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Abstract 13 

Excessive algal blooms, some of which can be toxic, are the most obvious symptoms of 14 

nutrient enrichment and can be exacerbated by climate change. They cause numerous 15 

ecological problems and also economic costs to water companies. The process-16 

representation of the algal community model PROTECH was tested within the extended 17 

Generalised Likelihood Uncertainty Estimation framework which includes pre-defined Limits 18 

of Acceptability for simulations. Testing was a precursor to modification of the model for real-19 

time forecasting of algal communities that will place different demands on the model in terms 20 

of a) the simulation accuracy required, b) the computational burden associated with the 21 

inclusion of forecast uncertainties and c) data assimilation. We found that the systematic 22 

differences between the model’s representation of underwater light compared to the real 23 

lake systems studied and the uncertainties associated with nutrient fluxes will be the 24 

greatest challenges when forecasting algal blooms. 25 

1. Introduction26 

Algal blooms are a globally significant problem affecting water resources, recreation and 27 

ecosystems (Carmichael, 1992; Smith, 2003; World Health Organization, 1999). These 28 

problems are particularly acute when blooms include significant cyanobacteria populations 29 

as some species can produce toxins that cause adverse health effects to humans and affect 30 

wildlife (Metcalf and Codd, 2009). Water companies face associated problems such as 31 
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blocked filters, poor taste and odour and, in more extreme cases, high levels of algal-derived 32 

toxins. Managing these effects costs greater than £50 million per year in the UK (Pretty et 33 

al., 2003) and billions of dollars annually in the US (Dodds et al., 2009; Michalak, 2016). 34 

Implementation of mitigation strategies is becoming more expensive owing to increases in 35 

the frequency of blooms (Ho and Michalak, 2015) as a result of nutrient enrichment and 36 

climate change (Brookes and Carey, 2011; Paerl and Huisman, 2008; Rigosi et al. 2014) 37 

and the effectiveness of interventions is, in some cases, being compromised. It is therefore 38 

beneficial to be able to forecast algal blooms to allow the most cost-effective management 39 

strategies to be implemented.  40 

One algal model that has been used in lakes and reservoirs around the world is PROTECH 41 

(Elliott et. al, 2009; Elliott, 2010, 2012; Reynolds et al., 2001). PROTECH was used here 42 

because it explicitly simulates the dynamics of lake algal community structure and hence 43 

algal types of particular interest including cyanobacteria. As real-time forecasting of algal 44 

blooms is becoming a priority for the management of lakes and reservoirs used for water 45 

supply and recreation, one of the aims of this study is to test the model as a precursor to 46 

modification for forecasting purposes. Real-time forecasting places different demands on the 47 

model in terms of the accuracy and resolution required for simulation estimates, the 48 

computational burden associated with the inclusion of forecast uncertainties and in the way 49 

that data assimilation of observations is structured. Access to high-frequency data does, 50 

however, provide opportunities to improve model process-representation consistent with 51 

these requirements. The sensitivity of the PROTECH phytoplankton growth equations has 52 

been assessed and was shown to be robust (Elliott et al., 1999); consequently, in this study, 53 

we primarily consider the model’s abiotic environment, including water temperature, 54 

underwater light, mixing processes and nutrient input dynamics. Sensitivity and uncertainty 55 

analyses were carried out within a hypothesis testing framework where different model 56 

representations were considered as competing hypotheses and accepted or rejected based 57 

upon specific criteria. This was achieved using the extended Generalised Likelihood 58 

Uncertainty Estimation Framework (GLUE; Beven and Binley, 1992) where the criteria for 59 

acceptance are formalised Limits of Acceptability (LoA) for model simulations (GLUE-LoA; 60 

Beven, 2006, 2012; Beven and Binley, 2014; Blazkova and Beven, 2009; Liu et al., 2009). 61 

Hypotheses are tested under this approach where interactions between the uncertainties 62 

arising from model structural components, parameters, model inputs and observations used 63 

for model constraint are taken into account. Using LoA has the advantages that explicit 64 

representation can be made for the variability of errors (e.g. non-stationary/state-dependent 65 

errors and correlation of errors) at individual observation times and/or locations and is a 66 

natural way to combine different types of observation. This approach is critically important for 67 
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focussing on how different sources of uncertainty determine model acceptability, affect the 68 

assessment of modelling hypotheses and inform strategies used when implementing the 69 

model to make predictions. 70 

2. Methods 71 

2.1. Study lakes 72 

The study area is located in the English Lake District of North West England which is a hilly 73 

region with a landscape and lakes shaped by glaciation. The land use is predominantly 74 

upland unimproved grassland, grazed by sheep and the region is extremely popular with 75 

tourists throughout the year, particularly during summer. The three study lakes, Windermere, 76 

Bassenthwaite Lake and Esthwaite Water, are among the best studied lakes in the world 77 

(Maberly and Elliott, 2012) and differ in area, depth, extent of summer stratification, hydraulic 78 

residence times and trophic state (Fig. 1; Table 1). For more information see Talling (1999); 79 

Reynolds & Irish (2000); Thackeray et al. (2006); Maberly et al. (2011) Mackay et al., (2014). 80 

In this study for Windermere we simulate only the South Basin of Windermere rather than 81 

the whole lake. It receives inputs directly from the larger North Basin and indirectly from 82 

Esthwaite Water via Cunsey Beck. For this study, simulations were made for six lake-years 83 

where high resolution and high quality data were available: 2008-2010 for Windermere, 2008 84 

and 2009 for Esthwaite and 2010 for Bassenthwaite. 85 

 86 

Table 1. Primary characteristics of the study lakes. 87 

Lake Area 
(km2) 

Volume 
(Mm3) 

Mean depth 
(m) 

Max depth 
(m) 

Catchment 
area (km2) 

Mean 
residence 

time (days) 

Trophic state 

Windermere 
South Basin 

6.7 113 16.8 42 231 100 Mesotrophic 

Esthwaite 
Water 

1.0 6.7 6.9 15.5 17 100 Eu-mesotrophic 

Bassenthwaite 
Lake 

5.3 28 5.3 19 360 30 Meso-eutrophic 

 88 
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 89 

Figure 1. Bathymetric map and inset hyposographic curve for (a) Windermere South Basin*, 90 

(b) Esthwaite Water** and (c) Bassenthwaite Lake*. * Redrawn from Ramsbottom, 1976; ** 91 

Redrawn from Mackay et al., 2012. 92 

 93 

2.2 The PROTECH model 94 

2.2.1. General description 95 

PROTECH (Reynolds et al., 2001) is an algal community lake model that runs on a daily 96 

time-step. It is a 1-D model where the lake is represented by 0.1 m horizontal layers each 97 

with a volume calculated by interpolation of lake bathymetric data. The model has routines 98 

which calculate stratification and destratification and determine the depth to the top of the 99 

thermocline for each time step. In the model representation, the top of the thermocline is 100 

considered the depth at which all layers above are fully mixed: referred to as the mixed 101 

depth for the purposes of this study. The layers from the surface to the mixed depth are 102 

treated as homogeneous and are instantaneously mixed at each time step. The model also 103 

has the ability to represent vertical eddy diffusion fluxes (of energy and nutrients; see Elliott 104 

and Thackeray, 2004) which is particularly important for simulating the behaviour of lakes 105 
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with significant sediment-derived internal P fluxes. Eddy diffusion is represented using a 106 

simplified function where groups of model layers (metalayers of depth MLd) are 107 

homogenized and mixing occurs across the boundary between them (Eqn. 1). The degree of 108 

mixing is specified by an eddy diffusivity parameter (Kz) that is assigned a fixed value for the 109 

duration of a simulation and is used to calculate the flux (F) of a given substance (j) for 110 

metalayer n using: 111 

𝐹𝑛,𝑗 =
𝐾𝑧

𝑧𝑛−𝑧𝑛−1
.
𝐶𝑛−𝐶𝑛−1

𝐴
       (1) 112 

Where: A is the area of the plane of contact between metalayers, z is the depth at the centre 113 

of each metalayer and C is the mean concentration of the metalayer in question.  114 

