1	Late Miocene (Tortonian) gonyaulacacean dinoflagellate cysts from the Pannonian Basin,
2	Austria
3	
4	Ali Soliman ^{a*} and James B. Riding ^b
5	
6	^a Department of Geology, Faculty of Science, Tanta University, Tanta 31527, Egypt; ^b British
7	Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
8	
9	*Corresponding author. Email: ali.soliman@science.tanta.edu.eg
10	
11	Abstract
12	During the Late Miocene (Tortonian or Pannonian regional stage), at around 11.6 Ma, a
13	glacioeustatically-driven sea-level fall caused the final closure of the Paratethys Ocean and Lake
14	Pannon was formed in central Europe. The lake was initially brackish, but slowly freshened and
15	became slightly alkaline. These unusual changes in water chemistry produced the radiation of a
16	characteristic assemblage of gonyaulacacean dinoflagellate cysts. This study examined 94 samples
17	from the Pannonian of Hennersdorf Clay Pit, south of Vienna, Austria. From this material,
18	Achomosphaera breviata sp. nov., Seriliodinium? pannonense sp. nov. and Spiniferites
19	hennersdorfensis sp. nov. were apparently endemic to the Central Paratethys during the Late
20	Miocene. Spiniferites bentorii (Rossignol, 1964) Wall and Dale, 1970 subsp. oblongus Sütőné-
21	Szentai 1986 and Spiniferites bentorii (Rossignol, 1964) Wall and Dale, 1970 subsp. pannonicus
22	Sütőné-Szentai 1986 are elevated to species status. The genus Spiniferites exhibited significant
23	morphological variability especially in terms of general shape, apical boss development and process
24	morphology. Supplementary descriptions and discussions of some other gonyaulacacean taxa which
25	are present are provided.

Keywords: Austria; Central Paratethys; dinoflagellate cysts; Late Miocene (Tortonian/Pannonian);
Pannonian Basin; taxonomy

- 28
- 29

30 1. Introduction

31

32 The Upper Miocene strata of the Pannonian Basin in Central Europe are characterised by highly endemic biotas (Magyar et al., 1999a; Müller et al., 1999; Gross et al., 2008). This provincialism 33 34 arose due to the establishment of Lake Pannon from the rapidly diminishing Central Paratethys 35 Ocean during the Late Miocene (Tortonian) part of the Pannonian Regional Stage (Piller et al., 2007; Harzhauser and Mandic, 2008; Gross et al., 2011). The Pannonian correlates to the Tortonian 36 37 to Holocene interval in the formal geochronological classification (Hilgen et al., 2012, fig. 29.8). 38 Lake Pannon covered an area of approximately 290,000 km², and was 860 km long and 550 km 39 wide during its maximum extent between 10.5 and 10.0 Ma (Figure 1). It evolved due to the 40 contraction and closure of the Central Paratethys Ocean around 11.6 Ma ago due to 41 glacioeustatically-driven sea-level fall (Magyar et al., 1999a). Lake Pannon was initially brackish, 42 but gradually freshened and the waters became slightly alkaline (Harzhauser et al., 2007). The 43 development of the lake biota was controlled by this gradual freshening of the water body, together with area and depth changes (Rögl, 1998; Magyar et al., 1999a; Harzhauser et al., 2007). This 44 45 scenario led to highly provincial faunas and floras, the latter which include an endemic 46 gonyaulacacean dinoflagellate cyst flora and a decrease in diversity from 126 taxa in the Middle 47 Miocene Badenian Regional Stage (Langhian to early Serravallian, Hilgen et al., 2012, fig. 29.8) to 48 around 40 taxa in the Late Miocene (Soliman and Piller, 2009). These palaeoenvironmental changes 49 led to significant morphological variability of dinoflagellate cyst genera such as Impagidinium and 50 Spiniferites; for example most of the representatives of these genera are characterised by a 51 prominent apical boss or horn. Similar morphologies have been documented in Spiniferites from the

Quaternary of offshore Mexico by Price and Pospelova (2014). The genus *Spiniferites* is known to
 exhibit characteristic morphological variations apparently forced by lowered salinities or freshwater
 conditions (Kouli et al., 2001).

This study is part of a project on the marine palynofloras of the Pannonian Stage at the type locality. 55 56 the Hennersdorf Clay Pit south of Vienna (Figure 1). This quarry supplies clay to the nearby 57 Wienerberger brickworks. The succession at the Hennersdorf Clay Pit is part of the Záhorie 58 Member of the Bzenec Formation which can attain 340 m in thickness (Harzhauser and Mandic, 59 2004; Harzhauser et al., 2004). The Hennersdorf section comprises parts of the Mid-Pannonian 60 (Tortonian) Mytilopsis czizeki mollusc Zone, the Lymnocardium schedelianum mollusc Subzone 61 and the Spiniferites paradoxus dinoflagellate cyst Zone, and is within magnetochron C5n (Magyar et al., 1999a; Hilgen et al., 2012, fig. 29.8). The entire succession is within the lower part of 62 63 Pannonian Zone E (Figure 2; Harzhauser et al., 2008). A warm temperate palaeoclimate with a 64 mean annual temperature (MAT) of around 17-18 °C was suggested by Jiménez-Moreno et al., (2008). This study builds on the work of Sütőné-Szentai (1986) and Harzhauser et al., (2008) in 65 66 describing some endemic Late Miocene dinoflagellate cysts from the Vienna Basin.

67

68

69 2. Materials and methods

70

The Hennersdorf Core 1 (HC1) is 37 cm in length, and was drilled entirely within the Upper
Miocene Záhorie Member of the Bzenec Formation close to the base of the Hennersdorf
(Wienerberger) Clay Pit section (Figure 1). Seventy-four samples were collected at regular intervals
(~0.5 cm) from HC1 for palynological analyss (Figure 2). This interval was selected because of its
heterolithic nature; it comprises bioturbated clays and silts, and clays with several shell beds (Figure
Harzhauser et al., (2008) studied ostracods and palynomorphs from this core. In addition, 20
samples were collected from the ~14 m thick succession which outcrops in this quarry in order to

78	provide a general overview of the dinoflagellate cyst assemblages (Figure 2). The samples were
79	treated using a standard palynological preparation technique such as used by Soliman et al. (2012;
80	2013). The organic residues were screened using 125 μm and 15 μm sieves and at least one slide
81	was scanned while the routine count stopped at 300 dinoflagellate cyst specimens for each sample.
82	Scanning electron microscope (SEM) studies were made using a DSM 982 Gemini unit operating at
83	a working voltage of 10 kv. All materials pertaining to this study, including the type material, are
84	housed in the Institute of Earth Sciences, Graz University, Austria. Holotypes are deposited in the
85	Joanneum Museum, Graz, Austria. The most significant dinoflagellate cysts are illustrated in Plates
86	I to VI.
87	
88	
89	3. An overview of the dinoflagellate cyst assemblages
90	
91	All the samples yielded well-preserved, relatively low diversity dinoflagellate cyst assemblages.
92	These are documented in Tables 1 and 2 and Appendix 1; 31 formally-described species were
93	recognised in addition to some informal taxa. The genera Achomosphaera, Impagidinium,
94	Protoperidinium and Spiniferites are prominent throughout. Protoperidiniacean forms such as
95	Selenopemphix and small round brown dinoflagellate cysts are consistently present, together with
96	cf. Algidasphaeridium sp., Polykrikos spp., Pyxidinopsis psilata and Komewuia? spp. Additionally,
97	Habibacysta tectata, Lingulodinium spp., Melitasphaeridium choanophorum, Operculodinium spp.,
98	Polysphaeridium zoharyi and Tectatodinium pellitum were recorded in low numbers. Some taxa are
99	represented by single, poorly-preserved specimens, and these are interpreted as having been
100	reworked from the Middle Miocene and older strata. These presumed reworked taxa are
101	Cleistosphaeridium placacanthum, ?Cordosphaeridium minimum, Dapsilidinium spp., Deflandrea
102	spp., Distatodinium spp., Homotryblium spp., Hystrichokolpoma spp. and Reticulatosphaera

103	actinocoronata. Freshwater algae such as Botryococcus and Pediastrum, together with fungal
104	spores, were also encountered in significant proportions throughout.
105	
106	
107	4. Systematic palaeontology
108	
109	The classification of dinoflagellate cysts herein follows Fensome et al. (1993; 2008). Traditional
110	Kofoidian shorthand for tabulation is used, and the morphological terminology follows Evitt
111	(1985). Where dimensions are given, the three figures are the minimum, (mean) and maximum
112	measurements.
113	
114	Division DINOFLAGELLATA (Bütschli, 1885) Fensome et al., 1993
115	Class DINOPHYCEAE Pascher, 1914
116	Order GONYAULACALES Taylor, 1980
117	Family GONYAULACACEAE Lindemann, 1928
118	Subfamily GONYAULACOIDEAE Fensome et al., 1993
119	
120	Genus Achomosphaera Evitt, 1963
121	Type. Achomosphaera ramulifera (Deflandre, 1937) Evitt, 1963
122	
123	Achomosphaera sp. cf. Achomosphaera fenestra Kirsch, 1991
124	Plate I, 1–3
125	
126	Achomosphaera fenestra Kirsch, 1991, p. 54–55; pl. 2, figs. 4, 6–12; figs. 35a, b, 36a–j.
127	

128 Description. An ovoidal to subspherical form of Achomosphaera. The wall is thin, and is smooth to 129 microgranulate. A small apical boss may be present. The gonal processes are solid, membranaceous 130 and distally-flared. They may be longitudinally striate and have clypeate distal terminations. No intergonal processes have been observed. The process shafts are unevenly distally fenestrate (Plate 131 132 I, 2), and the fenestrae are oval to subcircular and are ~ 0.5 to 3 µm in diameter. The sulcal 133 processes are normally thin and are distally capitate, bifurcate or trifurcate without fenestrae. The 134 cingulum is indicated by two latitudinal rows of processes. 135 **Dimensions.** The maximum length of the cyst body, including the apical boss if present, is 44 (51) 56 μ m; the maximum equatorial width is 32 (39) 41 μ m; and the length of the processes is 5 (11) 18 136 137 µm. Fourteen specimens were measured. 138 **Comparison.** This form differs from Achomosphaera fenestra sensu stricto in the presence of 139 fenestrae on the process shafts rather than at the distal ends only (Plate I, 2). Also, the apical and 140 antapical processes are never connected by membranes, and the processes are solid and not hollow. 141 It differs from Achomosphaera and alousiensis Jan du Chêne, 1977 by the absence of large fenestrae 142 at the distal ends of the tubiform processes. It differs from A. breviata sp. nov. in having solid, 143 membranaceous and distally-flared processes with fenestrae rather than relatively short processes 144 which are hollow and multifurcate distally without fenestrae. 145 Distribution. This form was sporadically recorded in the material studied, and it is included in 146 Spiniferites/Achomosphaera spp. in Tables 1 and 2. 147 148 149 Achomosphaera breviata sp. nov. 150 Plate III, 7, 8; Plate V, 13–16; Figure 3 151 152 Holotype. Sample HC1-16, slide A, England-Finder coordinate K39 (Plate V, 13, 14). Specimen

number UMJ G and P 211335 of the Joanneum Museum, Graz University, Austria.

