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ABSTRACT

A semianalytical three-dimensional model is set up to dynamically calculate the coupled water motion and

salinity for idealized well-mixed estuaries and prognostically investigate the influence of each physical

mechanism on the residual salt transport. As a study case, a schematized estuary with an exponentially

converging width and a channel–shoal structure is considered. The temporal correlation between horizontal

tidal velocities and tidal salinities is the dominant process for the landward residual salt transport. The residual

salt transport induced by residual circulation is locally significant, but the induced salt transport integrated over

the cross section is small. The impacts of the estuarine geometry, Coriolis force, and bathymetry on the salt

dynamics are studied using three dedicated experiments, in which the impact of each of these factors is studied

separately. To assess the impact of width convergence, a convergent estuary without bathymetric variations or

Coriolis force is considered. In this experiment, the temporal correlation between tidal velocities and salinities is

the only landward salt transport process. In the second experiment, Coriolis effects are included. This results in a

significant residual salt transport cell due to the advection of the tidally averaged salinity by residual circulation,

with salt imported into the estuary from the left side and exported on the right (looking seaward). In the last

experiment, a lateral channel–shoal structure is included while the Coriolis effects are excluded. This results in a

significant landward salt transport through the deeper channel and a seaward salt transport over the shoals due to

the advection of the tidally averaged salinity by residual circulation.

1. Introduction

Estuaries are dynamically complex systems that are

important from both an economical and ecological point

of view. To be able to address issues related to these

aspects, a good understanding of the physical processes

resulting in the estuarine exchange flow is fundamental,

as this flow drives long-term transport of sediment and

other suspended particle matter in estuaries. Since the

exchange flow is significantly affected by the salt dy-

namics, it is key to improve our understanding of the

essential three-dimensional processes that result in the

spatially and temporally varying salinity fields.

Salt transport processes can vary significantly from

estuary to estuary, since estuaries are subject to different

forcing conditions and have greatly varying geometries

and bathymetries (Fischer 1972). The classical subtidal

salt balance, in which the river-induced seaward trans-

port is balanced by the landward transport due to the

longitudinal–vertical gravitational circulation and dis-

persion, is extensively described in literature (see, e.g.,

Hansen andRattray 1965;MacCready 2004;MacCready

and Geyer 2010). In this way, both lateral processes and

processes that vary on the tidal time scale are parame-

terized. This classical balance is challenged in partially

to well-mixed estuaries where gravitational circulation is

relatively weak (Jay and Smith 1990) and other pro-

cesses are likely to dominate. In well-mixed estuaries,

for instance, the tidal oscillatory transport due to tem-

poral correlations on the tidal time scale between the

longitudinal velocity and salinity can be the pre-

dominant salt import mechanism (McCarthy 1993; Wei

et al. 2016). The tidal oscillatory salt transport can also

be significant in partially stratified estuaries such as theCorresponding author: Xiaoyan Wei, xywei1988@hotmail.com
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Hudson estuary during neap tides (Chen et al. 2012;

Wang et al. 2015). Even in salt wedge estuaries such as

the Merrimack River, the landward salt transport is

mainly associated with the tidal oscillatory processes

rather than with the steady sheared gravitational circu-

lation (Ralston et al. 2010). This implies the potential

importance of considering residual salt transport

mechanism due to tidal processes (Hughes and Rattray

1980; Geyer and MacCready 2014).

Apart from the importance of processes on the tidal

time scale, the transverse circulation (also known as

secondary estuarine circulation) can be of great impor-

tance for the landward salt transport (Fischer 1972; Dyer

1974; Smith 1977). Significant transverse circulations are

observed in well-mixed, partially mixed, and stratified

estuaries (Nunes and Simpson 1985; Becherer et al.

2015; Valle-Levinson et al. 2000; Lacy and Monismith

2001). These circulations are usually associated with

lateral variations in bathymetry (Nunes and Simpson

1985; Valle-Levinson et al. 2000), Coriolis force (Lerczak

and Geyer 2004; Valle-Levinson 2010), lateral density

gradients (Huijts et al. 2006, 2011), and curvature-

induced centrifugal forces (Lacy and Monismith 2001;

Buijsman and Ridderinkhof 2008). Transverse circula-

tions are also affected by the estuarine width-to-depth

ratio (Schulz et al. 2015) and temporal/lateral variations

of mixing (tidal and lateral straining; see Burchard et al.

2011; Becherer et al. 2015).

To investigate the influence of transverse processes on

estuarine salt transport, the salt flux is usually decom-

posed into different contributions associated with

transverse/vertical steady or oscillatory shear, using ve-

locities and salinities from measurements (Fischer 1972;

Dyer 1974; Hughes and Rattray 1980; West et al. 1990;

Guymer andWest 1992) or numerical models (Oey et al.

1985; Ralston and Stacey 2005; Ralston et al. 2010). This

method, however, strongly depends on the quality/

quantity of the measurements and the resolution and

accuracy of numerical models. Moreover, it is difficult to

relate the shear-induced salt transport to a specific

physical process since the shearing itself can be a result

of the interplay of many different processes.

To unravel the dominant salt transport mechanisms,

idealized models are appropriate tools, as they are spe-

cifically developed to investigate the influence of each

physical mechanism in isolation. This type of model has

been successfully used to gain insights into the influence

of lateral processes on water motion (Nunes and

Simpson 1985; Li and O’Donnell 1997; Wong 1994;

Valle-Levinson et al. 2003; Kumar et al. 2016) and lat-

eral sediment trapping (Huijts et al. 2006, 2009, 2011).

Existent idealized models aiming at understanding the

salt dynamics (explicitly including processes at the tidal

time scale), however, are limited to width-averaged

models (McCarthy 1993; Wei et al. 2016). In these

models, the coupled width-averaged water motion and

salinity are dynamically resolved while the lateral pro-

cesses are parameterized as diffusion. Since these

models do not resolve the lateral dynamics, the relative

importance of the transverse circulation on the residual

salt balance are not investigated.

In this paper, we therefore develop a three-

dimensional idealized model by extending the model of

Wei et al. (2016). This model is specifically aiming at

dynamically resolving the temporal and spatial (both

longitudinal and lateral) variability of the water motion

and salinity (i.e., prognostic in salinity, including lateral

processes). With this model, the influence of each physi-

cal process on the residual salt balance can be systemat-

ically investigated. As a first step, the estuaries are

assumed to be well mixed, that is, the top-to-bottom sa-

linity difference is one order of magnitude smaller than

the bottom salinity, and the effects of tidal straining are

assumed to be small. The nonlinear system of the three-

dimensional water motion and salinity is solved at the

tidal time scale, employing a perturbation method to

analytically obtain the vertical structures of the physical

quantities and a finite-element method to calculate their

horizontal variations. An iterative approach is used to

calculate the coupled gravitational circulation and salinity

field. Using this model, the influence of the longitudinal/

transverse processes on the residual salt transport can be

investigated, and their sensitivity to parameters/forcing

conditions can be systematically studied.

The paper is structured as follows: The equations

governing the coupled water motion and salinity (see

section 2a) and the solution method (see section 2b) are

introduced in section 2. In section 3, the salt dynamics

for the default experiment (representative for the Dela-

ware estuary; see section 3a) and the influences of estu-

arine convergence, bathymetry, and Coriolis force on salt

transportmechanisms (see section 3b) are investigated. In

section 4, the salt transport induced by the tidal advective

diffusion (see section 4a) and gravitational circulation

(see section 4b) are analyzed considering the influence of

the estuarine convergence, Coriolis, and bathymetry, re-

spectively. Conclusions are drawn in section 5.

2. Model description

a. Governing equations

To investigate the salt dynamics and transport mech-

anisms in tidal estuaries, an idealized three-dimensional

model is developed for estuaries that are assumed to be

tidally dominated and well mixed. The shape of the es-

tuary (i.e., its geometry) is arbitrary (see Fig. 1). The
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seaward boundary ›SV is connected with the open sea

and forced by tides. A weir is assumed to be located at

the landward boundary denoted by ›RV, where a river

flows into the estuary. The closed boundaries ›CV are

impermeable. The undisturbed water level is located at

z5 0, and the free-surface elevation is denoted by z5 h.

The estuarine bed is located at z5 2H(x, y), withH an

arbitrary function of the horizontal coordinates (x, y).

Thewatermotion is described by the three-dimensional,

shallow-water equations, assuming hydrostatic equilib-

rium and using the Boussinesq approximation (Cushman-

Roisin and Beckers 2011):
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(3)

Here, t denotes time and U 5 (u, y, w) is the velocity

vector, with u, y, and w as the velocity components in x,

y, and z directions, respectively. The acceleration of

gravity is denoted by g. The quantities Ay and Ah are,

respectively, the vertical and horizontal eddy viscosity

coefficients. The Coriolis parameter is denoted by f,

and the estuarine water density is denoted by r. The

density is assumed to depend only on the salinity S

as r5 rc(11 bsS), with bs 5 7.63 1024 psu21 and rc as

the background density, taken to be 1000 kgm23. To

dynamically calculate the density, the salinity equation

has to be solved:
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(4)

Here, Kh and Ky are the horizontal and vertical eddy

diffusivity coefficients, respectively. In this paper, the

vertical eddy diffusivityKy is assumed to be equal to the

vertical eddy viscosity Ay.