River inputs drive fluxes of diffuse nutrients as well as the flushing of algae. Riverine inputs 115 

include algal inocula which are set to a ‘background’ chlorophyll a concentration for the time 116 

of year; for each day this inocula is distributed equally across the species simulated. 117 

Upstream lake inputs are added proportionally (using proportion of overall catchment area 118 

drained) to river inputs but are given the algal concentrations associated with the upstream 119 

lake, where it is possible to represent them.  120 

Underwater light for model layer 𝑖, 𝑙𝑖, is calculated using: 121 

    𝑙𝑖 = 𝐼𝑠𝑢𝑟𝑓 . 𝑒
(−𝜀.𝑑𝑖)       (2) 122 

Where: 𝐼𝑠𝑢𝑟𝑓 is the daily surface light flux (see Reynolds et al., 2001), 𝑑𝑖 is the depth from 123 

the lake surface, 𝜀 is the light extinction coefficient resulting from the sum of lake-specific 124 

abiotic extinction (𝜀𝑏; a model parameter which is fixed for the duration of a simulation) and 125 

the extinction of light associated with the concentration of algae at each time-step multiplied 126 

by the parameter 𝜀𝑎.  127 

 128 

In the layers from the surface to the mixed depth, the light is averaged (using the geometric 129 

mean) to represent the amount of light to which algae are exposed. This averaging is based 130 

on the assumption that the algae spend an equal time in each layer down to the mixed depth 131 

for the duration of the time step. 132 

Once the environment for algal growth of each layer is determined, algal population 133 

dynamics are simulated using the following state variable equation which describes the 134 

change in chlorophyll a concentration (X) of each algal species considered (Reynolds 1988): 135 

  
𝑋

𝑡
= (𝑟′ − 𝑆 − 𝐺 − 𝐷). 𝑋       (3) 136 
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where 𝑟′ is the growth rate, S is the settling loss, G is the grazing loss and D is the loss 137 

caused by flushing. The growth rate (r’) is defined for each layer using: 138 

  𝑟′ = min{𝑟(𝜃)
′ , 𝑟(𝑃)

′ , 𝑟(𝑁)
′ , 𝑟(𝑆𝑖)

′ }       (4) 139 

where r’(,I) is the growth rate at a given temperature () and daily photoperiod (I) and r’P, r’N, 140 

r’Si are the growth rates determined by phosphorous, nitrogen and silica concentrations. The 141 

final growth rate (r’cor(,l)) is a corrected rate allowing for dark respiration using equation 5. 142 

This is required as the model growth equations are net of basal metabolism but not dark 143 

respiration burden.    144 

  𝑟𝑐𝑜𝑟𝑟(𝜃,𝑙)
′ = 𝑅𝑑(𝜃). 𝑟(𝜃,𝑙)

′ − (1 − 𝑅𝑑(𝜃). ). 𝑟(𝜃,𝑙)
′       (5) 145 

Where 𝑅𝑑(𝜃) is the dark respiration rate at temperature  .  146 

 147 

2.2.2 Simulating the dynamics of algal species 148 

PROTECH simulates the dynamics of the species chosen to represent the algal community 149 

of a given lake. Species are represented by their morphology, nutrient requirements (i.e. 150 

silica requirement and nitrogen fixing ability) and their vertical movement strategies. The 151 

number of species simulated is nominally eight (although unlimited) and are chosen to 152 

represent the dominant functional types of the system of interest (see Table Supp. 2). 153 

Modelling results are thus primarily interpreted on the basis of the behaviour of the functional 154 

algal community rather than the dynamics of specific species simulated, to avoid 155 

overconstraint on the specific species chosen. The C-S-R functional phytoplankton 156 

classification of Reynolds (1988) is used to classify phytoplankton into morphologically 157 

defined groups relating to broad ecological strategies. The primary groups are: C-types, 158 

which are invasive, ecological pioneers that are small with high surface-to-volume ratios 159 

(e.g. Chlorella, and Plagioselmis); S-types which are ‘stress tolerators’ that tolerate relatively 160 

low nutrient availability and strong stratification (e.g. Woronichinia, Microcystis and 161 

Oocystis); and R-types which can harvest sufficient light at low levels to be able to maintain 162 

growth and are hence tolerant of well-mixed, intermittently insolated environments (e.g. 163 

Asterionella, Aulacoseira and Oscillatoria). Also important for the lakes studied here, are CS-164 

types, whose characteristics are intermediate between those of C and S species (e.g. 165 

Dolichospermum, Aphanizomenon and Ceratium) and CSR-types (e.g. Cryptomonas) that 166 

are intermediate between C-, S- and R-types. 167 

 168 
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 169 

2.3 Modelling Hypotheses and scenarios 170 

Two hypotheses were tested to improve the model: 1) a modification of the method for 171 

estimating mixed depth, which affects the light climate for algae and hence population 172 

dynamics and 2) A modified relationship between phosphorus concentrations and river 173 

inflow magnitude aimed at improving the timing of phosphorus fluxes and subsequently algal 174 

community dynamics. 175 

 176 

2.3.1 Hourly estimation of mixed depth  177 

In model space, the degree to which algae are exposed to light is necessarily a simplification 178 

and controlled primarily by the mixed depth, the way light is “averaged” throughout the mixed 179 

depth and the light extinction coefficient (ε). Under the standard model formulation used 180 

here, the mixed depth is estimated using daily averaged (of hourly) temperature depth 181 

profiles using a density gradient method (Read et al., 2011). However, analysis of the hourly 182 

temperature profile data showed that there were periods of temporary stratification that were 183 

not captured by daily averages, especially during the onset of stratification, (Fig. 2). We 184 

therefore postulated that the daily mixed depth estimate is represented better by the 185 

distribution (or a moment of the distribution) of hourly mixed depth estimates for a 186 

given day rather than an estimate using the daily averaged temperature profile. 187 

 188 

2.3.2 Inflow-dependent phosphorus inputs  189 

The standard model representation of diffuse soluble reactive phosphorus (SRP)-river 190 

inflow relationships identified here (see section 2.4.2.1 for a description) were developed 191 

using all the available nutrient data at monthly resolution. It is well-known, however, that low 192 

resolution routine monitoring tends to underestimate P concentrations at high flows for river-193 

catchments where diffuse sources dominate and where there tends to be an increase in 194 

concentration with flow (e.g. see Johnes, 2007; Cassidy and Jordan, 2011). In the case of 195 

Windermere South Basin, approximately 85% of the flow- dependent P inputs are delivered 196 

via its North Basin, any modification to the diffuse SRP- inflow relationship will implicitly 197 

include effects from misrepresentation of upstream lake P inputs. We hypothesised that 198 

diffuse SRP concentrations are linearly related to inflow magnitude; a description of the 199 

implementation of this hypothesis is provided in section 2.4.2.1 below. 200 
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 201 

Figure 2. Comparison of the standard model formulation mixed depth estimates based upon 202 

daily averaged temperature profiles (black line) with individual hourly mixed depth estimates 203 

for the same day (grey circles) for Esthwaite Water 2009. The distribution of hourly estimates 204 

for each day was sampled to provide a modified representation of the daily depth for the 205 

modelling scenarios (Table 2). 206 

 207 

2.3.3 Modelling scenarios 208 

The factorial combination of the two time resolutions for mixed depth and treatments of SRP 209 
input led to four scenarios (Table 2). 210 

 211 

Table 2. Modelling scenarios. 212 

Scenario Mixed depth P-inflow 

S1 Daily average Standard model 

representation 
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S2 Daily average Hypothesised  

representation 

S3 Sampled from hourly dist. Standard model 

representation 

S4 Sampled from hourly dist. Hypothesised 

representation 

 213 

2.4 Modelling methodology 214 

Here we assess PROTECH under the GLUE-LoA methodology. The philosophy underlying 215 