154 **Paratype.** Sample HC1-16, slide A, England-Finder coordinate O32 (Plate V, 15, 16).

155 **Etymology.** From the Latin *brevis*, meaning short, with reference to the short processes.

156 **Type locality.** Hennersdorf Clay Pit, Vienna Basin, Austria.

Lithostratigraphy of the type material. The Záhorie Member of the Bzenec Formation, Upper
Miocene (Pannonian).

Diagnosis. A small ovoidal species of *Achomosphaera*. The wall is thin and smooth. The processes
are exclusively gonal and relatively short, straight, wide proximally and multifurcate distally.
Adjacent cingular processes are occasionally merged together. Usually there is a large box-like
process in the sulcal area. No sutures are present. The archaeopyle is precingular (type P), and the
operculum is free.

164 **Description.** A small species of Achomosphaera with an ovoidal cyst body. The wall is thin (~1.0 165 um) with a smooth or shagreenate surface. The processes are gonal only and relatively short (up to 166 ~25% of the cyst length), hollow, smooth and normally closed distally. Occasionally some 167 processes are open distally (Plate III, 7). The width of the processes is variable although their length 168 is fairly constant. They are bulbous proximally, where they are expanded to twice the width at the 169 mid shaft: typically they are cylindrical in cross section. Fenestrations are rarely present at the 170 process bases. Distally, the processes are expanded, branching and multifurcate; they may have 171 serrate margins and have recurved tips. Closely adjacent processes in the cingular area may have merged bases (Figure 3). If they are not merged, the cingular processes are arranged in two parallel 172 173 rows. The sulcus bears a single large box-like process (Plate III, 8). No intrasutural tabulation is 174 developed. The archaeopyle is precingular, type P, formed by the loss of plate 3" and the operculum is free. 175

176 Comparison. Achomosphaera breviata sp. nov. is significantly smaller than most other species of
177 this genus. It differs from Achomosphaera ramulifera (Deflandre, 1937) Evitt, 1963 in that the
178 processes are exclusively gonal, hollow and multifurcate rather than trifurcate. It is also similar to
179 Achomosphaera andalousiensis Jan du Chêne, 1977 but Achomosphaera breviata sp. nov. differs in

180	that the distal ends of the processes lack large fenestrae, and the sulcus exhibits a large box-shape
181	process (Plate III, 8). Achomosphaera breviata sp. nov. differs from Achomosphaera argesensis
182	Demetresçu, 1989 by the lack of an apical boss and A. argesensis has 'a flat process developed on
183	the apical area or on both apical and antapical areas' (Demetresçu, 1989) which is lacking in
184	Achomosphaera breviata sp. nov. described here. It can be distinguished from Achomosphaera
185	bulla Cookson and Eisenack, 1974 by its oval shape and hollow processes, and differs from
186	Achomosphaera fenestra Kirsch, 1991 by lacking fenestrae in the processes shafts. Achomosphaera
187	improcera Islam, 1983 is similar in size, but has gonal processes with trifurcate distal ends and
188	intergonal processes with bifurcate ends.
189	Dimensions. The maximum overall length is 29 (37) 44 μ m; the maximum overall width is 22 (87)
190	34 μ m; and the maximum length of the processes is 3 (7) 10 μ m. Thirty-four specimens were
191	measured.
192	Distribution. This species was recorded sporadically in the current study.
193	
194	
195	Genus Impagidinium Stover and Evitt, 1978
196	Type. Impagidinium dispertitum (Cookson and Eisenack, 1965) Stover and Evitt, 1978.
197	Discussion. Impagidinium is indicative of outer neritic settings and oligotrophic environments
198	(Dale, 1996). This genus covers a wide range of temperatures from cold water (e.g. Impagidinium
199	pallidum Bujak, 1984) to warm water (e.g. Impagidinium aculeatum (Wall, 1967) Lentin and
200	Williams, 1981) but usually has a low tolerance for lowered salinities (Edwards and Andrle, 1992;
201	Rochon et al., 1999; Marret and Zonneveld, 2003; Zonneveld et al., 2013). The occurrences of
202	Impagidinium in the brackish environments of Lake Pannon suggest that some species tolerated low
203	salinities (Marret et al., 2004; Sorrel et al., 2006).
204	

206	Impagidinium spongianum Sütőné-Szentai, 1985
207	Plate I, 4–6; Plate IV, 9–16
208	
209	Form F1 Balteş, 1971, pl. 4, fig. 1.
210	Form F ₂ Balteş, 1971, pl. 4, fig. 3.
211	Impagidinium spongianum Sütőné-Szentai, 1982a, pl. 5, fig. 3 (nomen nudum).
212	Impagidinium spongianum Sütőné-Szentai, 1985, p. 519; pl. 81, fig. 5.
213	Impagidinium(?) sp. 1 Corradini and Biffi, 1988, pl. 3, figs. 7-11.
214	Impagidinium spongianum Sütőné-Szentai, 1985; Sütőné-Szentai, 1990, pl. 2, fig. 2.
215	
216	Supplementary description. Impagidinium spongianum is ovoidal in shape. The epicyst has a
217	rounded apex with a prominent apical boss ~3 to 5 μ m in height (Plate I, 6). The wall is relatively
218	thick (~1.5 μ m) and spongy; in some specimens, scattered gemmae are present. Using light
219	microscopy, the wall appears coarsely reticulate. The sutural crests are $\sim 1.5 \ \mu m$ in height; they are
220	undulate distally and are smooth to finely perforate proximally. The sutural crests delineate a
221	standard S-type gonyaulacacean tabulation, however, the apical plate sutures may be faintly
222	expressed (Plate I, 5). The sulcus is shallow, and some of the larger sulcal plates can be resolved in
223	some specimens (Plate I, 4). The cingulum is offset by one cingulum width (Plate I, 4). The
224	archaeopyle is precingular (type P) with a free operculum.
225	Dimensions . The maximum length of the cyst body, including the apical boss, is 42 (50) 60 μ m and
226	the maximum equatorial width is 34 (42) 51 μ m. Nineteen specimens were measured.
227	Comparison. Impagidinium spongianum differs from other species of Impagidinium by its
228	characteristic thick and spongy wall and the presence of an apical boss. Leptodinium punctatum
229	differs from I. spongianum based on the illustrations and description of Balteş (1971, p. 3; pl. 4,
230	figs. 2, 3; 6, 7) in having slender prominences and low sutural crests rather than a spongy wall and
231	high sutural crests. Impagidinium (?) sp. 1 of Corradini and Biffi (1988; pl. 3, 7–11) and Forms 1

232	and 2 of Balteş (1971, pl. 4, 1, 3 respectively) resemble Impagidinium spongianum in surface
233	ornamentation and in having high sutural crests. While the specimen illustrated in Balteş (1971, pl.
234	4, 2) is excluded because it has a smooth surface. However Impagidinium (?) sp. 1 of Corradini and
235	Biffi (1988) appears to lack the apical boss which is not clear in Form 1 of Balteş (1971, pl. 4, 1)
236	because of its antapical oblique orientation. Impagidinium eugubinum Biffi and Manum, 1988 has
237	dome-shaped to nipple-like prominences. Caspidinium rugosum Marret et al., 2004 is also similar
238	to Impagidinium spongianum, but differs due to its dextral torsion and the absence of an apical
239	boss. The irregular height of septa and the low intratabular relief differentiate I. caspienense Marret
240	et al. 2004 from I. spongianum.
241	Distribution. Impagidinium spongianum was recorded from most of the samples studied herein.
242	Previous records. Impagidinium spongianum has been recorded from the Pannonian of Hungary
243	(Sütőné-Szentai, 1985; 1986; 1990; 1999; 2000; 2003). The only record outside the Pannonian
244	Basin is from the Upper Miocene to Lower Pliocene of the Maccarone section, Marche, Italy
245	(Popescu et al., 2007).
246	
247	
248	Impagidinium sp. 1
249	Plate I, 7
250	Comment. A form of Impagidinium which is characterised by an entirely smooth wall with
251	occasional randomly distributed gemmae, and the denticulate distal terminations of the sutural
252	crests. It is placed in open nomenclature because too few speciemens were recorded in the current
253	study to warrant a full description.
254	Distribution. Three specimens were recorded (two of them outside the routine count) from the
255	upper part of the core (Late Miocene; Pannonian).
256	
257	

258	Impagidinium sp. 2
259	Plate I, 8, 9
260	
261	Comments: A form of Impagidinium which is characterised by its baculate wall and high, fibrous
262	sutural crests. In particular, the surface ornamentation comprises numerous short baculae. It is
263	placed in open nomenclature because too few speciemens were recorded in the current study for a
264	full description.
265	Distribution. Two specimens were recorded outside the routine count from the upper part of the
266	core (Late Miocene; Pannonian)
267	
268	
269	Genus Seriliodinium Eaton, 1996
270	Type. Seriliodinium explicatum Eaton, 1996
271	Synopsis. Trabeculate chorate cysts with a subcircular to oval overall outline, and a rounded
272	cruciform to oval cyst body. The processes are gonal, distally trifurcate and largely confined to the
273	peripheral areas. The midventral and middorsal areas are essentially process-free, imparting a
274	marginate appearance. The processes are united distally by a network of single parasutural, rope-
275	like trabeculae (Eaton, 1996, p. 152).
276	
277	
278	Seriliodinium? pannonense sp. nov.
279	Plate VI, 1–13
280	Holotype. Sample HC1-11, slide A, England-Finder coordinate S35/0 (Plate III, 4–6). Specimen
281	number UMJ GandP 211336 of the Joanneum Museum, Graz University, Austria.
282	Paratype. Sample F1, slide A, England-Finder coordinate G28/0 (Plate III, 1–3).
283	Etymology. Named after Lake Pannon.

284 **Type locality**. Hennersdorf Clay Pit, Vienna Basin, Austria.

