

with larger shifts found at the leading edges of expanding subtropi-

cal gyres. The observed patterns are consistent with previous work

that found a decrease in the seasonal amplitude of mixed layer

depth and thus nutrient supply, which resulted in a transition of

northern hemisphere subpolar regions (spring initiating blooms) to

more subtropical-like conditions with later autumn blooms (Henson

et al., 2013). In the subpolar north Atlantic, the changes in bloom

timing are more pronounced than in the Pacific, and a larger region

transitions to autumn bloom conditions. In the Southern Ocean and

Arctic regions, earlier bloom initiation is prevalent, likely in response
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to earlier shoaling of the mixed layer and thus alleviation of light lim-

itation. (Note however that the model does not include sea-ice algae,

so cannot predict potential alterations in bloom timing in ice-covered

regions). The low seasonality generally present in oligotrophic

regions renders the analysis of phenology less relevant, and little

change in bloom timing is observed, except at the edges of expand-

ing gyres. The patterns of change in bloom timing at the broad-scale

are similar in the 5 day and 30 day resolution data. Indeed, globally,

the median change in bloom timing by the end of the century is

essentially the same: 6 days earlier for 5 day resolution and 4.5 days

earlier for 30 day resolution. Therefore, although the bloom initiation

date itself depends on the temporal resolution of the data, the

changes in timing induced in a global warming scenario are similar,

regardless of temporal resolution.

The trend in bloom timing between 2006 and 2100 for both

the 5 day and 30 day resolution model output is shown in Fig-

ure 3a,b (results for other temporal resolutions are shown in

Fig. S3). Later bloom start dates are predicted in the future for the

northern hemisphere subpolar regions and earlier for the Southern

Ocean and Arctic. At 5 day resolution, trend magnitudes are on the

order of 5–10 days later per decade in the subpolar northern hemi-

sphere and 5–10 days earlier in the Arctic and Southern Ocean. At

30 day resolution, the trend magnitude is statistically different from

the 5 day resolution in only 10% of the ocean (ANCOVA test, 95%

significance level). The similarity in trends is confirmed in Figure 2b

where the distribution of trends for all temporal resolutions are

plotted. The coarser temporal resolution data is slightly more likely

to result in a zero trend than the 5-day resolution data, but other-

wise the predicted trend magnitude is very similar. The predicted

trends in bloom timing under the IPCC’s business-as-usual scenario

are therefore almost identical irrespective of the temporal resolu-

tion of the data.

3.3 | Effect of temporal resolution on trend
detection

The number of years of data required to distinguish a climate change

trend from the background of natural variability, n*, is shown in Fig-

ure 3c,d for 5 day and 30 day resolution (results for other temporal

resolutions are shown in Fig. S4). Large regions of the low latitudes

display trends that are undetectable before 2100. At high latitudes,

20–30 years of data are needed, increasing to >40 years in parts of

the Arctic and high latitude North Atlantic. These values are consis-

tent with previous studies that have shown that robustly detecting

long-term trends in the seasonal amplitude of chlorophyll concentra-

tion or PP requires 30–40 years of data (Henson et al., 2013). The

patterns of n* are very similar in both the 5 day and 30 day resolu-

tion output and, as a global median, n* is essentially identical

(43.5 years for 5 day and 44 years for 30 day, with 32% of pixels

showing trends that are undetectable before 2100 in both resolu-

tions). This reflects the similarities in the magnitude of the trend cal-

culated for the 5 day and 30 day resolution time series. The

probability distribution plot for all temporal resolution data demon-

strates that lower resolution data have almost no effect on n* (Fig-

ure 2c), particularly if n* is shorter than 20 years or longer than

50 years. The exception is the 30 day resolution data, in which the

mode of n* is 32 years, compared to 27 years for higher temporal

resolutions. Generally, increasing the temporal resolution of the data

therefore does not reduce the number of years of data needed to

detect a climate change-driven trend in bloom timing.
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3.4 | Effect of spatial scale on trend detection

We investigate whether spatial averaging affects n* at two scales:

basin scale and regional scale. The biome average n* for bloom

initiation date is plotted in Figure 4 for all temporal resolutions.