GLUE recognises that given the significant uncertainties associated with modelling 216 

environmental systems there will be multiple model structures and parameter set 217 

combinations that provide ‘acceptable’ simulations (the equifinality thesis; Beven, 2006). As 218 

parameter sets (rather than individual parameter values) and different model structures are 219 

evaluated, interaction between parameters and structures that lead to acceptable 220 

simulations is implicitly taken into account. The use of GLUE with explicit LoA takes into 221 

account uncertainties associated with input and evaluation data, as well as 222 

incommensurability (e.g. the mismatch between variables in model space and those 223 

observed in the real system) such that models that might be useful in prediction are not 224 

falsely deemed unacceptable (Beven, 2006, 2012; Blazkova and Beven, 2009; Liu et al., 225 

2009). LoAs are absolute ranges, associated with specified criteria, within which simulation 226 

outputs are required to fall to be deemed acceptable and which should ideally be defined a 227 

priori. The rationale used in deriving the LoA for each lake-year considered here is described 228 

in detail below. 229 

Monte Carlo sampling was employed to explore the model parameter space from a priori 230 

defined ranges for each parameter (Table Supp. 1). Where no information is available 231 

regarding the prior probability distributions of parameters, a uniform distribution was 232 

sampled. Where prior knowledge about parameter distributions and covariation of 233 

parameters is known it can be incorporated within the sampling strategy. For each 234 

simulation, model performance was assessed by LoA (as discrete acceptance criteria) as 235 

well as a likelihood measure or weighting which expresses the degree of fit to the evaluation 236 

data. The likelihood measures used for this study are specified below (Eqns. 8-14). Models 237 

deemed unacceptable based on the LoA were rejected and played no further part in the 238 
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analysis. All acceptable simulations were used in the generation of likelihood-weighted 239 

uncertainty bounds using: 240 

     (6) 241 

where is the prediction quantile for  (the value of variable Z at time t simulated by model 242 

) being less than z, L is the likelihood weighting (a scaled form of eqn. 14 such that 243 

all weightings sum to unity) associated with model , is the jth parameter set and N 244 

is the number of acceptable models.  245 

2.4.1 Sampling model parameters 246 

The model parameters for each lake and scenarios and their ranges for the uncertainty 247 

analysis where these were varied are show in Table Supp. 1. For parameters that were 248 

varied, Monte Carlo sampling from uniform distributions was employed. The parameters 249 

varied were those shown to be the most sensitive from previous unpublished work, past 250 

analyses (e.g. see Elliott et al., 1999) and initial simulations undertaken for the present 251 

study. These include those which determine the source, magnitude and dynamics of nutrient 252 

inputs, the representation of underwater light and the magnitude of eddy diffusion between 253 

metalayers as described above. For each of the scenarios and for each lake-year 254 

considered 100,000 simulations were carried out.  255 

2.4.2 Nutrient inputs 256 

All three lakes are impacted by diffuse nutrient sources as well as significant point sources of 257 

P from WwTW. Additionally, Esthwaite Water is known to be affected by significant internal 258 

sources of P (Mackay et al., 2014) but it was assumed, for the purposes of this study, that as 259 

Windermere and Bassenthwaite Lake were unlikely to be anoxic during the study period they 260 

were not subject to significant internal P releases.  261 

2.4.2.1 Diffuse nutrient inputs 262 

Measured lake outflows for each lake were available from the United Kingdom Environment 263 

Agency (National River Flow Archive: http://www.ceh.ac.uk/data/nrfa/) at a daily resolution. 264 

Inflows were assumed to equal outflows and were treated in a deterministic manner. The 265 

standard model treatment of diffuse nutrient inputs for all scenarios, for Si and NO3-N and 266 

S1 and S3 for SRP is as follows. All available nutrient concentrations (for all rivers where 267 

nutrient data were available) were associated with the lake outflow magnitude the 268 

,

1
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observation day. A “regionalised” relationship was the developed using discrete outflow 269 

magnitude classes, to which a Gamma distribution was fitted to all concentrations associated 270 

within that outflow class. At each simulation time step, each nutrient concentration was 271 

sampled from its respective Gamma distribution of the flow class associated with the 272 

observed daily flow. The magnitude of the inputs was also modified using a multiplier which 273 

was constant for the duration of each simulation (parameter Pfact: Table Supp. 1).   274 

Where diffuse P inputs were treated differently under the hypothesized scenarios S2 and S4, 275 

input concentrations for each time step (Pi) were estimated using the flow-proportional 276 

relationship:  277 

𝑃𝑖 = 𝑃𝑚𝑖𝑛 +
𝑄𝑖

𝑄′
𝑃𝑚𝑎𝑥          (7) 278 

where 𝑃𝑚𝑖𝑛and 𝑃𝑚𝑎𝑥 are parameters which define the minimum and maximum P 279 

concentration, 𝑄𝑖 is the inflow at timestep i and 𝑄′ is a normalising flow value (set to the 280 

mean of the years of interest as a first approximation). 281 

2.4.2.2 Upstream lake inputs  282 

Windermere South Basin is subject to significant upstream lake inputs (estimated to be 283 

approximately 85% of the catchment area-weighted inflow), primarily from Windermere North 284 

Basin. Data were only available for Windermere and upstream lake inputs for other lakes 285 

were represented by the inflow-dependent nutrient relationships. For Windermere, upstream 286 

lake inputs of SRP, NO3-N, Si and Chlorophyll a were sampled from a distribution for each 287 

day of the year. The day-specific distribution was developed using data from the fortnightly 288 

long-term monitoring record (2006-2012). As multiple observations were not available for 289 

each day of the year, concentrations for that day were represented by observations within a 290 

‘moving window’ of 20 days and a Gamma distribution was fitted to all points within the 291 

window.  292 

2.4.2.3 Wastewater treatment works P inputs  293 

Inputs of SRP from wastewater treatment works were treated in the same way as upstream 294 

lake inputs but as a mass per day and were modified using a multiplier (parameter 295 

WwTWfact: Table Supp. 1). The only data available were for P inputs to Windermere for the 296 

years 2002 to 2007 (Maberly and Elliott, 2009). Distributions for Esthwaite Water and 297 

Bassenthwaite Lake were scaled (using approximate population statistics) versions of those 298 

developed for Windermere so that the seasonality of inputs associated with tourist 299 

populations was retained. 300 
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2.4.2.4 Internal lake P fluxes  301 

Hypolimnetic and epilimnetic SRP fluxes were considered only for Esthwaite Water. As a 302 

way of constraining the hypolimnetic P fluxes we used year-specific estimates from 303 

observations and calculations reported by Mackay et al. (2014). These observations 304 

included the temporal dynamics of oxygen depletion and SRP concentrations at depths of 305 

0.5 m, 11 m, and 14 m for SRP and every 1 m for oxygen concentration. Given an estimated 306 

depth to deoxygenated waters (assumed to be below 1 g m-3 of dissolved oxygen) the 307 

sediment area in contact with deoxygenated water was calculated at each time step. It was 308 

assumed that SRP was released when waters were deoxygenated and was treated as a 309 

threshold without varying degrees of release. The mass of SRP released into the 310 

hypolimnion was estimated using the bed area associated with deoxygenated waters and a 311 

parameter specifying the mass of SRP released per m2 (PHypo; Table Supp.1) which was 312 

fixed for the duration of any given simulation. Epilimnetic P inputs were included using the 313 

method of Mackay et al. (2014) who employed SRP release estimates, of 0.46 mg m-2 d-1 314 

based on Steinman et al. (2009). This value was modified by the parameter (PEpi; Table 315 

Supp.1) used in conjunction with the epilimnetic bed area (calculated each day within the 316 

model) to provide a daily mass input to the mixed layer. 317 

2.4.3 Lake temperature and mixed depth estimates  318 

Under the United Kingdom Lake Ecological Observatory Network (UKLEON) project 319 