285 Lithostratigraphy of the type material. The Záhorie Member of the Bzenec Formation, Upper
286 Miocene (Pannonian).

Diagnosis. Semitrabeculate chorate dinoflagellate cysts with an ovoidal to subcircular cyst body. The wall is thin with a scabrate to finely granulate surface. A prominent apical boss is generally present (Plate VI, 6). Processes are gonal, distally trifurcate and, at the cingulum, are distally multifurcate. Low sutural ridges/septa indicating a gonyaulacacean tabulation are variably developed; these are highest at the cingulum and may be entirely absent. Some processes may be linked distally by rope-like trabeculae. The archaeopyle is precingular (type P), and the operculum is free.

294 Description. Seriliodinium? pannonense sp. nov. is a medium-sized chorate cyst which is ovoidal 295 or rarely subcircular in overall outline. The wall is thin ($\sim l \mu m$) with a scabrate to finely granulate 296 surface. The sutural ridges are of variable height, but are normally highest equatorially. A 297 prominent (2–6 µm) apical boss is generally developed. The gonal processes are solid, subcircular 298 to triangular in cross-section, expanded distally and trifurcate. These trifurcations are either isolated 299 or connected distally by rope-like trabeculae. Occasionally, the processes may have some proximal 300 perforations (Plate VI, 13) and the processes are branched medially to distally. The cingular 301 processes are distally multifurcate which a give a fenestrate appearance; they may be distally 302 connected by trabeculae. Trabeculae, if present, are single and smooth. A standard gonyaulacean tabulation (4', 6'', 6c, 6''', lp, 1'''') is expressed by the sutural ridges and the distal trabeculae. The 303 304 cingulum is indicated by two rows of parallel processes connected proximally by sutural ridges 305 (Plate VI, 11). The archaeopyle is precingular (type P) with a free operculum. 306 Comments. Seriliodinium? pannonense sp. nov. is characterised by its spiniferate process 307 architecture, the gonyaulacacean tabulation and a discontinuous distal rope-like trabeculum. It is 308 questionably attributed to Seriliodinium because of the incomplete trabeculum.

309 **Comparison**. Seriliodinium? pannonense sp. nov. differs from Seriliodinium explicatum Eaton 310 1996 in having an apical boss, being ovoidal in outline rather than rounded cruciform and lacking 311 complete trabeculae. Additionally, Seriliodinium explicatum has mid-ventral and mid-dorsal areas which are devoid of processes, which is not the case in *Seriliodinium? pannonense* sp. nov. 312 313 Seriliodinium? pannonense sp. nov. resembles Spiniferites validus Sütőné-Szentai 1982 from the 314 Late Pannonian of Hungary in the cyst outline and the presence of an apical boss. But the former 315 differs in being significantly smaller than Spiniferites validus, and in having shorter and distally-316 connected processes. The shape and apical boss of Seriliodinium? pannonense sp. nov. means that it 317 is similar to species of Spiniferites from the Eastern Paratethys (e.g. Sütőné-Szentai, 2000; 2002; 318 2003; 2004). However, the presences of the rope-like distal trabeculae distinguish it from all these 319 taxa. Seriliodinium? pannonense sp. nov. differs from Nematosphaeropsis by lacking complete 320 penitabular pairs of ribbon-like trabeculae and from taxa belonging to Cannosphaeropsis by 321 incomplete trabeculae. Spiniferites rhizophorus Head in Head and Westphal, 1999 resembles 322 Seriliodinium? pannonense sp. nov. in that some processes are supported by stilt-like columns, but 323 differs in that the processes are not connected distally by discontinuous rope-like trabeculae and it lacks an apical boss. 324 325 **Dimensions**. The length of the cyst body, including the apical boss, of the holotype is 47 µm; the 326 equatorial width is 32 µm and the maximum length of the processes is 16 µm. Overall, the length of 327 the cyst body, including the apical boss, is 41 (55) 74 µm; the equatorial width is 31 (40) 50 µm and 328 the maximum length of the processes is $10-24 \mu m$.

329 Distribution. *Seriliodinium? pannonense* sp. nov. is present in the Middle Pannonian of the
330 Hennersdorf Clay Pit, Vienna Basin, Austria.

- 331
- 332

333

Genus Spiniferites Mantell, 1850 emended Sarjeant, 1970

334 **Type**. *Spiniferites ramosus* (Ehrenberg, 1838) Mantell, 1854

335	Discussion. Spiniferites includes around 100 species (Fensome and Williams, 2004, p. 612–629;
336	Fensome et al., 2008). Several species and subspecies of this genus have been described from the
337	Late Miocene (Pannonian/Tortonian) of Central Paratethys by the eminent Hungarian palynologist
338	Mária Sütőné-Szentai (e.g. Sütőné-Szentai, 1982b; 1986; 1990; 2000) and many of these taxa were
339	encountered during this study. Light and scanning electron microscopy revealed new aspects of
340	their morphologies. An ovoidal/subovoidal cyst body is a characteristic feature of this genus from
341	Lake Pannon, and significant variations in the apical bosses and processes and sutural membranes
342	were noted. Specimens of Spiniferites with apical bosses typify many of the cyst types of
343	Gonyaulax digitale (Pouchet 1883) Kofoid 1911 (see Wall and Dale, 1968). Variations in the apical
344	boss occur in Spiniferites bentorii and many subspecies have been described (e.g. Sütőné-Szentai,
345	1986). The significance of these observations is potentially important for palaeoecology.
346	Spiniferites cysts with an apical boss potentially allow the recognition of different salinities. For
347	example, small forms of Spiniferites with short and germinal processes with an apical boss are
348	indicative of low salinities (Ellegaard, 2000).
349	
350	
351	Spiniferites hennersdorfensis sp. nov.
352	Plate II, 1–4; Plate IV, 1–8; Figure 4
353	
354	Spiniferites paradoxus (Cookson and Eisenack, 1968) Sarjeant, 1970; Sütőné-Szentai, 1982b, pl. 7,
355	1.
356	
357	Holotype. Sample HC1-16, slide A, England-Finder coordinate N33/4 (Plate IV, 1–4). Specimen
358	number UMJ GandP 211337 of the Joanneum Museum, Graz University, Austria.
359	Paratype. Sample HC1-23, slide B, England-Finder coordinate R39/0 (Plate IV, 5–8).
360	Etymology. Named after the type locality.

361 **Type locality.** Hennersdorf Clay Pit, Vienna Basin, Austria.

362 Lithostratigraphy of the type material. The Záhorie Member of the Bzenec Formation, Upper
 363 Miocene (Pannonian).

364 **Diagnosis.** An ovoidal to subspherical murochorate spiniferate cyst with an apical boss (Pl. 4;

365 Figure 4). Wall is relatively thick with a smooth, scabrate or granulate surface. Processes are gonal,

366 short and connected proximally by high sutural crests. The crests are smooth with a hiate distal

367 margin. The sutural crests are lower at the cingulum and around plate 6" (Plate II, 4). The

368 archaeopyle is precingular (type P), operculum is free.

369 **Description**. A murochorate species of *Spiniferites* with an ovoidal to subspherical outline. A small

370 (3–6 μm high) apical boss with a distinct trifid process is present (Plate II, 2). The wall is relatively

371 thick (~1 µm) with a smooth, scabrate to granulate surface (Plate II, 1, 2). Processes are gonal and

triangular in cross-section. The processes are connected by high sutural crests. The crest height can

attain up to 20% of the cyst body width at the cingulum. The crests are distally hiate (Figure 4;

374 Marheinecke, 1992, p. 17; Williams et al., 2000, p. 100, fig. 556) with denticulate or undulate

375 margins. The crest surfaces are smooth or finely granulate, occasionally finely perforate or

376 fenestrate (Plate II, 3). High sutural crests are lower at the boundaries of the cingular plates and

between plates 5^{''}/6^{''}, 5^{'''}/6^{'''} and 1^{''}/sulcus (Plate II, 4). Plate 6^{''} is smaller than the other

378 precingular plates (Plate II, 4). The tabulation is standard S-type gonyaulacacean. The archaeopyle

is formed by the loss of precingular plate 3^{''} with a free operculum.

380 **Comparison**. The sutural crests distinguish *Spiniferites hennersdorfensis* sp. nov. from other

381 species of the genus; the high, distally hiate nature of these is unique. *Spiniferites falcipedius* Warny

and Wrenn, 1997 and Spiniferites rubinus (Rossignol, 1964) Sarjeant, 1970 differ in lacking an

383 apical boss. Spiniferites membranaceus (Rossignol, 1964) Sarjeant 1970 has very long trifurcations

at the process tips, and a prominent sutural crest between the antapical processes only. Spiniferites

385 mirabilis (Rossignol, 1964) Sarjeant, 1970 differs from Spiniferites hennersdorfensis sp. nov. in

having a high sutural flange which connects the antapical processes only, in having intergonal and

387	gonal processes and the distally trifurcate processes with long tips. Spiniferites hennersdorfensis sp.
388	nov. also differs from species of Leptodinium and Pterodinium in the absence of high sutural crests
389	between the cingular plates and in the presence of an apical boss.
390	Dimensions . The maximum length of the cyst body of the holotype is 68 μ m, the equatorial width
391	is 42 μm , the maximum length of the processes is 13 μm and the apical boss is 6 μm long. Overall,
392	the maximum length of the cyst body is 47 (58) 68 μ m; the equatorial width is 41 (46) 52 μ m, the
393	maximum length of the processes is 9 (12) 14 μ m and the apical boss is 3–6 μ m long. Twelve
394	specimens were measured.
395	Distribution. Spiniferites hennersdorfensis sp. nov. was recorded from most of the samples studied
396	herein. This species was recorded from the Pannonian of Hungary as Spiniferites paradoxus by
397	Sütőné-Szentai (1982b, pl. 7, 1).
398	
399	
400	Spiniferites oblongus (Sütőné-Szentai 1986) stat. nov.
401	Plate II, 7–8; Plate III, 9–12; Figures 5, 6
402	
403	Basionym. Spiniferites bentorii subsp. oblongus Sütőné-Szentai, 1986, p. 36–37; pl. 2, 3; pl. 3, 1.
404	
405	Spiniferites bentorii (Rossignol, 1964) Wall and Dale, 1970; Sütőné-Szentai, 1982b, pl. 1, 3.
406	Spiniferites bentorii subsp. oblongus Sütőné-Szentai, 1986; Sütőné-Szentai, 1999, pl. 3, 1; Sütőné-
407	Szentai, 2003, pl. 1, 1; Sütőné-Szentai, 2004, pl. 1, 6; Fuchs and Sütőné-Szentai, 1991, pl. 5, 3.
408	
409	Original diagnosis. "The form of the body is oval in shape with a well-developed apical horn.
410	Archaeopyle 3". The tabulation and the gonal processes are well-developed. There is a process on
411	the apical horn in most specimens. The tabulation is the same as in Spiniferites bentorii. The
412	processes are trifurcate, and the processes at the cingulum are the widest. The wall is 0.5 µm thick,

finely granulate, sometimes smooth, and yellow in colour. The cyst body of the holotype is 72 μm
long and 35 μm wide. It can be up to 98 μm long and 43 μm wide, and a process is developed on
the apical horn" (translation from Hungarian to English by Sütőné-Szentai in 2008).