At the seaward boundaries, the water motion is forced

by a prescribed sea surface elevation that consists of

a semidiurnal constituent M2 and a residual water

level M0:

h(x, y, t)5 a
M2
(x, y) cos[st2u(x, y)]1 a

M0
(x, y)

at (x, y) 2 ›
S
V , (5)

where aM2
(x, y) andu(x, y) are the prescribed amplitude

and phase of the semidiurnal tidal elevation at the sea-

ward boundary ›SV, with s ; 1.4 3 1024 s21 (the M2

tidal frequency). The term aM0
(x, y) is the prescribed

residual water level at ›SV, where aM0
averaged over the

seaward boundary vanishes. Furthermore, the tidally

averaged salinity at the seaward boundary is prescribed

(denoted by Se):

S(x, y)5 S
e
(x, y) at (x, y) 2 ›

S
V, (6)

where the overbar �� denotes a tidal average.

At the free surface, the kinematic and no stress

boundary conditions are prescribed:

w5
›h

›t
1 u

›h

›x
1 y

›h

›y
, and (7)

A
y

›u

›z
5A

y

›y

›z
5 0 at z5h . (8)

At the bottom, the normal velocity is required to vanish

and a partial-slip condition is applied. Here, we use a

linear relationship between the bed shear stress and the

velocity at the top of the bottom boundary layer

(Schramkowski and De Swart 2002):

FIG. 1. A three-dimensional sketch of an estuary, with x and y the

horizontal coordinates, and z the vertical coordinate, positive in

the upward direction. The seaward, river, and closed bound-

aries are denoted by ›SV, ›RV, and ›CV, respectively. The free-

surface elevation and the estuarine bottom are located at z 5 h

and z52H(x, y), respectively. A sketch for an estuary with amore

general geometry and bathymetry can be found in Kumar et al.

(2016) in their Fig. 1.
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w52
›H

›x
u2

›H

›y
y, and (9)

A
y

�
›u

›z
,
›y

›z

�
5 s(u, y) at z52H(x, y). (10)

The slip parameter s depends on the bed roughness and

can vary from 0 in frictionless cases (free slip) to large

values in strongly frictional cases (no slip). At the free

surface and the bottom, the salt flux is required to vanish:

K
y

›S

›z

����
z5h

5K
y

›S

›z

����
z52H

5 0. (11)

Since the main aim of the model is to analyze the salt

dynamics at the estuarine scales, the boundary layers

where viscous effects are dominant are not resolved [see

Winant (2008) for a detailed discussion]. Instead of

prescribing a velocity at each location of the closed

boundaries and the river boundaries, the normal com-

ponent of the water flux and the tidally averaged salt flux

integrated over the depth are prescribed. At the closed

boundaries, the tidally averaged water/salt flux in-

tegrated over the water depth is required to vanish due

to impermeability. At the river boundary ›RV, a river

discharge R is prescribed, and the tidal discharge is as-

sumed to vanish; the tidally averaged, depth-integrated

salt flux through the river boundary is also required to

vanish. The resulting conditions read

ðh
2H

(u, y) dz � n
h
5 0 at (x, y) 2 ›
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V , (12)ð
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� ðh
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(u, y) dz � n
h

�
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dz,
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2H
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2yS1K

h

›S
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�
dz

#
� n

h
5 0

at (x, y) 2 ›
C
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R
V .

(14)

Here, nh is the horizontal unit normal vector pointing

outwards. The depth-integrated river flux per unit width

Ri is assumed to be proportional to the local water depth:

R
i
(x, y)5

RH(x, y)ð
›RV

H(x, y) ds

at (x, y) 2 ›
R
V . (15)

No boundary conditions for the temporally varying sa-

linity transport are prescribed at ›SV, ›RV, or ›CV, as

the horizontal and vertical structure of the time-

dependent salinity will be directly related to the tidally

averaged salinity field (a detailed discussion will follow

in section 2b).

b. Solution method

1) PERTURBATION METHOD

The system of Eqs. (1)–(14) is solved using an as-

ymptotic expansion of the physical variables in a small

parameter «, which is the ratio of the mean M2 tidal

amplitude amM2
and the mean water depth Hm

0 , obtained

by averaging aM2
andH over the seaward boundary ›SV.

To make a consistent expansion, as a first step, the

governing equations are made dimensionless, and a

scaling analysis is performed to order various terms in

the equations with respect to this small parameter «.

As a next step, the physical variables are written as as-

ymptotic expansions in «:

G5G
0
1 «G

1
1 «2G

2
1 . . . , (16)

where G represents any of the physical variables (h, u, y,

w, and S). The subscript denotes the order in the ex-

pansion. Finally, all terms at the same order of « are

collected and required to balance, resulting in a system

of equations at each order of «.

Using this perturbation approach, the salinity

equation at leading order becomes (see details in

appendix A)

›S
0

›t
5

›

›z

�
K

y

›S
0

›z

�
. (17)

Since there is no horizontal transport of salt at this order,

the boundary conditions given in Eq. (14) at ›CV or ›RV
are automatically satisfied. The remaining boundary

conditions read

S
0
5 S

e
(x, y) at (x, y) 2 ›

S
V, and (18a)

K
y

›S
0

›z
5 0 at z52H and z5 0. (18b)

It is found that the leading-order salinity field S0
is time independent and vertically homogeneous

(McCarthy 1993; Wei et al. 2016), that is, the tidally

averaged salinity is an unknown function of the hori-

zontal coordinates (x, y):

S
0
5 S

0
(x, y). (19)

To get a closed formula for S0, the first-order salinity

equation and the depth-integrated, tidally averaged,

second-order salinity equation have to be solved. The

first-order salinity equation reads
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which reveals that the temporal and vertical variations

of the first-order salinity S1 are forced by the advection

of the leading-order salinity S0 by the leading-order

horizontal velocities u0 and y0. The leading-order ve-

locities are driven by theM2 sea surface elevation that is

prescribed at the seaward boundary. This tidal motion is

independent of salinity and can be calculated explicitly

by numerically solving a two-dimensional wave equation

for the leading-order, free-surface elevation h0 (Kumar

et al. 2016). Then, the horizontal tidal velocities can be

expressed as
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where C1 and C2 are analytical expressions that describe

the vertical structure of the velocity fields [for details, see

appendix B and Kumar et al. (2016)]. The boundary

conditions for salinity equation at this order read:
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Since the leading-order water motion only consists of a

M2 tidal constituent, and the leading-order salinity field

is time independent, the first-order salinity field consists

only of anM2 tidal constituent as well. Hence, the tidally

averaged salt flux at O(«) vanishes, and boundary

conditions Eq. (22a) and Eq. (22b) are automatically

satisfied. By substituting Eq. (21) into Eq. (20) and ap-

plying boundary condition Eq. (22c), an analytical ex-

pression for the first-order salinity S1 is obtained:
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Equation (23) shows that the horizontal structure of S1 is

directly related to the gradients of the leading-order

water elevation and salinity, while its vertical structure,

denoted by Sz1 and Sz2, can be explicitly calculated (for

details see appendix C).

Next, the tidally averaged, depth-integrated salinity

equation at O(«2) is derived:
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that is, the divergence of the depth-integrated residual

salt transport due to all processes has to vanish at each

location. The tidally averaged salt transport at this order

is a result of advection of the first-order salinity S1 by

the leading-order tidal flow u0, y0 (first term), the

leading-order salinity S0 by the first-order residual flow

u1, y1 together with transport due to the time-varying sea

surface elevation (second term), and diffusive processes

(third term).

At the closed boundaries ›CV and the river bound-

aries ›RV, the normal component of the depth-

integrated residual salt flux at O(«2) has to vanish:
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while at the seaward boundary, the tidally averaged sa-

linity S0 is prescribed [see Eq. (18a)]:

S
0
5 S

e
at (x, y) 2 ›

S
V . (26)

By substituting the expressions for the leading-order

tidal velocities [Eq. (21)] and the first-order salinity

[Eq. (23)] into Eq. (24), an elliptic partial differential

equation for S0 is obtained:

2= � (HKtotal
h =S

0
)1= � (FS

0
)5 0. (27)

Here,
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is the effective total diffusivity tensor, and F is the re-

sidual water transport vector. The entries inKtotal
h consist

of the prescribed horizontal eddy diffusivity Kh and the

tidal advective diffusion coefficients Kadv
h11 , K

adv
h12, K

adv
h21 ,

andKadv
h22 , which are induced by the temporal correlation

between the leading-order horizontal tidal velocities

and the first-order salinity (Wei et al. 2016). The tidal

advective diffusion coefficients can be explicitly eval-

uated using the leading-order water motion:
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›y

����2
ð0
2H

C
1
*S

z2
dz

�
,

(31)

and
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›ĥ
0
*

›x

ð0
2H

C
2
*S

z1
dz

�
2

1

2H
<
�����›ĥ0
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›ĥ
0

›x

›ĥ
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C
1
*S
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�
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(32)

Here, <f�g indicates that the real part is used. The

complex amplitude of the M2 tidal surface elevation is

denoted by ĥ0, and the asterisk (*) denotes the con-

jugate of a complex variable. Here, Kadv
h11 and Kadv

h12

measure the longitudinal and lateral diffusion, re-

spectively, due to the temporal correlation between u0
and S1; K

adv
h21 and Kadv

h22 measure the longitudinal and

lateral diffusion due to the temporal correlation be-

tween y0 and S1. Inclusion of these advective diffu-

sivities in the effective diffusivity tensor shows that

in a tidally averaged model, diffusion is generally non-

isotropic. The tidal advective diffusion coefficients Kadv
h12,

Kadv
h21, and Kadv

h22 are associated with lateral processes/

variations in the leading-order water motion due to

geometrical features such as estuarine convergence,

Coriolis deflection, and lateral bathymetric variations.