(http://www.ceh.ac.uk/our-science/projects/uk-lake-ecological-observatory-network-ukleon) 320 

high frequency (4 minute) observations are being collected using a network of automatic 321 

lake monitoring systems including those associated with the buoy located at the three study 322 

lakes (Fig. 1). These included, among other variables, a meteorological station on the station 323 

and a thermistor chain. 324 

The temperature in each vertical layer of the model and the mixed depth were estimated 325 

using the high frequency buoy observations. At each time step, either hourly or daily 326 

depending upon the scenario, the mixed depth was estimated using thermistor chain data 327 

and a critical density gradient method (Read et al., 2011) which identifies the thermocline 328 

based upon a critical water density gradient (Δρ).  329 

Mixed depth sampling for S1 and S2 utilised mixed depth estimated from average daily lake 330 

temperature data. The uncertainty associated with the mixed depth estimates was taken into 331 

account by varying Δρ. The minimum, best estimate and maximum Δρ (0.05, 0.1 and 0.15 332 

respectively) were used to estimate 3 mixed depths for each simulation day. Additional 333 

uncertainties (associated with representation of the whole lake by the buoy location and 334 
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temperature interpolation error) were estimated to be +/- 0.5 m of the estimated mixed depth 335 

as a first approximation. For each day, an estimate of the mixed depth was sampled 336 

randomly from the range described above. The mixed depth estimate was correlated to the 337 

previous day’s sample with the correlated random number (Rmdi) using: 338 

 339 

  𝑅𝑚𝑑𝑖 = 𝑅𝑚𝑑𝑖 × 𝐶 +𝑅𝑚𝑑𝑖−1 × (1 − 𝐶)     (8) 340 

 341 

where, i denotes timestep and C is a correlation coefficient (nominally set to 0.75). Each 342 

mixed depth estimate (𝑀𝑑𝑖) at each timestep was weighted using a triangular fuzzy 343 

membership function (Eqn. 9) constructed from the range of likely mixed depths described 344 

above.  345 

  346 

𝑊𝑖 = 1 − (
(𝐸𝑖−𝑀𝑑𝑖)

𝐸max −𝐸𝑖
) :𝑤ℎ𝑒𝑟𝑒𝐸𝑖 >𝑀𝑑𝑖  347 

 𝑊𝑖 = 1 − (
(𝑀𝑑𝑖−𝐸𝑖)

𝐸𝑖−𝐸𝑚𝑖𝑛
) :𝑤ℎ𝑒𝑟𝑒𝐸𝑖 <𝑀𝑑𝑖     (9) 348 

 𝑊𝑖 = 1:𝑤ℎ𝑒𝑟𝑒𝑀𝑑𝑖 = 𝐸𝑖 349 

where: Wi is the individual weighting for timestep i, Ei is the expected value of mixed depth 350 

and Emin and Emax are the minimum and maximum of the fuzzy range. The overall weight (Ws) 351 

is the mean of all N weights: 352 

 353 

 𝑊𝑠 =
∑ (𝑊𝑖
𝑁
𝑖 )

𝑁
        (10) 354 

   355 

and is an a priori weighting that represents the confidence in the sequence of mixed depth 356 

estimates for a given simulation. This weighting was combined with simulation performance 357 

and propagated to the results of the uncertainty analysis using Eqn. 14 below. 358 

For the scenarios utilising hourly temperature data (S3 and S4), mixed depth was estimated 359 

for each hour of each day using the density gradient method to provide a distribution of 360 

hourly mixed depths for each day. This distribution was sampled using an additional 361 

parameter (Mp; Table Supp.1) specifying the percentile of the distribution to be used for the 362 

duration of each simulation. 363 

2.4.4 Choosing the simulated phytoplankton 364 
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The taxa chosen to represent the algal community for each lake-year considered were the 365 

top 8 species observed (ranked by biovolume magnitude; see Table Supp.2). In each case, 366 

the sum of the biovolumes of the species chosen was greater than 90% of the total annual 367 

biomass.  368 

2.4.5 Evaluation of simulations and defining Limits of Acceptability 369 

The initial LoA were defined a priori using the available data and literature sources together 370 

with uncertainty estimates elicited from experts associated with the UKLEON project. The 371 

initial LoA did not explicitly include allowance for the uncertainty associated with nutrient 372 

inputs as these inputs were modified by parameters to be constrained under GLUE-LoA.  373 

2.4.5.1 Initial Limits of Acceptability 374 

Chlorophyll a observations were the primary modelling constraint. Each observation is 375 

derived from a water sample integrated over 0-5 m depth (Esthwaite Water and 376 

Bassenthwaite Lake) or 0-7 m depth (Windermere) (see Maberly et al., 2010) collected at 377 

the buoy location (see Fig. 1). There are three primary sources of uncertainty associated 378 

with the chlorophyll a observations: sampling error associated with the integrated water 379 

samples themselves, analytical error associated with the laboratory-based chlorophyll 380 

measurement and the error associated with in-lake spatial and temporal variability. We 381 

estimated the sampling/analytical error to be approximately +/- 8% using data from 382 

replicate samples taken under UKLEON combined with published estimates (Knowlton et al., 383 

1984 and Mackay et al., 2011). The uncertainty associated with spatial heterogeneity is 384 

more difficult to estimate and varies over time (Elliott and Defew, 2012) and between species 385 

(e.g. wind-blown cyanobacteria species can be particularly heterogeneous: George and 386 

Heaney, 1978); we estimated the overall error to be in the order of +/-25%. 387 

The model was also constrained using algal community structure (also collected at the buoy 388 

location: Fig. 1). To avoid over constraint, both observations and simulations of algal species 389 

were represented as functional algal types (R-types and CS-types), rather than individual 390 

species; the use of individual species has the potential to spuriously reject simulation 391 

because……..   Constraining simulations on functional type does retain our ability to reject 392 

simulations that may achieve acceptable chlorophyll a concentrations, but which do not 393 

simulate well the dynamics of the algal community. The algal species “counts” themselves 394 

are robust, in terms of relative abundance, but will have unquantified errors associated with 395 

sample heterogeneity, counter fatigue and between-counter variation (Thackeray et al., 396 

2012). Given the higher level of uncertainty associated with these data and the uncertainty 397 
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associated with conversion to biovolume and subsequently chlorophyll a, we estimated the 398 

sampling/analytical error to be +/- 25% and the overall error to be +/- 50%. 399 

 400 

2.4.5.2 Relaxed Limits of Acceptability 401 

Nutrient input uncertainties including the interaction between the different sources 402 

(particularly for P), can have significant knock-on effects as the year-long simulations 403 

progress. Relaxed LoAs were developed to allow for uncertainties associated with nutrient 404 

inputs, during periods of the year when nutrients are believed to be limiting. The 405 

consequences of relaxation, however, mean that knock-on effects on model state variables 406 

(such as the P concentration in the mixed layer) are not well-constrained, making definition 407 

of the LoA later in the year, when nutrients are no longer limiting growth, problematic. Limits 408 

of Acceptability for functional types suffer from similar problems. For example, CS-types tend 409 

to be present throughout the stratified period and will hence be more affected by 410 

misrepresentation of P inputs. This reasoning provides significant scope for relaxing the LoA 411 

such that we do not reject an appropriate model falsely; however, it is worth reiterating that 412 

the aim of constraining the sources and timing of nutrient inputs meant that relaxation was 413 

minimised for each lake-year. The LoA were relaxed differently for the periods deemed to be 414 

predominantly nutrient limited or light limited. These year-specific periods were estimated 415 

using observations of chlorophyll a and residual nutrient concentrations and are shown in 416 

Table Supp. 3 together with the associated percentage deviations representing the LoA for 417 

both chlorophyll a and functional types. 418 

2.4.5.3 Timing errors and minimum error magnitude 419 

For both, initial and relaxed LoA, a minimum absolute error was set to avoid over-constraint 420 

by very low observed concentrations: this was set at 5 mg m-3 (2 mg m-3 for Windermere 421 

