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A B S T R A C T

Agroforestry systems, containing mixtures of trees and crops, are often promoted because the net effect of
interactions between woody and herbaceous components is thought to be positive if evaluated over the long
term. From a modelling perspective, agroforestry has received much less attention than monocultures. However,
for the potential of agroforestry to impact food security in Africa to be fully evaluated, models are required that
accurately predict crop yields in the presence of trees. The positive effects of the fertiliser tree gliricidia
(Gliricidia sepium) on maize (Zea mays) are well documented and use of this tree-crop combination to increase
crop production is expanding in several African countries. Simulation of gliricidia-maize interactions can
complement field trials by predicting crop response across a broader range of contexts than can be achieved by
experimentation alone. We tested a model developed within the APSIM framework. APSIM models are widely
used for one dimensional (1D), process-based simulation of crops such as maize and wheat in monoculture. The
Next Generation version of APSIM was used here to test a 2D agroforestry model where maize growth and yield
varied spatially in response to interactions with gliricidia. The simulations were done using data for gliricidia-
maize interactions over two years (short-term) in Kenya and 11 years (long-term) in Malawi, with differing
proportions of trees and crops and contrasting management. Predictions were compared with observations for
maize grain yield, and soil water content. Simulations in Kenya were in agreement with observed yields
reflecting lower observed maize germination in rows close to gliricidia. Soil water content was also adequately
simulated, except for a tendency for slower simulated drying of the soil profile each season. Simulated maize
yields in Malawi were also in agreement with observations. Trends in soil carbon over a decade were similar to
those measured, but could not be statistically evaluated. These results show that the agroforestry model in
APSIM Next Generation adequately represented tree-crop interactions in these two contrasting agro-ecological
conditions and agroforestry practices. Further testing of the model is warranted to explore tree-crop interactions
under a wider range of environmental conditions.

1. Introduction

In much of sub-Saharan Africa there is a projected decline in per
capita food availability (Rosen et al., 2012) that is exacerbated by land
degradation already affecting a third of the land area (Bai et al., 2008;
Tittonell and Giller, 2013; Vågen et al., 2016). Yields of staple crops
remain well below those in other continents and what could be

obtained with better water and nutrient management (Mueller et al.,
2012). The gap between actual and potential yields could be reduced
through more efficient use of resources. Agroforestry is increasingly
promoted as an important tool in addressing soil fertility issues in Africa
(Glover et al., 2012). This is because trees, when incorporated in crop
fields, are often able to reduce soil erosion, improve water and nutrient
cycling and increase both soil organic carbon and the abundance and
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activity of beneficial soil organisms (Barrios et al., 2012). However,
trees can also compete with crops for water and nutrients and reduce
the land area available for crops, so that the net effect of agroforestry on
crop yields over time will depend on attributes and interactions of the
trees, crops, soil, climate, and management (Bayala et al., 2012).

Fertiliser trees including gliricidia (Gliricidia sepium), intercropped
or in improved fallows, have been shown to increase maize (Zea mays)
yield over current farmer practice across sub-Saharan Africa (Sileshi
et al., 2008), but with different performance across soil types, climates
and fertiliser application (Sileshi et al., 2010). This variation in
performance presents a major challenge in scaling up adoption of
fertiliser trees in Africa, because it implies that there is a need to take
into account fine scale variation in context amongst smallholder
farmers, so that appropriate fertiliser tree options can be matched to
sites and farmer circumstances (Coe et al., 2014). Addressing this need
could greatly accelerate scaling up, through accurate simulation of crop
yields obtainable from alternative fertiliser tree options in different
locations, thereby reducing the risk to farmers adopting agroforestry
(Coe et al., 2016). A key constraint with respect to addressing food
security in previous attempts to model gliricidia-maize agroforestry in
Malawi, has been a difficulty in accurately predicting crop yields
(Chirwa et al., 2006; Kerr, 2012).

