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Summary

A reconnaissance survey was undertaken on soil near mine tailings to investigate variation in the content of copper,
chromium and uranium. A nested sampling design was used. The data showed significant relations between the
content of copper and uranium in the soil and its organic matter content, and a significant spatial trend in uranium
content with distance from the tailings. Soil pH was not significantly related to any of the metals. The variance
components associated with different scales of the sample design had large confidence intervals, but it was
possible to show that the random variation was spatially dependent for all spatial models, whether for variation
around a constant mean, or with a mean given by a linear effect of organic matter or distance to the tailings. For
copper, we showed that a fractal or multifractal random model, with equal variance components for scales in a
logarithmic progression, could be rejected for the model of variation around the fixed mean. The inclusion of
organic matter as an explanatory factor meant that the fractal model could no longer be rejected, suggesting that
the effect of organic matter results in spatial variation that is not scale invariant. It was shown, taking uranium as
a case study, that further spatially nested sampling to estimate scale-dependent variance components, or to test a
non-fractal model with adequate power, would require in the order of 200–250 samples in total.

Highlights

• Sampling was undertaken to investigate spatial variation of metal content in soil near mine tailings.
• Chromium and uranium were related to soil organic matter content; uranium showed a spatial trend.
• Spatial variation was scale dependent, variation of copper was not scale-invariant.
• Characterizing random spatial variation requires substantial sample effort.

Introduction

Reconnaissance investigations of the soil may be undertaken prior

to detailed sampling for tasks such as spatial mapping, or the

design of field experiments in which soil variation may be an

important source of the residual variance of the observed response.

Appropriate reconnaissance sampling supports decisions on the

design of subsequent sampling or experiments, and can enable

initial testing of hypotheses about the sources of variation in soil

properties of interest. In this paper we present a case study in which
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spatially nested sampling (Youden & Mehlich, 1937) was used for
reconnaissance survey of soil prior to the establishment of more
detailed surveys and plot experiments on land immediately adjacent
to mine tailings near Kitwe, the Copperbelt, Zambia.

Mine tailings are a major source of potentially harmful elements
(Lottermoser, 2007), and the Copperbelt province of Zambia has
a substantial legacy of tailings and other mine wastes from more
than 100 years of mining activity (Weissenstein & Sinkala, 2011).
The site of the reported study is land immediately adjacent to a
large tailings dam. The land is used by a neighbouring village for
agricultural production. This paper reports a reconnaissance survey
of the soil at this site that was undertaken before more detailed
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sampling and the establishment of experimental plots to examine
the uptake of potentially harmful elements from the soil there. In
this paper we focus on three elements in particular, chromium,
copper and uranium. Chromium was of interest because a key
objective of the subsequent experimental work was to examine
speciation of the element in soil and its uptake by crops, and how
this process might be affected by liming, fertilizers and conservation
agriculture practices. Copper was examined because it was expected
to be a large component of mine wastes; the ores from which the
tailings were derived were copper bearing and were processed for
extraction of copper. Copper is a potentially harmful element when
present in excess, and one possible exposure route to humans and
animals is through uptake by food plants (Guo et al., 2010). Finally,
we considered the concentrations of uranium in soil. Mining and
extraction of copper from ores can concentrate radionuclides in the
tailings, giving rise to what is called technically enhanced naturally
occurring radioactive material (TENORM). Uranium is often an
important constituent of TENORM in copper mine wastes (National
Research Council, 1999), including wastes produced from copper
mines in the granitic rocks of the Katanga Basin, which includes the
Zambian Copperbelt (Katebe et al., 2008).

The aim of the reconnaissance was to provide information about
the factors that affect the spatial variation of concentrations of
chromium, copper and uranium across the site. In particular, we
wanted to find evidence of a trend in the concentration of the
elements with distance from the mine tailings. This would give
insight into how the material might disperse from the tailings on to
farmed soil and would enable us to identify sites for experimental
plots where large or smaller concentrations might be expected.

We were also interested in whether concentrations of the elements
were correlated with basic soil properties. The first property was pH.
Mine tailings have large pH values because of the incorporation of
lime (Weissenstein & Sinkala, 2011) but farmed soil in the area,
other than on dambos (Webster, 1965), is more acidic with pH
typically between 4 and 6 (Wilson et al., 1956). The mobility of
most metals in soil as free ions is reduced if the pH is increased
(McBride, 1994). We might expect, therefore, that soil pH, through
its effect on metal mobility and hence the rate of leaching of metals
from deposited material, might affect the measured concentrations
of the elements of interest.

The second soil property that we considered was the organic
matter content. There is evidence that the absorption of copper
(Petruzzelli et al., 1978) and uranium (Bednar et al., 2007) by soil
depends in part on the organic matter content, and it has also been
shown that the organic matter of soil has an effect on the mobility of
chromium in experimentally leached columns through adsorption
and the reduction of Cr(VI) to Cr(III) (Banks et al., 2006). This
suggests that the retention of these metals, and so the observed
concentrations, might vary with the organic content of the soil.

With an appropriate sampling design and associated statistical
analysis, it is possible to examine how the variation of a soil
property depends on spatial scale. This can give practically useful
information. If, for example, during reconnaissance the variation
of a soil property is found to be dominated by variation at fine

spatial scales (e.g. of up to 1 m), then this shows that it should
be possible to estimate treatment effects or spatial patterns with
greater precision in future experiments or surveys if a local bulking
strategy is used with samples formed by aggregating cores from
within a small region (e.g. Lark, 2012). The investigation of scale
dependence might also give insight into the nature of the underlying
variation in the soil. For example, soil variation largely driven by
land use is likely to be expressed at different spatial scales from
variation caused by bioturbation. For this reason we wished to use
a sampling design that would support a spatial analysis. In the short
period of time available for reconnaissance we used a spatially
nested sampling design (Youden & Mehlich, 1937).