2008) for chlorophyll a and 10 mg m-3 for R and CS functional types. To allow for 422 

unquantified uncertainties associated with model forcing, the LoA were expanded temporally 423 

to allow for timing errors in simulations. A first-approximation estimate of +/- 10 days (et in 424 

Eqn. 12) was used as the “window” for an acceptable simulation (Eqn. 12 and Fig. Supp. 1). 425 

2.4.5.4 Weighting acceptable simulations 426 

Simulations which fall within the LoA are assigned a likelihood weighting (L) based upon 427 

their goodness-of-fit to the observations. The uncertainty embodied in the LoAs described 428 

above, was defined by a trapezoidal fuzzy weighting measure (Eqn. 11) for each observation 429 

timestep (i). This formulation gives an equal weighting (of 1) to all simulations that fall within 430 

the sampling/analytical error bounds; simulations that fall between the sampling/analytical 431 
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error and the overall error were given a lower weighting as they approach the LoA (the 432 

overall error) outside of which they were given a zero weighting as defined by: 433 

  434 

𝐿𝑖 = 1 − (
(𝐸𝑖−𝑒𝑎,𝑖)−𝑆𝑖

(𝐸𝑖−𝑒𝑎,𝑖)−𝐸min,i 
) , 𝑤ℎ𝑒𝑟𝑒:(𝐸𝑖 −𝑒𝑎,𝑖) >  𝑆𝑖 > 𝐸𝑚𝑖𝑛,𝑖  435 

𝐿𝑖 = 1 − (
𝑆𝑖−(𝐸𝑖+𝑒𝑎,𝑖)

𝐸max,i −(𝐸𝑖+𝑒𝑎)
) , 𝑤ℎ𝑒𝑟𝑒:(𝐸𝑖 +𝑒𝑎,𝑖) > 𝑆𝑖 > 𝐸𝑚𝑎𝑥,𝑖  436 

  437 

 𝐿𝑖 = 1,𝑤ℎ𝑒𝑟𝑒:(𝐸𝑖 −𝑒𝑎,𝑖) < 𝑆𝑖 < (𝐸𝑖 +𝑒𝑎,𝑖)     (11) 438 

𝐿𝑖 = 0,𝑤ℎ𝑒𝑟𝑒:𝐸𝑚𝑖𝑛,𝑖 > 𝑆𝑖 > 𝐸𝑚𝑎𝑥,𝑖  439 

 440 

and where, Si is the simulated estimate, Ei is the expected or observed value, ea,i is the 441 

analytical error and Emin,i and Emax,i are the are the overall error. The individual likelihood 442 

weights were modified further to allow for timing errors using: 443 

 444 

𝐿𝑖 = max(𝐿𝑖,∆𝑡 ×  |
∆𝑡

𝑒𝑡
|)       (12) 445 

where, ∆𝑡 is the timing error associated with the simulated variable and et, is the acceptable 446 

timing error. The overall weighting for any given criterion for the simulation period 𝐿𝑐 is given 447 

by: 448 

 449 

𝐿𝑐 =
∑ (𝐿𝑖)
𝑁
𝑖

𝑁
        (13) 450 

 451 

where, N is the number of time steps where observed data are available. 𝐿𝑐 is common to all 452 

observed criteria i.e. Chlorophyll (𝐿𝐶ℎ𝑙), R-types (𝐿𝑅), CS-types (𝐿𝐶𝑆) and the overall 453 

weighting for the simulation Ls is given by: 454 

𝐿𝑠 = [(𝐿𝐶ℎ𝑙 + 𝐿𝑅 + 𝐿𝐶𝑆) × 𝑊𝑠]     (14) 455 

and where Ws is unity for S3 and S4 owing to the different sampling strategy and unity for 456 

the absolute comparison of fit presented in Table 3. The weighting Ws is however used in 457 

determining the final uncertainty estimates (Eqn. 6) for S1 and S2. 458 

3 Results and Discussion 459 
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Simulation results for the scenarios are presented in this section and are discussed in terms 460 

of goodness-of-fit to the available observations and LoA. As a way of comparing the overall 461 

performance of modelling scenario, each was assigned an integrated score (Table 3).  The 462 

integrated score was calculated using trapezoidal numerical integration of all acceptable 463 

overall likelihood weightings using Eqn. 14 where Ws was set to unity to enable comparison 464 

based solely on goodness-of-fit.  465 

3.1 Simulation results: S1  466 

For all lake-years considered, no simulations were acceptable in terms of falling within the 467 

stringent initial LoA defined above.  In fact, no model simulations fell within the specified 468 

ranges for chlorophyll a alone: i.e. without any additional constraint associated with the LoA 469 

based on functional algal types. This is not unusual in environmental modelling applications 470 

given the complexity of the uncertainties involved (e.g. Beven et al., 2007; Liu et al. 2009; 471 

Van Straten and Keesman, 1991), particularly when using multi-criteria LoA (e.g. Blazkova 472 

and Beven, 2009; Brazier et al., 2000).  Using the relaxed LoA, acceptable simulations were 473 

obtained for all lake-years apart from Esthwaite Water 2009 where no simulations were 474 

acceptable based upon chlorophyll a or community structure and only the chlorophyll a LoA 475 

could be met for Bassenthwaite Lake (Table 3). Subsequently, in this section results for 476 

Esthwaite Lake 2009 relate to the dynamics of simulations which achieved the highest 477 

overall weightings and for Bassenthwaite Lake relate to the LoA for chlorophyll a only. 478 

 479 

Simulations for three of the six lake-years (Windermere 2009, 2010 and Esthwaite Water 480 

2009) showed a general tendency for under-prediction of biomass at the beginning of the 481 

year (predominantly in the pre-stratification period) if the biomass towards the end of the 482 

year was well-simulated; where simulations provided adequate fits to the early part of the 483 

year, there was a systematic overestimation of biomass during and after destratification.  484 

This apparent hysteresis was the most distinctive feature of the S1 simulations and is 485 

highlighted in Figs. 3a-d by the comparison of two sets of simulations which fit either the 486 

early or late part of each year but which yield similar goodness-of-fit weightings (calculated 487 

using Eqn. 14). The two sets of highly-weighted simulations were separated using different 488 

ranges of the parameter εb (simulations were most sensitive to εb during the periods of 489 

interest).  Simulation hysteresis was present but lower for Windermere 2008 and apparently 490 

absent for Esthwaite Water 2008, apart from the under prediction of the observation on day 491 

78.  492 

 493 
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There was also a tendency for there to be too much biomass during the period where the 494 

observed chlorophyll a concentration “crashes” after the spring diatom bloom (e.g. Figs. 3 b 495 

and d) which can be as a result many different phenomena including nutrient limitation, 496 

zooplankton grazing and sometimes the effects of deep mixing events.  Determination of 497 

which of these phenomena drive the observed pattern (in both the real system and in model 498 

space) is not straightforward as misrepresentation of the mixed depth and consequent light 499 

regime or incorrect representation of nutrient inputs could contribute to a similar pattern.  500 

However, analysis of concurrent residual nutrient concentrations suggests that a lack of P 501 

limitation (possibly together with Si in some cases) exacerbated by a poor simulation of early 502 

growth was the most likely cause.  503 

 504 

3.2 Simulation results: S2, S3 and S4 505 

Implementing the modelling hypotheses had various effects with some simulation 506 

improvements in chlorophyll a dynamics for some periods and others where simulations 507 

were poorer.  Where there were improvements these were not enough to allow any 508 

simulations to fall within the stringent initial LoA. Using the relaxed LoA, acceptable 509 

simulations were obtained for all lake-years considered except Bassenthwaite Lake where, 510 

similarly to S1, the algal community structure was not simulated well. Evaluation of the 511 

goodness-of-fit discussed in this section considers both the entire time series and different 512 
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 513 

