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An ecosystem-based flow analysis model was used to study carbon transfer from primary production (PP) to mesopelagic fish via three groups
of copepods: detritivores that access sinking particles, vertical migrators, and species that reside in the surface ocean. The model was parame-
terized for 40�S to 40�N in the world ocean such that results can be compared with recent estimates of mesopelagic fish biomass in this lati-
tudinal range, based on field studies using acoustic technologies, of �13 Gt (wet weight). Mesopelagic fish production was predicted to be
0.32% of PP which, assuming fish longevity of 1.5 years, gives rise to predicted mesopelagic fish biomass of 2.4 Gt. Model ensembles were run
to analyse the uncertainty of this estimate, with results showing predicted biomass >10 Gt in only 8% of the simulations. The work empha-
sizes the importance of migrating animals in transferring carbon from the surface ocean to the mesopelagic zone. It also highlights how little
is known about the physiological ecology of mesopelagic fish, trophic pathways within the mesopelagic food web, and how these link to PP in
the surface ocean. A deeper understanding of these interacting factors is required before the potential for utilizing mesopelagic fish as a har-
vestable resource can be robustly assessed.
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Introduction
Global demand for food is ever increasing, driven by a rising pop-

ulation that is expected to reach nine billion by the year 2050

(Godfray et al., 2010). Mesopelagic fish (the mesopelagic zone has

a depth range of 100–1000 m) have been identified as a potential

underexploited resource, providing both fishmeal and nutraceuti-

cal products such as omega-3 fatty acid dietary supplements for

human consumption and the aquaculture industry (St. John

et al., 2016 and references therein). Sustainability is a key require-

ment for the successful exploitation of mesopelagic resources

necessitating, at the very minimum, an accurate estimate of the

existing biomass of fish inhabiting the mesopelagic ocean. Early

estimates of this biomass, based on micronekton net sampling,

were �1 gigatonne (Gt) wet weight (Gjösæter and Kawaguchi,

1980). It may be, however, that this estimate is too low because

mesopelagic fish can avoid pelagic trawls (Kaartvedt et al., 2012).

Acoustic methods have more recently been used to evaluate the

biomass of mesopelagic fish, with one recent estimate suggesting

that the biomass occurring between 40�S and 40�N in the world

ocean is �11–15 Gt (average 13 Gt) (Irigoien et al., 2014).

Acoustic estimates exceed those of trawls (Koslow et al., 1997;

Kloser et al., 2009; Davison et al., 2015a) although the associated

uncertainties are nevertheless substantial, arising from difficulties

with interpreting the resonance of gas-filled swim bladders that

are present not only in fish, but also other organisms such as

siphonophores (Davison et al., 2015b; Kloser et al., 2016).

Mesopelagic fish are one of the least well-studied components

of marine ecosystems (St. John et al., 2016). The most common
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of the mesopelagic fishes are the lanternfish (myctophids), which

are ubiquitous throughout the world oceans, with the exception

of the Arctic, and which comprise 33 genera and around 245 spe-

cies (Catul et al., 2011). They feed primarily on planktonic crusta-

ceans such as copepods (Battaglia et al., 2016) and, in turn,

provide a source of food for higher trophic levels including squid,

mammals and seabirds (Springer et al., 1999; Pereira et al., 2011;

Hoving and Robison, 2016). Mesopelagic fish are also an essential

prey item for key fishery stocks such as tuna and billfish (Potier

et al., 2007; Karakulak et al., 2009). The mesopelagic food web

may also play an important role in the sequestration of carbon

(C) in the deep ocean and thereby climate regulation (Hudson

et al., 2014; Trueman et al., 2014). Many mesopelagic fish

undergo diel vertical migration (DVM) to feed in the epipelagic

zone (ocean surface to 100 m) at night, descending back to the

mesopelagic during the day (Watanabe et al., 1999; Bernal et al.,

2015; Klevjer et al., 2016). This migration represents a direct

pathway for export of organic C between the surface and deep

ocean, along with the production of large fast-sinking faecal

material (Davison et al., 2013).

Here, we use an ecosystem-based modelling approach to inves-

tigate the trophic pathways that connect primary production

(PP) in the surface ocean with C flow through the mesopelagic

ecosystem, providing an estimate of the biomass of mesopelagic

fish between 40�S and 40�N in the world ocean. The model traces

the flows of C from PP through the mesopelagic food web via

three groups of copepods: permanent residents of the mesopela-

gic zone that feed on sinking detritus, vertically migrating organ-

isms, and permanent residents of the epipelagic. Results are

discussed in context of the many uncertainties associated with the

functioning of the mesopelagic ecosystem, highlighting areas in

particular need of future research in order to assess the potential

sustainability of mesopelagic fish as a harvestable resource.