Oliver & Webster (1987) showed how spatially nested sampling
designs can be used to investigate soil variation as the reconnais-
sance phase of survey, and suggested that this might be a useful
strategy for examining new areas where there is limited informa-
tion about scale-dependent variation (Webster & Oliver, 1990).
Corstanje et al. (2008) used the approach to study soil variation
at disparate scales over a relatively large area, and Metcalfe et al.
(2016) showed how it can be used to investigate scale-dependent
variation at within-field scales. However, Papritz et al. (2011)
showed that the uncertainty associated with estimates of individ-
ual variance components from a nested sample may be substantial.
This is because the likelihood surface that is explored by numerical
optimization to find the estimates of the variance components might
not have a well-defined maximum. We computed confidence inter-
vals for individual variance components to examine this uncertainty.
We also compared the standard nested model, with different vari-
ances at each scale, with an alternative in which the variation over
a range of scales shows fractal or multifractal behaviour. We then
showed, for the case of soil uranium, the total sample size required
to estimate variance components with acceptably narrow confidence
intervals or to reject the fractal model in favour of one with more
complex scale-dependence with sufficient statistical power. This
gives further insight into the suitability of spatially nested sampling
for reconnaissance survey in such circumstances.

Methods

Study area

The study area is in the vicinity of tailings at Mopane Mine near
Kitwe in the Copperbelt, Zambia (12∘47′16.1′′S, 28∘6′13.2′′E). The
soil around Kitwe is mapped as the legend unit Plateau Soils in the
Exploratory Soil Map of Zambia (1:1 000 000) (Ministry of Agri-
culture, 1991), in legend unit Pu7. This unit comprises soil allocated
to the following Soil Units of the FAO classification (FAO-Unesco,
1974): chromi-haplic Acrisol with gleyi-haplic Acrisol and
partly skeletal phase dystric Leptosol. The dominant units are
well-drained deep to very deep yellowish-red to strong brown
friable soil with a fine loamy to clayey texture, showing increased
clay content with depth. Figure 1 shows the tailings and the location
of the sample sites. Mugala Village is to the north of the tailings,
with cultivated land between the buildings of the village and the
tailings. Land is also cultivated to the west of the tailings, where
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Figure 1 Study site showing sample points
(white crosses). Note the tailings dam over
much of the east of the image. This image was
created with ArcGIS software by Esri. ArcGIS
and ArcMap™ are the intellectual property
of Esri and are used herein under license.
Copyright Esri. All rights reserved.

there is a drainage channel running approximately north to south.
Areas of dambo soil occur here, as described by Webster (1965).

Sampling and analysis

The sampling was undertaken according to a nested design. Sample
main stations were selected on loose transects with spacing varying
between 100 and 200 m and the soil was sampled there. At each
main station a substation was selected 100 m from the transect
in an approximately normal direction to its orientation. The main
station and these initial substations therefore constitute a loose grid.

Because their selection was not randomized the associated variance
components have a model-based interpretation, that is to say, we
assume that the soil variables of interest can be represented as a
realization of a random spatial field (Webster, 2000). At each 100-m
substation the soil was sampled and then another substation was
found 10 m away in a direction selected from a table of random
compass bearings. The soil was sampled at the 10-m substation,
and then a final substation for the main station was found 1 m
away from the 10-m substation in a random direction. This is a
‘maximally unbalanced’ nested sample design, as first used by
Webster & Boag (1992) to examine the distribution of potato cyst
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nematodes at within-field scales. Sample locations were recorded
with a hand-held GPS. A total of 28 main stations were established,
and at one of these two additional samples were collected, giving an
additional replicate at the 10 and 1-m scales. There was, therefore, a
total of 114 locations, at each of which a soil sample was collected.

At each sample location a composite sample was formed by
combining five cores of length 15 cm and diameter 5 cm taken from
the vertices and centre of a square of length about 30 cm. The cores
were taken with a Dutch auger. At some sites the soil was too fine
and dry to form a coherent core, so a sample of comparable volume
was taken with a trowel or hoe. The samples were placed in paper
sample bags. A few days after collection, the sample volume was
reduced by coning and quartering.

Soil from each sample location was analysed in the Inor-
ganic Geochemistry Laboratories of the British Geological Survey.
Air-dried soil was sieved to pass 2 mm. The pH of a subsample
of the sieved soil was measured with a solid body combined pH
electrode in a 0.01 m CaCl2 slurry with a final solid:solution ratio
of 1:2.5. A subsample of the remaining sieved soil was milled to
< 53 m in an agate ball mill. Loss on ignition (LOI) at 450∘C of a
1-g subsample of the milled soil sample was measured. A 10-g sub-
sample of milled soil was mixed thoroughly with 3 g of binder and
this mixture was then pressed into a 32-mm diameter pellet using
a Herzog press. Total concentrations of a suite of elements were
then measured on this pellet by X-ray fluorescence spectrometry
(XRFS); wavelength-dispersive XRFS in the case of the elements
considered here (Cr, Cu and U). This analysis was carried out at the
XRFS laboratory of PANalytical Ltd, Nottingham UK.

Exploratory statistical analyses

Exploratory statistics and plots of the data were examined, and are
presented in the results section. In all data with possible contam-
ination we consider the possibility that we have some points that
represent point contamination in addition to general diffuse pollu-
tion, and soil variation that reflects the natural content of the metals
of interest. In statistical analysis of such data, in particular the
estimation of variance components or variograms, we do not want
such outliers to influence estimates because of their potential dis-
proportionate effects. We computed the median as a robust location
statistic for the variables. We also computed the median absolute
deviation from the median (MAD), with the MAD procedure for
the R platform (R Core Team, 2014). This is a robust measure of
variability; the absolute difference of each observation from the
median value is computed, and then the median of these differ-
ences is found. The value is multiplied by a constant, 1.4826, which
makes MAD consistent with the standard deviation of a normal ran-
dom variable. Any values that were further from the median value
by more than 3× MAD were excluded from analyses as outliers.