Figure 3. High-weighted sets of simulations which fit either the early (grey shaded area) or 514 

the late (thick black lines) part of each year; the sets were isolated using different ranges of 515 

the parameter εb and are represented by 3 lines showing the 5th, 50th and 95th percentiles of 516 

the likelihood-weighted distributions for: Windermere (a) 2008, (b) 2009, (c) 2010; (d) 517 

Esthwaite Water 2009; the box and whisker plots indicate the initial LoA without allowance 518 

for timing errors for clarity and where the boxes denote the sampling/analytical error and the 519 

whiskers the overall error.  520 

periods of interest in comparison to the simulations associated with the S1 results: in 521 

particular in context with periods where either light or nutrients were deemed to be the most 522 

limiting for algal growth. The discussion of simulation dynamics during these periods is 523 

qualitative and is based upon simulations that fell within the relaxed LoA for chlorophyll a, 524 

R-type species and CS-type species unless specified. In general, although the integrated 525 

score showed that some improvements were achieved using the new representation of P 526 

inputs (S2 and S4, Table 3), the differences were small and were more apparent in 527 

combination with the alternative treatment of mixed depth: for these reasons the majority of 528 

the discussion below focusses on the effects of changing the representation of mixed depth 529 
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estimates and subsequent algal exposure to light. Of the six lake-years considered, four 530 

showed an improved integrated score using the model structural changes implemented with 531 

Esthwaite Water 2009 showing the most significant differences resulting from improved algal 532 

dynamics.  Two of the lake years had poorer overall fits to the observed data, one of those 533 

significantly.  534 

Simulations for Windermere 2008 were slightly worse using hourly mixed depths (Fig. 4a) 535 

primarily as a result of an unobserved “spike” of biomass simulated at approximately day 536 

310 which was simulated as a result of an occurrence of temporary stratification within the 537 

model.  538 

The improved simulations for Windermere 2009 (Fig. 4b) were achieved using S3 and S4 539 

and resulted in an overall reduction in hysteresis in the predicted biomass relative to the 540 

observations. The significant deviation between simulated and observed chlorophyll a at 541 

around day 125 to 175, where too much biomass was simulated, was apparent under all 542 

scenarios (Figs. 3b and 4b). Evidence from the observed data for this period indicates that 543 

the loss of biomass in the real system is associated with P and Si limitation which could not 544 

be simulated using the sampled nutrient inputs and which was compounded by the knock-on 545 

effects of the under estimation of biomass (and associated lack of nutrient uptake) around 546 

days 100 to 120.  547 

The simulation of R-type species growth was improved for Windermere 2010 in both the 548 

spring bloom and the resurgent population after approximately day 200 (Fig. 4c).  Similarly to 549 

2009, the higher biomass between days 220 and 250 was not simulated well with any of the 550 

model implementations, primarily owing to hysteresis effects but also because of an 551 

apparent misrepresentation of P inputs during a specific inflow event. For model runs which 552 

achieved high concentrations for this period, simulation of the low concentrations observed 553 

(of primarily R-type species) in the subsequent days (approximately days 250-300) was not 554 

possible.  Given that observations of residual concentrations of P and Si were observed to 555 

be relatively high during this period, too much available light, because of the use of hourly 556 

mixed depths, is a possible cause.  557 

A consistent pattern for all 3 years of simulations for Windermere showed a lack of sufficient 558 

loss (or too much growth) of algal biomass, particularly towards the end of the year.  In the 559 

“real” system net-losses are observed to be more rapid when the mixed depth is estimated 560 

to be greater than approximately 15 to 20 m, whereas in model space rapid loss occurs at a 561 

greater depth (approximately between 20 and 25 m) indicating a systematic difference in the 562 

model representation. 563 
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For Esthwaite Water 2008, and for periods where R-type species dominated (approx. days 564 

0-140; Fig. 4d), improved simulation dynamics were achieved using S3 and S4, where S1 565 

resulted in an overestimate around days 100 to 120. After day 250, the hourly mixed depth 566 

representation produced more dynamic responses than the “smoothed” response associated 567 

with the daily mixed depth; the more dynamic responses are, however, difficult to associate 568 

with improved simulations given the frequency of observations available. Using the hourly 569 

mixed depths gave a poorer representation of the chlorophyll a dynamics between days 140 570 

and 250 (Fig. 4d) where CS-type species were observed to be dominant; the over-estimation 571 

of R-type species during this period led to a lower integrated score.  572 

An improvement in simulation dynamics and overall fit was achieved using S3 and S4 for 573 

Esthwaite Water 2009 (Table 3 and Fig. 4e).  In particular, the simulation of rapid growth 574 

from around day 40 to 90 was made possible, although the model was still not able to 575 

simulate the peak observed chlorophyll a concentration on day 62.  The hourly mixed depth 576 

estimates of S3 and S4 provide good simulations of the observed chlorophyll a dynamics 577 

around days 280-300 which were not simulated well under S1 or S2 (Fig. 4e) and which 578 

subsequently led to rejection of all simulations for these scenarios (Table 3). The algal 579 

population dynamics from approximately day 90 to day 160 were not simulated well by any 580 

of the implemented model structures and was apparently a result of the misrepresentation of 581 

P inputs on the limitation of growth, although this was likely to be compounded by the 582 

underestimation of growth between timesteps 40 to 90.   583 

In the case of Bassenthwaite Lake where algal community structure was not simulated well 584 

for any of the scenarios, only the relaxed LoA for chlorophyll a were used for model 585 

rejection. Under S3 and S4 a marginal overall improvement in integrated score was 586 

achieved (Table 3), but simulations also gave periods of poor fit which appear to be 587 

associated with too much available light: these periods were at the extremes of the year 588 

coincident with periods of reverse stratification (Fig. 4f).   589 

3.3 Parameter sensitivities 590 

The importance of available light in simulated algal dynamics is supported by the fact that εb 591 

was consistently the most sensitive parameter for all lake-years and all scenarios and that 592 

acceptable parameter values were constrained significantly from the initial range sampled. 593 

This is shown in the examples of (Figs. 5 a and b) which are one-dimensional 594 

representations of the multidimensional parameter space, presented as scatter plots of 595 

parameter value versus likelihood-weighting; it can be seen that the acceptable simulations 596 

are located in a smaller range than sampled. Simulations were also sensitive to the various 597 
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parameters which control the dynamics of P inputs but to a lesser extent (e.g. Figs. 5 c and 598 

d). The apparent insensitivity for some lake-years is likely to be associated with interaction 599 

between the different P sources, particularly in Esthwaite Water where internal P sources 600 

were included. 601 

Table 3. Integrated scores for each scenario 602 

Lake        Year  S1 S2 S3 S4 

Windermere 2008 (43ѱ) 19.4 (21.9 ѱ) 19.3 (21.82 ѱ) 18.3 (20.85 ѱ) 18.4 (20.85 ѱ) 

Windermere 2009 (35 ѱ) 9.32 (12.85 ѱ) 9.64 (12.4 ѱ) 10.06 (14.23 ѱ) 11.32 (14.95 ѱ) 

Windermere 2010 (32 ѱ) 14.48 (18.99 ѱ) 14.21 (18.83 ѱ) 15.38 (19.76 ѱ) 15.64 (19.99 ѱ) 

Esthwaite Water 2008 (51ѱ) 17.04 (24.79 ѱ) 17.97 (25.41 ѱ) 14.1 (21.2 ѱ) 14.4 (21.6 ѱ) 

Esthwaite Water 2009 (45 ѱ) 0 0 15.17 (19.95 ѱ) 18.70 (22.49 ѱ) 

Bassenthwaite Lake 2010 (38ѱ) 11.70 (15.25 ѱ)* 11.97 (16.62 ѱ)* 12.3 (15.17 ѱ)* 12.6 (16.37 ѱ)* 

* Values given are for lake-years where all simulations were rejected based upon LoA for functional algal types and are 603 

presented for comparison; the values presented are calculated using all simulations using the chlorophyll a LoA alone but 604 
include the weightings for goodness of fit to functional species types; ѱmaximum value attainable if simulations fell within the 605 

sampling/analytical error range for all LoA criteria at all observation timesteps.  606 