In case of no lateral variations of the tidal surface el-

evation and no Coriolis forcing, that is, ›ĥ0/›y5 0 and

f5 0, these three diffusion coefficients vanish, andKadv
h11

becomes identical to the width-averaged tidal advec-

tive diffusivity Kadv
h as used in Wei et al. (2016). The

term Kh is the prescribed horizontal diffusivity, which

parameterizes unresolved processes such as mixing

induced by river bends and tidal straining.

The residual water transport in the longitudinal and

lateral directions is given by

F5

�ð0
2H

u
1
dz1h

0
u
0
j
z50

,

ð0
2H

y
1
dz1h

0
y
0
j
z50

�
. (33)

The first-order residual velocity u1, y1 consists of

various contributions including tidal rectification of

the leading-order M2 tide (denoted by AD), density-

driven gravitational circulation (GC), the stress-free

surface condition (NS), river discharge (RD), and a re-

turn flow (TRF). Hence, F can be decomposed into var-

ious components:

F5FRD 1FTRF 1FAD 1FNS 1FGC . (34)

All contributions to F, except for FGC, can be calcu-

lated explicitly (without information of the salinity

field) by numerically solving a two-dimensional

equation for that specific contribution to the residual

free-surface elevation [see section 2b(2)], while the

vertical structure is obtained analytically [see details

in appendix D, section a, and Kumar et al. (2017)].

The residual contribution FGC due to the gravitational

circulation,
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FGC 5B=hGC
1 2C=S

0
, (35)

itself depends on salinity S0 (here, B and C are 2 3
2 matrices, whose elements are known functions of

the horizontal coordinates; see details in appendix D,

section b). Hence, to obtain S0, the coupled system of

equations, given by

= � [(HKtotal
h 1 S

0
C)=S

0
]2= � (S

0
B=hGC

1 )5= � (~FS
0
) ,

(36)

and

= � (B=hGC
1 )2= � (C=S

0
)5 0, (37)

has to be solved simultaneously; here, ~F5F2FGC is the

barotropic residual water transport independent of sa-

linity. Equation (36) follows from substituting Eqs. (34)–

(35) into Eq. (27), and Eq. (37) follows from requiring

the divergence of the horizontal residual water transport

by gravitational circulation to vanish (see appendix D,

section b for details). Note that since the leading- and

first-order water motion (except for gravitational cir-

culation) can be calculated explicitly, the only unknown

variables in this system of equations are the leading-

order salinity field S0 and hGC
1 .

2) NUMERICAL METHOD

All physical variables of water motion and salinity will

be calculated using a standard finite-element method

(Gockenbach 2006). As a first step, the weak form of the

equations is derived. These equations are all two-

dimensional (as the vertical structure of all physical vari-

ables is derived analytically). Hence, the domain is

discretized in the horizontal directions using triangles, and

the unknown variables are approximated using polynomial

basis functions. Then, these approximations are substituted

into their weak form. The numerical solution method for

the leading-order tidal motion and the first-order residual

flow components (except for gravitational circulation) are

discussed in detail inKumar et al. (2016, 2017).However, as

the gravitational circulation and the tidally averaged salinity

field are coupled, the solution procedures as discussed in

Kumar et al. (2016, 2017) cannot be used, and an iterative

approach has to be taken. To eliminate any accuracy loss

that results from taking derivatives of S0 and hGC
1 , a special

iteration scheme is adopted, in which no information of the

gradients of S0 or h
GC
1 from the previous iteration step is

required. This iterative scheme reads

= � f[HKtotal
h 1 S

(k)
0 C]=S

(k11)
0 g2= � [S(k)0 B=hGC(k11)

1 ]

5= � (~FS(k)0 ) ,

(38)

= � [C=S(k11)
0 ]2= � [B=hGC(k11)

1 ]5 0, (39)

where the superscripts k and k 1 1 denote the physical

variables at thekth and (k1 1)th iteration step, respectively.

The weak form of Eqs. (38) and (39) is derived by mul-

tiplying these equations with a test function V, integrating

them over the domain V, and applying the no normal salt

transport boundary conditions and integration by partsðð
V

[HKtotal
h 1 S

(k)
0 C]=S

(k11)
0 � =V dx dy

2

ðð
V

S
(k)
0 B=hGC(k11)

1 � =V dxdy5

ðð
V

~FS
(k)
0 � =V dxdy,

(40)

and

ðð
V

C=S
(k11)
0 � =V dxdy2

ðð
V

B=hGC(k11)

1 � =V dxdy5 0.

(41)

Next, the unknown sea surface elevation related to the

gravitational circulation and salinity are approximated

using Lagrangian basis functions fj:

hGC(k11)

1 5 �
Nf

j51

hGC(k11)

1j
f
j
, S

(k11)
0 5 �

Nf

j51

S
(k11)
0j

f
j
, (42)

where the fj are chosen to be quadratic polynomials,

which are equal to 1 at node j and 0 at other nodes, andNf

is the total number of nodes. Substituting Eq. (42) into

Eq. (40) and Eq. (41), and taking V 5 fi, the following

system of equations (for i 5 1, 2, . . . , Nf) is found:

�
Nf

j51

S
(k11)
0j

ðð
V

[HKtotal
h 1 S

(k)
0 C]=f

j
� =f

i
2 �

Nf

j51

hGC(k11)

1j

ðð
V

S
(k)
0 B=f

j
� =f

i
5

ðð
V

~FS
(k)
0 � =f

i
, and (43)

�
Nf

j51

S
(k11)
0j

ðð
V

C=f
j
� =f

i
2 �

Nf

j51

hGC(k11)

1j

ðð
V

B=f
j
� =f

i
5 0. (44)
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This system of equations is linear in the unknown co-

efficients hGC(k11)

1j
and S

(k11)
0j

using a known S
(k)
0 . The

iterative procedure is stopped when the relative differ-

ence between the solutions from the (k 1 1)th and kth

iteration step ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8>><
>>:
ðð

V

[X(k11) 2X(k)]2 dx dyðð
V

[X(k)]2 dx dy

9>>=
>>;

vuuuuut (45)

becomes smaller than 5 3 1024, with X5 (S0, h
GC
1 ). To

start the iteration, a prescribed salinity field [e.g.,

S
(1)
0 5 0] is used. When solving this coupled system of

equations, special care has to be taken of the seaward

boundary, since numerical instabilities can occur when

using an arbitrary prescribed water level at this bound-

ary (Chen and Sanford 2009); see detailed procedures in

appendix D, section c.

3. Results

In this paper, schematized estuaries with a simplified

geometry and bathymetry are studied. The estuarine

width B is assumed to decrease exponentially in the

landward direction:

B5B
0
e2x/Lb , (46)

with B0 as the estuarine width at the seaward entrance

and Lb as the estuarine convergence length. The sea-

ward boundary is located at x 5 0, and the landward

boundary is located at x5 L. The midaxis of the idealized

estuary is located at y 5 0, and the lateral boundaries are

located at y56B/2. In this geometry, the contribution

of each physical process to the along-channel residual

salt transport can be obtained by integrating Eq. (24)

from the left bank of the channel y 5 y1 to the right

bank y 5 y2 and subsequently integrating from the weir

located at x 5 L (where the cross-sectionally integrated

longitudinal salt transport vanishes) to any longitudinal

location x:

ðy2
y1

S
0
F
1
dy1

ðy2
y1

ð0
2H

S
1
u
0
dz dy5

ðy2
y1

HK
h

›S
0

›x
dy . (47)

Here, F1 is the longitudinal component of the depth-

integrated residual water transport. Substituting the

decomposition of the residual transport Eq. (34) into

Eq. (47) yieldsðy2
y1

S
0
FAD
1 dy|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

AD

1

ðy2
y1

S
0
FGC
1 dy|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

GC

1

ðy2
y1

S
0
FRD
1 dy|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

RD

1

ðy2
y1

S
0
FTRF
1 dy|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

TRF

1

ðy2
y1

S
0
FNS
1 dy|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

NS

1

ðy2
y1

ð0
2H

S
1
u
0
dz dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TASF

2

ðy2
y1

HK
h

›S
0

›x
dy|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

DIF

5 0.

(48)

This expression shows that the cross-sectionally inte-

grated tidally averaged salt transport due to tidal rec-

tification (AD), gravitational circulation (GC), river

discharge (RD), tidal return flow including Stokes’ drift

(TRF), the stress-free surface condition (NS), tidal

advective salt transport (TASF), and diffusion (DIF)

balance each other, and their relative importance at

each longitudinal location can be assessed individually.

Here, the tidal advective salt transport represents the

residual salt transport caused by the advection of tidal

salinity by the tidal velocity, which is called tidal

oscillatory salt flux in Lerczak et al. (2006) and Wang

et al. (2015).

In section 3a, the salt dynamics for the default ex-

periment, representative for the Delaware estuary, will

be discussed. In section 3b, the influence of estuarine

convergence, Coriolis effects, and estuarine bathymetry

on salt dynamics are investigated using three dedicated

experiments.

a. Salt dynamics for the default experiment

For the default experiment, parameters representative

for the Delaware estuary are used (L 5 215km, B 5
39km; see values of all default parameters in Table 1). In

this default experiment, the water motion is forced at the

TABLE 1. Default parameters, representative of the Delaware

estuary.