Nested linear mixed model (LMM)

Full model: estimation of variance components. The analysis of
the data from nested sampling was based on an LMM under which

the n observations were treated as realizations of a random variable
Z𝜅1 ,𝜅2 … ,𝜅m

where the subscripts denote the substation at each level
of the sampling scheme, in order from the first (main station) to the
mth, and:

Z𝜅1 ,𝜅2 … ,𝜅m
= xT

𝜅1 ,𝜅2 ,… ,𝜅m
𝝉 + A𝜅1

+ B𝜅1 ,𝜅2
+ · · · + 𝜀𝜅1 ,𝜅2 … ,𝜅m

. (1)

Here x𝜅1 ,𝜅2 ,… ,𝜅m
is a p× 1 vector of fixed effects. In the simplest

case there is a single fixed effect that is a constant mean, so p= 1,
x is a singleton equal to 1 and the 1× 1 vector 𝝉 contains the mean
of the variable (fixed-effect coefficient). The alternative model,
considered in this study, allowed the mean to vary as a linear
function of some secondary variable, so p= 2 and x was a 2× 1
vector, with value 1 in the first row and value of the secondary
variable in the second row. In this model the first value in 𝝉 is a
constant and the second value is a linear regression coefficient for
the secondary variable.

The remaining terms on the right-hand side of Equation (1) are
random effects, all with mean zero. The variable A𝜅1

is the effect
of the 𝜅1th main station (i.e. the difference between the mean for
that main station and the expected value under the particular fixed
effects model). Likewise, B𝜅1 ,𝜅2

is the effect of the 𝜅2th substation
at level 2 within the 𝜅1th main station, and so on. In this case
it is the difference seen over a 100-m increment at that main
station; therefore, the levels of the hierarchical sampling scheme
correspond to spatial scales. The variances of the random variables
A𝜅1

, B𝜅1 ,𝜅2
, … , 𝜀𝜅1 ,𝜅2 … ,𝜅m

are denoted by  =
{
𝜎2

1 , 𝜎2
2 , … , 𝜎2

m

}
.

We must estimate the variances, and because the sampling design
is unbalanced, this is best done by residual maximum likelihood
(REML) as described by Webster et al. (2006). The analysis entails
the assumption that the vector of observations z is a random variate
with distribution:

z ∼ 𝒩
{

XT
𝝉 ,V

}
, (2)

where X is an n× p overall design matrix for the fixed effects, of
which the vectors x𝜅1 ,𝜅2 ,… ,𝜅m

in Equation (1) are rows.
Consider the kth level of the nested sampling scheme, with nk

substations in total. We define an n× nk design matrix Uk for the
random effect at this level. The rows of Uk correspond to the
observations, and if a particular observation is in the jth main station
at level k then the jth element of the corresponding row of Uk is 1,
and all the others are zero. The overall covariance matrix V is then
obtained by:

V =
m∑

i=1

𝜎2
i UiU

T
i . (3)

The natural logarithm of the residual likelihood is given by:

𝓁R (  |z) = −1
2

(
ln |V| + ln ||XTV−1X|| + zTPz

)
, (4)
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where P is:

P = V−1 − V−1X
(
XTV−1X

)−1
XTV−1. (5)

With the data known (z) and the design matrices for the
fixed and random effects specified (X and Ui , i= 1 , 2 , … , m,
respectively), 𝓁R( |z) depends only on the variance components,
 =

{
𝜎2

1 , 𝜎2
2 , … , 𝜎2

m

}
. Values for these that maximize 𝓁R( |z) can

be found numerically. In this study we used the optim procedure in
R to find the residual maximum likelihood estimates, with the esti-
mates constrained to be larger than or equal to a very small positive
value to avoid negative estimates.

In the setting of the spatially nested design that we have used here,
the first variance, 𝜎2

1 is a between-main station component of vari-
ance that has its origin in all sources of variation expressed as scales
that contribute to differences between main stations. The additional
estimated variance components, 𝜎2

2, … , 𝜎2
4, have a spatial inter-

pretation corresponding to 100-, 10- and 1-m within-main station
effects. We computed confidence intervals for these estimates fol-
lowing Papritz et al. (2011) by evaluating the observed Fisher Infor-
mation matrix, J

(
log 𝜎2

1, … , log 𝜎2
4

)
, where log denotes the nat-

ural logarithm. This matrix is the negative Hessian of the residual
log likelihood with respect to the log of the variance parameters,
that is:

J
[
i, j
]
= −

𝜕2𝓁R (  |z)
𝜕 log 𝜎2

i 𝜕 log 𝜎2
j

, (6)

which was evaluated at the REML estimates
 ̂ =

{
𝜎2

1, … , 𝜎2
4

}
. The covariance matrix of the estimated

log variance components is given by the inverse of the Fisher
Information matrix, J−1

(
log 𝜎2

1, … , log 𝜎2
4

)
. The standard error

of log 𝜎2
i is the square-root of the ith element in the main diag-

onal of J−1
(

log 𝜎2
1, … , log 𝜎2

4

)
. Following Pinheiro & Bates

(2000) and Papritz et al. (2011) we assumed that the log 𝜎2
i are

normally distributed, so the 95% confidence interval was computed
from the standard error, and the upper and lower limits were then
back-transformed to the original scales of measurement. Note
that when an estimated variance component is at the minimum
value imposed by the constraint to ensure non-negative values, the
confidence interval goes to [0, ∞].