3.4 Implications for modelling and future research 607 

In interpreting the simulation results from the previous sections, resolution of the causes of 608 

poor model fits to observations is difficult given the complex interactions between 609 

phenomena that control growth and loss in both model space and real lake systems. This is 610 

made more difficult by the potential for significant knock-on effects of simulation errors from 611 

previous timesteps. There are, however, a few salient results of which we can be more 612 

confident that provide a better representation of the lake systems studied here and some 613 

which remain hypotheses to be tested.   614 

In terms of appropriate representation of algal exposure to underwater light, representing 615 

temporary (sub-daily) stratification events significantly improved simulation dynamics for 616 

some periods and gave a smaller but systematic improvement to the balance of growth 617 

during stratifying and destratifying periods.  However, some periods were not simulated as 618 

well as the standard model formulation and simulations still exhibit residual hysteresis for 619 

some lake-years. It is possible that the disparity between the degree of epilimnetic mixing in 620 

real systems and the modelling representation (i.e. particularly the assumption of complete 621 

epilimnetic mixing) is important in this respect. Although representing temporary stratification 622 

gave some improvements, because the density gradient estimate of mixed depth (calculated 623 

on the basis of isothermal conditions) does not describe the degree of epilimnetic mixing, the 624 

representation of algal exposure to light may still need to be improved. For example, when 625 

stratification is indicated by isothermal conditions, but there is little mixing in the real system, 626 
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 627 

Figure 4. Comparison of S1 acceptable simulations (grey shaded uncertainty envelope and 628 

dashed line) and S4 (solid black lines) for chlorophyll a; the uncertainty estimates represent 629 

the 5th, 50th and 95th percentiles of the likelihood-weighted distributions for:  Windermere (a) 630 

2008** (b) 2009** (c) 2010 Esthwaite Water (d) 2008**  (e) 2009 and Bassenthwaite Lake 631 

2010** (f); the box and whisker plots indicate the analytical error and the overall error as 632 

defined in section (3.4.4) respectively;  The LoA including timing errors are not shown for 633 
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clarity. ** where all simulations were rejected the highest likelihood-weighted simulations 634 

were used for comparison. 635 

 636 

Figure 5. Scatter plots of likelihood weighting Vs. parameter value for: (a) εb (Windermere 637 

2010: S3) (b) εb (Esthwaite 2008: S1) (c)  Pfact (Windermere 2009: S3) and (d) WwTWfact 638 

(Windermere 2010: S3). Grey circles are acceptable parameter sets and black dots all 639 

samples. 640 

algae will grow at different light dependent rates at different depths such that the modelling 641 

assumption of complete mixing will not be appropriate (i.e. the average of the growth at 642 

different depths is not equal to the growth under average light conditions). Conversely, when 643 

a strongly stratified lake begins to overturn, a significant amount of energy is required to 644 

deepen the mixed layer by a small amount so that the change in mixed depth is strongly 645 

linked to mixing: averaged light conditions are hence more likely to be appropriate in this 646 

case. Although an accurate representation of mixing in a 1-D model is not realistic, it may be 647 

possible with further analyses of high resolution data to derive improved state-dependant 648 

indices of mixing so that exposure to light is improved.  649 
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An alternative hypothesis for the simulation hysteresis is associated with the representation 650 

of biomass loss via flushing. Flushing of algae may also be biased because of the 651 

assumption of instantaneous mixing.  In real, three dimensional lake systems, different 652 

fractions of a lake are flushed more efficiently than others and therefore there will be a 653 

spectrum of residence times that vary temporally (e.g. with different mixed depths, lake 654 

mixing regimes and inflow magnitudes). It may be the case that some horizontal 655 

disaggregation of the mixed layer could improve simulations, in a similar manner to the 656 

Aggregated Dead Zone approach for river systems where multiple stores (often two in 657 

parallel) are used to simulate well-mixed and poorly mixed fractions of a river reach.  This 658 

approach has primarily been used for conservative chemical tracers (e.g. Beer and Young 659 

1984; Wallis et al., 1989 and Barraclough et al., 1994) but has also been used to explain the 660 

relatively high (given their relatively short mean residence times) plankton concentrations 661 

observed in some rivers (Reynolds et al., 1991; Reynolds 2000; Istvanovics and Honti, 662 

2011). It is possible that using different modelling configurations of the well-flushed and 663 

poorly-flushed fractions of lakes could provide both higher and lower concentrations of 664 

biomass under different conditions, compared to those simulated using a single well-mixed 665 

store. 666 

The timing of nutrient inputs is crucial, in particular, to avoid severe knock-on effects from 667 

input errors during subsequent timesteps. Data relating to the sources and timing of nutrient 668 

fluxes tend to be lacking, owing to the significant costs associated with the high frequency 669 

sampling required, but are critical for reducing the uncertainties associated with algal 670 

modelling (Saloranta and Anderson, 2007; Missaghi et al., 2013).  For some of the lake-671 

years studied here modified diffuse P-river flow relationships were identified; the 672 

relationships constrained were far from clear and were affected significantly by knock-on 673 

effects from simulation errors. Improvement of nutrient input dynamics is a priority but will be 674 

hampered while other systematic simulation errors, that have significant effects on algal 675 

growth, remain.  676 

 677 

In terms of forecasting algal blooms, mitigation of uncertainties associated with nutrient 678 

inputs can be achieved to some degree by data assimilation and will be dependent on the 679 

frequency of the observations. Mitigating systematic errors associated with algal exposure to 680 

light may be more challenging and will require state-dependent functional relationships to be 681 

identified. These two priorities are currently being explored. 682 

4 Conclusions 683 
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The process-representation of the algal community model PROTECH was tested using the 684 

extended Generalised Likelihood Uncertainty Estimation technique which employs pre-685 

defined Limits of Acceptability for determination of model adequacy. Testing was a precursor 686 

to modification of the model for real-time forecasting of algal communities which places 687 

different demands on the model in terms of the accuracy required for simulation estimates. 688 

For consistency with the data available to develop the forecasting system, high resolution 689 

observations were used to force the model, minimising simulation uncertainties associated 690 

with some elements of the abiotic nature of the lakes.  691 

Two modelling hypotheses were tested, under four scenarios, which considered the 692 

representation of algal exposure to light and the timing and magnitude of diffuse SRP inputs. 693 

It was found that when using the initial (stringent) Limits of Acceptability all simulations were 694 

unacceptable. Relaxed Limits of Acceptability which provided allowance for errors 695 

associated with model forcing inputs were developed and acceptable simulations were 696 

identified. Modifying the way the mixed depth (strictly depth of epilimnion) was represented 697 

provided some simulation improvements for periods when the systems were light limited and 698 

an overall improvement for some of the lake-years considered. However some residual 699 

systematic errors, which manifest themselves as a hysteretic effect on biomass, remain. 700 

Although simulations for some of the lake-years were improved by modification of the diffuse 701 

P input-inflow relationship, they were limited by other simulation errors which have significant 702 

knock-on effects on residual nutrient concentrations.  Nutrient inputs are likely to be a 703 

significant limiting factor for simulating algal community dynamics and particularly for the 704 

accuracy required for real-time forecasting, but they are difficult to constrain using modelling 705 

approaches where other simulation errors exist. Never the less, improved observations of 706 

the timing and magnitude of nutrient fluxes would greatly enhance our ability to reduce 707 

modelling input uncertainties and focus on model process representation. 708 

By taking a hypothesis-driven approach within the Generalised Likelihood Uncertainty 709 