Parameter Value Unit

L 215 km

Lb 42 km

B0 39 km

Hmin 3.6 m

Hmax 15 m

Cf 4

Hm 8 m

Aym 0.005 m2 s21

sm 0.039 m s21

Kh 10–50 m2 s21

R 72 m3 s21

aM2
0.75 m

Se 31 psu

f 1 3 1024 rad s21
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mouth by an M2 tide with tidal amplitude aM2
(0.75m). A

river discharge R5 72m3 s21 (low discharge condition) is

prescribed at the landward end of the estuary (at x 5 L),

where a weir is located (Wei et al. 2016). The bathymetry

of theDelaware estuary is characterized by a deep channel

in the center and shallow shoals on the sides, with the

lateral depth difference between the channel and the

shoals decreasing in the landward direction (Aristizábal
and Chant 2013). To qualitatively capture this spatial de-

pendency, the bathymetry is described by

H(x, y)5H
min

1 (H
m
2H

min
)
x

L
1 (H

max
2H

min
)

3
�
12

x

L

��
12

4y2

B2

�
e2Cf (4y

2/B2) , (49)

withHmax (15m) andHmin (3.6m) as the maximum and

minimum water depths at the mouth. The width-

averaged water depth Hm is longitudinally constant

(Hm 5 8m). By varying the parameter Cf, the width of

the tidal flats is varied, with larger values of Cf corre-

sponding to wider shoals and a narrower channel and

smaller values to narrower shoals and a wider channel.

The vertical eddy viscosity Ay is assumed to be line-

arly proportional to the local water depth (Friedrichs

and Hamrick 1996), and the same is assumed for the

partial-slip parameter s:

(A
y
, s)5

H

H
m

(A
ym
, s

m
), (50)

with Aym 5 0:005m2 s21 and sm 5 0.039m s21 as the

width-averaged friction parameters, which are the

same as those used in Wei et al. (2016). Using these

parameter settings, the leading-order tidal surface el-

evation obtained from the present 3D model is nearly

the same as that obtained in the width-averaged model

of Wei et al. (2016); the tidal surface gradients and

velocities, however, change significantly by including

the three-dimensional effects. The horizontal eddy

diffusivity has to be prescribed and is assumed to de-

crease from the mouth to the landward side, indicating

that more unresolved processes have to be parame-

terized near the mouth (such as rapid depth variations,

multiple channels, complex sea–estuary interactions,

and tidally varying mixing effects). These unresolved

processes are assumed to be proportional to the estu-

arine width as

K
h
5Kr

h 1Km
h B/B0

, (51)

withKr
h 5 10m2 s21 and km

h 5 40m2 s21. An overview of

all default parameters is shown in Table 1.

1) TIDALLY AVERAGED SALINITY FIELD AND

LONGITUDINAL SALT TRANSPORT

The tidally averaged salinity is prescribed to be

31 psu at the seaward side, and it decreases to 2 psu

at ;120 km inside the estuary, as shown by the back-

ground colors in Fig. 2, where the white color indicates

a salinity of ;31 psu and black indicates a vanishing

salinity. Hence, the salt intrusion length Ls, which in

this paper is defined as the distance between the estu-

arine mouth to the location where the cross-sectionally

averaged salinity is 2 psu, is 120 km. This salt intrusion

length agrees well with the observed salinity profile

under low river discharge (Kuijper and Van Rijn 2011;

Wei et al. 2016), confirming that the longitudinal de-

pendency of the horizontal diffusivity Kh, as given in

Eq. (51), is appropriate for the Delaware estuary. A

lateral variation of S0 (of ;1 psu) is found, with larger

tidally averaged salinities on the left shoals than those

on the right, looking seaward. This lateral distribu-

tion qualitatively agrees with the observation of Wong

(1994) near the mouth of the Delaware Bay. Further-

more, the top-to-bottom salinity difference (below

0.5 psu) is much smaller than the bottom salinity during

the tidal cycle (not shown), justifying the well-mixed

assumption.

To visualize the residual salt transport pattern,

streamlines of the depth-integrated salt transport are

used. Since the depth-integrated residual salt transport

is divergence free [see Eq. (27)], the amount of salt

transported through any area connecting the same

streamlines is constant. The streamlines of the residual

salt transport are shown in Fig. 2a, where solid lines

indicate counterclockwise salt transport, and dashed–

dotted lines indicate clockwise salt transport (looking

into the paper). It is found that, in the idealized Dela-

ware estuary, the salt is mostly transported counter-

clockwise, meaning the salt is transported into the

estuary from the left side of the estuary and out of the

estuary from the right side of the deeper channel looking

seaward.

Since the salt transport between the same stream-

lines is constant, large distances between these

streamlines indicate small (normal) salt transports, and

small distances indicate large transports. As shown in

Fig. 2a, the distance between the two neighboring

streamlines first increases from the left bank to the

midaxis (at y 5 0) and then decreases sharply toward

the right bank. This suggests an interesting steady-state

salt transport pattern: the salt is slowly transported

landwards from the left side of the mouth toward the

midaxis and gets quickly transported out of the estuary

on the right of the deeper channel. To evaluate the
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relative importance of various longitudinal salt trans-

port mechanisms, the along-channel salt transport at

each cross section is calculated using Eq. (48). As

shown in Fig. 2b, the seaward salt transport due to river

discharge (line with upside-down triangles) is mainly

balanced by the landward salt transport due to the tidal

advective diffusion (line with triangles) and prescribed

diffusion (line with asterisks). Gravitational circulation

(solid line) and tidal rectification (dashed–dotted line)

transport salt landward in the central region of salt

intrusion. The stress-free surface condition (line with

crosses) and tidal return flow (dashed line) transport

salt landward only near the mouth. The total amount

of salt transport is zero (dotted line in 2b) by definition,

as the salt content in the estuary is constant in

steady state.

2) SALT TRANSPORT DUE TO EACH PROCESS

In equilibrium, the divergence of the total (depth

integrated) salt transport is zero at every location.

However, the divergence of salt transport due to each

physical transport process separately is not necessar-

ily zero, indicating a local change of the salt content

due to each process. If the divergence of the salt

transport due to one process has locally a negative

(positive) value, it implies this process contributes to

an increase (a decrease) of salt content at that

location.

FIG. 2. (a) Tidally averaged salinity distribution S0(x, y) (see gray colors and dotted lines)

and streamlines of the depth-integrated salt transport. Solid lines indicate counterclockwise

residual salt transport, and dashed lines indicate clockwise salt transport (looking into the

paper). (b) The cross-sectionally integrated along-channel salt transport due to tidal advec-

tive diffusion (TASF), gravitational circulation (GC), river discharge (RD), tidal rectification

(AD), stress-free surface (NS), tidal return flow (TRF), and prescribed diffusion (DIF).

Positive values denote landward salt transport, and negative values denote seaward salt

transport. The total residual salt transport over the cross section is zero (dotted line).
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Figures 3a–e show the divergence of the salt transport

due to diffusive processes (including tidal advective dif-

fusion and prescribed diffusion), gravitational circula-

tion, tidal rectification, stress-free surface condition, and

tidal return flow, respectively. Local convergences of salt

are shown in dark gray, and divergences of salt are shown

in white. The lines in Figs. 3a–e show the direction of salt

transport due to each process. The solid (dashed–dotted)

lines in Figs. 3b–e indicate that the salt is transported in a

counterclockwise (clockwise) direction. Note that these

lines are not the streamlines for the residual salt trans-

port but for the residual water transport, since the di-

vergence of the residual salt transport for each process

individually does not vanish.

The diffusive processes transport salt from the shoals

toward the deeper channel and subsequently toward the

upstream (Fig. 3a). The diffusive processes result in an

increase of salinity on the right side of the estuary and a

decrease on the left. The convergences and divergences

of the diffusive salt transport are significant, especially in

the central region near the deeper channel, with a salt

accumulation of up to 13 1024 psums21. Moreover, the

salt accumulation on the right exceeds the salt decrease

on the left side, resulting in an increase of salt content

integrated over a cross section. This increase in salt

content agrees with the decreasing longitudinal salt

transport by diffusive processes, as shown in Fig. 2b.

The two-cell streamlines of gravitational circulation

show that the density-driven flow transports salt land-

ward into the estuary through the deeper channel, re-

verses direction in the central region, and then

transports salt out of the estuary over the shoals (see

Fig. 3b). The salt transport induced by gravitational

circulation is asymmetric with respect to the midaxis

due to the Coriolis deflection; the landward salt trans-

port is deflected toward the left bank, and the seaward

FIG. 3. The divergence of the depth-integrated residual salt transport due to each process. Positive values indicate

local decreases of salt content, while negative values indicate local increases of salt content. The lines show the

directions of the depth-integrated residual salt transport due to each process, with counterclockwise salt transport

shown by solid lines and clockwise transport by dashed–dotted lines in Figs. 3b–e.
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transport is deflected toward the right bank. Even

though the longitudinal salt transport (integrated

over a cross section) induced by gravitational circula-

tion is much smaller than that induced by the diffusive

processes, the gravitational circulation makes a signif-

icant contribution to local changes in salinity. The

gravitational circulation induces a significant decrease

of salt on the shoals, and a large increase of salt in the

deeper channel, which reaches up to 53 1025 psum s21

in the central region of salt intrusion.