Given initial estimates of the variance components at different
scales, more intensive sampling might be planned to obtain more
precise estimates, either at the same site or a homologous one. In
this study we considered uranium as a case study. We assumed that
further sampling would be undertaken to examine the same spatial
scales, but with the optimized sampling design for four scales
(three within-main station scales) proposed by Lark (2011). For a
given sample design, comprising some number of replicates of this
within-main station configuration, and for specified values of the
variance components, it is possible to evaluate the negative Hessian
matrix in Equation (6). It is then possible, by the same assumptions
used to compute confidence intervals for the estimates obtained

from our data, to compute the expected confidence intervals for
the estimates of the same quantities under the proposed sampling
scheme. This was done for different numbers of replicates of the
eight-site main station of Lark (2011), and assuming the estimated
variance components for uranium obtained for the present dataset.

Full model: estimation of fixed effects. The covariance matrix of
fixed effects parameters was estimated by:

Ĉ =
(
XTV−1X

)−1
, (7)

where the covariance matrix V is obtained from the random effects
design matrices and estimated variance components as in Equation
(3) and X is the overall fixed effects design matrix introduced in
Equation (2). In the case of models with a secondary variable treated
as a fixed effect, one may test the null hypothesis that the coefficient
𝜏1 is zero by computing the Wald statistic:

W =
𝜏2

1

𝜎2
𝜏1

, (8)

where 𝜎2
𝜏1

is the variance of the coefficient, in the second element of
the main diagonal of C. Under the null hypothesis, the Wald statistic
is distributed as 𝜒2 with 1∘ of freedom.

Alternative variance models. After estimating the full nested
model, we considered a simpler model in which the random effects
are represented by a single independently and identically distributed
(iid) normal random variable. Under this model there is no spatial
dependence in the variable of interest. This model was fitted to
assess the strength of evidence for spatial dependence by treating
it as a null model to be compared with the full model, described
above, in which there is a separate variance component estimated
for each scale of the sampling design. The comparison was carried
out by computation of the log-likelihood ratio statistic L:

L = 2
(
𝓁F − 𝓁N

)
, (9)

where 𝓁F and 𝓁N are, respectively, the maximized log residual
likelihood for the full model and the null model. The two models are
nested in the sense that the null model can be regarded as a special
case of the full model with one or more parameters set to some
fixed value. In the standard case the statistic L is asymptotically
distributed as 𝜒2

p , where p is the number of free parameters in the
full model that are fixed in the null. The standard case (Stram &
Lee, 1994), however, holds only when the parameters fixed in the
null model are not fixed at boundary values for the parameter space.
For the comparison of the full nested model with the iid null model
this condition is not met because the additional parameters are fixed
at zero in the null model, which is at the boundary of the parameter
space. For this reason the distribution of L under the null model
was approximated by a parametric bootstrap simulation. Data were
simulated from an iid model, and the maximized residual likelihood
was found for each model and L was computed. This was repeated
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Table 1 Summary statistics for all variables

Variable Mean Standard deviation Median MADa Minimumb Maximum Skewness Kurtosis

pH 5.55 0.85 5.48 0.82 3.82 7.32 0.43 −0.60
LOI / % 6.44 1.64 6.00 1.24 2.36 10.80 0.45 0.22
Cr / mg kg−1 70.9 17.5 70.8 12.3 37.2 203.3 3.70 26.59
Crc / mg kg−1 69.7 12.3 70.7 12.0 37.2 107.3 −0.02 0.23
Cu / mg kg−1 1018.8 457.7 972.9 431.8 112.9 2852.0 0.96 2.07
Cuc / mg kg−1 988.2 398.9 967.3 421.1 112.9 2102.6 0.26 −0.28
U / mg kg−1 4.04 0.77 3.95 0.82 2.5 8.0 1.09 4.35
Uc / mg kg−1 4.01 0.68 3.9 0.74 2.5 5.4 0.03 −0.77

aMedian absolute deviation from the median.
bThe detection limits for Cr, Cu and U are 3, 1.3 and 0.5 mg kg−1, respectively.
cVariable edited by removal of outliers as described in text.
LOI, loss on ignition; MAD, median absolute deviation from the median.

for M = 10 000 independent iterations. If M
′

out of M simulated
values of L exceed the observed value L̂, then the approximate
P-value is:

P̂ = M′

M
.

One may account for the uncertainty in this approximation by
rejecting the null model in the case of observed L̂ at significance
level 𝛼 only if: (

𝛼 − P̂
)2

<
(

2se
{

P̂
})2

,

where se(·) denotes the standard error of the quantity in braces. On
this basis it is required that:{

M′

M
< 𝛼

}
∧

{(
M′

M
− 𝛼

)2

>
4M′ (M − M′)

M3

}
, (10)

in order to reject the null model at significance level 𝛼 (Percival &
Walden, 2000).

We also considered another variance model, simpler than the full
model with four separate variance components, but more complex
than the iid model, which has only one non-zero variance compo-
nent at the finest scale. In the model we considered, the within-main
station variance components (i.e. those at 1, 10 and 100 m) are all
equal, and a separate variance is estimated for the between-main sta-
tion effect. This model is of interest because its comparison against
the full model allows a test of whether the within-main station
variance components are equal. It is also interesting in this case
where the within-main station scales are on a logarithmic sequence.
Miesch (1975) showed that a plot of the accumulated variance
components from fine to coarse scales against the scale length,
approximates the variogram of a random variable. Therefore, in
the case of logarithmic scale lengths, equal variance components
mean that the variogram increases linearly with the logarithm of
lag distance. This simple form of variogram is known as the de
Wijsian model (Krige, 1981). Chilès & Delfiner (1999) point out
that it implies fractal, more generally multifractal, random variation.
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Figure 2 Exploratory plots of data on chromium. The histogram (a) shows
the full dataset and (b) shows spatial variance components (after removal of
one outlier). Vertical line shows 95% confidence interval for variances.