Model description and methods
A flow diagram of the model, illustrating the trophic pathways

from PP to mesopelagic fish, is shown in Figure 1 along with a

list of variables and parameters in Tables 1 and 2. The model is a

flow analysis, assumes steady state and does not calculate stocks,

with the exception of mesopelagic fish. It is parameterized to rep-

resent a generalized ecosystem between 40�S to 40�N in the world

ocean so that results can be directly compared with field-based

estimates of mesopelagic fish biomass of �13 Gt for this latitudi-

nal range (Irigoien et al., 2014). The model tracks the flows of C

from PP to mesopelagic fish via copepods and their carnivorous

invertebrate predators. Given that the fish undertake DVM, food

sources within both the mesopelagic and epipelagic zones are

considered. Three types of copepods are distinguished: detriti-

vores, ZD, that are permanent residents of the mesopelagic zone

and which feed on sinking particles (detritus, D), migratory cope-

pods, ZM, which, like the mesopelagic fish, feed in epipelagic

waters by night and descend in the water column by day to escape

predation (Zaret and Suffern, 1976; Hays, 2003) and permanent

residents of the epipelagic, ZR, that feed on phytoplankton and

the associated microzooplankton assemblage. All three groups are

grazed not only by the fish, but also by invertebrate carnivores

(V) which represent a wide variety of organisms including amphi-

pods, chaetognaths and jellyfish (Tönnesson and Tiselius, 2005;

Daewel et al., 2014). Both copepods and invertebrate carnivores

constitute prey for the mesopelagic fish.

The starting point of the analysis is PP, which is specified as a

fixed rate, PP (Gt C year�1). Satellite-based estimates of PP

between 40�S and 40�N were extracted from original published

fields for a range of algorithms, giving 46.3 (Behrenfeld and

Falkowski, 1997), 63.3 (Carr, 2002), 47.9 (Marra et al., 2003), and

43.0 Gt C year�1 (Westberry et al., 2008). We use the last of these,

which is based on the most sophisticated and up-to-date method-

ology, giving PP ¼ 43 Gt C year�1. A fraction of PP, fPP,D, is

exported from the surface ocean to the mesopelagic as detritus,

providing a food supply for detritivorous zooplankton. Empirical

estimates of export ratio (e-ratio ¼ export/PP ¼ fPP,D) averaged

between 40�S and 40�N, again extracted from the original data for

different algorithms, are variable: 0.091 (Dunne et al., 2005), 0.033

(Henson et al., 2011), and 0.099 (Siegel et al., 2014). Estimates

from global biogeochemical models include 0.128 (Moore et al.,

2004), 0.198–0.199 (Collins et al., 2011), 0.067–0.077 (Dunne

et al., 2012, 2013), and 0.145–0.179 (Séférian et al., 2013).
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Figure 1. Flow diagram of the model showing pathways from PP to
fish (with fX parameters specifying fractional division of fluxes). Sinks
for C are: S1 remineralisation of C and loss to higher trophic levels in
the epipelagic zone; S2 detritus-associated losses; S3 respiration and
egestion by ZM, ZR; S4 respiration and egestion by invertebrate
carnivores; S5 non-fish carnivore losses to higher trophic levels; S6
respiration and egestion by fish (zooplankton as food); S7 respiration
and egestion by fish (carnivores); S8 fish mortality. Flows (Gt C
year�1) are shown in red for the steady state solution of the model
(see “Results” section).

Table 1. Model variables.

Variable Definition Unit of measure

GZ(D) Copepod production: detritivores Gt C year�1

GZ(M) Copepod production: vertical migrators Gt C year�1

GZ(R) Copepod production: resident epipelagic Gt C year�1

RZ Copepod food available to V, F Gt C year�1

GV Invertebrate carnivore production Gt C year�1

GF Mesopelagic fish production Gt C year�1

LF Loss rate of fish Gt C year�1

BF Mesopelagic fish biomass Gt wet weight
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Parameter fPP,D was estimated as an average of these values, giving

0.11.

Sinking detritus is acted upon by bacteria and zooplankton in

the mesopelagic zone, diminishing the flux with depth and remi-

neralising nutrients and C to their inorganic forms (Steinberg

et al., 2008; Giering et al., 2014). It may be that the primary

source of nutrition for detritivorous zooplankton is not the non-

living detrital matrix, which is refractory in nature but, rather,

microbes that colonize the detritus and which are rich in

nutrients such as essential fatty acids (Lampitt et al., 1990; Mayor

et al., 2014; Anderson et al., 2017). It is therefore difficult to spec-

ify a growth efficiency for zooplankton grazing on detritus

because of the separate contributions of microbial and refractory

substrates and the associated differential ingestion and utilization

thereof. Instead, we apply a simple trophic transfer efficiency,

tD,Z, which represents the aggregate outcome of detritus uti-

lization, quantifying the fraction of exported detritus, including

associated microbes, that is assimilated into the biomass of meso-

pelagic zooplankton. Copepod growth accruing from the detrital

pathway, GZ(D) is then:

GZðDÞ ¼ tD;ZfPP;DPP: (1)

The nutrition of detritivorous zooplankton in the mesopelagic

zone was investigated by Anderson et al. (2017) using a stoichio-

metric model that has C and an essential fatty acid as currencies,

and which includes the separate roles of detritus-attached

microbes and the raw detrital substrate. Results indicated that

feeding on microbes is likely a favourable strategy, despite low

microbial biomass. Transfer of C to zooplankton was remarkably

low because of trophic losses within the microbial food web prior

to ingestion, with a typical value of 1.45%, i.e. tD,Z ¼ 0.0145. This

value is much lower than growth efficiencies for zooplankton

grazing detritus as applied in previous mesopelagic ecosystem

models, e.g. 0.23 (Anderson and Tang, 2010; Giering et al., 2014).

We therefore investigate the sensitivity of model-predicted meso-

pelagic fish biomass to parameter tD,Z.