Scaling up the use of other agroforestry practices in Africa could
also benefit from a field scale modelling capability. For example, the
ACIAR (Australian Centre for International Agricultural Research)-
funded ‘Trees for Food Security’ project, implemented by the World
Agroforestry Centre (ICRAF), is developing such capabilities for Alnus-
potato and Grevillea-maize in Rwanda, and for Faidherbia, Croton and
other tree species grown with wheat, maize, or teff in Ethiopia (Muthuri
et al., 2016). Evaluation of such diverse tree, crop, climate, soil and
management conditions requires a highly flexible and robust modelling
framework to be developed (Luedeling et al., 2016). In the Trees for
Food Security project, the Rwandan and Ethiopian governments are
keen to extend the use of agroforestry, but are unable to test all possible
tree-crop-management combinations across the agro-ecologies that
occur in each country. With validation at some contrasting sites, virtual
experiments could be conducted using simulation models, to predict
performance in untested circumstances, with enough confidence to
guide the development of agricultural policies and the promotion of
agroforestry practices. Yield forecasting to guide operations is a
common use of APSIM (Agricultural Production Systems Simulator,
www.apsim.info) and similar models by consultants or governments for
crops like wheat, maize and soybean (Holzworth et al., 2014;
Hoogenboom et al., 2015) that could be extended to include situations
where crops are grown in agroforestry combinations through the use of
a robust tree-crop interaction model.

A recent evaluation of tree-crop interaction modelling at field scale
(Luedeling et al., 2016), concluded that it would be useful to adapt the
widely-used crop modelling framework in APSIM (Holzworth et al.,
2014, 2015), that can reliably predict yields of major staple crops across
a wide range of sites globally. Here we report on the first attempts to
simulate tree-crop interactions and crop yield using APSIM Next
Generation. The agroforestry practices that we simulated were glirici-
dia-maize intercropping at two contrasting sites in Kenya and Malawi,
for which there were sufficient historical data to both parameterise the
model and evaluate model performance. Gliricidia is a nitrogen-fixing
tree native to Central America that is widely promoted as a fertiliser
tree in Africa (Wise and Cacho, 2005). In Malawi and Zambia,
gliricidia-maize intercropping is widely practiced (Akinnifesi et al.,
2010; Sileshi and Mafongoya, 2006). The specific aim of the research
reported here was to evaluate the new agroforestry model incorporated
within the APSIM Next Generation modelling framework for simulating
interactions in gliricidia-maize intercropping at two contrasting sites in
Africa: Machakos in Kenya, and Makoka in Malawi, with a focus on
maize yields, short-term soil water dynamics, and long-term soil carbon
concentrations.

2. Materials and methods

2.1. Site description

2.1.1. Machakos, Kenya
The Machakos site (1° 33′ S, 37° 08′ E, 1600 m elevation) is located

56 km southeast of Nairobi, Kenya. This site was chosen because water
was usually more limiting to maize growth than nutrients. This is a
semi-arid tropical site with mean annual rainfall of 740 mm. The
climate is relatively cool, with an annual mean daily temperature of
20.1 °C. Rainfall has a bimodal distribution with one rainy season from
October to December and the other from March to May. Soils are
classified as Haplic Lixisols (WRB classification; Dewitte et al., 2013),
which predominate in the area. Top soil (0–15 cm) comprised 1.0–1.5%
organic carbon with a pH of 6.0 to 6.5, and base saturation ranging
from 50 to 80% (Mathuva et al., 1998, Odhiambo et al., 2001, Wilson
et al., 1998). Surface texture was sandy clay loam. The soil was of
variable depth averaging 1.6 m, with bulk density increasing with
depth from 1.19 to 1.67 g cm−3 (Ong et al., 2000). The availability of
nitrogen, phosphorus and other nutrients was considered adequate for
maize, and generally the site was considered to be more water-limited
than nutrient-limited for maize growth. Govindarajan et al. (1996)
observed strong competition for water between the gliricidia and crops,
because of the concentration of tree roots in the top 0.5 m of soil where
crop roots are also predominantly found.