The salt transport induced by residual flow due to

tidal rectification, stress-free surface condition, and

tidal return flow all show a similar pattern, with salt

transported into the estuary over the shoals and out

through the deeper channel (see Figs. 3c–e). The tidal

rectification results in an accumulation of salt on the

left side of the deeper channel, accompanied with a

strong decrease of salt on the right. The stress-free

surface condition and tidal return flow, however, con-

tribute to a decrease of salt in the deeper channel and

an accumulation of salt on the shoals.

b. Influence of estuarine geometry, Coriolis, and
bathymetry

The salt transport processes in the default experi-

ment are affected by the interplay between estuarine

geometry, Coriolis deflection, and bathymetry. To

investigate the influence of estuarine convergence on

salt dynamics separately, an exponentially convergent

channel with a horizontal bottom (no Coriolis) is

studied in experiment I. In experiment II, the Coriolis

force is added and hence the influence of the Coriolis

force on salt dynamics can be found by comparing the

results obtained in experiment II with those found in

TABLE 2. Model parameters for experiments I–III.

Experiments Hmax (m) Hmin (m) f (rad s21)

I 8.0 8.0 0

II 8.0 8.0 1024

III 15.0 3.6 0

FIG. 4. As in Fig. 2, but for experiment I.

1854 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47



experiment I. In experiment III, the default bathym-

etry profile with a lateral channel–shoal structure [see

Eq. (49)] is used, but now the Coriolis force is ne-

glected. Hence, the influence of bathymetric varia-

tions on salt dynamics can be found by comparing the

results from experiments III and I. The parameters

used to define estuarine bathymetry and the Coriolis

parameter are summarized in Table 2.

1) INFLUENCE OF ESTUARINE CONVERGENCE

(EXPERIMENT I)

In a convergent channel without bathymetric varia-

tions or Coriolis force, the salt intrusion length is only

105km, which is much smaller than that in the default

experiment (120km). The tidally averaged salinity is

symmetric with respect to the midaxis, with the salinity

near the banks slightly larger than that in themiddle (see

Fig. 4a). Since no circulation cells of salt transport are

formed, the depth-integrated residual salt transport is

zero at each location, and no streamlines are obtained.

The residual salt balance is identical to that obtained

from the width-averagedmodel (Wei et al. 2016), where

the seaward salt transport induced by river discharge is

balanced by the landward transport by tidal advective

diffusion and prescribed diffusion (Fig. 4b). The re-

sidual flow induced by gravitational circulation, tidal

rectification, stress-free surface, and the tidal return

flow, however, makes no contributions to the residual

salt balance (integrated over the cross section).

The divergence of the residual salt transport in-

duced by the diffusive processes, as shown in Fig. 5,

indicates that diffusion results in a convergence (ac-

cumulation) of salt in the central region of the estuary.

The salt transport paths induced by the diffusive

processes are fully adapted to the estuarine geometry,

with no horizontal circulations formed. It is important

to note that even though no salt transport circulation

cells are induced by including estuarine convergence,

the salt dynamics can be significantly influenced by

this factor. For instance, the estuarine convergence

has a strong impact on the tidal water motion

(Friedrichs and Aubrey 1994; Lanzoni and Seminara

1998) and river-induced flow due to changes of the

cross-sectional area, thus affecting the salt transport

contributions due to tidal advective diffusion (Wei

et al. 2016) and river-induced flow (not shown).

2) INFLUENCE OF CORIOLIS DEFLECTION

(EXPERIMENT II)

Including the Coriolis force in the convergent

channel slightly increases the salt intrusion length to

108 km, with the salinity on the left larger than that on

the right (see Fig. 6a). The salt transport pattern is

significantly changed by the Coriolis deflection, with

salt transported into the estuary from the left side of

the channel and out from the right. Comparing the

streamlines of the total salt transport in experiments

I–II, it is found that the geometry-induced salt trans-

port pattern as found in experiment I is replaced by a

Coriolis-induced pattern in experiment II by includ-

ing Coriolis force. It suggests that the influence of the

Coriolis deflection on the total salt transport is much

stronger than that of the estuarine convergence. Be-

cause of the Coriolis deflection, the seaward salt

transport induced by river discharge is mainly balanced

by the landward salt transport induced by diffusive

FIG. 5. As in Fig. 3a, but for the salt transport induced by diffusive processes in experiment I.
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processes, while the residual flow due to the stress-free

surface condition and the tidal return flow makes a small

but nonnegligible contribution (see Fig. 6b). The gravi-

tational circulation, however, does not contribute to the

residual salt balance.

Because of the Coriolis force, the landward salt

transport by diffusive processes is deflected toward the

left side of the estuary (see Fig. 7a), decreasing the cross-

sectionally integrated longitudinal salt transport due to

this contribution. It results in a significant divergence of

salt on the left side and a convergence of salt on the

right. The magnitude of local change in salinity induced

by diffusive processes reaches up to 2 3 1025 psums21,

much larger than that in experiment I where no Coriolis

is included. The residual flow due to the stress-free

surface condition and the tidal return flow tends to

transport salt landward from the left side of the estuary

and seaward from the right (see solid lines in Figs. 7b,c).

It results in a remarkable accumulation of salt on the left

side of the estuary and a divergence of salt on the right.

The local change of salinity induced by the stress-free

surface condition and the tidal return flow are up to 13
1025 and 2 3 1026 psums21, respectively (see gray

scales in Figs. 7b,c). The salt transport induced by tidal

rectification and gravitational circulation are negligible

(not shown).

3) INFLUENCE OF ESTUARINE BATHYMETRY

(EXPERIMENT III)

By including a lateral channel–shoal structure, the

salt intrusion length is significantly increased to 117 km

(see Fig. 8a), compared to experiment I. Furthermore,

the tidally averaged salinities become higher in the

deeper channel than those on the shoals. The residual

salt transport patterns are also completely changed: salt

is transported landward over the shoals and seaward

through the deeper channel. This clearly shows the

influence of bathymetric variations is larger than that of

the estuarine convergence. By including the bathy-

metric variations, the landward salt transport contri-

butions due to tidal advective diffusion, prescribed

diffusion, and gravitational circulation are increased

FIG. 6. As in Fig. 2, but for experiment II.
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(see Fig. 8b). On the other hand, the residual flow in-

duced by the stress-free surface condition and tidal

return flow tends to transport salt seaward, in con-

trast to their landward salt transport contributions

in experiment II. The salt transport due to tidal

rectification is very small compared to the other

processes.

Because of the lateral channel–shoal structure, the

diffusive processes transport salt from the shoals to

the deeper channel and then transport salt landward

(see Fig. 9a). This is accompanied with an accumula-

tion of salinity in the deeper channel and a decrease of

salinity on the shoals. The gravitational circulation

presents a landward flow in the deeper channel and a

seaward flow on the shoals, as found by Wong (1994),

transporting salt into the estuary through the deeper

channel and out over the shoals (see Fig. 9b). It results

in a strong convergence of salt in the deeper channel

and a small divergence of salt on the shoals. The re-

sidual flow induced by tidal rectification, stress-free

surface condition, and tidal return flow is charac-

terized by a net landward flow over the shoals and

balanced by a return (seaward) flow in the deeper

channel (see Figs. 9c–e). The pattern of these three

residual components is consistent with the topography-

induced exchange flow, as found by Li and O’Donnell

(1997) (without considering density), which tends

to transport salt landward over the shoals and sea-

ward through the deeper channel. This results in a

divergence of salt in the deeper channel and an accu-

mulation of salt on the shoals. The amount of local salt

loss induced by the tidal return flow or stress-free sur-

face condition is up to 5 3 1025 psum s21. The salt

change induced by the tidal rectification is very small

(less than 1 3 1025 psum s21) compared to the default

experiment. This confirms that effects of earth rotation

are very important in generating the tidally rectified

flow, as reported in Huijts et al. (2009).

4. Discussion

The importance of various physical processes on

salt intrusion length is evaluated by excluding each

process individually and comparing corresponding

changes in the salt intrusion length. It is found that the

tidal advective diffusion is the predominant physical

process for longitudinal salt intrusion, which is hardly

influenced by residual flows (except for the river-

induced flow). Since tidal advective diffusion is

strongly influenced by many factors such as bottom

friction, vertical mixing, external tidal forcing, estu-

arine bathymetry, and geometry (Wei et al. 2016), it is

deduced that the salt intrusion length changes sig-

nificantly with these factors. Though the residual

circulations make no big contributions to salt in-

trusion lengths, they are crucial for the transverse

structure of the tidally averaged salinity, which is es-

sential for the transverse gravitational circulation and

FIG. 7. As in Fig. 3, but for the salt transport induced by (a) diffusive processes, (b) stress-free surface condition, and

(c) tidal return flow in experiment II.
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thence lateral sediment trapping in tidal estuaries

(Huijts et al. 2006).