This form of scale-invariant spatial variability has attracted interest
(e.g. Besag & Mondal, 2005; McCullagh & Clifford, 2006). In par-
ticular, Lovejoy & Schertzer (2007) suggest that multifractal scaling
behaviour, commonly identified in atmospheric phenomena, can be
identified in terrestrial processes. They argue against what they call
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Figure 3 (a) Plot of chromium concentration against loss on ignition (LOI)
and (b) variance components of chromium with fixed effects a constant mean
( ) or LOI ( ). Vertical line shows 95% confidence interval for variances.

a ‘phenomenological’ interpretation of scale-dependent variation
by which different mechanisms are invoked to account for vari-
ation at different spatial scales. The phenomenological approach
is implicit or explicit in much discussion of spatial and temporal
variation of soil (e.g. Hoosbeek & Bryant, 1992; Wagenet, 1998;
Vogel & Roth, 2003; Pachepsky & Hill, 2017). For this reason,
what we call the fractal variance model, with equal variance com-
ponents at the within-main station scales, is an interesting alter-
native to the iid for comparison with the full model. It is more
plausible as a null model than the iid because it implies spatial
correlation. The comparison with the full model might be illumi-
nating, because evidence against the fractal model (conditional on
the selected fixed effects) implies an alternative under which there
are distinct, scale-dependent, mechanisms that contribute to soil
variation: the phenomenological interpretation of spatial variation.
Assessment of the variance components associated with each scale
under the full model, and how they change as different covariates are
included in the fixed effects, could be a powerful source of insight
into the sources of soil variation.
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Figure 4 (a) Plot of chromium concentration against pH and (b) variance
components of chromium with fixed effects a constant mean ( ) or pH ( ).
Vertical line shows 95% confidence interval for variances.

The fractal model can be compared with the full model on the
log-likelihood ratio statistic, L. The nested relations of the models
can be clarified by a parameterization of the full model in which the
variance parameters are a variance component at the finest spatial
scale, 𝜎2

1 , and three scaling factors, 𝜉2 , 𝜉3 and 𝜉4, such that the
variance component at the ith scale is 𝜎2

1𝜉i. The fractal model can
be seen to be a special case in which 𝜉2 = 𝜉3 = 1. Because this
value is not at the boundary of the parameter space, the asymptotic
distribution of L for this test under the null model is 𝜒2

2 . This test
must be interpreted with caution. Rejection of the fractal null model
in favour of the full alternative suggests that the de Wijsian scaling
over the within-main station scale range is not plausible, but failure
to reject the null model does not necessarily indicate evidence for
de Wijsian behaviour, given the uncertainty with which the variance
components are estimated.

We considered uranium as a case study for planning further, more
intensive, sampling. For this element we simulated a dataset with
the estimated variance components and for a sampling design with
some specified number of replicates of the eight-site main station
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Figure 5 (a) Plot of chromium concentration against distance to tailings
and (b) variance components of chromium with fixed effects a constant mean
( ) or distance to tailings ( ). Vertical line shows 95% confidence interval
for variances.

of Lark (2011). We then computed the maximized log-residual
likelihoods for the full model and null model, and also the
log-likelihood ratio statistic, L. This was repeated 1000 times to
give an empirical distribution of L for the specified sample size.
Such a distribution was found for sample designs with 6, 12, 18 and
24 replicates of the eight-site main station, giving total sample sizes
of 48, 96, 144 and 192. The expected power of the log-likelihood
ratio test was evaluated for each sample size as the proportion of
simulated values of L that exceed the 95th percentile of the 𝜒2

2

distribution.

Results

Exploratory analyses

Summary statistics for all variables are listed in Table 1, including
values recalculated after exclusion of any outlying values outside
the interval (median −3 × MAD, median +3 × MAD) where MAD
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Figure 6 Exploratory plots of data on copper. The histogram (a) shows the
full dataset and (b) shows spatial variance components (after removal of one
outlier). Vertical line shows 95% confidence interval for variances, except
at 100 m where the estimate is zero.

is the median absolute deviation from the median as described
above. Note that in all cases the minimum value for total element
concentration was larger than the detection limit for the XRFS
analysis. Histograms of the data on metal concentrations are shown
in Figures 2(a), 6(a) and 10(a) for chromium, copper and uranium,
respectively. One outlying datum was removed from each of the
datasets on chromium and uranium and two from the data on copper.

Figures 3(a), 7(a) and 11(a) show the data on metal concentra-
tions (after removal of outliers) plotted against loss on ignition;
Figures 4(a), 8(a) and 12(a) show them plotted against soil pH and
Figures 5(a), 9(a) and 13(a) show them plotted against distance to
the tailings.

Nested analyses

Models with the fixed effect a constant mean only. Table 2 shows
estimated variance components at each scale for the three metals
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Table 2 Nested variance components for the full model where these may vary between scales

Source

Variable Main station 100 / m 10 / m 1 / m 𝓁full 𝓁iid La

Cr / mg kg−1 88.29 20.53 8.17 28.24 −299.80 −339.28 78.96
Cu / mg kg−1 45.76× 103 0.0 79.58× 103 35.56× 103 −708.68 −722.59 27.82
U / mg kg−1 0.235 0.142 0.018 0.070 25.84 −15.22 82.12

aNote that critical values of the L statistic determined by parametric bootstrap are: P< 0.05 , 4.64 ; P< 0.01 , 7.93 ; P< 0.001 , 14.63. The largest value of L in
10 000 samples was 19.92.
Also presented are the maximized log-likelihoods for the full model and the independently and identically distributed (iid) null model, and the log-likelihood
ratio statistic for the comparison between these.

for the LMM where the only fixed effect is a constant mean.
Also shown are the maximized residual log-likelihoods for the full
model and the iid null model and the log-likelihood ratio statistics
for the comparison between these. Threshold values for the latter
from parametric bootstrapping, for rejection of the null model
according to the criteria in Equation (10), are in a footnote to the
table.