2.1.2. Makoka, Malawi
The Makoka site (15o 30′ S, 35o 15′ E, 1030 m elevation) is located

20 km south of Zomba, Malawi. This site was chosen because N was
more limiting to maize growth than other nutrients or water. This is a
sub-humid sub-tropical site with mean annual rainfall of 1024 mm.
Mean daily temperature varies between 16 and 24 °C. Unlike the
Machakos site, Makoka has a unimodal distribution of rainfall from
November to April. Soils are classified as Ferric Lixisols (WRB
classification). Top soil (0–20 cm) comprised 0.88% organic carbon,
with total N at 0.07%, and pH 5.9 (Ikerra et al., 1999). Surface texture
was sandy clay. Soil was at least 1.2 m deep, with plant available water
capacity 118–161 mm (Robertson et al., 2005). Low availability of
nitrogen was the main limitation to maize growth, as well as seasonal
variations in soil water content (droughts and saturation). Phosphorus
was thought to be non-limiting to maize growth during the first few
years of the experiment, but became co-limiting during the last few
years (Akinnifesi et al., 2007).

2.2. Experiments

2.2.1. Machakos, Kenya
The experiment at Machakos consisted of three treatments in a

randomized block design with four replicates. Two treatments are
considered in this paper: (1) sole maize crop, and (2) maize grown
between gliricidia trees. A treatment not used was maize grown with
grevillea trees. There were two crops per year: maize (cultivar
Katumani composite) during the long season, and beans during the
short season. The experiment commenced in 1993, but only the two
maize crops in the period March 1996 to July 1997 were reported by
Odhiambo et al. (2001) and used here. Plots were 20 m × 18 m with
maize planted 1 m apart between rows and 30 cm apart within rows. In
plots with gliricidia, trees replaced the middle row of maize. No
fertilisers were applied, and weeds were removed manually, twice each
season. Gliricidia was side-pruned to leave branch-free stems to a
height of 2.5 m; residues were removed from the experiment. Between
March 1996 and July 1997, gliricidia grew in height from about 4.0 to
4.5 m (Wilson et al., 1998). Key measurements for this paper included
maize germination percentage (1996 only) and grain yield, gliricidia
height and root-length-density, and soil water content at 35 cm depth.
Data were provided by Wilson et al. (1998) and Odhiambo et al. (2001).
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2.2.2. Makoka, Malawi
This experiment consisted of a factorial combination of two

agroforestry practices (maize monoculture and gliricidia-maize inter-
cropping), three rates of N (0, 25% and 50% of the recommended
92 kg N ha−1), and three rates of P (0, 50% and 100% of the
recommended 40 kg P ha−1 for hybrid maize growing in Malawi).
Nitrogen fertiliser was applied at a rate of 0, 24 or 48 kg N ha−1 as
calcium ammonium nitrate four weeks after sowing. Phosphorus
fertiliser was applied at a rate of 0, 20 or 40 kg P ha−1 as triple
superphosphate at sowing. We simulated four treatments: sole maize
(Sm), Sm with 48 kg N ha−1 (Sm48N), gliricidia-maize (Gm), and Gm
with 48 kg N ha−1 (Gm48N). There was one crop per year of maize
(cultivar NSCM 41) sown in December and harvested April–May.
Gliricidia was established during 1992, and the first maize crop sown
in December that year. Plots were 6.75 m× 5.1 m with maize sown on
ridges 0.9 m between rows and 0.15 m within rows. In plots with
gliricidia, trees were planted in every second furrow 0.9 m apart, cut
back to 0.3 m high stumps three or four times per year, and residues
retained. Manual weeding occurred twice each season. Annual biomass
and nutrient content of gliricidia residues are reported in Makumba
et al. (2006), along with annual maize biomass and grain yield.
Makumba et al. (2009) reported rooting patterns.