Mesopelagic fish feed on herbivorous, omnivorous and carniv-

orous copepods, both residents of the epipelagic and those under-

going DVM. The starting point of quantifying these pathways is

to calculate the fraction of PP that is consumed by copepods,

parameter fPP,Z. It has been estimated that mesozooplankton

directly consume 10–15% of PP (Behrenfeld and Falkowski, 1997;

Calbet, 2001), giving a mid-range value of 12%. However, this

excludes indirect routes, notably via microzooplankton. Steinberg

and Landry (2017) constructed a C budget of the global ocean

ecosystem and estimated that 66% of PP is consumed by micro-

zooplankton, with a further 10% of PP accounting for consump-

tion of bacterial secondary production, giving a total intake by

microzooplankton of 76% of PP. If the gross growth efficiency

(GGE) for microzooplankton is 0.3 (Straile, 1997), and mesozoo-

plankton grazing is the primary loss term for microzooplankton,

the fraction of PP reaching mesozooplankton via these routes is

0.76 � 0.3 ¼ 0.23. When added to direct consumption of 0.12,

this results in mesozooplankton consumption of 35% of PP.

Copepod grazing can also be estimated from the predictions of

global biogeochemical models, most of which today distinguish

between micro- and mesozooplankton. Mesozooplankton grazing

of between 19 and 11.2 Gt C year�1 was predicted using different

versions of the PISCES model by Buitenhuis et al. (2006) and

Aumont et al. (2015), respectively, which convert to fractions of

PP of 0.27 and 0.25 (based on PP of 69.7 vs. 44.3 Gt C year�1 for

the two models). A similar value can be calculated from the

results of the COBALT model as published in Stock et al. (2014),

with mesoplankton grazing and PP of 13.4 and 51.9 Gt C year�1,

respectively, giving grazing/PP ¼ 0.26. On the other hand, a con-

siderably higher ratio, 0.47, is generated by the MEDUSA model

(Yool et al., 2013), caused by a relatively high grazing on non-

diatoms. We use a mean of the estimates described earlier, giving

fPP,Z ¼ 0.32.

The efficiency with which copepod consumption of PP, fPP,Z,

is transferred to the mesopelagic ecosystem depends on whether

the copepods undergo DVM or not. Migrating copepods are

tightly coupled to, and indeed part of, the mesopelagic ecosystem

given that many of the invertebrate carnivores and mesopelagic

fish themselves undergo DVM. On the other hand, non-

migrating copepods may contribute relatively little to the

mesopelagic ecosystem if they are largely consumed by epipelagic

resident predators. The migrating fraction of total mesozooplank-

ton biomass is commonly estimated as the difference between day

Table 2. Model parameters (Group 1: relatively certain; Group 2: relatively uncertain).

Parameter Definition Default value (range) Unit of measure

Group 1 (varied 6 50% in the ensemble uncertainty analysis)
PP PP 43 (43–63) Gt C year�1

fPP,D Frac. PP exported as detritus 0.11 (0.033–0.199) Dimensionless
fPP,Z Frac. PP to copepods 0.32 (0.25–0.47) Dimensionless
fZM Frac. fPP, Z due to migrators 0.18 (0.12–0.22) Dimensionless
KZ GGE: copepods 0.26 (0.13–0.32) Dimensionless
KV GGE: carnivores 0.22 (0.10–0.51) Dimensionless
KF GGE: fish 0.2 (0.18–0.21) Dimensionless
Group 2 (varied 6 75% in the ensemble uncertainty analysis)
tD,Z Transfer eff.: detritus to copepods 0.0145 Dimensionless
fM,VF Frac. migrating copepods to V, F 0.88 Dimensionless
fR,VF Frac. resident copepods to V, F 0.18 Dimensionless
fZ,F Frac. copepods grazed by fish 0.5 Dimensionless
fV,F Frac. carnivores grazed by fish 0.8 Dimensionless
mF Mesopelagic fish mortality 0.67 Year�1

Ranges of Group 1 parameters, as described in the text, are listed in brackets. No ranges are given for Group 2 parameters because these are highly uncertain
(see text).
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and night measurements in surface waters. Variability is inevita-

bly seen between locations and seasons, including estimates of

0.14–0.68, mean 0.37 (equatorial Pacific: Zhang and Dam, 1997),

0.41 (Sargasso Sea: Madin et al., 2001), 0.35-0.53, mean 0.41

(subtropical Pacific: Al-Mutairi and Landry, 2001), 0.29 and 0.44

for copepods (subtropical and subarctic Pacific respectively:

Steinberg et al., 2008), and 0.06–0.40 (Mediterranean: Isla et al.,

2015). Averaging all these results yields a migrating fraction of

0.37. Parameter fZM in the model is the fraction of total copepod

grazing in the epipelagic zone that is attributable to migrating

animals. This depends not only on migrator biomass, but also on

the duration of feeding in surface waters. The simplest assump-

tion is that migrators spend, on average, 50% of the day (the

night hours) feeding in surface waters and so their relative contri-

bution to grazing PP, per unit biomass, is half compared with

non-migrating animals. Thus, fZM ¼ 0.37 � 0.5 ¼ 0.18.

The growth of migrating and resident epipelagic copepods,

GZ(M) and GZ(R), are now:

GZðMÞ ¼ fPP;ZfZMKZPP; (2)

,

GZðRÞ ¼ fPP;Zð1� fZMÞKZPP; (3)

where KZ is copepod GGE. We use KZ ¼ 0.26 (a typical range is

0.13–0.32; Straile, 1997).