Diagnosis. Elongate ellipsoidal, spiniferate dinoflagellate cysts with an apical horn. Wall has a
smooth to faintly granulate surface. Processes are gonal, germinal equatorially, distally aculeate,
with or without distal fenestration. Processes at the cingulum are longer than those in the more polar
areas. A standard gonyaulacean tabulation is expressed by sutural crests. Archaeopyle is precingular
(type P) with a free operculum.

421 **Description**. An elongate to ellipsoidal, rarely ovoidal, spiniferate dinoflagellate cvst. The epicyst 422 is longer than the hypocyst. A prominent (~10 μ m long) capitate apical horn is present, terminating 423 in an elongate, solid, distally truncate or weakly bifid process (Plate II, 8). The wall is $\sim 1 \mu m$ thick 424 with a faintly granulate or smooth surface. The processes are gonal, germinal at the cingulum (Reid, 425 1974), distally aculeate and may have distal fenestration. The cingular processes are longer than 426 those in the precingular, postcingular and polar areas. The sutural crests are $\sim 0.5 \,\mu m$ in height and 427 reflect a standard S-type sexiform gonvaulacacean tabulation pattern (Figure 6). The archaeopyle is 428 type P, formed by the loss of the middorsal precingular plate 3" and with a free operculum. 429 **Dimensions**. The central body length, including the apical boss, is 49 (66) 90 µm; the equatorial 430 width is 29 (34) 45 μ m, the length of the equatorial processes are 6 (10) 13 μ m; the length of the 431 apical and antapical processes are 4 (6) 7 μ m; and the length of the apical process is 6 (11) 21 μ m.

432 Twenty-one specimens were measured.

433 Comparison. Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov. differs from Spiniferites

434 bentorii (Rossignol, 1964) Wall and Dale, 1970 by its elongate ellipsoidal outline, the well-

435 developed capitate apical horn with a truncated or weakly bifid apical termination and in having

436 distally aculeate processes. Spiniferites oblongus is distinct from Spiniferites pannonicus (Sütőné-

437 Szentai, 1986) stat. nov. by its elongate cyst body and long apical horn (Figure 5). Spiniferites

438 oblongus also resembles Spiniferella cornuta (Gerlach, 1961) emend. Stover and Hardenbol, 1994

in having a well-developed apical horn. But *S. cornuta* is characterised by an apical horn with spurs,
intergonal processes and parasutural septa which are moderate in height and straight or concave
between the processes. Moreover, precingular plate 6" in *Spiniferella cornuta* is subquadrangular to
pentangular and is in significant contact with plate 1' which it is not the case in *S. oblongus* (SütőnéSzentai, 1986) stat. nov (Fig. 6).

444 Comments. *Spiniferites bentorii* subsp. *oblongus* Sütőné-Szentai, 1986 is considered to be 445 sufficiently distinctive to be elevated to the rank of species. This is based on the elongate to 446 ellipsoidal cyst body outline, the prominent apical boss and horn, and the distinctive processes. This 447 form is biostratigraphically significant; Magyar et al. (1999a, fig. 1) erected a *Spiniferites bentorii* 448 subsp. *oblongus* Zone within the Pannonian of Hungary.

Spiniferites bentorii has an ovoidal central body, a relatively thick, microgranular wall and a 449 450 pronounced apical boss. The processes are gonal, occasionally intergonal and may be proximally 451 fenestrate. They are conical to tapering, erect to curved, distally digitate and closed (e.g. Rossignol, 452 1964; Harland, 1977; Rochon et al., 1999). Due to the significant morphological variability of 453 Spiniferites bentorii, Sütőné-Szentai (1983; 1986; 1990) and Fuchs and Sütőné-Szentai (1991) 454 erected several subspecies. These are Spiniferites bentorii subsp. "pseudooblongus" Sütőné-455 Szentai, 1983, Spiniferites bentorii subsp. budajenoensis Sütő-Szentai, 1986, Spiniferites bentorii 456 subsp. oblongus Sütőné-Szentai, 1986, Spiniferites bentorii subsp. pannonicus Sütőné-Szentai, 1986, Spiniferites bentorii subsp. "matraensis" Sütőné-Szentai, 1988, Spiniferites bentorii subsp. 457 458 "piriformis" Sütőné-Szentai, 1988, Spiniferites bentorii subsp. "coniunctus" Sütőné-Szentai, 1990 459 and Spiniferites bentorii subsp. granulatus Fuchs and Sütőné-Szentai, 1991. The subspecies in 460 quotation marks are not validly published (Fensome and Williams, 2004; Fensome et al., 2008). 461 Distribution. Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov. has been recorded from the 462 Pannonian of Hungary by Sütőné-Szentai (1982b; 1986; 1999; 2000; 2003; 2004), and from the 463 Vienna Basin by Fuchs and Sütőné-Szentai (1991).

465
466 Spiniferites pannonicus (Sütőné-Szentai, 1986) stat. nov.
467 Plate II, 9; Plate III, 13–16; Figure 5
468
469 Basionym. Spiniferites bentorii (Rossignol, 1964) Wall and Dale, 1970; Sütőné-Szentai, 1982b, pl.
470 1, 1–2, 4; Sütőné-Szentai, 1985, pl. 80, 3–5; Sütő-Szentia, 1999, pl. 2, 1–2; Spiniferites bentorii
471 subsp. pannonicus Sütőné-Szentai, 1986; Spiniferites bentorii subsp. pannonicus Sütőné-Szentai,
472 1986, p. 35–36; pl. 2, 1, 2; Spiniferites bentori subsp. coniunctus Sütőné-Szentai, 1990, pl. 5, 1; fig.

473 78a; Fuchs and Sütőné-Szentai, 1991, pl. 1, 3, 6; pl. 4, 3; pl. 5, 4; Sütőné-Szentai, 2002, pl. 2, 5; pl.

474 3, 1, 3, 4; Sütőné-Szentai, 2003, pl. 1, 2, 3; Magyar et al., 2004, figs. 4a–c.

475

Original diagnosis. "Subspherical body with a well-developed apical horn. The cyst body at plates
2'' and 3'' is a little swollen. The processes are short, wide and weakly trifurcate. The processes
show the same tabulation as *Spiniferites bentorii*. The tabulation is variably developed. The
processes at the cingulum are longer. The wall is 1.5 µm thick, finely granulate and golden-yellow
in colour. The archaeopyle is represented by plate 3'' and is irregularly pentagonal in shape. The
tabulation is 4', 6'', 6c, 6''', 1p, 1''''. The holotype is 77 µm, long and 60 µm wide (translation
from Hungarian to English by Sütőné-Szentai in 2008)".

483 Diagnosis. A spiniferate cyst with an ovoidal outline and a prominent apical boss which has a distal
484 process. The wall is relatively thick with a smooth to scabrate surface. Processes are gonal,

485 trilaminate peteinoid and distally aculeate. Archaeopyle is precingular, type P, with a free

486 operculum. Gonyaulacacean tabulation expressed by faint sutural crests and the archaeopyle.

487 **Description**. Spiniferate cysts with an ovoidal or pear-shaped cyst body. The epicyst and hypocyst

488 are equal or subequal in size. The wall is ~1 μ m thick, and has a smooth to scabrate surface. A

489 prominent apical boss, $\sim 3-5 \mu m$ in height, is present and terminates in a simple, short, distally

490 bifurcate process (Plate III, 13). The processes are gonal, solid, trilaminate peteinoid (Playford et

491 al., 1995) and distally aculeate. Germinal processes are concentrated at the cingulum and sulcus.

Intergonal processes are absent. A standard S-type sexiform gonyaulacacean tabulation pattern is expressed by faint sutural crests and the archaeopyle. The cingulum is narrow and offset, and the sulcus is shallow. A precingular archaeopyle is formed by the release of plate 3''; the operculum is free.

496 **Dimensions**. The central body length, including the apical boss, is 48 (59) 74 μ m; the equatorial 497 width is 34 (45) 58 μ m; and the maximum processes length is 8 (13) 19 μ m. Sixteen specimens 498 were measured.

499 Comparison. Both Spiniferites pannonicus (Sütőné-Szentai, 1986) stat. nov. and Spiniferites

500 *bentori* (Rossignol, 1964) Wall and Dale, 1970 have an apical boss. However, the former has a

501 more pointed apex and bears only short, distally delicate, gonal processes, as opposed to the long

502 gonal and intergonal furcate processes of Spiniferites bentori. Spiniferites pannonicus differs from

503 *Spiniferites oblongus* (Sütőné-Szentai, 1986) stat. nov. in having a shorter apical boss, a more 504 ovoidal cyst body and longer processes (Figure 5).

505 **Comment**. Consistent significant morphological differences between *Spiniferites pannonicus*

506 (Sütőné-Szentai, 1986) stat. nov. and other forms of *Spiniferites* with apical bosses amply justify its
507 elevation to species level.

508 Distribution. Middle Miocene (Badenian to ?Sarmatian regional stages) (the *Spiniferites bentorii*509 *oblongus* to *Pontiadinium pecsvaradensis* zones) of the Hod-1 borehole, Hungary (Szuromi-Korecz
510 et al., 2004). Late Miocene (Pannonian) of the Zólád borehole, Hungary as *Spiniferites bentorii*

511 (Sütőné-Szentai, 1982b).