2.3. Modelling

The Next Generation version of the APSIM modelling framework
(Holzworth et al., 2014, 2015), which includes the maize model used
here in its release version, was used to simulate the long and short term
interactions amongst maize and gliricidia. Other crops included in
APSIM Next Generation are wheat, oil palm, and pasture, with teff,
potato and cowpea under development, and the number of crop options
is expected to increase during coming years. All APSIM one-dimen-
sional (1D) crop and pasture models simulate the growth of plants using
the key processes of phenology, soil water availability, soil nitrogen
availability, climate and management. For example, radiation, leaf area
and photosynthetic efficiency are the main determinants of carbon

fixation, but these processes can be limited by sub-optimal nitrogen and
water availability. Phosphorus or other nutrients potentially limiting
growth were not included in this version of the maize model.

A pre-release version of an agroforestry model developed within the
APSIM Next Generation framework was used for two-dimensional (2D)
representation of gliricidia-maize intercropping. In this model, the
maize model, as available in the release version of APSIM Next
Generation, was used in conjunction with a static proxy of the gliricidia
trees. In the tree model, there was no process-based simulation of
gliricidia growth. Instead, the tree interacted with adjacent widths of
crop zones via user-defined inputs that affected resource availability in
these zones. Interactions spatially and temporally with crop zones were
specified for the tree for shading, rainfall interception, N demand, water
demand (as a result of temporal leaf area inputs), root distribution, and
additions of pruned gliricidia biomass (C and N) where those that
actually occurred (at Makoka only). Tree leaf area determined water
demand using standard APSIM algorithms (Snow and Huth, 2004).
Below-ground interactions between trees and crops were calculated by
the APSIM SoilArbitrator model (http://www.apsim.info/ApsimxFiles/
SoilArbitrator576.pdf). The model calculates N uptake using the
equations of De Willigen and Van Noordwijk (1994) as formulated in
the model WANULCAS (van Noordwijk et al., 2011). Water uptake is
calculated using an adaptation of the approach of Meinke et al. (1993)
where the extraction coefficient is assumed to be proportional to root
length density (Peake et al., 2013). In the version of the agroforestry
model used here, it was assumed that there were no fluxes of water, C or
N between zones. The model can incorporate standard management
practices such as plant spacing, sowing and harvesting rules, organic
and inorganic fertiliser rates, and irrigation. A standard APSIM
meteorological file was used that contained daily inputs of radiation
(MJ m−2 d−1), maximum and minimum temperatures (°C), and rainfall
(mm).

2.3.1. Model setup for Machakos, Kenya
Climate, crop and tree parameters, and soil physical and chemical

properties were available from Odhiambo et al. (2001), Wilson et al.

Table 1
Soil parameters used for simulations at the Machakos and Makoka sites.

Depth (cm) Bulk
density
(g·cm−3)

Water Contenta PAWCa,b

(mm)
Fractional water
extractiona

(mm mm−1 d−1)

C (%) FBioma,c FInerta,d pH NH4

initial
NO3

initial
Air dry Drained

lower
limit

Drained
upper
limit

Saturated Maize
lower
limit

Initial

(cm·cm−3) (μg·g−1)

Machakos
0–20 1.35 0.04 0.10 0.20 0.35 1.35 0.130 20.0 0.7 1.10 0.030 0.600 6.5 0.1 5.0
20–40 1.35 0.04 0.10 0.20 0.35 1.35 0.130 20.0 0.7 0.80 0.020 0.600 6.5 0.1 2.0
40–60 1.35 0.14 0.14 0.22 0.37 1.35 0.160 16.0 0.7 0.60 0.010 0.600 6.5 0.1 0.5
60–80 1.40 0.15 0.17 0.24 0.37 1.40 0.176 14.0 0.7 0.60 0.010 0.900 6.5 0.1 0.5
80–100 1.40 0.16 0.17 0.24 0.38 1.40 0.170 14.0 0.7 0.20 0.010 0.950 6.5 0.1 0.2
100–120 1.40 0.16 0.17 0.24 0.38 1.40 0.170 14.0 0.7 0.10 0.010 0.950 6.5 0.1 0.2
120–140 1.40 0.16 0.17 0.24 0.38 1.40 0.170 14.0 0.7 0.10 0.010 0.990 6.5 0.1 0.1
140–160 1.40 0.16 0.17 0.24 0.38 1.40 0.170 14.0 0.7 0.10 0.010 0.990 6.5 0.1 0.1