Copepods, both migrating and resident in the epipelagic zone,

provide food not only for migrating fish and carnivorous inverte-

brates, but also for higher trophic levels that reside in near-

surface waters (Springer et al., 2007; Bachiller et al., 2016). For

the purpose of calculating carbon transfer from copepods to

higher trophic levels, we assume that the biomass of migrating

predators as a fraction of total predators (migrators and epipela-

gic residents) is 0.37 (no estimates exist), i.e. equal to the corre-

sponding fraction for copepods, and that migrating predators

spend an average of 50% of their time in surface waters. The frac-

tional loss of epipelagic resident (non-migratory) copepods that

is due to grazing by migrating predators (fish and invertebrates),

parameter fR,VF, is then equivalent to fZM, i.e. fR,VF ¼ 0.18. In con-

trast, the fractional loss of migrating copepods to migrating pred-

ators, parameter fM,VF, should be high given the synchrony in

behaviour of the two communities. Moreover, if epipelagic resi-

dent predators rely on visual cues for feeding then, at least in

theory, their grazing on migrating copepods should be zero if the

copepods avoid surface waters during daylight hours by DVM.

Migrating copepod species do, however, contribute to the diets of

epipelagic fish (Beaugrand et al., 2003; Garrido et al., 2015;

Bachiller et al., 2016). These fish have evolved complex adapta-

tions to detect prey in dimly lit waters, notably large upward-

facing eyes (Gagnon et al., 2013). Feeding may follow a bimodal

cycle whereby zooplankton are most effectively captured at dawn

and dusk as they migrate to and from surface waters (Allison

et al., 1996; Cardinale et al., 2003). As a first approximation, we

assume that epipelagic predators access migrating copepods as

food for 1 h at either end of the day (dawn and dusk), whereas

migrating predators have continuous access. Taking into consider-

ation the relative biomass of the two predator communities (0.37

and 0.63 for migrators and epipelagic residents, respectively), the

relative grazing by migrating and epipelagic resident predators

on migrating copepods are 0.37 and 0.052 (¼0.63 � 2/24), giving

fM,VF (the grazing by migrating predators on migrating copepods)

as 0.37/(0.37 þ 0.052) ¼ 0.88.

The total amount of copepod food available to migrating fish

and carnivorous invertebrates, RZ, is now:

RZ ¼ GZðDÞ þ fM;VFGZðMÞ þ fR;VFGZðRÞ: (4)

There are no data and so we tentatively assume that the fraction

of RZ that is consumed by mesopelagic fish, parameter fZ,F, is 0.5,

with the remainder, 1�fZ,F, consumed by invertebrate carnivores

whose growth, GV, is:

GV ¼ ð1� fZ;FÞKVRZ; (5)

where KV is invertebrate carnivore GGE. A number of values of

GGE for amphipods and decapods have been published: 0.15–

0.18 (Dagg, 1976), 0.16 (Ikeda, 1991) and 0.20–0.51 (Yamada and

Ikeda, 2006). Values for gelatinous organisms also show consider-

able variation, from values around 0.1 (Larson, 1987; Møller and

Riisgård, 2007; Møller et al., 2010) to over 0.3 (Reeve et al., 1989;

Costello, 1991). We use an average of the above values, KV ¼
0.22. The fraction of invertebrate carnivore losses to mesopelagic

fish was assumed to be high, fV,F ¼ 0.8; we will show that the

model is not sensitive to this parameter. The production of meso-

pelagic fish, GF, can now be calculated as the sum of terms repre-

senting ingestion of copepods and invertebrate carnivores:

GF ¼ KFðfZ;FRZ þ fV;FGVÞ; (6)

where KF is fish GGE. Ikeda (1996) investigated the metabolism

and energy budget of the mesopelagic fish Maurolicus muelleri

and estimated a GGE of 0.18. Transfer efficiency for secondary to

tertiary consumers in the pelagic ecosystem of the Oyashio

Region was subsequently estimated by Ikeda et al. (2008) to be

0.21. We use KF ¼ 0.20.

By assuming that the system is in steady state, the biomass

(wet weight) of mesopelagic fish, BF, can be estimated by dividing

production by the fish mortality rate, mF:

BF ¼ GFr=mF; (7)

where the conversion coefficient, r, is 11.9 g wet weight per g C

dry weight based on conversions of 0.20 for dry: wet weight and

0.42 for C as fraction dry weight (Ikeda et al., 2011). The longev-

ity of mesopelagic fish is typically recorded as being between 1

and 2 years (Bystydzie�nska et al., 2010; Linkowski et al., 1993;

Takagi et al., 2006; Hosseini-Shekarabi et al., 2015), although

sometimes up to 3 or 4 years at high latitudes (Halliday, 1970;

Gjösæter, 1973; Greely et al., 1999; Saunders et al., 2015). We use

a fish mortality rate of mF ¼ 1/1.5 ¼ 0.67 year�1, but will exam-

ine the sensitivity of BF to this parameter.

The model was first investigated with default parameter set-

tings (Table 2). The uncertainty of the predicted biomass of mes-

opelagic fish associated with model parameters was then assessed

in two ways. First, a standard sensitivity analysis was carried out

in which individual parameters were varied, in turn, 650%.