Probability density plots for all biomes and temporal resolutions

can be found in Fig. S5. The biomes with the shortest n* (5 day

resolution data) are the Arctic (33 years), Southern Ocean Pacific

sector (36 years) and the high latitude North Atlantic (39 years);

those with the longest n* are the Arabian Sea (67 years), Equato-

rial Pacific (64 years) and the North Atlantic oligotrophic gyre

(64 years). In most cases at the basin scale, n* changes relatively

little with increasing temporal resolution; in others, n* may

increase or decrease as resolution varies, but there is no consis-

tent pattern.

The influence of spatial averaging on the length of time series

needed to detect a trend in bloom timing at the regional scale is

illustrated in Figure 5. For each time series station (Figure 5a), n* cal-

culated at the pixel closest to the station (‘spatially discrete’) is com-

pared to n* calculated using footprint-mean start date (‘spatially

averaged’). All calculations were performed on the 5 day temporal

resolution model output. For the majority of stations assessed, spa-

tially averaging the data before n* calculation decreases the length

of data record needed to detect a trend (compare red and blue bars

in Figure 5b). Of a total of 28 sites, 16 have reduced n* with spatial

averaging (of which, n* is reduced to <100 years at 5 sites). At three

sites, n* is almost identical (�2 years) regardless of averaging, while

at a further three sites n* increases with spatial averaging. At six

sites, n* exceeds 100 years regardless of spatial averaging. As with

the biome-scale data, there is no consistent increase or decrease in

n* with increasing temporal resolution (Fig. S6).

As n* is a function of both the magnitude of the trend and of

the noise, differences in either factor may alter n*. By spatially aver-

aging the bloom start dates prior to calculating n*, the trend is ampli-

fied for ~ 50% of stations, but importantly the noise is substantially

reduced for 75% of stations. Together, these factors reduce n* so

that a long-term trend is generally more rapidly detectable in spa-

tially averaged, rather than spatially discrete, time series. Our results

imply that spatially resolved data therefore provide the best chance

of detecting a climate change-driven trend in bloom timing.

3.5 | Limitations

The analysis presented here is limited to a single biogeochemical

model for which relatively high temporal resolution data were avail-

able. The projections of spatial patterns, changes and trends in

bloom timing are likely to be model-dependent, and therefore our

results should be applied with due prudence. For instance, models

differ considerably in their ecological structure and parameterisation

(eg Kwiatkowski et al., 2014). This will affect the degree to which

their phytoplankton populations are regulated by nutrient availability

or grazing control and thus their modelled patterns of phenology.

Consequently, an immediate avenue for future work lies in evaluat-

ing the dependence of our results on the specific model used here.
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High temporal resolution surface chlorophyll output from several

more global biogeochemical models will be available from 2018

through the CMIP6 process which will contribute to the IPCC AR6

report, at which point this analysis should be revisited to quantify

the inter-model differences in phenology. In addition, a maximum

temporal resolution of 5 days has been used here as the baseline

against which results from coarser resolution output are assessed.

However, even higher resolution data may give different results,

although our analysis suggests this is unlikely (eg Figure 2). The max-

imum resolution practical for assessing phenology is likely to be

daily; firstly, sub-daily data are rarely available and secondly, higher

resolution data is likely to increase the magnitude of the noise with-

out imparting additional phenological information.