These variance components are plotted in Figures 2(b), 6(b) and
10(b); the vertical bars show the 95% confidence interval for each
estimate (where this is not zero). These intervals are generally wide
for the scales longer than 1 m, showing the associated uncertainty.
The between-main station variance component is the largest for
chromium and uranium. For copper the estimated 10-m variance
component is largest, the component at 100 m approaches zero
(constrained to be positive), but there is substantial overlap between
the confidence intervals for the 10-m and between-main station
scales.

Table 3 gives the estimated parameters for the fractal model
for the LMM with a constant mean, the maximized residual
log-likelihoods and log-likelihood ratio statistics for the comparison
of the full model against the fractal model.

For all three metals, these results show strong evidence against
the iid model (i.e. there is evidence of spatial dependence). For
copper, the fractal null model can be rejected; we cannot treat
the within-main station variance components as equal. The fractal
null model cannot be rejected for uranium and chromium, but the
confidence intervals for the variance components are consistent with
a range of behaviours, so this cannot be treated as positive evidence
for a fractal model.

Models with covariates included as fixed effects. Table 4 shows
the results from fitting the LMM with linear fixed effects of LOI,
pH and distance to tailings, including the Wald statistics for the
null hypothesis of no effect and associated P-value. The variance
components for the random effects in these models, with their
95% confidence intervals, are plotted in Figures 3(b), 4(b) and 5(b)
for chromium, in Figures 7(b), 8(b) and 9(b) for copper and in
Figures 11(b), 12(b) and 13(b) for uranium.

These results show a significant relation between LOI and the
concentrations of copper and of uranium. There is no evidence of a
relation between LOI and chromium content. There is no evidence
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Figure 7 (a) Plot of copper concentration against loss on ignition (LOI) and
(b) variance components of copper with fixed effects a constant mean ( ) or
LOI ( ). Vertical line shows 95% confidence interval for variances.

of a linear trend with distance to the tailings in the concentration of
copper or chromium in the soil, but there is a pronounced trend for
uranium, which has largest concentrations at short distances from
the tailings. There is no evidence of a relation between soil pH and
any of the metals considered here.

© 2017 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 68, 605–620



614 R. M. Lark et al.

Table 3 Equal within-main station variance components (fractal)

Source

Variable Main station Within-main station 𝓁fractal La P

Cr / mg kg−1 85.24 {41.46, 175.24} 21.30 {15.56, 29.16} −301.0 2.40 0.30
Cu / mg kg−1 20.85× 103 {1.98, 219.65} 49.65× 103 {36.12, 68.25} −712.25 7.14 0.03
U / mg kg−1 0.264 {0.129, 0.542} 0.064 {0.047, 0.008} 23.66 4.36 0.11

aThe likelihood ratio is for a test against the full model reported in Table 2. The P-value is the asymptotic value for 𝜒2
2 .

The maximized log likelihood is presented for this model and the log-likelihood ratio statistic for the comparison of the full model against the fractal model
and the associated P-value.

Table 4 Models for metal concentrations with loss on ignition (LOI), pH or distance to tailings (DtT) as covariates. For each predictor we present the intercept
(𝜏0) and the fixed effect coefficient (𝜏1), the variance of the latter (𝜎2

𝜏1
) and the Wald statistic and associated P-value for the null hypothesis that the fixed

effect coefficient is zero. The log-likelihood for the fitted model is also presented

Variable Predictor 𝜏0 𝜏1 𝜎2
𝜏1

Wald 𝜏1
P 𝓁full

Cr / mg kg−1 LOI / % 73.5 −0.564 0.422 0.75 0.38 −299.94
pH 71.0 −0.220 2.05 0.02 0.88 −299.42
DtTa / m 72.3 −0.009 0.2× 10−3 0.42 0.52 −303.92

Cu / mg kg−1 LOI / % −321.2 204.7 378.9 112.7 < 0.001 −667.47
pH 551.7 82.6 2638.5 2.59 0.11 −703.51
DtTa / m 960.8 0.16 0.14 0.17 0.68 −709.59

U / mg kg−1 LOI / % 3.16 0.132 0.001 15.1 < 0.001 28.72
pH 3.78 0.045 0.006 0.35 0.55 23.43
DtTa / m 4.67 −2.15 0.4× 10−6 12.5 < 0.001 23.05

aDistance to tailings.

Table 5 shows the maximized residual log-likelihoods for the
alternative random effects models for the three cases where a
significant effect of one of the covariates was identified with
the full random effects model. Also given are the log-likelihood
ratio statistics to test the full random effects model (four separate
variance components) against the null and the fractal alternative
models, respectively, and the corresponding P-values for the
log-likelihood ratio test of the full model against the fractal null
model.

In all cases the iid null model can be rejected. The fractal null
model can be rejected for the LMM for uranium where there is a
fixed effect of distance to tailings. In the other two cases it cannot,
but, as for the previous models, given the wide confidence intervals
for the individual variance components it is not safe to draw any
inference from the failure to reject the null model.

Although we can reject the fractal null model for copper with
a constant fixed effect, when LOI is included as a covariate the
fractal model cannot be rejected. Note that the largest difference in
variance components between the models with and without a fixed
effect of LOI (Figure 7(b)) is at 10 m, but the confidence intervals
of the estimates are wide.