Second, an ensemble analysis was undertaken in which model sol-

utions were generated throughout the entire 13D parameter

space, randomly assigning values for each parameter within speci-

fied ranges. For this purpose, model parameters were divided into

two groups (Table 2) based on our experiences parameterising

Quantifying carbon fluxes from PP to mesopelagic fish 693
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the model: Group 1 (relatively certain) could be constrained with

some confidence from the literature, whereas Group 2 (relatively

uncertain) are poorly known and weakly constrained. In effect,

this is a process of expert elicitation that is often used in con-

structing Bayesian frameworks (Choy et al., 2009; Krueger et al.,

2012). Group 1 parameters are: PP, the fractions of PP to detritus

and copepods (fPP,D and fPP,Z), the fraction of fPP,Z attributable to

migrators (fZM) and the growth efficiencies for copepods, inverte-

brate carnivores and mesopelagic fish (KZ, KV, and KF). Group 2

parameters are: tD,Z (transfer efficiency of detritus utilization by

copepods), trophic pathway partitioning parameters fM,VF

(migrating copepods to mesopelagic V, F), fR,VF (epipelagic resi-

dent copepods to mesopelagic V, F), fZ,F (copepod fraction to

mesopelagic fish), fV,F (invertebrate carnivore fraction to mesope-

lagic fish) and, finally, mF (the mortality rate of mesopelagic fish).

Group 1 parameters were varied 650% in the ensemble uncer-

tainty analysis, while Group 2 parameters were varied 675%.

These are wide limits and, if anything, should overestimate the

total uncertainty associated with predicting BF. The chosen per-

centages are subjective but, nevertheless, we believe generally rep-

resentative based on our experience of parameterising the model

from the literature.

The model is set up in a Microsoft Excel spreadsheet, which is

available on request from the first author.

Results
The model was first run with default parameters (Table 2),

including input PP of 43 Gt C year�1. Predicted C fluxes from PP

to fish are shown in Figure 2 (see also the steady state solution of

the model as shown in Figure 1). The majority of PP is

remineralized or lost to epipelagic predators, with only 21%

(8.9/43) predicted to supply the mesopelagic ecosystem via sink-

ing detritus (11%; parameter fPP,D), vertically migrating copepods

(5.1%; the product fPP,Z fZ,M fM,VF) and resident epipelagic cope-

pods (4.7%; fPP,Z(1�fZM)fR,VF). The total production of the prey

of mesopelagic fish, i.e. copepods and invertebrate carnivores, is

1.3 Gt C year�1, most of which is due to migrant and resident

epipelagic copepods that have direct access to PP. The predicted

contribution via detritivorous copepods is small (GZ(D) ¼ 0.07 Gt

C year�1) because of the low trophic transfer efficiency (tD,Z ¼
0.0145) associated with using refractory detritus as a source of

food. Likewise, the predicted contribution of invertebrate carni-

vores to mesopelagic fish diet is low (GV ¼ 0.13 Gt C year�1)

because these animals are one trophic level above the copepods.

The mesopelagic fish consume 0.68 Gt C year�1 of the 1.3 Gt C

year�1 available to them (the remainder goes to other predators),

equivalent to 1.6% of PP. With a growth efficiency, KF, of 0.2, the

predicted production of mesopelagic fish is 0.14 Gt C year�1, i.e.

0.32% of PP. Mesopelagic fish biomass can now be estimated as

the quotient production/mortality (GF/mF; Equation 7). Using

mF ¼ 0.67 year�1 (Table 2), which equates to a fish longevity of

1.5 years, predicted mesopelagic fish biomass is 2.4 Gt C wet

weight (11.9 g wet weight per g C dry weight).

Parameter sensitivity analysis was carried out using predicted

mesopelagic fish biomass, BF, as the focus because fish represent

the apex of the model ecosystem. Each parameter was varied, in

turn, 6 50% (Figure 3). Predicted BF shows relatively high sensi-

tivity to several Group 1 (relatively certain) parameters: PP, fPP,Z,

KZ, and KF. Model sensitivity to these parameters is unsurprising

given that PP provides the source of C entering the system, fPP,Z

specifies the fraction of PP utilized by copepods, (the main vector

of transfer between the epipelagic and mesopelagic ecosystems)

and KZ and KF are the growth efficiencies of copepods and meso-

pelagic fish, respectively. Regarding Group 2 parameters (rela-

tively uncertain), predicted BF shows moderate sensitivity to

parameters fM,VF, and fR,VF, which specify the fractions of migrat-

ing and epipelagic resident copepods grazed by migrating preda-

tors, i.e. invertebrate carnivores and mesopelagic fish (with the

remainder providing food for epipelagic resident predators).

Sensitivity is also seen for parameter fZ,F, which quantifies the

fraction of that grazing utilized by mesopelagic fish (rather than

invertebrate carnivores), but not fV,F because, as noted earlier,

invertebrate carnivores are only a minor food source for the fish.

A notable result is that the sensitivity analysis indicates low sensi-

tivity for parameter fPP,D, the fraction of PP exported as detritus,

because the detrital substrate is utilized for growth by detritivo-

rous copepods with low efficiency (0.0145; parameter tD,Z). These

zooplankton therefore contribute only a small fraction of meso-

pelagic fish diet. Finally, predicted BF is unsurprisingly sensitive

to fish mortality rate, mF. For example, halving mF to 0.335 per

year, which is equivalent to increasing fish longevity from 1.5 to 3

years, leads to predicted mesopelagic fish biomass increasing

from 2.4 to 4.9 Gt.