Makoka
0–20 1.42 0.16 0.17 0.38 0.40 0.170 0.250 42.0 0.08 0.88 0.010 0.660 5.9 1.0 3.0
20–40 1.45 0.17 0.18 0.38 0.41 0.180 0.250 40.0 0.08 0.63 0.010 0.660 5.6 1.0 2.0
40–60 1.47 0.18 0.19 0.37 0.42 0.190 0.250 36.0 0.08 0.40 0.010 0.900 5.8 0.5 1.0
60–80 1.31 0.20 0.22 0.36 0.43 0.220 0.270 28.0 0.08 0.23 0.010 1.000 5.9 0.1 1.0
80–100 1.42 0.23 0.25 0.33 0.44 0.250 0.270 16.0 0.06 0.22 0.010 1.000 6.1 0.1 1.0
100–120 1.38 0.23 0.25 0.28 0.44 0.250 0.290 6.0 0.04 0.11 0.010 1.000 6.3 0.1 0.5
120–140 1.32 0.26 0.27 0.29 0.44 0.270 0.300 4.0 0.03 0.05 0.010 1.000 6.2 0.1 0.1
140–160 1.30 0.27 0.27 0.30 0.44 0.270 0.300 6.0 0.02 0.05 0.010 1.000 6.4 0.1 0.1
160–180 1.31 0.28 0.29 0.30 0.44 0.290 0.300 2.0 0.02 0.05 0.010 1.000 6.3 0.1 0.1
180–200 1.31 0.28 0.29 0.29 0.44 0.290 0.300 0.0 0.02 0.05 0.010 1.000 5.9 0.1 0.1

a These parameters were adjusted during model tuning.
b PAWC= plant available water content.
c FBiom= fraction of carbon in microbial biomass.
d FInert = fraction of inert carbon.
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(1998), and Ong et al. (2000). Daily weather data were compiled from
measurements at the site (Jackson and Wilson pers. comm.) and a
nearby government meteorological station. A tabulation of key soil
inputs is provided in Table 1. The same soil and climate inputs were
used for all simulations; soil C:N ratio was 12. The bean crop grown
between the two maize crops was simulated as an additional maize crop
because no legume crops were available in APSIM Next Generation. The
additional maize was harvested (terminated) prior to grain formation.
This ensured that water use by the additional crop approximated
reality. If this crop had not been simulated, there would have been a
risk that water and available N effects would have carried over to the
second crop of maize and artificially enhanced the simulated growth.
However, very few details were available in the original publications to
guide simulation of this additional crop. Assuming a small amount of N
was fixed by this bean crop, which then enhanced N availability, 5 kg N
ha−1 was added as nitrate at all distances from gliricidia trees during
sowing of the second maize crop.

Simulations commenced 1st March 1996 and ran to 31st December
1997. Sowing and harvesting dates specified were those provided in the
original publications. No fertilisers were applied. Tree height was set in
the simulations to be the same as those measured; that is increasing
from 0.9 m in December 1993 to 4.9 m in August 1997, with a
concurrent increase in leaf area from 0.5 to 1.0 m2, and constant
gliricidia N demand of 0.1 g·m−2. Canopy width extended to one tree
height (h), with 50% shading 0–0.5 h, and 25% shading 0.5–1.0 h.
Roots were assumed to extend to 2.5 h radially, and to 1.6 m depth.
Approximately consistent with measurements, root-length-density
(cm·cm−3) was set in the 0–0.5 h zone to 2.0 at 0–20 cm depth, 2.5
at 20–40 cm, 1.6 at 40–60 cm, and 0.5 for the rest of the soil profile.
Root-length-density decreased radially, e.g. to 0.3 at 2.0–2.5 h at
0–20 cm depth.

Calibration of the model was required only for soil water and
nitrogen parameters, which was justified because the values of several
parameters were not provided in the literature. An iterative process of
parameter adjustment was used for maize in the 8 m crop zone.
Parameters were adjusted within reasonable limits based on previous
experience to achieve an approximate match between observed and
predicted grain yield. Values provided in Table 1 are those arrived at by
calibration or as provided in the literature. The release version of the
maize model was used and, therefore, not recalibrated. As the gliricidia
proxy was user-defined, it did not require calibration.