In section 4a, the salt transport due to the tidal ad-

vective diffusion is discussed: in section 4a(1), the salt

transport induced by tidal advective diffusion in the

idealized Delaware estuary is explained by comparing

results of the experiments I–III with those of the de-

fault experiment; in section 4a(2), the resulting tidal

advective diffusivity coefficients are discussed in re-

lation to estuarine geometry, bathymetry, and Cori-

olis. The salt transport induced by the gravitational

circulation, the strongest residual circulation process

in the idealized Delaware estuary, is discussed in

section 4b.

a. Tidal advective diffusion

1) TIDAL ADVECTIVE SALT FLUX

The salt flux induced by tidal advective diffusion

(i.e., tidal advective salt flux) is a result of the tem-

poral correlation between the tidal salinity S1 and the

three-dimensional tidal currents u0, y0, and w0. The

longitudinal tidal advective salt flux can be expressed

in terms of the amplitudes of u0 and S1 and their phase

difference (Wei et al. 2016)

u
0
S
1
5

1

2
ju

0
jjS

1
j cos(F

s
2F

u
) , (52)

where Fs, Fu, jS1j, and ju0j are the phases and ampli-

tudes of S1 and u0, respectively. Similarly, the transverse

tidal advective salt flux (y0S1, w0S1) is related to the

amplitudes of the transverse tidal velocities, the tidal

salinity, and their phase differences. The cross-sectional

distributions of the longitudinal and transverse tidal

advective salt fluxes are shown in Fig. 10 by gray scales

and by arrows, respectively. All cross sections are lo-

cated at x ; 40km.

In experiment I, the longitudinal tidal advective salt

flux is similar to that from a width-averaged model by

Wei et al. (2016). The longitudinal tidal advective salt

fluxes are nearly laterally uniform, with landward fluxes

FIG. 8. As in Fig. 2, but for experiment III.

1858 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47



near the surface and seaward fluxes near the bottom (see

the contours in Fig. 10a). Moreover, the estuarine con-

vergence results in a lateral tidal current that interacts

with the tidal salinity and transports salt toward the

midaxis near the free surface and toward the banks near

the bottom. These geometry-induced transverse tidal

advective salt fluxes are smaller than 0.005 psums21

(see arrows in Fig. 10a). When including the Coriolis

effects (experiment II), ju0j and jS1j become larger on

the left than the right (see Figs. 11a,b), while their phase

differences remain almost unchanged (see Fig. 11c).

This results in larger longitudinal tidal advective salt

fluxes on the left than on the right (see Fig. 10b). In the

transverse direction, the lateral tidal current induced by

the Coriolis effects interacts with the tidal salinity and

yields salt fluxes toward the left near the surface and

toward the right near the bottom. This Coriolis-induced

circulation, together with the geometry-induced circu-

lation, results in a slightly enhanced counterclockwise

salt transport on the right side of the estuary and a

slightly weakened clockwise transport on the left (see

arrows in Fig. 10b).

In experiment III, tides propagate faster in the deeper

channel than on the shoal, resulting in a larger ju0j and
jS1j in the deeper channel than on the shoals (see

Figs. 11d,e). Meanwhile, u0 in the deeper channel lags

that on the shoals, and S1 on the shoals lags that in the

deeper channel. Thus, in the deeper channel, the phase

difference between u0 and S1 is smaller than 908 near the
surface and slightly larger than 908 near the bottom; on

the shoals, it is larger than 908 near the bottom, and

smaller than 908 near the surface (see Fig. 11f). This

results in enhanced landward tidal advective salt fluxes

near the surface (relatively small seaward fluxes near the

bottom) in the deeper channel. On the shoals, since ju0j
and jS1j are much smaller than those in the deeper

channel, the induced salt fluxes are much smaller (see

gray scales in Fig. 10c). Integrated over the depth, the

landward tidal advective salt transport is much stronger

in the deeper channel. Moreover, the interaction

FIG. 9. As in Fig. 3, but for experiment III.

JULY 2017 WE I ET AL . 1859



between the tidal salinity and the lateral tidal current

induced by the lateral depth variations results in

axial-convergent tidal advective salt fluxes (up to

0.01 psums21) toward the midaxis at all depths (see

arrows in Fig. 10c).

Comparing the tidal advective salt fluxes in experi-

ments I–III with the default experiment suggests that the

lateral bathymetric variations dominate the longitudinal

tidal advective salt fluxes in the idealized Delaware es-

tuary. The lateral tidal advective salt fluxes, however, are

FIG. 10. The transverse structure of the three-dimensional tidal advective salt flux (u0S1, y0S1, and w0S1). Gray

scales and contours show the along-channel fluxes, while arrows show themagnitude and direction of the transverse

fluxes. Positive (negative) along-channel salt fluxes are transported landward (seaward). The vertical salt flux is

scaled by a factor of 300 larger than the lateral flux. The perspective is looking seaward for all cross-sectional plots.

FIG. 11.A qualitative view of the lateral profiles of ju0j, jS1j, and the phase differenceFS2Fu

influenced by (a)–(c) Coriolis effects and (d)–(f) lateral bathymetric variations. The amplitudes

and phase difference near the surface are shown by solid lines, and those near the bottom are

shown by dashed lines.
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influenced by estuarine convergence, Coriolis, and ba-

thymetry. Because of the overall effects, the tidal ad-

vective salt fluxes toward the left on the top right of the

channel as well as the fluxes toward the right on the

bottom left are augmented (see Fig. 10d).

2) TIDAL ADVECTIVE DIFFUSIVITY

The strength of the (depth integrated) salt transport

due to tidal advective diffusion is measured by the tidal

advective diffusion coefficients, which result from

the temporal correlation between the longitudinal/

lateral tidal velocities and tidal salinities [see Eqs. (29)–

(32)]. Since more processes are resolved in a three-

dimensional model compared to a width-averaged

approach, it is to be expected that the prescribed dif-

fusion coefficient (including unresolved processes)

has to be smaller compared to the values that have

to be used in width-averaged models to qualitatively

FIG. 12. The tidal advective diffusion coefficients for all experiments.
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reproduce the observed salt intrusion in the Delaware

estuary. Figure 12 shows the tidal advective diffusion co-

efficients for all experiments. Here, only Kadv
h11

, Kadv
h12

, and

Kadv
h21

are shown because Kadv
h22

(&1m2s21) is much smaller

than the other diffusion coefficients.

The tidal advective diffusivity Kadv
h11

is positive in all

experiments, confirming that the temporal correlation

between u0 and S1 always results in a landward salt

transport integrated over the depth (Wei et al. 2016).

In experiment I, Kadv
h11

is almost the same as obtained

from the width-averaged model in Wei et al. (2016),

which is laterally uniform (see Fig. 12a). This implies

that the estuarine convergence has little influence on

Kadv
h11

. However, different from the width-averaged

model, Kadv
h12

and Kadv
h21

become nonnegligible (see

Figs. 12b,c).

Coriolis effects significantly change the spatial pat-

tern of Kadv
h11

compared to experiment I, with larger

magnitudes on the left than on the right (see Fig. 12d),

resulting in a larger along-channel tidal advective salt

transport on the left. The terms Kadv
h12

and Kadv
h21

show

slightly larger magnitudes near the entrance com-

pared to experiment I (see Figs. 12e,f) and are almost

unchanged in the landward region. In experiment III,

Kadv
h11

is strongly increased in the deeper channel and

decreased on the shoals (see Fig. 12g). This lateral

difference of Kadv
h11

contributes to a stronger along-

channel tidal advective salt transport in the deeper

channel than on the shoals. The lateral bathymetric

variations also significantly increase the magnitudes of

Kadv
h12

and Kadv
h21

(see Figs. 12h–i). Comparing experi-

ments I–III with the default experiment suggests that

lateral bathymetric variations dominate the magni-

tudes of the tidal advective diffusion coefficients. The

Coriolis force hardly changes Kadv
h11

(see Fig. 12j);

however, it slightly increases the magnitudes of Kadv
h12

and Kadv
h21

on the left and decreases them on the right

(see Figs. 12k,l). The magnitudes of the tidal advective

diffusion coefficients are much larger than those of

the prescribed horizontal diffusivity Kh. It means

that by resolving the lateral processes in the three-

dimensional model, the significance of the tidal ad-

vective diffusion is generally magnified, resulting in

fewer processes that need to be parameterized by a

prescribed horizontal diffusion coefficient than in the

width-averaged model of Wei et al. (2016).

b. Gravitational circulation

As found by Wei et al. (2016), the gravitational cir-

culation does not influence the residual salt transport in

convergent estuaries with a horizontal bed (with negli-

gible lateral processes), since the near-bottom landward

salt transport is canceled by the near-surface seaward

transport (see gray scales in Figs. 13a,b). It suggests in

estuaries with no depth variations, the gravitational

circulation and salinity are hardly coupled, and the

gravitational circulation can be understood straightfor-

ward using the obtained salinity.

FIG. 13. (top) The residual water level induced by gravitational circulation (hGC
1 , solid lines) and the tidally

averaged salinity (S0, dashed lines) at x ; 40 km. (bottom) As in Fig. 10, but for the salt fluxes induced by gravi-

tational circulation.
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The estuarine convergence induces a lateral gradient

of the tidally averaged salinity with S0 near the banks

larger than that in the center. To balance this gradient, a

barotropic pressure gradient is inducedwith a largerhGC
1

in the center than that near the banks (see upper panel

of Fig. 13a). These gradients result in a small but non-

negligible transverse gravitational circulation, which

transports salt (smaller than 0.02 psum s21) toward the

banks near the surface and toward the midaxis near the

bottom (see arrows in Fig. 13a). Under the influence of

Coriolis effects, however, S0 becomes larger on the left

than on the right, and hGC
1 becomes larger on the right

than on the left in order to balance the salinity gradient

(see upper panel of Fig. 13b). This results in a transverse

gravitational circulation that transports salt toward the

left near the surface and toward the right close to the

bottom (see arrows in Fig. 13b). The salt fluxes induced

by the Coriolis-induced transverse gravitational circu-

lation (up to 0.1 psum s21) are much stronger than those

induced by the estuarine convergence.