Uncertainty associated with parameter values depends not

only on sensitivity, as described above, but also on the intrinsic

difficulty in assigning parameter values from the literature, as per

the division of parameters into Groups 1 and 2. Of particular

note in this regard is parameter tD,Z, the trophic transfer effi-

ciency for copepods utilizing detritus as a food source. Our

default value of 0.0145 is based on the recent modelling study of

Anderson et al. (2017), whereas previous studies (Anderson and

Tang, 2010; Giering et al., 2014) have used a transfer efficiency of

0.23, i.e. more than an 15-fold higher. If this value is used here

for parameter tD,Z, exported detritus is then predicted to become

a significant source of C fuelling the mesopelagic ecosystem: the

growth of detritivorous zooplankton increases from 0.07 to 1.1

Gt C year�1, the contribution of these zooplankton to the diet of

mesopelagic fish increases from 5 to 42% and predicted mesope-

lagic fish biomass increases from 2.4 to 4.6 Gt (Figure 4).

PP to mesopelagic growth: Z+V ingestion F
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Figure 2. Predicted fluxes of carbon from PP to fish. Columns are
(left to right): (1) PP; (2) C supply to the mesopelagic ecosystem; pie
chart shows relative contributions via detritus, D, migrating and
epipelagic resident copepods (those animals that act as food for
mesopelagic invertebrate carnivores and fish), ZM and ZR

respectively; (3) mesopelagic fish food sources (growth of); pie chart
shows allocation between copepods, ZD (detritivorous copepods),
ZM, ZR, and invertebrate carnivores, V; (4) C flux to fish; pie chart
shows growth, GF, vs. respiration plus egestion, RF þ EF. Figures at
top are numerical values for the heights of the bars.
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The overall uncertainty in predicted mesopelagic fish biomass

due to model parameterization depends on the combined uncer-

tainties associated with the parameters in total. We therefore

undertook ensemble analyses of the model, with each ensemble

consisting of 107 runs. Parameter values for each run were ran-

domly generated within specified ranges. In the case of Group 1

(relatively certain) parameters, this was 650%, and for Group 2

parameters (relatively uncertain) it was 675%. Parameter tD,Z

was treated differently based on the analysis shown in Figure 4.

When varying Group 2 parameters 675%, tD,Z was varied

between its standard value, 0.0145, and 0.23. Varying parameters

fM,VF and fV,F 675% leads to values >1, which are not permissi-

ble; in this event, parameter values were reset equal to 1.

Predictions for mesopelagic fish biomass were allocated within

0.1 Gt bins, which were then plotted as a frequency distribution.

Results (Figure 5) exhibit strong positive skew, showing that it is

possible to predict BF significantly higher than our standard value

of 2.4 Gt (default parameter settings: Table 2). Nevertheless, only

27% of predictions exceed 5 Gt biomass, and only 8% exceed 10

Gt. The predicted frequency distribution widens if both Groups 1

and 2 parameters are varied within ranges 675% (Figure 5),

although even here only 26 and 10% of the distribution exceeds 5

and 10 Gt, respectively. Note that the mode of the frequency dis-

tribution shifts to the left because the relative contribution of

parameter tD,Z to overall uncertainty is diminished (this parame-

ter is only increased, rather than varied 6); the mode of a fre-

quency distribution where numbers are multiplied together (as is

the case for model parameters) is generally less than the mean. If,

on the other hand, all parameters are varied 650% (with the

range for parameter tD,Z scaled in proportion), the frequency dis-

tribution narrows somewhat, with 23 and 2% of predictions for

BF exceeding 5 and 10 Gt, respectively.

Finally, the relative contributions of the least well constrained

parameters (those of Group 2) to overall uncertainty in predicted

mesopelagic fish biomass was investigated in greater detail.

Returning to the baseline analysis in which parameters in Groups
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1 and 2 were varied 650 and 675% respectively, the values of

parameters in Group 2 were, in turn, fixed at their default settings

(Table 2). Maintaining 107 model runs in each ensemble, the

resulting frequency distributions show greatest departure from

the baseline when parameters tD,Z and mF were assigned fixed val-

ues (Figure 6). The positive skew of the frequency distributions

shifts left in both cases, with only 4 and 2% of predictions for BF

exceeding 10 Gt for parameters tD,Z and mF, respectively (com-

pared with 8% when all parameters are varied). The analysis thus

re-emphasizes the analysis shown in Figure 4, namely the impor-

tance of understanding the efficiency of detritus utilization by

mesopelagic copepods, as well as highlighting the importance of

mesopelagic fish mortality (longevity).

Discussion
A simple food web model was constructed to investigate the flows

of C from PP to the mesopelagic ecosystem, providing predic-

tions for the production and biomass of mesopelagic fish. The

model was parameterized for the world ocean between 40�S and

40�N, thereby permitting comparison with contemporary field

estimates of mesopelagic fish biomass, based on acoustic data, of

11–15 Gt w.w for this latitudinal range (Irigoien et al., 2014).

Using default parameter values, our model estimate is substan-

tially lower, 2.4 Gt w.w. The uncertainty in this estimate associ-

ated with model parameter values was assessed by undertaking

ensembles of model runs throughout the 13D parameter space.

Results indicated that it is possible for the model to generate pre-

dicted mesopelagic fish biomass >10 Gt, but this only occurred

in 8% of the ensemble predictions.