2.3.2. Model setup for Makoka, Malawi
Climate, crop and tree parameters, and soil physical and chemical

properties were available from Makumba et al. (2006), Akinnifesi et al.
(2007), Chirwa et al. (2007), Ikerra et al. (1999), and Robertson et al.
(2005). Daily weather data were provided by the Malawi meteorologi-
cal service (courtesy of B Nyoka, ICRAF). A tabulation of key soil inputs
is provided in Table 1; soil C:N ratio was 14.3. The same soil and
climate inputs were used for all simulations. Treatment-specific or year-
specific inputs were as follows.

1. Biomass and N in gliricidia residues – annual inputs were available,
which were assumed to be split and applied equally four times per
year, i.e. on the 15th day each of February, August, October and
December. These dates of application approximated actual practice,
but amounts applied on each occasion were unlikely to be have been
simulated exactly as they occurred.

2. A sowing rule was used in the simulation, that resulted in simulated
sowing dates within the period described in references about these
experiments (12th to 27th December), except for one year. The
sowing rule operated from 15th November to 30th December and
required minimum extractable soil water of 30 mm, and accumu-
lated rainfall of 30 mm over 5 days to trigger sowing, but this rule
did not lead to sowing in the unusually dry December of 1999.
Although there was maize sown at 4.44 plants m−2 in the

experiment that season, it is expected that there would probably
have been high maize mortality (Chirwa et al., 2007), but plant
population density was not measured. As APSIM did not provide
stress-modified germination or mortality, a specific operation was
included in the simulation for that December to sow at a reduced
population density that was tuned to match observed yields.
Population densities (plants m−2) used were Sm 0.5, Sm48N 1.2,
Gm 1.2, and Gm48N 2.0. This operation was required in the
simulation to ensure that maize growth in this season did not affect
subsequent simulated maize crops via soil properties that could have
been affected by a yield pattern that did not represent reality. Yields
from this sowing (harvested in 2000) were excluded from observed
versus predicted statistics.

Simulations commenced 1st September 1992 and ran to 31st August
2014 (22 years); simulations were extended beyond observations to
determine the likely temporal patterns in grain yield and soil C.
Simulated sowing was as described above. Nitrogen mineralization
and nitrification parameters were set to those used by Asseng et al.
(1998), which was required to achieve the higher rates of these
processes than default values provided by APSIM. Where fertilisation
occurred (SM48N and Gm48N treatments), urea N was applied at the
required rate 30 days after sowing.

Gliricidia N demand was based on measured N content, and ranged
from 0.005 g m−2 at planting to c. 0.05 g·m−2 at 6 years of age, and
thereafter remained approximately constant. As water availability had
previously been found to be non-limiting, gliricidia was assumed to
have no water demand, with no leaf area, canopy width, shading or
rainfall interception. Roots were assumed to extend radially in a
uniform manner to a width equivalent to one tree height (1 m) and to
2 m depth. Consistent with measurements, root-length-density
(cm·cm−3) was set to 0.2 at 0–40 cm depth, 0.8 at 40–60 cm, 0.6 at
60–100 cm, 0.5 at 100–120 cm, 0.4 at 120–140 cm, 0.3 at 140–160 cm,
and 0.1 at 160–200 cm.

Calibration of the model for the Makoka site was similar to that for
the Machakos site, but the iterative process of parameter adjustment
was used for sole maize (unfertilized and fertilised) during the first five
years.