The results presented here regarding the temporal resolution of

data suitable for detecting trends in phytoplankton phenology may

not apply to other variables or indicators of biological change. For

example, previous work assessing annual integrated PP concluded

that n* was of a similar order of magnitude as found here for bloom

timing (Henson et al., 2010). However, it may be that trends could

be more rapidly detectable if seasonal information were retained in

the analysis as it would increase the number of data points, although

the auto-correlation associated with the seasonal cycle would have

to be properly accounted for in the trend analysis. Alternative phe-

nological metrics may also display more rapidly detectable trends, for

example the duration of blooms or the timing of peak primary pro-

duction.

Despite these limitations, this study provides a useful framework

for considering the temporal and spatial data requirements necessary

to characterise the timing of the phytoplankton bloom and its

response to climate change.
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F IGURE 4 Biome median n*, the number of years of data needed to distinguish a climate change-driven trend from natural variability, for
model output at 5, 10, 15, 20 and 30 day resolutions. Biome boundaries are plotted in Figure 1b. An asterisk indicates that the biome mean n*
is different at the 95% level (ANOVA test) from the next highest resolution, eg, an asterisk above a 30 day resolution bar indicates that the
mean n* is significantly different from the 20 day resolution biome mean n*
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4 | DISCUSSION

4.1 | Predicted changes in phytoplankton
phenology

Previous work on the future response of phytoplankton bloom phe-

nology to climate change has been limited by the relatively coarse

(monthly) temporal resolution of the available model output (Henson

et al., 2013). Here, we use higher temporal resolution output to

define the timing of bloom initiation from 2006 to 2100 and find

significant trends in bloom timing under an IPCC ‘business-as-usual’

scenario. In the Arctic and high latitude Southern Ocean, the start of

the spring bloom advances by ~5–10 days per decade, ie, by ~50–

100 days by 2100 (Figure 3a,b). This is consistent with the sugges-

tion that increasing stratification through warming and reduction in

sea-ice leads to earlier alleviation of light limitation (eg Doney,

2006). This extends the length of the growing season and results in

increased overall productivity of the polar regions (eg Bopp et al.,

2013; Cabre, Marinov, & Leung, 2015). In the high latitude North

Atlantic, bloom initiation shifts later by ~3–8 days per decade, ie,

~30–80 days by 2100 (Figure 1c,d) as a result of the expanding and

intensifying oligotrophic gyres. Regions of the subpolar North Atlan-

tic which currently experience high magnitude spring blooms are

affected by shoaling winter mixed layers and subsequent reduction

in nutrient supply (Henson et al., 2013). As these areas shift towards

more subtropical-like conditions, phytoplankton phenology changes

from a spring to an autumn initiating bloom. In the North Pacific,

trends in bloom timing are weaker than at equivalent latitude in the

North Atlantic, likely as a result of the less pronounced projected

change in seasonal amplitude of the mixed layer depth (Henson

et al., 2013). Tropical and oligotrophic regions have very weak, and

often not statistically significant, trends in bloom timing (Figure 3a,

b). Nutrient supply is already limiting to phytoplankton growth in

these areas resulting in weak seasonality. Further warming, and

hence stratification and reduced nutrient availability, in the climate

change scenario acts to decrease the magnitude of phytoplankton

blooms further (Henson et al., 2013), but does not change their phe-

nology. The equatorial Atlantic is the only tropical region to show a

coherent and statistically significant trend in bloom timing (Fig-

ure 3a,b). In this region, nitrate and dissolved iron supply is expected

to increase slightly, potentially due to changes in wind-driven upwel-

ling (Henson et al., 2013).

4.2 | Recommendations for observing changes in
phytoplankton phenology

Although there is a general recognition that coarse temporal resolu-

tion data are likely to introduce errors into the estimation of bloom

initiation, here we are able to quantify the effect. As temporal reso-

lution decreases from 5 to 20 days, bloom timing generally shifts

later by ~10 days although the probability distribution remains very

similar (Figure 2a). An ANOVA test shows that in 69% of pixels, the

bloom timing estimated from 30 day resolution output is statistically

different (at the 95% level) from that calculated from the 5 day reso-

lution data. This decreases to just 8% of pixels that have different

bloom initiation estimates in 10 day resolution data compared to

5 day resolution data (29% for 15 day resolution, 48% different for

20 day resolution). Therefore, high temporal resolution data are

required to determine the exact date on which the phytoplankton

bloom starts.