Despite the relatively short food chain, model results indicated

that just 1.6% of PP ends up being ingested by mesopelagic fish

and, combined with a gross growth efficiency of 0.2, 0.32% of PP

accrues as mesopelagic fish production. In fact, this percentage is

relatively high compared with estimates of fish catches of

commercial fish species such as herring, plaice and sole, which

are often between 0.05 and 0.1% of PP (Nielsen and Richardson,

1996; Sommer et al., 2002; Chassot et al., 2007, 2010). Pauly and

Christensen (1995) estimated global fish catch to be 0.21% of PP,

although this estimate showed wide variation when separated

into different ecosystem types with values, for example, of 0.01

and 2.3% for open ocean and upwelling ecosystems, respectively.

Large variations in fish catch as a percentage of PP are to be

expected between ecosystems because different food webs have

different size structures and numbers of trophic levels (Ryther,

1969; Pauly and Christensen, 1995; Jennings and Collingridge,

2015; Stock et al., 2017). Furthermore, fish catch need not neces-

sarily be a good indicator of population biomass because of dis-

cards, the efficiency of nets, selective catch of different species,

etc. Even if the production of mesopelagic fish is only 0.32% of

PP, this may provide potential as a harvestable resource.

Quantifying mesopelagic fish biomass is also a useful indicator,

especially as the model estimate can be compared with those

from field studies. Additional factors that need to be taken into

consideration when considering harvestable potential include a

knowledge of controlling mechanisms, a holistic understanding

of the community, and ecological concerns associated with har-

vesting a significant, but poorly understood, component of

marine food webs (St. John et al., 2016).

The modelling work presented herein emphasizes the impor-

tance of migrating animals in the transfer of C from the surface

ocean to the mesopelagic zone. It also highlights major gaps in

our knowledge of the ecology and trophodynamics of mesopela-

gic ecosystems and their associated links to PP, gaps that are not

easy to fill because food web interactions in the mesopelagic zone

are difficult to measure (Robinson et al., 2010). The knowledge

gaps may be divided into four areas: (i) trophic linkages between

copepods and both migrating and non-migrating (epipelagic resi-

dent) predators, (ii) mesopelagic fish diet, (iii) mesopelagic fish

growth efficiency and mortality (longevity), and (iv) the efficiency

of detritus utilization as a food source by mesopelagic zooplank-

ton. These are now discussed in turn:
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(i) The relative extent to which migrating copepods are con-

sumed by migrating predators vs. epipelagic predators depends

on the relative abundances of the two predator groups and the

amount of time that predators and prey are co-located. The pred-

ator groups represent a diverse array of organisms, including fish

and invertebrate carnivores, and so specifying their relative abun-

dances is difficult. For simplicity, we assumed that the ratio of

migrating to non-migrating predators is the same as for cope-

pods, which could be estimated from data. Most of the mesopela-

gic fauna undergo diel migration (Angel and Pugh, 2000;

Siegelman-Charbit and Planque, 2016), including the fish and

invertebrate carnivores (Clarke, 1980; Catul et al., 2011; Bernal

et al., 2015). We therefore assumed that these migrating predators

have continuous access to migrating copepod prey, the two com-

munities operating in concert. Quantifying the extent to which

migrating copepods are grazed by the epipelagic resident predator

community is, however, considerably more problematic. Grazing

would be zero if DVM was a perfect predator avoidance strategy,

but it is not. Migrating copepods are known to contribute signifi-

cantly to the diets of epipelagic fish (Beaugrand et al., 2003;

Garrido et al., 2015; Bachiller et al., 2016). Feeding may occur pri-

marily during the hours of dawn and dusk as the migrators travel

to and from surface waters (Allison et al., 1996; Cardinale et al.,

2003). We made the simplifying assumption in the model that

epipelagic predators gain access to the migrating copepods for an

average of 1 h at either end of each day. One interesting compli-

cation, for example, is that moonlight may expose migrating

organisms to predation. Indeed, it appears that they may counter

this threat by avoiding surface waters at night during full moon

(Last et al., 2016).

(ii) Having determined the extent to which copepods are

grazed by the migrating predator community as a whole, there is

still the difficulty of specifying the fraction that is exploited by the

mesopelagic fish (vs. the invertebrate carnivores). We made the

simple assumption that mesopelagic fish are responsible for 50%

of copepod losses (parameter fZ,F), along with 80% of inverte-

brate carnivore losses (parameter fV,F), highlighting the difficulty

in deriving quantitative estimates of trophic pathway parameters.

Based on this assumption, our results indicated that copepods

account for 85% of the mesopelagic fish diet. The predicted rela-

tive contributions were 5% from mesopelagic detritivorous cope-

pods, 41% from migrating copepods and 39% from epipelagic

resident copepods. It is well known that mesopelagic fish, includ-

ing myctophids, feed on crustaceans (Clarke, 1980; Van Noord

et al., 2016), often with a predominance of copepods (Kawaguchi

and Mauchline, 1982; Pepin, 2013; Bernal et al., 2015; Saunders

et al., 2015). Other prey items include gelatinous zooplankton

(Bystydzie�nska et al., 2010; Hudson et al., 2014). Estimates of

myctophid fish trophic position derived from stable isotope anal-

ysis of nitrogen (d15 N) in bulk tissues (Cherel et al., 2010) and

individual amino acids (Choy et al., 2015; Hetherington et al.,

2017) vary from 3.3 to 4.2, indicating that these fish are secondary

and tertiary consumers. Model results were thus generally consis-

tent with this trophic positioning.