- 512
- 513
- 514 Spiniferites septentrionalis Harland, 1977
- 515 Plate III, 1–4; Figure 7
- 516

517 Spiniferites septentrionalis Harland, 1977, p. 103–104; pl. 1, 12–18; fig. 4.

518	Discussion. The genera Achomosphaera and Spiniferites are identical except for the virtual absence
519	of sutural features in the former. The tabulation of Spiniferites is indicated by prominent sutural
520	ridges or septa (Stover and Evitt, 1978, p. 190, 283, 284). Achomosphaera andalousiensis Jan du
521	Chêne 1977 was deemed to be a senior synonym of Spiniferites septentrionalis by Harland (1983, p.
522	326) and this topic has been further discussed by Mudie (1987, p. 802), Jan du Chêne and Londeix
523	(1988, p. 241), Head and Wrenn (1992, p. 2), Strauss and Lund (1992, p. 169) and Head (1993, p.
524	26-27; 1996, p. 546). In the diagnosis of Spiniferites septentrionalis, Harland (1977, p. 103) stated
525	that there was "generally no tabulation" except for that reflected by the type P archaeopyle.
526	However, the holotype of Spiniferites septentrionalis (Harland, 1977, pl. 1, 12, 13, 17) exhibits faint
527	sutural ridges, and Jan du Chêne in Head and Wrenn (1992, p. 2) proposed that the two species are
528	therefore not conspecific. Based on the discussion above and the material herein (Plate III, 1-4)
529	from the Upper Miocene of the Vienna Basin, Spiniferites septentrionalis can be distinguished from
530	Achomosphaera andalousiensis.
531	Comparison. Spiniferites speetonensis Duxbury, 1980 has similar processes and septa to
532	Spiniferites septentrionalis but differs in having intergonal processes.
533	
534	
535	Spiniferites tengelicensis Sütőné-Szentai, 1982
536	Plate II, 5–6
537	
538	Spiniferites membranaceus Sütőné-Szentai, 1982a, pl. 7, 4.
539	Spiniferites tengelicensis Sütőné-Szentai, 1982a, p. 208–209, 217–218, pl. 1, 7, fig. 1; Sütőné-
540	Szentai, 1990, pl. 5, 2; Sütőné-Szentai, 2000, pl. 6, 3-4.
541	Spiniferites sp. Sütőné-Szentai, 1999, pl. 1, 1–2.
542	

543 Supplementary description. Spiniferate dinoflagellate cysts with an ovoidal or pear-shaped 544 outline. An apical boss is present which terminates in a distally acuminate or truncate process. The 545 wall is $\sim 1.0-1.5 \,\mu m$ thick with a smooth or finely scabrate surface. The processes are gonal, variable in length, usually solid and with membranous trifurcate tips. The cingular processes are 546 547 typically longer than the others. Processes are connected proximally by low sutural crests. The 548 gonal processes in the sulcal and postcingular areas are connected by prominent sutural crests which 549 are frequently distally smooth and are rarely perforate. The processes around the antapical plate are 550 connected by a membrane or a flange (Plate II, 5). The distal ends of the processes and the 551 membranous sutures are occasionally fenestrate. The laevorotatory cingulum is offset by 552 approximately two cingulum widths. A standard S-type sexiform gonyaulacacean tabulation is 553 indicated by faint sutural ridges. The archaeopyle is precingular, type P formed by the release of 554 plate 3", with a free operculum.

Dimensions. The central body length, including the apical boss, is 52 (59) 75 μm; the equatorial
width is 37 (43) 51 μm; the process length around the cingulum is 9 (12) 15 μm; the apical
processes are 5 (12) 13 μm long; the antapical processes are 7 (8) 20 μm in length; and the process
surmounting the apical boss is 6 (8)18 μm. Twenty-six specimens were measured. The holotype is
73 μm long and 67 μm wide (Sütőné-Szentai, 1982a, p. 209, 218).

560 **Comparison**. *Spiniferites tengelicensis* differs from *Spiniferites hennersdorfenses* sp. nov. in the 561 absence of high sutural crests in the precingular and postcingular areas. It differs from *Spiniferites*

562 bentorii (Rossignol, 1964) Wall and Dale, 1970 and Spiniferites oblongus in having a trumpet-

shaped antapical flange and lacking a long apical horn. Spiniferites scabratus (Wall, 1967) Sarjeant,

564 1970 is also somewhat similar to *Spiniferites tengelicensis*, but lacks an apical boss. *Spiniferites*

565 tengelicensis differs from Spiniferites membranaceus (Rossignol, 1964) Sarjeant, 1970 in the

566 presence of an apical boss and robust processes, and the lack of intergonal processes and low

567 membranous sutural crests. It differs from *Spiniferites frigidus* Harland and Reid in Harland et al.,

568 1980 in the absence of the well-developed membranous parasutural crests.

569	Distribution. Spiniferites tengelicensis was recorded as Spiniferites membranaceus from the
570	Pannonian of the Szólád Borehole, Hungary by Sütőné-Szentai (1982b, pl. 7, 4), and from the
571	Lower Pannonian (Spiniferites bentorii dinoflagellate cyst Zone) of the Tengelic 2 Borehole,
572	Hungary by Sütőné-Szentai (1982b).
573	
574	
575	Subfamily Uncertain Fensome et al., 1993
576	
577	Genus Komewuia Cookson and Eisenack, 1960 emended Chen, 1982
578	Type. Komewuia glabra Cookson and Eisenack, 1960
579	Comment. Komewuia is characterised by single apical and antapical horns; the apical horn is
580	usually slightly longer than the antapical counterpart (Chen, 1980, p. 30). The two morphotypes
581	recorded herein, Komewuia? sp. A and Komewuia? sp. B are questionably assigned to the genus
582	because the apical and antapical horns are poorly developed.
583	
584	Komewuia? sp. A
585	Plate V, 5–7; Figure 8
586	
587	Description. Subspherical to ovoidal proximate cysts with a faintly granulate surface. The wall is
588	thin and the cysts exhibit several folds. This form has a pronounced apical horn and a smaller
589	antapical protuberance. The archaeopyle is precingular, large with well-defined margins; the
590	operculum is free. This is the only indication of tabulation; sutural crests are absent.
591	Dimensions . Overall length 53–60 μ m; width 44–50 μ m; apical horn 4–7 μ m; antapical horn 2–3
592	μm. Two specimens were measured.
593	Comparison. Komewuia? sp. A differs from Impagidinium? obesum (Sütőné-Szentai, 1982) Lentin
594	and Williams, 1989 and Impagidinium? pecsvaradense (Sütőné-Szentai, 1982) Lentin and

595	Williams, 1989 by the absence of tabulation. Komewuia glabra Cookson and Eisenack, 1960 has
596	pronounced apical and antapical horns, a granulate to reticulate autophragm and is larger. The size
597	range is 80–157 x 66–104 µm (Cookson and Eisenack, 1960, p. 257). Komewuia stoveri Chen, 1982
598	also has a relatively large apical horn and a reduced antapical horn; it is also large in size. This
599	species is 100–155 µm long and 75–120 µm wide (Chen, 1982, p. 40). Komewuia inequicornuta
600	(Baltes, 1971 ex Stover and Evitt, 1978) Chen, 1982 has more developed apical and antapical horns
601	and more wide/broad at cingulum area.
602	
603	
604	Komewuia? sp. B
605	Plate V, 1–4; Figure 8
606	
607	Description . A large spherical dinoflagellate cyst with an antapical horn; there is no apical horn.
608	The wall is thin, susceptible to folding, with a smooth finely punctuate surface. The archaeopyle is
609	precingular, with a free operculum; this is the only indication of tabulation.
610	Dimensions . The overall length is 70–74 μ m, and the width is 49–65 μ m. The antapical horn varies
611	between 3 and 4 μ m. Two specimens were measured.
612	Comparison. Komewuia? sp. B differs from Komewuia? sp. A by the absence of an apical horn,
613	and being larger in size. It differs from other species of Komewuia due to the absence of an apical
614	protuberance.
615	
616	
617	Genus Pyxidinopsis Habib, 1976
618	Type. Pyxidinopsis challengerensis Habib 1976, p. 382; pl. 1, 1a–b; pl. 3, 1–2.
619	
620	Pyxidinopsis psilata (Wall and Dale in Wall et al., 1973) Head, 1994

Plate III, 5–6; Plate V, 8–12

622

623	Pyxidinopsis psilata	(Wall and Dale in	Wall et al., 197.	3) Head, 1994, p. 308.

624

625	Comments. The surface ornamentation of this species varies from finely scabrate to smooth or
626	reticulate. Some specimens are slightly cruciform in shape, which may indicate a low salinity
627	environment (Wall et al., 1973). All the specimens recorded have an apical boss about 3 μ m high.
628	The specimens are similar to the holotype in having a relatively large archaeopyle.
629	Dimensions . The maximum length of the central body is 56 (67) 79 μ m, the maximum width is 43
630	(55) 67 μm and the apical boss is ~3 μm high. Ten specimens were measured.
631	Discussion. Wall and Dale in Wall et al., (1973) documented many variants of Pyxidinopsis psilata
632	(as Tectatodinium psilatum) including cruciform, oval, rhombic and spherical morphotypes. In this
633	study, only oval and spherical forms were encountered. Wall and Dale in Wall et al. (1973) noted
634	that the ovoidal forms consistently exhibited an apical boss, and this is confirmed by this study. In
635	the material from Austria, the ovoidal form is the dominant one and all the specimens exhibit an
636	apical boss.
637	Previous records: Pyxidinopsis psilata was recorded from the Pannonian of the Szólád Borehole,
638	Hungary as dinoflagellate indet. and as Chytroeisphaeridia cariacoensis Wall, 1967 by Sütőné-
639	Szentai (1982b, pl. 5, 1–3 and fig. 5 respectively). It was also referred to as <i>Pontiadinium</i> sp. from
640	the Lower Pannonian of the Vienna Basin by Fuchs and Sütőné-Szentai (1991, pl. 3, 4).
641	
642	
643	5. Conclusions
644	

645 The Early and Middle Miocene dinoflagellate cysts of the fully marine Central Paratethys Seaway
646 were relatively high in diversity. These, and other, biotas were disrupted by the final closure of

647 Paratethys in Central Europe due to glacioeustatic sea-level fall during the Late Miocene (~11.6 648 Ma), and this event instigated Lake Pannon. Initially this extensive lake was brackish, but it 649 eventually became entirely freshwater. The water chemistry of Lake Pannon drove the development 650 of an unusual, relatively low diversity association of Late Miocene gonyaulacacean and 651 peridiniacean dinoflagellate cysts, which are described herein from the Hennersdorf Clay Pit, near 652 Vienna, Austria. Some of these taxa are apparently endemic to the Central Paratethys area. Impagidinium and Spiniferites are the most prominent genera. Some specimens of Spiniferites 653 654 exhibit significant morphological variability. For example the shape and size of the cyst body, the 655 processes, and the apical boss are extremely variable. *Impagidinium* is an open marine genus (Dale, 656 1996), but has also been recorded from relatively nearshore settings (Marret et al., 2004; Sorrel et 657 al., 2006). The occurrence of representatives of *Impagidinium* with specific morphological 658 variations may help to trace fluctuations in the physicochemical conditions which affected Lake 659 Pannon.