2.3.3. Model Evaluation
Values predicted by the model were compared to observed values

(a) graphically using 95% confidence intervals of prediction
(SigmaPlot©) and R2 values (while recognising that assumptions of
its use may have been violated, i.e. autocorrelation, normality, and
heteroskedasticity), and (b) using a combination of statistics as
recommended by Yang et al. (2014). Statistics chosen were mean
absolute error (MAE), mean error (ME), index of agreement (IoAd), and
Nash-Sutcliffe efficiency (NSE), which were calculated using the
‘HydroTest’ software (Dawson et al., 2007). Evaluation statistics were
calculated with and without calibration data. Critical values for
satisfactory performance were taken as d > 0.8 for plant properties
or d > 0.60 for soil properties, NSE > 0.65, and R2 > 0.70 (Dawson
et al., 2007; Ritter and Muñoz-Carpena, 2013).

3. Results

3.1. Machakos, Kenya

In both years, highest maize yields were observed at 8 m horizontal
distance from the gliricidia trees although a plateau in yield versus distance
had not been reached at this distance (Fig. 1). Yields progressively decreased
to approach zero at 1 m from the tree rows. This variation in maize yields
with distance was accurately simulated by the model, where 99% of
variation was explained with calibration data excluded from the evaluation
statistics (MAE= 7.46 g·zm−2, ME= 2.37 g·m−2, IoAd= 1.00,
NSE= 0.98, R2= 0.99, Fig. 2) and a similar result with them included
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(MAE= 23.47 g·m−2, ME=−15.89 g·m−2, IoAd= 0.96, NSE= 0.79,
R2= 0.90, Fig. 2). The success of the model was underpinned by generally
adequate simulation of soil water dynamics (temporal pattern shown for
one depth and location in Figs. 3, 20–40 cm depth, 2 m zone,
MAE= 0.017 cm3 cm−3, ME= 0.0087 cm3 cm−3, IoAd= 0.91,
NSE= 0.58, R2 = 0.75), which was the main limiting factor for maize
growth at this site. There was, however, a tendency towards over-prediction
of intermediate soil water contents as seasonal decreases occurred.

3.2. Makoka, Malawi

Maize yield at Makoka in sole maize (Sm) ranged between 0 and
2 t·ha−1, with yields tending to be higher early in the measurement period
1993–2003 (Fig. 4). Maize yields in most years of the Sm treatment were
well simulated (R2= 0.76). Observed and predicted yields increased in
response to factorial combinations of fertiliser and gliricidia residues.
Highest yields occurred in the combined treatment (Gm48N), which, in
the 11th year, provided an observed 333% increase over those in the Sm
treatment, and was simulated as a 250% increase. There was a bias towards
over-prediction of yields from 1997 to 2003 in the Gm and Gm48N
treatments. The ranking of yields in year 2000 was correctly simulated,
but absolute values were initially substantially over-predicted (data not
presented) because the simulation had not accounted for resowing at a later
date and population density differences. Therefore, the simulation was
coded to end the crop soon after sowing and then to resow it at a maize
population density that provided simulated yields close to observed yields.
Excluding 2000 and calibration data from evaluation of the model,
observed yields were adequately simulated (MAE= 82.0 g·m−2,
ME=−49.9 g·m−2, IoAd= 0.90, NSE= 0.67, R2= 0.73, Fig. 5), with
a similar result when they were included (MAE= 71.4 g m−2,
ME=−32.4 g m−2, IoAd= 0.94, NSE= 0.78, R2= 0.81). Sowing rate
adjustments for that year were justified, as it was particularly dry
immediately after planting, necessitating reseeding in an adjacent experi-
ment (Chirwa et al., 2007). Although the current experiment was not re-
sown, we were unsure what effect there had been on maize survival.

Measured soil carbon concentrations (0–20 cm depth) were
8.8 g·kg−1 at commencement of the experiment, and those in the Sm
treatment decreased to 8.2 g·kg−1 after 9 years and 5.5 g·kg−1 after
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12 years. In contrast, soil C increased to 10.0 g·kg−1 with gliricidia-
maize intercropping, and N fertiliser further increased soil C concen-
trations after 12 years. Observed soil C trends in surface soil were
reflected at depth but with smaller changes. Observational errors were,
however, apparent that could not be resolved. Hence, simulated
concentrations of soil C (Fig. 6) followed the same general pattern as
observations; that is gliricidia residues and N fertiliser both increased
soil C, but evaluation statistics could not be calculated. Although the
range of predictions did not fully reflect measured site variability,
simulated trends in soil C were within the 95% confidence interval of
prediction for the 2004 means (data not presented). Small increases in
soil C were simulated at deeper depths (data not presented).