The estimated variance components for uranium are changed
little by including LOI as a covariate, although this does have
a significant effect. Including distance to tailings has the largest
effect on the between-main station variance component for uranium
(although note, again, the wide confidence interval). However,
we can reject the fractal null model in this latter case, which

appears to result from an increase in the estimated variance at
100 m. The distance to tailings effect therefore seems to account
primarily for between-main station variation, as would be expected,
but somewhat inflates the error in the model at the 100-m scale.
Presumably this is because the trend model, dominated by the
effects seen between main stations, introduces variations into the
fitted values that are notable at the 100-m scale but are not
consistent with the variations seen at that scale within the main
stations.

Implications for further sampling of uranium. Figure 14 shows
the width of the confidence intervals (95%) for U with a constant
mean as the fixed effect and different sample sizes with the main
station design of Lark (2011). The confidence intervals for the 1-m
scale and the between-main station effects, and for the 10-m scale
and the between-main station effects do not overlap with a total of
96 samples (nine main stations) or more. With 144 samples (18 main
stations) the intervals for the 10 and 100-m scales do not overlap.
With 240 samples (30 main stations) the intervals for the 1 and 10-m
scales do not overlap. The intervals for the 100-m and between-main
station scales overlap for all sample sizes considered. On this basis
one might identify a total sample size of near to 240 as required to
obtain distinct estimates of the variance components for U at the
scales of interest.

Figure 15 shows the power to reject the fractal null model with
different numbers of replicates of the main-station design of Lark
(2011). With a total of 144 samples (18 main stations) the power
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Figure 8 (a) Plot of copper concentration against pH and (b) variance
components of copper with fixed effects a constant mean ( ) or pH ( ).
Vertical line shows 95% confidence interval for variances.

is less than 0.8, but it exceeds this threshold with 192 samples (24
main stations). This indicates the sampling effort needed to detect
differences between the variance components at within-main station
scales if the size of these is indicated by the estimates obtained
here.

Discussion

The effects of LOI on the copper and uranium content of the soil
are interesting; they suggest that these metals are retained by the
organic matter in the soil. As noted in the introduction, there is
reason to expect a similar effect for chromium, partly because of
adsorption and also reduction to less mobile forms. The further
work planned on speciation of chromium in the soil of this region
might shed light on why there is no evidence for an effect of
organic matter content. Conservation agriculture practices can be
expected to increase the organic status of the soil. Any changes in
soil management that affect turnover of soil carbon might have an
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Figure 9 (a) Plot of copper concentration against distance to tailings and
(b) variance components of copper with fixed effects a constant mean ( )
or distance to tailings ( ). Vertical line shows 95% confidence interval for
variances.

effect on copper availability, for example if dissolved organic matter
in the soil solution was increased (Temminghoff et al., 1998). These
results suggest that a possible effect would be increased retention of
potentially harmful elements in the soil, although if the interaction
with soil organic carbon reduces availability to plant roots then this
might reduce the risk of transfer to humans through consumption
of food. Further work is planned, both in field and glasshouse trials,
to examine uptake of metals by crops in soil from this site. These
results suggest that it would be worth examining the effects of soil
organic matter on bioavailability.

A spatial trend with distance to tailings was seen for uranium
only. This might be because of differences in the metal content
of contrasting size fractions of the tailings material, which differ
in their susceptibility to dispersal by wind. Other metals may
be dispersed from tailings by run-off, by use of water from
tailing streams for irrigation or by more diffuse deposition. The
marked trend in uranium concentrations is important to consider

© 2017 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 68, 605–620



616 R. M. Lark et al.
F

re
qu

en
cy

U / mg kg−1

5 83 4 6 7

0
5

10
15

20
25

30

(a)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Source

V
ar

ia
nc

e

1 m 10 m 100 m Main stations

(b)

Figure 10 Exploratory plots of data on uranium. The histogram (a) shows
the full dataset and (b) shows spatial variance components (after removal of
one outlier). Vertical line shows 95% confidence interval for variances.

when evaluating potential risks from TENORM associated with
tailings dams.

The partition of variation by a linear mixed model into fixed and
random effects is not unique, but is a decision made by the analyst.
The analyst does not have complete freedom in this regard; for
example, it might be necessary to include coordinates in the fixed
effects to account for a spatial trend that is not compatible with the
assumption of a zero mean in the random effects. Nevertheless, it
might be informative to compare properties of the random effects
in two models for the same data that differ with respect to the fixed
effects. For example, if the inclusion of a particular term in the fixed
effects leads to a marked change in the distribution of the random
variation between scales then this might indicate the spatial scale
at which that term affects the variation of the dependent variable.
An example is provided by comparison of the random effects in the
models for copper with a constant fixed effect and with LOI as a
fixed effect. The fractal model was rejected in the former case, but
was accepted when LOI was included as a fixed effect. This suggests
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Figure 11 (a) Plot of uranium concentration against loss on ignition (LOI)
and (b) variance components of uranium with fixed effects a constant mean
( ) or LOI ( ). Vertical line shows 95% confidence interval for variances.

that the effect of soil organic carbon induces variation in soil copper
content that is not consistent with simple fractal or multifractal
scaling. To complement this analysis with evidence that a fractal
model is reasonable in other circumstances would require more
intensive sampling to increase the power to reject the fractal null
model under appropriate circumstances. This is discussed below for
the case of uranium.