Because of the lateral bathymetric variations, the

gravitational circulation transports salt landward

through the deeper channel and seaward over the shoals

(see gray scales in Figs. 13c,d). The longitudinal gravi-

tational circulation is qualitatively consistent with

Lerczak and Geyer (2004), with the strongest landward

fluxes near the bottom of the deeper channel and the

strongest seaward fluxes near the surface of the shoals.

Nevertheless, there is a discrepancy: the gravitational

circulation is generally landward near the bottom and

seaward near the surface in Lerczak and Geyer (2004);

in the present work, however, the landward flow is lo-

cated at all depths of the deeper channel with the sea-

ward flow on the shoals. This discrepancy is probably

related to different vertical mixing coefficients used in

two models; Lerczak and Geyer (2004) used a relatively

small Ay (0.002m
2 s21) for their well-mixed runs, while

in the present model Ay is up to 0.005m2 s21 in the

deeper channel. It is important to note that in the

presence of the channel–shoal structure, the gravita-

tional circulation and the salinity distribution become

strongly coupled, and hence they cannot be interpreted

straightforwardly, as in experiments I–II.

In experiment III, the diffusive processes and the re-

sidual flows act together, resulting in a larger (smaller)

S0 (h
GC
1 ) in the deeper channel than on the shoals (see

upper panel of Fig. 13c). This induces a two-cell trans-

verse circulation with near-bottom salt fluxes toward

the banks and near-surface return fluxes (up to

0.06 psums21) toward the midaxis (see arrows in

Fig. 13c). This pattern is consistent with the bathymetry-

controlled secondary circulation reported by Nunes and

Simpson (1985). Including the Coriolis force hardly

influences the longitudinal gravitational circulation;

however, it significantly enhances the transverse gravi-

tational circulation (see arrows in Fig. 13d). Because of

the combined effects of the estuarine convergence, lat-

eral bathymetric variations, and Coriolis force, S0 (h
GC
1 )

becomes larger (smaller) on the left than on the right,

inducing near-surface salt fluxes (up to 0.25 psums21)

toward the left and near-bottom fluxes toward the right

(see Fig. 13d). The transverse salt fluxes induced by

gravitational circulation have almost the same magni-

tude as the longitudinal fluxes, implying the transverse

gravitational circulation is as significant as the longitu-

dinal circulation.

5. Response to river discharge

To systematically explore the response of salt in-

trusion to river discharge, the model is applied to ex-

periment III using three different river discharge values:

72, 288, and 864m3 s21, respectively. It is found that the

simulated, tidally averaged, salt intrusion length varies

significantly from 120km (for Q 5 72m3 s21) to 80 km

(Q 5 288m3 s21) and 60km (Q 5 864m3 s21). This

strong dependency of salt intrusion length on river dis-

charge is not consistent with observations of Garvine

et al. (1992), who found the salt intrusion length only

weakly responds to the increase of river discharge in the

Delaware estuary. Earlier studies have shown that in-

creasing river discharge can increase stratification and

lead to weaker vertical mixing, consequently enhancing

the residual circulation (Monismith et al. 2002; Ralston

et al. 2008). This enhanced residual circulation is found

to play an important role in transporting salt landward

and weakening the dependency of salt intrusion on the

variations of river discharge (Ralston et al. 2008;

Lerczak et al. 2009). Therefore, to understand the

overestimated sensitivity of the simulated salt intrusion

to river discharge, the stratification (measured by the

top-to-bottom salinity difference) at each location is

calculated for different river discharges (not shown). It

is found that the stratification in the central region of salt

intrusion increases with increasing river discharge,

consistent with model studies (Ralston et al. 2008;

Lerczak et al. 2009) and observations (McSweeney et al.

2016). The top-to-bottom salinity differences (less than

1.5 psu), however, are much smaller than the observed

values during large river discharges (McSweeney et al.

2016). This implies that the relatively strong stratifica-

tion in case of large river discharges is not resolved in

this model, which is probably the reason for the over-

estimated impact of river discharge on salt intrusion.

Therefore, to reproduce the observed salt intrusion for

large river discharges using the model presented in this
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paper, a larger horizontal eddy diffusivity coefficient

needs to be prescribed. This is consistent with Gay and

O’Donnell (2009), who captured the weak response of

the salt intrusion length to river discharge in the Dela-

ware estuary by allowing the along-channel dispersion

coefficient to exponentially increase with river discharge.

6. Conclusions

A semianalytical, three-dimensional model is de-

veloped to investigate the three-dimensional salt dy-

namics in idealized well-mixed estuaries. The adopted

perturbation method allows for a systematic decompo-

sition of the total salt transport into contributions due to

various physical processes. Each salt transport process

and its relative importance can be investigated in

isolation.

First, the salt dynamics for a schematized estuary is

investigated. The schematized estuary is exponen-

tially converging, and the bathymetry shows a

channel–shoal structure. In this experiment, the tidal

advective diffusion, induced by the temporal correla-

tion between horizontal tidal velocities and salinity

(including the lateral processes), is the dominant

landward salt transport process. The cross-sectionally

integrated salt transport induced by residual circula-

tions due to gravitational circulation, tidal rectifica-

tion, stress-free surface condition, and tidal return

flow is small compared to that induced by the tidal

advective diffusion. The salt transport due to these

residual circulations, however, is locally significant.

The gravitational circulation transports salt landward

through the deeper channel and seaward over the

shoals. The residual circulations due to other mecha-

nisms are smaller and transport salt in the opposite

direction compared to the transport pattern of gravi-

tational circulation.

The residual salt balance is influenced by the estu-

arine convergence, bathymetry, and Coriolis. Three

experiments are conducted in order to investigate

these three factors on the estuarine salt transport in

separation: in experiment I, an exponentially con-

vergent estuary is used with a horizontal bed, no

Coriolis; in experiment II, the estuarine geometry and

bathymetry are the same as in experiment I, but the

Coriolis force is included; and in experiment III, a

channel–shoal structure is included while the Coriolis

effects are excluded. The tidal advective diffusion is

found to be the most dominant landward salt transport

process for all experiments. The salt intrusion length

slightly increases, compared to the results of experi-

ment I, when Coriolis is included (experiment II) and

increases significantly by including the channel–shoal

structure (experiment III). The contribution of tidal

advective diffusion to estuarine salt transport can be

measured by the tidal advective diffusion coefficients,

which can be explicitly calculated and are strongly

dependent on the Coriolis effects and lateral bathy-

metric variations.

The residual circulations hardly influence the salt

intrusion length, but are crucial for the local salt

transport. In experiment I, the depth-integrated re-

sidual circulations vanish, with the river-induced

seaward salt transport balanced by diffusive pro-

cesses only. No significant lateral salt transport pat-

terns are induced by the width convergence of the

estuary. In experiment II (including Coriolis de-

flection), the residual circulations due to tidal rectifi-

cation and the stress-free surface condition transport

salt into the estuary from the left side of the estuary

(looking seaward) and out on the right side, resulting

in a significant contribution to the landward salt

transport. In experiment III, salt transport due to all

processes becomes stronger due to the channel–shoal

structure. The gravitational circulation, as the most

significant residual circulation process, is character-

ized by a symmetric two-cell circulation pattern.

Residual circulations due to other processes are rel-

atively weak. The residual salt transport due to re-

sidual circulations is essential for the lateral salinity

structure, which can drive a strong transverse gravi-

tational circulation within the salt intrusion region.
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APPENDIX A

Scaling Analysis

A perturbation method is used to analytically solve

the water motion and salinity. First of all, variables

are scaled with their typical scales (see Table A1),
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denoted by a tilde (;). This model does not resolve

the boundary layer, and processes in typical estuarine

length scales are focused. The variations of water

motion and salinity in the longitudinal and lateral

directions are assumed to scale with the typical es-

tuarine length scale Lb. For estuaries with an expo-

nentially decreasing width, Lb is equivalent to the

estuarine convergence length [see Eq. (46)]. The varia-

tions in the vertical are assumed to scale with the estua-

rine water depth.

The scale for velocities in the horizontal direc-

tions (denoted by U) is obtained by approximately

balancing the terms in the depth-averaged continuity

equation:
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which yields U5 amM2
sLb/H0. The scale for the verti-

cal velocity (denoted by W ) is obtained by assuming

the terms in the continuity equation [Eq. (A2)] to

be at the same order; hence, we found W 5 UH0/Lb.

The river discharge per unit width at the landward

boundary is scaled by the width-averaged river dis-

charge: Rm
i 5R/BL, with BL as the estuarine width at

the landward boundary.

Substituting these scales into the shallow-water

equations and the salinity equation and replacing

the density in terms of salinity in the momentum

equations, we derived the dimensionless governing

equations for the water motion and salinity, which

read
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and
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›~t
1

U ~u

sL
b
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b

› ~S
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2

›2 ~S

›~z2
. (A2d)

The corresponding dimensionless boundary conditions at the free surface and the bottom are given by

TABLE A1. Scales of physical variables.