660

661

662 Acknowledgements

Sample preparation was supported by the Commission for Stratigraphical and Palaeontological
Research of the Austrian Academy of Science, and by FWF-project P21414-B16. Ali Soliman
would like to thank Professor Werner E. Piller of Graz University, Professor Mathis Harzhauser of
the Natural History Museum of Vienna and Dr. Andrea Kern of the University of São Paulo, Brazil
for their considerable help and microscope (LM and SEM) facilities. James B. Riding publishes
with the approval of the Executive Director, British Geological Survey (NERC).

671 Appendix 1

673	An alphabetical list of dinoflagellate cysts identified below generic level in the Záhorie Member
674	(Bzenec Formation) at Hennersdorf Clay Pit with full author citations. Taxa which are deemed to be
675	endemic to the Pannonian Basin are asterisked. Species interpreted as being reworked from Middle
676	Miocene and older strata are indicated with two asterisks. References to the dinoflagellate cyst
677	author citations, apart from the new taxa described herein, can be found in Fensome and Williams
678	(2004) and Fensome et al., (2008).
679	
680	*Achomosphaera breviata sp. nov.
681	*Achomosphaera argesensis Demetresçu, 1989
682	Achomosphaera ramulifera (Deflandre, 1937) Evitt, 1963
683	Batiacasphaera sphaerica Stover, 1977
684	**Cleistosphaeridium placacanthum (Deflandre and Cookson, 1955) Eaton et al., 2001
685	**Cordosphaeridium minimum (Morgenroth, 1966) Benedek, 1972
686	Habibacysta tectata Head et al., 1989
687	*Impagidinium cf. Impagidinium eugubinum Biffi and Manum, 1988
688	*Impagidinium spongianum Sütőné-Szentai, 1985
689	* Komewuia? sp. A
690	*Komewuia? sp. B
691	Lingulodinium machaerophorum (Deflandre and Cookson, 1955) Wall, 1967
692	Melitasphaeridium choanophorum (Deflandre and Cookson, 1955) Harland and Hill, 1979
693	Operculodinium centrocarpum (Deflandre and Cookson, 1955) Wall, 1967
694	Polysphaeridium zoharyi (Rossignol, 1962) Bujak et al., 1980
695	Pyxidinopsis psilata (Wall and Dale in Wall et al., 1973) Head, 1994
696	**Reticulatosphaera actinocoronata (Benedek, 1972) Bujak and Matsuoka, 1986

- 697 Selenopemphix brevispinosa Head et al., 1989
- 698 Selenopemphix nephroides Benedek, 1972

- 699 *Seriliodinium? pannonense sp. nov.
- 700 Spiniferites bentorii (Rossignol, 1964) Wall and Dale, 1970 (sensu lato)
- 701 *Spiniferites bentorii subsp. budajenoensis Sütőné-Szentai, 1986
- 702 Spiniferites bentorii subsp. truncatus (Rossignol, 1964) Lentin and Williams, 1973
- 703 Spiniferites delicatus Reid, 1974
- 704 *Spiniferites hennersdorfensis sp. nov.
- 705 Spiniferites lazus Reid, 1974
- 706 Spiniferites membranaceus (Rossignol, 1964) Sarjeant, 1970
- 707 Spiniferites nodosus (Wall, 1967) Sarjeant, 1970
- 708 *Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov.
- 709 *Spiniferites pannonicus (Sütőné-Szentai, 1986) stat. nov.
- 710 Spiniferites paradoxus (Cookson and Eisenack, 1968) Sarjeant, 1970 sensu Sütőné-Szentai, 1986
- 711 Spiniferites septentrionalis Harland, 1977
- 712 *Spiniferites tengelicensis Sütőné-Szentai, 1982
- 713 Tectatodinium pellitum Wall, 1967
- 714

- 716 **References**
- 717
- 718 Balteş, N., 1971. Pliocene dinoflagellata and acritarcha in Romania. In: Farinacci, A, (Ed.), 2nd
- 719 Planktonic Conference. Edizioni Tcnoscienza, Rome, Italy, 1–16.
- 720
- 721 Chen, Y.-Y., 1982. Recognition of the dinocyst genus Komewuia, with assignable species from
- 722 Madagascar. Micropaleontology 28, 31–42.
- 723

725	Guinea. Palaeontology 2, 243–261.
726	
727	Corradini, D., Biffi, U., 1988. Étude des dinokystes à la limite Messinien-Pliocène dans la coupe
728	Cava Serredi, Toscane, Italie. Bulletin des Centres de Recherches Exploration-Production Elf-
729	Aquitaine 12, 221–236.
730	
731	Dale, B., 1996. Dinoflagellate cyst ecology: modeling and geological applications. In: Jansonius, J.,
732	McGregor, D.C., (Eds.), Palynology: principles and applications. American Association of
733	Stratigraphic Palynologists Foundation, Dallas 3, 1249–1275.
734	
735	Eaton, G.L., 1996. Seriliodinium, a new Late Cenozoic dinoflagellate from the Black Sea. Review
736	of Palaeobotany and Palynology 91, 151–169.
737	
738	Edwards, L.E., Andrle, V.A.S., 1992. Distribution of selected dinoflagellate cysts in modern marine
739	sediments. In: Head, M.J., Wrenn, J.H., (Eds.), Neogene and Quaternary dinoflagellate cysts and
740	acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, 259-288.
741	
742	Ellegaard, M., 2000. Variations in dinoflagellate cyst morphology under conditions of changing
743	salinity during the last 2000 years in the Limfjord, Denmark. Review of Palaeobotany and
744	Palynology 109, 65–81.
745	
746	Evitt, W.R., 1985. Sporopollenin dinoflagellate cysts: Their morphology and interpretation.
747	American Association of Stratigraphic Palynologists Foundation, Dallas, 333 pp.
748	
	20
	29

Cookson, I.C., Eisenack, A., 1960. Upper Mesozoic microplankton from Australia and New

724

749	Fensome, R.A., Williams, G.L., 2004. The Lentin and Williams index of fossil dinoflagellates. 2004
750	edition. American Association of Stratigraphic Palynologists Contributions Series 42, 909 pp.
751	
752	Fensome, R.A., Taylor, F.J.R., Norris, G., Sarjeant, W.A.S., Wharton, D.I., Williams, G.L., 1993. A
753	classification of living and fossil dinoflagellates. Micropaleontology Special Publication 7, 351 pp.
754	
755	Fensome, R.A., MacRae, A., Williams, G.L., 2008. DINOFLAJ2, Version 1. American Association
756	of Stratigraphic Palynologists Data Series No. 1 (http://dinoflaj.smu.ca/wiki/Main_Page).
757	
758	Fuchs, R., Sütőné-Szentai, M., 1991. Organisches mikroplankton (phytoplankton) aus dem
759	Pannonien des Wiener Beckens (Österreich) und korrelationsmöglichkeiten mit dem zentralen
760	pannonischen Becken (Ungarn). Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit
761	Österreich-Ungarn 1, 19–34.
762	
763	Gross, M., Minati, K., Danielopol, D.L., Piller, W.E., 2008. Environmental changes and
764	diversification of Cyprideis in the Late Miocene of the Styrian Basin (Lake Pannon, Austria).
765	Senckenbergiana Lethaea 88, 161–181.
766	
767	Gross, M., Piller, W.E., Scholger, R., Gitter, F., 2011. Biotic and abiotic response to
768	palaeoenvironmental changes at Lake Pannons' western margin (Central Europe, Late Miocene).
769	Palaeogeography, Palaeoclimatology, Palaeoecology 312, 181–193.
770	
771	Harland, R., 1977. Recent and Late Quaternary (Flandrian and Devensian) dinoflagellate cysts from
772	marine continental shelf sediments around the British Isles. Palaeontographica Abteilung B 164,
773	87–126.
774	

775	Harland, R., 1983. Distribution maps of recent dinoflagellate cysts in bottom sediments from the
776	North Atlantic Ocean and adjacent areas. Palaeontology 26, 321–387.

Harzhauser, M., Mandic, O., 2004. The muddy bottom of Lake Pannon - a challenge for dreissenid
settlement (Late Miocene; Bivalvia). Palaeogeography, Palaeoclimatology, Palaeoecology 204,
331–352.

781

Harzhauser, M., Mandic, O., 2008. Neogene lake systems of central and south-eastern Europe:

Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology
206, 417–434.

785

Harzhauser, M., Daxner-Höck, G., Piller, W.E., 2004. An integrated stratigraphy of the Pannonian
(Late Miocene) in the Vienna Basin. Austrian Journal of Earth Sciences 95/96, 6–19.

788

Harzhauser, M., Latal, C., Piller, W.E., 2007. The stable isotope archive of Lake Pannon as a mirror
of Late Miocene climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 335–
350.

792

Harzhauser, M., Kern, A., Soliman, A., Minati, K., Piller, W.E., Danielopol, D., Zuschin, M., 2008.

794 Centennial- to decadal-scale environmental shifts in and around Lake Pannon (Vienna Basin)

related to a major Late Miocene lake-level rise. Palaeogeography, Palaeoclimatology,

796 Palaeoecology 207, 102–115.

797

Head, M.J., 1993. Dinoflagellates, sporomorphs and other palynomorphs from the Upper Pliocene

799 St. Erth Beds of Cornwall, southwestern England. Journal of Paleontology Memoir 31, 62 pp.

- 801 Head, M.J., 1996. Late Cenozoic dinoflagellates from the Royal Society borehole at Ludham,
- 802 Norfolk, eastern England. Journal of Paleontology 70, 543–570.
- 803
- 804 Head, M.J., Wrenn, J.H., 1992. A forum on Neogene and Quaternary dinoflagellate cysts. In: Head,
- 805 M.J., Wrenn, J.H., (Eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American
- 806 Association of Stratigraphic Palynologists Foundation, Dallas, 1–31.
- 807
- 808 Hilgen, F.J., Lourens, L.J., Van Dam, J.A., 2012. Chapter 29. The Neogene Period. In: Gradstein,
- 809 F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., (Eds.), The Geologic Time Scale 2012. Volume 2,
- 810 923–978, Elsevier B.V.
- 811
- Jan du Chêne, R., Londeix, L., 1988. Données nouvelles sur *Achomosphaera andalousiense* Jan du
 Chêne, 1977, kyste de dinoflagellé fossile. Bulletin des Centres de Recherches Exploration-
- 814 Production Elf-Aquitaine 12, 237–250.
- 815
- 816 Jiménez-Moreno, G., Fauquette, S., Suc, J.-P., 2008. Vegetation, climate and palaeoaltitude
- reconstructions of eastern alpine mountain ranges during the Miocene based on pollen records from
 Austria, Central Europe. Journal of Biogeography 35, 1638–1649.
- 819
- Kouli, K., Brinkhuis, H., Dale, B., 2001. *Spiniferites cruciformis*: a fresh water dinoflagellate cyst?
 Review of Palaeobotany and Palynology 113, 273–286.
- 822
- Magyar, I., Geary, D.H., Müller, P., 1999a. Paleogeographic evolution of the Late Miocene Lake
 Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 147, 151–167.
- 825