As high temporal resolution data are needed to pinpoint bloom

timing, is the same true for quantifying the climate change trend in

bloom initiation? We find that an increase in temporal resolution

does not substantially alter the magnitude or spatial pattern of the

long-term trend in timing (Figure 3a,b and Fig. S3). At coarse tem-

poral resolution, a larger proportion of pixels have a non-significant

trend (at the 95% level), but otherwise the probability distribution

of trends is very similar for all resolutions (Figure 2b). An ANCOVA

test shows that in only 10% of pixels is the trend calculated from

30 day resolution output statistically different (at the 95% level)
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from that calculated from the 5 day resolution data. This decreases

slightly with increasing resolution: for 10 day resolution output, 2%

of pixels have different trends compared to the 5 day data (3% for

15 day resolution, 4% different for 20 day resolution). The long-

term trends in timing are therefore very similar, regardless of the

temporal resolution of the data. This suggests that although the

coarse temporal resolution data is not suitable for estimating the

exact date of bloom initiation, the rate of change in bloom timing

is adequately captured.

The similarity in the long-term trend in bloom initiation, regard-

less of temporal resolution of the data, results in similar values of n*,

the number of years needed to detect a climate change trend above

the background of natural variability. For data with temporal resolu-

tion of 10–20 days, the distribution of n* is very similar to that of

the high resolution data (Figure 2). For the lowest resolution data

(30 day), the distribution is similar to the high resolution data for

small (<20 years) and large (>50 years) n*, although the most fre-

quently occurring n* shifts from 27 to 32 years. Increasing the tem-

poral resolution of the data therefore has little effect on the rapidity

with which climate change-driven trends in bloom timing can be

detected. Henson et al. (2013), using 30 day resolution data, found

that the global average n* for the seasonal amplitude (maximum

minus minimum value for a given year) of PP was 36 years. They

hypothesised that using higher resolution output would allow phyto-

plankton phenology to be more appropriately quantified and thus

perhaps permit more rapid detection of long-term trends. However,

we find that although bloom timing is indeed poorly estimated in

low resolution data, this has little impact on the magnitude of trends

in timing, and therefore the number of years of data needed to

detect a climate change-driven trend.

We therefore provide the following recommendations for quanti-

fying change in phytoplankton phenology. If defining the exact date

on which the bloom starts is the priority, the highest temporal reso-

lution data possible should be used. For example, if the aim is to link

bloom timing in a particular year with a specific trigger, such as

shoaling of the mixed layer. However, if the priority is determining

the rate of change in bloom initiation, or detecting long-term trends

in bloom timing, a temporal resolution of ~ 20 days is likely to be

adequate. For example, if the aim is to assess the decadal anomalies

in bloom timing in response to external forcing, eg, increasing ocean

temperature.

4.3 | Implications for ocean observing systems

In addition to our results regarding the temporal resolution of data

needed to detect trends in phytoplankton phenology, the spatial res-

olution should also be considered (Henson et al., 2016). Here, we

compare estimates of n* for spatially averaged and spatially discrete

data (see Methods for definition of these terms) for selected time

series stations. For the majority of stations, calculating n* using spa-

tially averaged data results in a reduction in n* compared to using

spatially discrete data (Figure 5b). Averaging the data prior to calcu-

lating the trend, and thence n*, tends to amplify the magnitude of

the trend and, importantly, also tends to reduce the noise term of

the n* calculation (Equation 2) so that the trend is more readily

detectable. Note however that even with spatial averaging of the

data, no consistent change in n* with increasing temporal resolution

is evident (Fig. S6).