Variable Typical scale Symbol Expression

t M2 tidal frequency s s21~t
h Width-averaged M2 tidal amplitude at mouth amM2

amM2
~h

x Estuarine convergence length Lb Lb~x

y Estuarine convergence length Lb Lb~y

(z, H) Width-averaged water depth at mouth Hm
0 Hm

0 (~z,
~H)

u U U ~u

y U U~y

w W W ~w

S Width-averaged salinity at mouth Sm
e Sm

e
~S

Ri Width-averaged river transport at the landward boundary Rm
i Rm

i
~Ri
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›~z
,
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�
5(0, 0)
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Hm
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(A3)

~w52~u
› ~H

›~x
2 ~y

› ~H

›~y
and

�
›~u

›~z
,
›~y

›~z

�
5

sHm
0

A
y

(~u, ~y)

at ~z52 ~H, and (A4)

K
y

› ~S

›~z
5 0 at ~z5

a
M2

Hm
0

~h and ~z52 ~H . (A5)

At the seaward boundary, we have

~h5
a
M2

amM2

cos(s~t2f)1
a
M0

amM2

and ~S5
S
e

Sm
e

at (x, y) 2 ›
S
V . (A6)

At the closed boundaries and the landward boundary,

the dimensionless boundary conditions are

ðam
M2

/Hm
0
~h

2 ~H

(~u, ~y) d~z � n
h
5 0 at (x, y) 2 ›

C
V, (A7)
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2 ~H
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Hm
0 U

~R
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R
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and

ðam
M2

/Hm
0

2 ~H
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h
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b

› ~S
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!
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b
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›~y

!
d~z

2
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3
5 � n

h
5 0 at (x, y) 2 ›

C
V or ›

R
V . (A9)

As a next step, the magnitudes of the scaling

parameters are compared with a small parameter

«5 amM2
/Hm

0 ; the ratio of the width-averaged M2 tidal

amplitude to the mean water depth at the mouth. This

results in an ordering of scaling parameters of each

term in the dimensionless equations, as summarized in

Table A2.

Then, we substitute the magnitudes of these scaling

parameters into Eqs. (A2)–(A9), which yields the di-

mensionless governing equations and boundary con-

ditions for water motion and salinity in terms of «.

Substituting the expansions of each dimensionless

variable in terms of « and collecting the terms at the

same order of «, we derived the dimensional governing

equations and boundary conditions at different order

of «, which will be used to calculate the water motion

and salinity semianalytically.

APPENDIX B

Leading-Order Water Motion

The leading-order water motion is forced by the semi-

diurnal tide; thus, it consists of only theM2 tidal constituent.

As shown by Kumar et al. (2016), u0 and y0 can be

written in terms with the gradients of h0:

u
0
5C

1

›h
0

›x
1C

2

›h
0

›y
, y

0
52C

2

›h
0

›x
1C

1

›h
0

›y
, (B1)

with

TABLE A2. Order of magnitude of scaling parameters.

Dimensionless parameters Order

U/sLb O(«)

W/sHm
0 O(«)

gHm
0 bsS

m
e /UsLb O(«)

amM2
g/UsLb O(1)

f /s O(1)

Ay /s(H
m
0 )

2 5Ky /s(H
m
0 )

2
O(1)

Ah/sL
2
b O(«2)

Sm/S
m
m O(1)

aM2
/amM2

O(1)

aM0
/amM2

O(«)

sHm
0 /Ay O(1)

Rm
i /H

m
0 U O(«)

Kh/sL
2
b O(«2)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i(s1 f )/A

y

q
, a

2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i(s2 f )/A

y

q
,

b
j
5 g/2a2

j Ay
, and g

j
5 s/(a

j
A

y
sinha

j
H1 s cosha

j
H), j5 1, 2.

In the case of no Coriolis force ( f5 0), we have C2 5 0,

yielding

u
0
5C

1

›h
0

›x
, y

0
5C

1

›h
0

›y
. (B2)

Substituting Eq. (B1) into the continuity equation at

O(1), integrating over depth, and applying the boundary

condition of w0 at the top and the bottom, it yields a

second-order partial differential equation of h0, which is

then solved numerically using a finite-element method

(Kumar et al. 2016).

APPENDIX C

First-Order Salinity Equations

Since the leading-order salinity is independent of

depth, the salinity equation at the first order reduces to

›S
1

›t
2K

y

›2S
1

›z2
52u

0

›S
0

›x
2 y

0

›S
0

›y
. (C1)

As discussed before, the boundary condition of S1 at the

top and the bottom is required:

K
y

›S
1

›z

����
z50

5K
y

›S
1

›z

����
z52H

5 0 at z5 0 and z52H .

(C2)

Since u0, y0, and h0 are of M2 tidal frequency (Kumar

et al. 2016), fu0, y0, h0g5<f(û0, ŷ0, ĥ0)e
istg, S1 also

has the M2 tidal frequency according to Eq. (C1),

namely, S1 5<fŜ1e
istg. After that, Eq. (C1) can be

rewritten as

›2Ŝ
1

›z2
2b2Ŝ

1
52

1

K
y

�
û
0

›S
0

›x
1 ŷ

0

›S
0

›y

�
, (C3)

with b5
ffiffiffiffiffiffiffiffiffiffiffiffi
is/Ky

p
. Solving Eq. (C3) together with the

boundary condition of Eq. (C2) yields an analytical

formulation of S1, which depends on the gradients of h0

and S0:

S
1
5 S

z1

�
›h

0

›x

›S
0

›x
1

›h
0

›y

›S
0

›y

�
1S

z2

�
›h

0

›y

›S
0

›x
2

›h
0

›x

›S
0

›y

�
,

(C4)

where Sz1 and Sz2 are known functions given by
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s
for f 6¼ 0.

In the case of f 5 0, we find Sz2 5 0, and Sz1 becomes

the same as Sz, which is derived by Wei et al. (2016).

APPENDIX D

First-Order Residual Flow

a. Governing equations

The first-order residual flow follows from the

first-order tidally averaged shallow-water equations

›u
1

›x
1

›y
1

›y
1

›w
1

›z
5 0, (D1a)

<
�
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�
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2 f y
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with boundary conditions

h
1
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Here, the underbrace |{z}: denotes various mechanisms

that force the residual flow. Equations (D1)–(D2)

show that the residual flow is forced by advective

contributions of the leading-order M2 tide (tidal rec-

tification, denoted by AD), density-driven gravita-

tional circulation (GC), the stress-free surface

condition (NS), river discharge (RD), and a return

flow (TRF). Since the first-order water motion Eqs.

(D1) and (D2) are linear, the residual flow compo-

nents due to these forcing mechanisms can be solved

separately. Hence, the solution of the residual water

motion can be written as

x
1
5 xRD

1 1 xTRF
1 1 xAD

1 1 xGC
1 1 xNS

1 , (D3)

with the solution vector x1 5 (h1, u1, y1, w1). All re-

sidual contributions can be calculated explicitly without

information of the salinity field, except gravitational

circulation, which is dependent on salinity itself.

b. Gravitational circulation

To solve the gravitational circulation, the following

system of equations has to be solved:
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with boundary conditions
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(D5d)

By solving the momentum equations [Eqs. (D4b)–

(D4c)] together with the boundary condition of uGC
1 and

yGC
1 in Eqs. (D5a)–(D5b), the vertical structure of uGC

1

and yGC
1 can be obtained analytically.

Introducing two rotating flow variables R1 and R2

(Kumar et al. 2017),

RGC
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1 1 iyGC
1 and RGC

2 5 uGC
1 2 iyGC

1 , (D6)

into Eqs. (D4) and (D5), we derived an analytical for-

mulation for the residual flow velocities induced by

gravitational circulation:
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Substitute Eq. (D7) into Eq. (D4a), integrate it over

depth, and apply corresponding boundary conditions. And

then, we obtained an elliptic partial differential equation

for the GC-induced residual sea surface elevation:
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c. The seaward boundary condition

When solving this coupled system of equations,

special care has to be taken of the seaward boundary,

since numerical instabilities can occur when using an

arbitrary prescribed water level at this boundary (Chen

and Sanford 2009). This is because an inconsistent

prescribed sea surface elevation at the mouth can result

in a rapid adjustment to a consistent solution in the

interior domain. This rapid adjustment will result in

large unphysical gradients in the water motion close to

the boundary and thus cause numerically inaccurate

solutions.

To avoid that, the computational domain is extended

by 30km in the seaward direction. At the open boundary

of the computational domain, a constant M2 tidal water

level is prescribed, and the tidal water motion is calcu-

lated. This results in a physically consistent water mo-

tion within the domain of interest. Then, the resulting

M2 tidal water elevation at the seaward boundary of the

physical domain is rescaled, such that the width-

averaged tidal amplitude at the original open bound-

ary (now located at x 5 30km) is the same as the tidal

amplitude that is prescribed at the open boundary of the

physical domain. This will result in a consistentM2 water

motion in the domain of interest. The extended domain

is then used to calculate the residual flow using the cal-

culated tidal water motion, except for the residual flow

generated by the baroclinic pressure. To satisfy the

physical boundary, a constant residual water level aM0
is

used at the open boundary of the computational domain

such that the width-averaged residual water level is zero

at the open boundary of the physical domain. After that

the calculated water motion in the physical domain is

used to obtain the salinity field and gravitational

circulation.
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