The inclusion of distance to tailings as a fixed effect in the
model for U is shown to make the within-main station variances
less uniform (fractal model retained with constant fixed effect,
rejected when distance is included). The variance component
estimates, although uncertain, suggest that this effect is a result of
an increase in the 100-m scale variance. Overall, the distance effect
is significant, and it accounts for variation at between-main station
scales. However, the slight inflation of the variance at the longest
within-main station scale is interesting, suggesting that other factors
dominate variation at this scale. This shows the importance of
examining scale dependence of the random variation in any linear
model to understand better its ‘lack of fit’.
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Figure 12 (a) Plot of uranium concentration against pH and (b) variance
components of uranium with fixed effects a constant mean ( ) or pH ( ).
Vertical line shows 95% confidence interval for variances.

The conclusions about sampling requirements for further work
on uranium show that substantial sample effort is needed to
make reliable estimates and to support inferences with sufficient
power. Many studies that use nested sampling do not approach
the degree of replication that these results show is necessary
and, as first raised by Papritz et al. (2011), it is necessary to
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Figure 13 (a) Plot of uranium concentration against distance to tailings and
(b) variance components of uranium with fixed effects a constant mean ( )
or distance to tailings ( ). Vertical line shows 95% confidence interval for
variances.

understand better the sampling requirements for nested sampling
to examine scale-dependent variation. If we wish to understand
scale-dependent variation over multiple scales some form of nested
sampling is necessary, but adequate sampling effort is also required.
For uranium, we require 200–250 samples to estimate variance

Table 5 Likelihood ratio tests to compare alternative variance models when the fixed effects include a predictor judged to be significant

Negative log-likelihood for
alternative variance models

Variable Predictor 𝓁full 𝓁fractal 𝓁iid Lfull vs fractal Pfull vs fractal Lfull vs iid Pfull vs iid

Cu / mg kg−1 LOI −667.47 −668.19 −683.19 1.54 0.46 31.44 < 0.001
U / mg kg−1 LOI 28.72 27.99 −17.57 1.46 0.48 92.58 < 0.001
U / mg kg−1 DtT 23.05 19.95 −9.81 6.20 0.045 65.72 < 0.001

LOI, loss on ignition; DtT, distance to tailings.

© 2017 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 68, 605–620



618 R. M. Lark et al.

100 200 300 400

0
0.

2
0.

4
0.

6
0.

8

Sample size

V
ar

ia
nc

e

Between−main stations

100 200 300 400

0
0.

2
0.

4
0.

6
0.

8

Sample size

V
ar

ia
nc

e

100 m

100 200 300 400

0
0.

2
0.

4
0.

6
0.

8

Sample size

V
ar

ia
nc

e

10 m

100 200 300 400

0
0.

2
0.

4
0.

6
0.

8

Sample size

V
ar

ia
nc

e

1 m

(a)

(c)

(b)

(d)

Figure 14 Confidence intervals (95%) for estimated variance components
of U at each scale of the design, computed for the main station design of
Lark (2011) with different numbers of replicates, and assuming the values
presented in Table 2. The parts show confidence intervals of the variance
components for (a) between-main station effect, (b) 100-m scale effect,
(c) 10-m scale effect and (d) 1-m scale effect.

components precisely, and to reject the fractal null model with
sufficient power. This sample size is large for reconnaissance
purposes. When a key objective of reconnaissance is to understand
scale dependence of variation over disparate spatial scales, then
the requirement for substantial sampling effort is unavoidable. One
way to mitigate this problem, particularly with respect to analytical
laboratory costs, might be to use rapid in-field measurement
(Hartemink & Minasny, 2014), to obtain more observations than
conventional field sampling and laboratory analysis.

Conclusions

This reconnaissance survey identified key factors that affect the
spatial variation of the metals of interest in soil used for agriculture
on a site next to mine tailings. Copper content of the soil was
significantly correlated with the organic matter content, suggesting
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Figure 15 Power to reject the fractal null model in favour of the full model
for U (fixed effect a constant mean) computed by simulation assuming the
effects of interest are the estimated variance components, and the sample
design is that of Lark (2011).

that the adsorption of copper by the organic fraction of the soil
might increase its retention by contaminated soil. This provides
important background information for the further work planned at
the site. Specifically, it suggests that hypotheses should be tested
about the effect of soil organic matter on the content and availability
of copper to crop plants, and the possibility that uptake by crops
is a pathway for soil to human transfer of a potentially harmful
element. Given the interest in agricultural practices to increase the
organic content of soil, this is an important question. The same issue
is raised for uranium in this soil, but there is no evidence that the
content of chromium is affected by organic carbon. Of the three
metals examined, uranium was the only one for which there was
a clear spatial trend (decreasing content) with increasing distance
from the mine tailings.

The uncertainties associated with the variance components at
different spatial scales was considerable. However, it was possible
to draw some conclusions about the spatial variation of the metals
by statistical comparison of contrasting variance models. In all cases
the random variation (whether in a model with a constant mean as
the only fixed effect, or an effect of organic matter or distance to
tailings) showed spatial dependence. In the case of copper there
was evidence (with a constant mean the only fixed effect) that one
could reject a fractal model in which the variance components at
1, 10 and 100 m were equal in favour of a model with distinct
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scale-dependent effects. Introducing soil organic matter content
as a fixed effect changed this conclusion; the fractal model could
not be rejected. This suggests that the effects of organic matter
on copper content represent a distinct, scale-dependent source of
variation in soil copper content, which therefore does not show
simple scale-invariant behaviour.

The study on sampling requirements for uranium indicated that
larger samples would be required to obtain narrow confidence inter-
vals for the variance components (around 240) and to allow rejec-
tion of the fractal model in favour of one with distinct variance com-
ponents equal to the estimates from the reconnaissance (approach-
ing 200 samples). This suggests that sampling at multiple scales
requires more effort than is generally available for reconnaissance
survey as such. Quicker and cheaper measurement, perhaps with
in-field technology, should be explored.
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