If we wish to rapidly detect a climate change-driven trend in

phytoplankton phenology, our results suggest that a data source cap-

able of providing moderately high temporal resolution data

(<20 days) and sufficient spatial coverage to allow for a degree of

spatial averaging is needed. The ideal time series would also be suffi-

ciently long to robustly characterise natural variability and be rela-

tively insusceptible to discontinuities, which act to increase n*

(Beaulieu et al., 2013). Discontinuities might arise through gaps in

the dataset or a change in instrument or sensor without the overlap

needed to cross-calibrate with existing data.

The optimal dataset for studying trends in phytoplankton phenol-

ogy is therefore ocean colour satellite-derived data. Consistent

records are available since late 1997 (eg ESA OC-CCI data) and the

data provide good coverage at 20 day resolution, which compen-

sates for lack of data on individual days due to cloud cover (Cole

et al., 2012). The data are spatially resolved so that averaging of

data can be performed on multiple scales, and observations have

thus far been sustained with no gaps and with sufficient overlap to

allow for cross-calibration. The recent launch in February 2016 of

the Ocean and Land Colour Instrument on ESA’s Sentinel-3 satellite

should ensure continued data on phytoplankton phenology until at

least 2024 (planned mission lifetime). Maintaining a consistent satel-

lite ocean colour record beyond Sentinel-3 will be critical to detect-

ing climate change trends in phytoplankton, particularly as the time

series begins to approach the length hypothesised to allow robust

detection of long-term trends (~30 years; Henson et al., 2010,

2013).

An additional dataset with the potential to identify trends in

bloom timing is the bio-Argo network (Claustre, 2011). This uses a

globally distributed fleet of profiling floats to measure ocean proper-

ties, including chlorophyll fluorescence profiles. The profiles are typi-

cally obtained every 10 days, which meets our recommendation on

temporal resolution (see previous section). However, spatial coverage

by bio-Argo floats is not yet sufficiently dense in most ocean regions

for spatial averaging to be a viable option. In addition, the data

record is not yet long enough to distinguish climate change-driven

trends from natural variability. Continued investment into the bio-

Argo network, which ultimately aims to reach 1,000 floats (Johnson

& Claustre, 2016), will ensure in situ, long-term monitoring of chang-

ing phytoplankton phenology, including of the expected changes in

the vertical distribution of phytoplankton populations with ongoing

climate change (eg Ishida et al., 2009; Lawrence, Popova, Yool, &

Srokosz, 2015).

4.4 | Implications for marine ecosystems

In many regions, the predicted change in bloom initiation timing is

substantial. The central tenet of the ‘match-mismatch’ hypothesis is
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that higher trophic levels that rely on plankton as their principal food

source may not be able to alter their phenology to match the inter-

annual variability in bloom timing (Cushing, 1990). This may lead to

food shortages if predator life stages which depend on the bloom

occur too early or late relative to peak primary production. However,

over longer than interannual timescales, phytoplankton grazers are

expected to be able to adapt to changing conditions, including timing

of food availability (eg Dam, 2013). Therefore, any changes in bloom

timing which persist on multi-year timescales (eg long-term trends)

may not have direct negative consequences on phytoplankton graz-

ers. Timing of food availability is not the only consideration, how-

ever, as increasingly stratified (and nutrient limited) conditions are

expected to alter the phytoplankton community structure. Shifts

from diatom dominated to smaller phytoplankton dominated sys-

tems, as currently found in non-bloom forming regions, are predicted

(Laufkotter, Vogt, & Gruber, 2013; Marinov, Doney, & Lima, 2010),

which typically support less abundant higher trophic level popula-

tions. In addition, a reduction in total annual PP is also predicted for

many regions due to increased nutrient limitation (with the exception

of the polar oceans; Bopp et al., 2013; Cabre et al., 2015). In combi-

nation, the changes in phytoplankton phenology and overall produc-

tivity are likely to have subsequent negative impacts on the marine

food web.
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