(iii) Model predictions for the biomass of mesopelagic fish are

directly influenced by fish growth efficiency and mortality rate

(KF and mF, respectively) and so it is unsurprising that results are

sensitive to these parameters. We used a fish GGE of 0.20 (Ikeda,

1996; Ikeda et al., 2008). Similar values of growth efficiency have

been recorded in commercial fish species such as cod, haddock

and herring (Peck et al., 2003, 2015; Bernreuther et al., 2013),

although higher values nearer 0.3 are also seen (e.g., Björnsson

and Tryggvadóttir, 1996; Sogard and Olla, 2001; Bernreuther

et al., 2013). Predicted mesopelagic fish biomass is particularly

sensitive to the parameterization of fish longevity. We used a

default mortality of 0.67 year�1 which is equivalent to life span of

1.5 years (Bystydzie�nska et al., 2010; Lingkowski et al., 1993;

Tagaki et al., 2006; Hosseini-Shekarabi et al., 2015). If longevity is

increased to 3 years (Halliday, 1970; Gjösæter, 1973; Greely et al.,

1999; Saunders et al., 2015), predicted fish biomass doubles from

2.4 to 4.9 Gt. Note that uncertainty in mortality rate does not

influence predicted mesopelagic fish production.

(iv) A perhaps surprising outcome of our analysis is that detri-

tivorous zooplankton are predicted to contribute only 5% to the

diet of mesopelagic fish. This occurred because of the low trophic

transfer efficiency for copepods grazing on detritus, 1.45%

(parameter tD,Z ¼ 0.0145). Detritus is made up of refractory com-

pounds that are depleted in micronutrients including amino acids

and fatty acids (Mann, 1988; Cowie and Hedges, 1996; Mayor

et al., 2011). It is however colonized by micro-organisms that

provide substrates that are readily absorbed and which are rich in

these micronutrients (Phillips, 1984). A favourable strategy for

detritivorous copepods may therefore be to selectively utilize

these micro-organisms as a source of nutrition (Mayor et al.,

2014). A recent stoichiometric analysis of this phenomenon

(Anderson et al. 2017) indicated that overall transfer efficiencies

for detritus utilization by zooplankton may be very low, e.g.

1.45%, because of the low biomass of (nutritious) microbes

present within the detrital matrix. This means that, when using

this parameter value for trophic transfer, the predicted produc-

tion of detritivorous copepods in the mesopelagic zone was only

0.16% of PP. As such, detritivorous copepods are only a minor

source of food for mesopelagic fish. If the transfer efficiency is

increased more than 15-fold to 0.23, a value used in previous

models (Anderson and Tang, 2010, Giering et al., 2014), the pre-

dicted share of detritivorous copepods in the diet of mesopelagic

fish increases from 5% to 42% and predicted fish biomass

increases from 2.4 to 4.6 Gt. Anderson et al. (2017) highlighted

the need for more information on the physiological and ecologi-

cal interactions between zooplankton, microbes and detritus. Our

work here serves to re-emphasize that need.

The model was parameterized as a general representation of

the flows of C between PP and the mesopelagic ecosystem

between 40�S to 40�N in the world ocean. A simple approach is

justified at this stage given the many uncertainties in our under-

standing of the mesopelagic ecosystem. The structure and func-

tion of marine ecosystems are in reality variable in space and

time. For example, the export of sinking detritus as a fraction of

PP is variable (Dunne et al., 2005; Henson et al., 2011; Siegel

et al., 2014) which will in turn mean that the relationship between

mesopelagic fish biomass and PP is not necessarily linear.

Likewise, the contribution of copepods to overall grazing of PP is

also variable in space and time (Calbet, 2001). Recent studies of

mesopelagic biogeography have defined as many as 33 biomes

throughout the ocean (Proud et al., 2017; Sutton et al., 2017).

These studies were, however, limited by the sparsity and spatio-

temporally biased data sets available such that much work

remains in order to derive biomes that are comprehensive

and robust (Sutton et al., 2017). As and when robust biomes

are defined, it may then be possible to extend our model to inves-

tigate spatiotemporal variability in the dynamics of the mesopela-

gic ecosystem and the associated production of fish biomass. If
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the model was parameterized beyond the latitudinal range 40�S
to 40�N, a factor to consider is that high latitude, lipid-rich zoo-

plankton undergo seasonal migrations and thereby transfer signif-

icant amounts of labile C to the mesopelagic zone via the “lipid

pump” (Jónasdóttir et al., 2015). Estimates of mesopelagic fish

biomass at the global scale should take into consideration this C

as an additional source of energy and nutrition to mesopelagic

fish.

In conclusion, we used a flow analysis model to study C fluxes

from PP to the mesopelagic ecosystem, giving a prediction for

mesopelagic fish biomass of 2.4 Gt w.w. (between 40�S and 40�N
in the world ocean). Defining the mesopelagic food web interac-

tions in the model was problematic and many of the associated

parameter values were poorly constrained. Our model analysis

highlights how little is known about the physiological ecology of

mesopelagic fish, trophic pathways within the mesopelagic food

web, and how these link to PP in the surface ocean. A deeper

understanding of these interacting factors is required before the

potential for utilizing mesopelagic fish as a harvestable resource

can be considered as a viable proposition.
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Séférian, R., Bopp, L., Gehlen, M., Orr, J. C., Ethé, C., Cadule, P.,
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