826	Magyar, I., Geary, D.H., Sütőné-Szentai, M., Müller, P., 1999b. Integrated biostratigraphic,
827	magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon
828	deposits. Acta Geologica Hungarica 42, 5–31.
829	
830	Magyar, I., Gyögyi, J., Szurominé Korecz, A., Sütőné-Szentai, M., 2004. A pannoniai Totkomlosi
831	Mészmarga Tagozat kifejlödese és kora- a Battonya-pusztaföldvári-hátság környezetében. Földtani
832	Közlöny 133, 521–540.
833	
834	Marheinecke, U., 1992. Monographie der dinozysten, acritarcha und chlorophyta des Maastrichtium
835	von Hemmoor (Niedersachsen). Palaeontographica Abteilung B 227, 1–173.
836	
837	Marret, F., Zonneveld, K.A.F., 2003. Atlas of modern organic-walled dinoflagellate cyst
838	distribution. Review of Palaeobotany and Palynology 125, 1–200.
839	
840	Marret, F., Leroy, S., Chalié, F., Françoise, F., 2004. New organic-walled dinoflagellate cysts from
841	recent sediments of Central Asian seas. Review of Palaeobotany and Palynology 129, 1-20.
842	
843	Mudie, P.J., 1987. Palynology and dinoflagellate biostratigraphy of Deep Sea Drilling Project Leg
844	94, Sites 607 and 611, North Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 94,
845	785–812.
846	
847	Müller, P., Geary, D.H., Magyar, I., 1999. The endemic molluscs of the Late Miocene Lake
848	Pannon: their origin, evolution, and family-level taxonomy. Lethaia 32, 47-60.
849	

- 850 Munsterman, D.K., Brinkhuis, H., 2004. A southern North Sea Miocene dinoflagellate cyst
- 851 zonation. Geologie en Mijnbouw 83, 267–285.
- 852
- Papp, A., 1951. Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in
 Wien, 39–41 (1946–1948), 99–193.
- 855
- Piller, W.E., Harzhauser, M., Mandic, O., 2007. Miocene Central Paratethys stratigraphy current
 status and future directions. Stratigraphy 4, 71–88.
- 858
- 859 Playford, G., Ribecai, C., Tongiorgi, M., 1995. Ordovician acritarch genera Peteinosphaeridium,
- 860 Liliosphaeridium and Cycloposphaeridium: morphology, taxonomy, biostratigraphy, and
- 861 palaeobiogeographic significance. Bollettino della Società Paleontologica Italiana 34, 3–54.

- 863 Popescu, S.M., Melinte, M.-C., Suc, J.-P., Clauzon, G., Quillévéré, F., Sütőné-Szentai, M., 2007.
- 864 Earliest Zanclean age for the Colombacci and uppermost Di Tetto formations of the "latest
- 865 Messinian'' northern Apennines: New palaeoenvironmental data from the Maccarone section
- 866 (Marche Province, Italy). Geobios 40, 359–373.

- Price, A.M., Pospelova, V., 2014. *Spiniferites multisphaerus*, a new dinoflagellate cyst from the
 Late Quaternary of the Guaymas Basin, Gulf of California, Mexico. Palynology 38, 101–116.
- 870
- Reid, P.C., 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. Nova Hedwigia 25,
 579–637.
- 873
- 874 Rochon, A., de Vernal, A., Turon, J.L., Matthiessen, J., Head, M.J., 1999. Distribution of Recent
- 875 dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in

876	relation to sea-surface parameters. American Association of Stratigraphic Palynologists
877	Contribution Series 35, 150 pp.
878	
879	Rögl, F., 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways
880	(Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A, 279-310.
881	
882	Rossignol, M., 1964. Hystrichosphères du Quaternaire en Méditerranée orientale dans les sédiments
883	Pléistocènes et les boues marines actuelles. Revue de Micropaléontologie 7, 83-99.
884	
885	Soliman, A., Piller, W.E., 2009. Miocene dinoflagellate cysts of the western Central Paratethys:
886	from cosmopolitan to endemic. 13th Congress of the Regional Committee on Mediterranean
887	Neogene Stratigraphy (RCMNS), 2nd-6th September 2009, Naples, Italy, Abstract Book. Acta
888	Naturalia de "L'Ateneo Parmense" 45, 229.
889	
890	Soliman, A., Ćorić, S., Head, M.J., Piller, W.E., El Beialy, S.Y., 2012. Lower and Middle Miocene
891	biostratigraphy, Gulf of Suez, Egypt based on dinoflagellate cysts and calcareous nannofossils.
892	Palynology 36, 38–79.
893	
894	Soliman, A., Feist-Burkhardt, S., Harzhauser, M., Kern, A.K. and Piller, W.E., 2013.
895	Mendicodinium mataschenensis: a new endemic dinoflagellate cyst from the Late Miocene
896	(Tortonian) of Lake Pannon (Austria). Palynology 37, 35–47.
897	
898	Sorrel, P., Popescu, SM., Head, M.J., Suc, JP., Klotz, S., Oberhänsli, H., 2006. Hydrographic
899	development of the Aral Sea during the last 2000 years based on a quantitative analysis of
900	dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 304-327.
901	

902	Stover, I	L.E.,	Evitt.	W.R.,	1978.	Analy	ses of p	re-Pleistocene	organic-	walled	dinoflagellates.
/ * -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	,				~ ~ ~ ~ ~				

903 Stanford University Publications, Geological Sciences 15, 300 pp.

904

- 905 Strauss, C., Lund, J.J., 1992. A middle Miocene dinoflagellate cyst microflora from Papendorf near
- Hamburg, Germany. Mitteillungen aus dem Geologisch-Paläontologischen Institut der Universtät
 Hamburg 73, 159–189.

908

909 Sütőné-Szentai, M., 1982a. A Tengelic-2. sz. fúrás pannóniai képződményeinek szervesvázú
910 mikroplankton és sporomorpha maradványai. Annales Instituti Geologici Publici Hungarici 65,
911 205–233.

912

913 Sütőné-Szentai, M., 1982b. Szervesvázú mikroplankton biozónák a közép-Dunántúl pannóniai
914 rétegösszletében. Annual Report of the Hungarian Geological Institute for 1980, 309–344.

915

916 Sütőné-Szentai, M., 1985. Die Verbreitung organischer Mikroplankton-Vergesellschaftungen in

917 dem pannonischen Schichten Ungarns. In: Papp, A., Jambor, A., Steininger, F.F. (Eds.), M6 -

918 Pannonien (Slavonien und Serbien) Chronostratigraphie und Neostratotypen, Miozän der Zentralen
919 Paratethys 7, 517–533.

920

921 Sütőné-Szentai, M., 1986. A magyarországi Pannoniai (s.l.) rétegösszlet mikroplankton vizsgálata.
922 Folia Comloensis 2, 25–45.

923

924 Sütőné-Szentai, M., 1990. Microplanktonflora der Pontischen (Oberpannonischen) Bildungen

925 Ungarns. Chronostratigraphie und Neostratotypen Pliocen Pontien, 842–869.

927	Sütőné-Szentai, M., 1999. A Dunántuli-Középhegység Dny-1 részénk ösföldrajzi képe a Ponnoniai
928	(S. L.) element idején, szervesvázu mikroplankton (dinoflagellate etc.) maradványok tükrében.
929	Folia Museue Historico Naturalis Bakonyiensis 14-1995, 21–47.
930	
931	Sütőné-Szentai, M., 2000. Examination for Microplanktons of Organic Sceleton in the Area
932	between the Mecsek and the Villány Mountains (South-Hungary, Somberek No2 borehole). Folia
933	Comloensis 8, 157–167.
934	
935	Sütőné-Szentai, M., 2002. Analysis of microplankton with organic skeletons from borehole
936	Nagykozár 2 (S-Hungary). Folia Comloensis 11, 93–110.
937	
938	Sütőné-Szentai, M., 2003. A Máriakéménd–3. sz. fúrás szervesvázú mikroplankton vizsgálata. Folia
939	Comloensis 12, 129–142.
940	
941	Sütőné-Szentai, M., 2004. A Karácodfa Kft-2. számú furás dinoflagellate vizsgálata (Mecsek
942	hegyseg). Folia Comloensis 13, 93–102.
943	
944	Szuromi-Korecz, A., Sütőné-Szentai, M., Magyar, I., 2004. Biostratigraphic revision of the Hód-1
945	well: Hungary's deepest borehole failed to reach the base of the Upper Miocene Pannonian age.
946	Geologica Carpathica 55, 475–485.
947	
948	Wall, D., Dale, B., Harada, K., 1973. Descriptions of new fossil dinoflagellates from the Late
949	Quaternary of the Black Sea. Micropaleontology 19, 18-31.
950	

951	Williams, G.L., Fensome, R.A., Miller, M.A., Sarjeant, W.A.S., 2000. A glossary of the
952	terminology applied to dinoflagellates, acritarchs, and prasinophytes, with emphasis on fossils.
953	American Association of Stratigraphic Palynologists Contributions Series 37, 365 pp.
954	
955	Zonneveld, K.A., Marret, F., Versteegh, G.J., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E.,
956	de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., 2013. Atlas of modern dinoflagellate cyst
957	distribution based on 2405 data points. Review of Palaeobotany and Palynology 191, 1-197.
958	
959	
960	Display material captions:
961	
962	Figure 1. Maps of the area studied. 1 - the maximum extent of the palaeoshoreline of Lake
963	Pannon according to Magyar et al. (1999b). 2 - the location of Hennersdorf Clay Pit (48° 6' 24" N;
964	16° 21' 12" E), modified from Harzhauser et al.(2008).
965	
966	Figure 2. The Záhorie Member succession which is exposed in the Hennersdorf Clay Pit, south
967	of Vienna, Austria (central column). The log has been modified from Harzhauser et al., (2008) and
968	references therein. The letters (A-G) represent the zones of Papp (1951). The position of the
969	Hennersdorf Core 1 (HC1) is shown by the grey ornament, and the 20 samples from the entire
970	outcrop are indicated. The sample positions of the 74 horizons from HC1 are indicated in the right-
971	hand column. Note that the even-numbered samples are intercalated between the odd-numbered
972	samples. The succession is within the lower part of Pannonian Zone E.
973	
974	Figure 3. The variability in distal process terminations and process size in <i>Achomosphaera</i>
975	breviata sp. nov. The top row are gonal processes, and the bottom row represent the partially
976	merged processes of the cingulum and sulcus.