Estimation framework, which employs pre-defined Limits of Acceptability, has helped 710 

improve the model’s representation of epilimnetic depth and identify new modelling 711 

hypotheses which may further improve simulations.  These relate to the disparity between 712 

the degree of epilimnetic mixing in real systems and the modelling assumption of 713 

instantaneous epilimnetic mixing. Although an accurate description of mixing in a 1-D model 714 

may not be possible, further analyses of high resolution data may allow the identification of 715 

state-dependant indices of mixing and subsequent algal exposure to light that will further 716 

improve model representation. It is also possible that the representation of the flushing of 717 

algae is misrepresented and that it may be improved by considering what fraction of the 718 

epilimnion is actively mixed during different periods.  719 
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Figure Captions 720 

Figure 1.  Plan view and inset of bathymetric curve for (a) Windermere South Basin*, (b) 721 

Esthwaite Water** and (c) Bassenthwaite Lake*. * Redrawn from Ramsbottom, 1976; ** 722 

Redrawn from Mackay et al., 2012. 723 

Figure 2. Comparison of the standard model mixed depth estimates based upon daily 724 

averaged temperature profiles (black line) with individual hourly mixed depth estimates for 725 

the same day (grey circles) for Esthwaite Water 2009. The distribution of hourly estimates for 726 

each day was sampled to provide a modified representation of the daily depth for the 727 

modelling scenarios (Table 2). 728 

Figure 3. High-weighted sets of simulations which fit either the early (grey shaded area) or 729 

the late (thick black lines) part of each year; the sets were isolated using different ranges of 730 

the parameter εb and are represented by 3 lines showing the 5th, 50th and 95th percentiles of 731 

the likelihood-weighted distributions for: Windermere (a) 2008, (b) 2009, (c) 2010; (d) 732 

Esthwaite Water 2009; the box and whisker plots indicate the initial LoA without allowance 733 

for timing errors for clarity and where the boxes denote the sampling/analytical error and the 734 

whiskers the overall error.  735 

Figure 4. Comparison of S1 acceptable simulations (grey shaded uncertainty envelope and 736 

dashed line) and S4 (solid black lines) for chlorophyll a; the uncertainty estimates represent 737 

the 5th, 50th and 95th percentiles of the likelihood-weighted distributions for:  Windermere (a) 738 

2008** (b) 2009** (c) 2010 Esthwaite Water (d) 2008 (e) 2009 ** and Bassenthwaite Lake 739 

2010** (f); the box and whisker plots indicate the analytical error and the overall error as 740 

defined in section (3.4.4) respectively;  The LoA including timing errors are not shown for 741 

clarity. ** where all simulations were rejected the highest likelihood-weighted simulations 742 

were used for comparison. 743 

Figure 5. Scatter plots of likelihood weighting Vs. parameter value for: (a) εb (Windermere 744 

2010: S3) (b) εb (Esthwaite 2008: S1) (c)  Pfact (Windermere 2009: S3) and (d) WwTWfact 745 

(Windermere 2010: S3). Grey circles are acceptable parameter sets and black dots all 746 

samples. 747 

Figure Supp.1.  Example Limits of Acceptability; two-dimensional representation of 748 

weightings base upon observed chlorophyll a concentrations (Initial LoA for Windermere 749 

2008); inset shows a three dimensional example of the shape of the weighting function at 750 

each observation timestep. 751 
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Supplementary information 929 

 930 

Figure Supp 1.  Example Limits of Acceptability; two-dimensional representation of 931 

weightings base upon observed chlorophyll a concentrations (Initial LoA for Windermere 932 

2008); inset shows a three dimensional example of the shape of the weighting function at 933 

each observation timestep. 934 

Table Supp. 1. Model parameters varied and ranges sampled for each lake-year and 935 
each of the modelling scenarios (S1-S4; Table 2). See text for explanation of the 936 
parameters. 937 

Parameter Lake year S1 S2 S3 S4 

Background light Windermere 08/09/10 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 

extinction coef. Bassenthwaite 10 0.35-0.85 0.35-0.85 0.35-0.85 0.35-0.85 

εb (m
-1) Esthwaite 08/09 0.35-0.85 0.35-0.85 0.35-0.85 0.35-0.85 

Mixed depth percentile      

Mp (%) 
All lakes 08/9/10 - - 10-90 10-90 

Diffuse P input multiplier Windermere 08/9/10 0.2-10 - 0.2-10 - 

Pfact (dimensionless) Bassenthwaite 10 0.5-1.5 - 0.5-1.5 - 

 
Esthwaite 08/09 0.2-2 - 0.2-2 - 

Diffuse Si  input multiplier Windermere 08/9/10 0.2-2.5 0.2-2.5 0.2-2.5 0.2-2.5 

Sifact (dimensionless) Bassenthwaite 2010 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 

 
Esthwaite 2008/09 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5 

Diffuse N input multiplier Windermere 08/9/10 0.4-1.5 - 0.4-1.5 - 

Nfact (dimensionless) Bassenthwaite 10 0.5-2.5 - 0.5-2.5 - 

 Esthwaite 08/09 0.4-1.5 - 0.4-1.5 - 

Inlow-P relationship     Windermere  08/9/10 - 2-12 / 2-300 - 2-12 / 2-300 

 Bassenthwaite 10 - 0.05-2 / 0.05-15 - 0.05-2 / 0.05-15 
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 938 

 939 

 940 

 941 

 942 

Table Supp. 2. Species used to represent algal communities. Functional types follow 943 
Reynolds (1988). 944 

Windermere 

Functional 

type Bassenthwaite Lake 

Functional 

type Esthwaite Water Functional type 

Aphanizomenon flos-

aquae 
CS Aulacoseira R Asterionella R 

Aulacoseira R Asterionella R 
Aulacoseira (2008); Fragilaria 

crotonensis (2009) 
R 

Asterionella R Cryptomonas CSR Aphanizomenon flos-aquae CS 

Cryptomonas CSR Dolichospermum CS Aphanothece clathrata CS 

Dolichospermum CS Monoraphidium CR Cryptomonas CSR 

Monoraphidium CR Paulschulzia tenera S Dictyosphaerium pulchellum R 

Oscillatoria R PseudDolichospermum R Dolichospermum CS 

Paulschulzia tenera S 
Pseudosphaerocystis 

lacustris 
S Eudorina S 

      

 945 

 946 

 947 

 948 

Pmin / Pmax (mg m-3) Esthwaite 08/09 - 2-50 / 2-700 - 2-50 / 2-700 

WwTW P input multiplier Windermere 08/09/10 0.01-0.9 0.01-0.9 0.01-0.9 0.01-0.9 

WwTWfact (dimensionless) Bassenthwaite 10 0-1 0-1 0-1 0-1 

 Esthwaite 08/09 0.01-1.2 0.01-1.2 0.01-1.2 0.01-1.2 

Hypolimnetic P modifier 

PHypo (mg m-2) 
Esthwaite 08/09 2-8 2-8 2-8 2-8 

Epilimnetic P modifier 

PEpi (dimensionless) 
Esthwaite 08/09 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 

Vertical eddy diffusivity Kz 

(m2 d-1) 
All lakes 08/9/10 0.05-0.4 0.05-0.4 0.05-0.4 0.05-0.4 

Metalayer depth  

   MLd (m) 
All lakes 08/9/10 1.1 1.1 1.1 1.1 

Light extinction (algae) 

   εa  (m
2mg-1) 

All lakes 08/9/10 0.01 0.01 0.01 0.01 
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Table Supp. 3 Estimated periods of nutrient limitation for each lake-year and 949 

percentage error for chlorophyll a, R-type and CS-type species for nutrient limited and 950 

light limited periods 951 

Lake Year Start (day) End (day) 

LoA (% error) 

nutrient limited 

period 

(Chla /R and CS) 

LoA% light limited 

period 

(Chla /R and CS) 

Windermere 2008 135 250 50/75 35/50 

Windermere 2009 100 280 75/95 50/75 

Windermere 2010 110 260 70/95 50/75 

Esthwaite Water 2008 90 250 75/95 50/75 

Esthwaite Water 2009 60 270 75/95 50/75 

Bassenthwaite Lake 2010 50 315 50/60 35/50 
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