978	Figure 4.	Part of a distally hiate sutural crest of Spiniferites hennersdorfensis sp. nov.		
979				
980	Figure 5.	The cyst body outline (ambitus) and processes of: a and b - Spiniferites bentorii		
981	(Rossignol, 1	1964) Sarjeant, 1970; c - Spiniferites pannonicus (Sütőné-Szentai, 1986) stat. nov.; and		
982	d - <i>Spiniferit</i>	es oblongus (Sütőné-Szentai, 1986) stat. nov.		
983				
984	Figure 6.	The tabulation of Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov. in ventral		
985	view (A) and	d dorsal view (B).		
986				
987	Figure 7.	Sketches illustrating the distal process terminations of Spiniferites septentrionalis		
988	Harland, 197	77. Not to scale.		
989				
990	Figure 8.	Sketches illustrating the outlines of Komewuia sp. A (A) and Komewuia sp. B (B).		
991				
992	Table 1. The	distribution of dinoflagellate cysts in the Hennersdorf Clay Pit section, Vienna Basin,		
993	Austria.			
994				
995	Table 2. The	distribution of dinoflagellate cysts in the Core 1, Hennersdorf Clay Pit, Vienna Basin,		
996	Austria.			
997				
998	Plate I. All p	hotomicrographs are SEM images; the scale bar represents 20 μ m except where		
999	indicated oth	nerwise.		
1000	1–3. Acho	mosphaera sp. cf. A. fenestra Kirsch, 1991.		
1001	1. Samp	ble HC1-38, right lateral view.		

1002 2. Sample HC1-57, ventral view, note the characteristic surface ornamentation and the

1003 fenestrations on the process shafts.

- 1004 3. Sample HC1-55, note the process fenestrations at the distal ends; ventral view.
- 1005 4-6. Impagidinium spongianum Sütőné-Szentai, 1985.
- 1006 4. Sample HC1-12, ventral view.
- 1007 5. Sample HC1-25, oblique apical view showing the apical plates.
- 1008 6. Sample HC1-10, dorsal view.
- 1009 7 *Impagidinium* sp. 1. Sample HC1-12; crumpled specimen probably in dorsal view, note the
- 1010 characteristic sutural denticulation.
- 1011 8, 9. *Impagidinium* sp. 2. Sample HC1-12, lateral view with a close-up of the surface structure.
- 1012
- 1013 Plate II. All photomicrographs are SEM images; the scale bar represents 20 µm.
- 1014 1–4. Spiniferites hennersdorfensis sp. nov.
- 1015 1. Sample HC1-27, lateral view.
- 1016 2. Sample HC1-30, dorsal view.
- 1017 3. Sample HC1-55, lateral view showing the distal ends of the sutures.
- 1018 4. Sample HC1-5, ventral view, illustrating the apical plates.
- 1019 5–6. Spiniferites tengelicensis Sütőné-Szentai, 1982.
- 1020 5. Sample HC1-30, dorsal view, note the relatively long apical process.
- 1021 6. Sample HC1-30, dorsal view.
- 1022 7, 8. Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov.
- 1023 7. Sample HC1-27, dorsal view with attached operculum.
- 1024 8. Sample HC1-55, dorsal view.
- 1025 9. Spiniferites pannonicus Sütőné-Szentai, 1986 stat. nov. Sample HC1-20, ventral view, note
- 1026 the apical process.

- 1028 Plate III. Images 1–8 are SEM photomicrographs, and images 9–16 were taken in bright field,
- 1029 England Finder reference = E/F ref. The scale bar represents 20 μ m except where indicated
- 1030 otherwise.
- 1031 1–4. Spiniferites septentrionalis Harland, 1977.
- 1032 1. Sample HC1-20, right lateral view.
- 1033 2. Sample HC1-38, lateral view.
- 1034 3. Sample HC1-27, ventral view.
- 1035 4. Sample HC1-27, deformed specimen showing the sutural septa.
- 1036 5, 6. *Pyxidinopsis psilata* (Wall and Dale in Wall et al., 1973) Head, 1994.
- 1037 5. Sample HC1-27, oblique lateral view of a specimen with vermiculate surface ornamentation.
- 1038 6. Sample HC1-18, dorsal view of a specimen with vermiculate surface ornamentation.
- 1039 7–8. *Achomosphaera breviata* sp. nov.
- 1040 7. Sample HC1-10, oblique left lateral view.
- 1041 8. Sample HC1-1, ventral view, note the merged sulcal processes.
- 1042 9–12. Spiniferites oblongus (Sütőné-Szentai, 1986) stat. nov. Sample HC1-23, Slide B, E/F ref.
- 1043 P52/0; central body length including apical horn and apical process 84.0 µm, width at cingulum 37
- 1044 µm, processes 5.5 µm. Right lateral view, successive foci.
- 1045 13–19. Spiniferites pannonicus Sütőné-Szentai, 1986 stat. nov. Sample HC1-25, Slide B, ventral
- 1046 view, central body length including apical boss 60.5 µm, width at cingulum 44.5 µm, processes at
- 1047 cingulum 11.0 μm, successive foci.
- 1048
- 1049
- 1050 Plate IV. All images in bright field, England Finder reference = E/F ref. The scale bar represents 20 1051 μ m.
- 1052 1-4. Spiniferites hennersdorfense sp. nov. Holotype, sample HC1-16, slide A, E/F ref. N33/4,
- 1053 Specimen number UMJ GandP 211337 of the Joanneum Museum, Graz University, Austria.

- 1054 1. Low focus, note the distally open sutures (arrowed).
- 1055 2. Mid focus.
- 1056 3. High focus, note the absence of the high sutures at the cingulum.
- 1057 4. Lateral-dorsal view, note the apical boss (arrowed).
- 1058 5–8. Spiniferites hennersdorfense sp. nov. Paratype, sample HC1-23, slide B, E/F ref. R39/0.
- 1059 5. Dorsal view.
- 1060 6. Cross section, showing the undulating distal margin of the sutures.
- 1061 7. Dorsal view, showing the archaeopyle and the apical boss.
- 1062 8. Dorsal view showing the sutures around the 3P" plate
- 1063 9. Impagidinium spongianum Sütőné-Szentai, 1985. Sample HC1-18, Slide A, E/F ref. Y58/3,
- 1064 dorsal view. Note that plate 4" is posterior to plate 3" and in contact with plate 1"".
- 1065 10–12. Impagidinium spongianum Sütőné-Szentai, 1985. Sample HC1-18, Slide A, E/F ref. Y59.
- 1066 10. Ventral view, note the geometry of plate 6".
- 1067 11. Mid focus
- 1068 12. Left lateral-dorsal view.
- 1069 13–16. Impagidinium spongianum Sütőné-Szentai, 1985. Sample HC1-14, Slide A, E/F ref. J33/0,
- 1070 different focal levels of a lateral-dorsal view respectively.
- 1071
- 1072 Plate V. All images in bright field, England Finder reference (E/F ref.). The scale bar represents 20
- 1073 μm.
- 1074 1–2. Komewuia? sp. A. Sample HC1-25, Slide B, E/F ref. N52.
- 1075 1. Low focus of the dorsal surface.
- 1076 2. High focus of the dorsal surface, note the antapical horn and the attached operculum.
- 1077 3-4. *Komewuia*? sp. A. Sample HC1-18, Slide A, E/F ref. F402, specimen in left lateral view.
- 1078 3. Low focus.
- 1079 4. High focus.

- 1080 5–7. Komewuia? sp. B. Sample HC1-32, Slide A, E/F ref. M48.
- 1081 5. Low focus.
- 1082 6. Mid focus, note the apical horn.
- 1083 7. High focus.
- 1084 8. *Pyxidinopsis psilata* (Wall and Dale in Wall et al., 1973) Head 1994. Sample HC1-18, Slide A,
- 1085 E/F ref. Y63, a specimen in right lateral view with a well pronounced apical boss and a large
- 1086 precingular archaeopyle.
- 1087 9–12. Pyxidinopsis psilata (Wall and Dale in Wall et al., 1973) Head 1994. Sample HC1-26, Slide
- 1088 A, E/F ref. H394, different focal levels of a left lateral view of a specimen with a vermiculate
- 1089 surface.
- 1090 13–14. Achomosphaera breviata sp. nov. Holotype; Sample HC1-16, Slide A, E/F ref. K39.
- 1091 Specimen number UMJ GandP 211335 of the Joanneum Museum, Graz University, Austria.
- 1092 15–16. Achomosphaera breviata sp. nov. Paratype: Sample HC1-16, Slide A, E/F ref. O32.
- 1093
- Plate VI. All images in bright field, England Finder coordinate (E/F ref.). The scale bar represents
 20 μm.
- 1096 1-3. Seriliodinium? pannonense sp. nov. Paratype, Sample F1, Slide A, E/F ref. G28/0, central
- 1097 body length including apical boss 53.5 μ m, width at cingulum 41.5 μ m, processes 15.5 μ m,
- 1098 successive focal levels.
- 1099 4-6. Seriliodinium? pannonense sp. nov. Holotype: Sample HC1-11, slide A, E/F ref. S35/0,
- 1100 central body length including apical boss 47.0 μm, width at cingulum 32.0 μm, processes 13.5 μm
- 1101 successive focal levels. The arrow indicates the apical boss. Specimen number UMJ GandP 211336
- 1102 of the Joanneum Museum, Graz University, Austria.
- 1103 7–9. Seriliodinium? pannonense sp. nov. Sample HC1-50, Slide A, E/F ref. N32/1, central body
- length including apical boss 55.5 μm, width at cingulum 36.0 μm, processes at cingulum 20.5 μm
- 1105 successive focal levels showing the branching of processes and the distal trabeculae.

- 1106 10. Seriliodinium? pannonense sp. nov. Sample HC1-38, uncertain orientation.
- 1107 11. Seriliodinium? pannonense sp. nov. Sample HC1-38, right lateral view.
- 1108 12. Seriliodinium? pannonense sp. nov. Sample HC1-55, close-up on process terminations.
- 1109 13. *Seriliodinium? pannonense* sp. nov. Sample HC1-55, close-up on processes shafts and
- 1110 terminations.