4. Discussion

The APSIM maize model has been validated and used in many
contexts globally (Holzworth et al., 2014). In the present simulation,
maize yield and water availability were used as the indicator of short-
term gliricidia effects under water-limited conditions at Machakos,
while maize yield and soil carbon concentration were used as indicators
of long-term effects under N-limited conditions at Makoka. The APSIM
agroforestry model adequately simulated the relative and absolute

values of maize grain yield in these two contrasting gliricidia-maize
intercropping contexts, with accompanying short-term trends in soil
water and long-term trends in soil C. N dynamics were also simulated
by APSIM and were consistent for Machakos with observations that
competition for nutrients and light had a minor influence on maize
yield in Machakos. For Makoka simulated results were consistent with
observations that N was the main limiting factor.

Soil at Makoka was observed to change during 14 years of measure-
ment for properties such as organic matter, nutrient availability, pH,
and soil water characteristics (Akinnifesi et al., 2007). However,
simulations did not cater for changes in these soil properties, apart
from C and N concentrations. As simulations adequately reflected
treatment effects on maize grain yield and soil C, this result further
suggests that the main limiting factor for yield at Makoka was N
availability as affected by gliricidia residues or fertiliser.

Potential sources of simulation error other than N need to be
considered. Responses in maize yield to N and P fertilisers in factorial
combinations with gliricidia at Makoka were modelled empirically by
Akinnifesi et al. (2007) for the years 2002 to 2006. A small response in
maize yield to P fertiliser was detected, which contrasts with the lack of
response to P during the first year of the experiment (1992). This
indicates that a P limitation developed in the intervening period that
could account for some discrepancy between observed and predicted
maize yield, including the tendency towards over-predicted yields later
in the simulation (from 2002 to 2003) in the more high-yielding
treatments Gm and Gm48N (Fig. 4). Another factor potentially con-
tributing to prediction error was speculation that heavy rains, slow
drainage and perched water tables at the site could suppress maize
growth through water logging, but there was no clear relationship
between high annual rainfall and low crop or gliricidia production in
the observations and APSIM lacked the capability to model this effect.

Projected yields of the gliricidia-maize system at Makoka with
possible changes in future climate (years 2040 to 2069) were estimated
by Kerr (2012) using three global climate models, sub-daily interpola-
tions of precipitation and temperature, and yields that were assumed to
be directly related to growing degree days (GDD). Yields were assumed
to decline by 1% for every GDD > 30 °C. Precipitation was estimated
to remain adequate, and although high temperatures were projected to
decrease yields, this result depended largely on the assumptions
underlying the sub daily interpolations of temperature. A crop produc-
tion model dependent only on GDD is unlikely to capture tree-crop
interactions because it would not take account of daily variations in N
and water availability, temperature and light that determine maize
growth and yield.

The gliricidia-maize system at Makoka has been previously simu-
lated by Chirwa et al. (2006) using an early version of the WaNuLCAS
model, with a focus on biomass production in the sole maize and
gliricidia-maize treatments, and for predicting possible trends in
leaching, soil surface evaporation, drainage and water uptake. Results
showed that WaNuLCAS either underestimated or over-estimated crop
production compared to field observations. Model outputs were un-
affected by applications of green leaf manure as it assumed continuous
availability of soil nutrients over several seasons, even when no
fertiliser or green manure was applied. The lack of model fit was also
ascribed to the model not considering crop phenological and physiolo-
gical parameters, which are catered for in the APSIM framework.
Muthuri et al. (2004), when simulating maize interactions with
Grevillea robusta, Alnus acuminata and Paulownia fortunei in Kenya, also
observed that improved cultivar information for maize was needed in
WaNuLCAS to avoid over- or under-estimates of yield.

The results of this simulation and earlier empirical studies (e.g.
Chirwa et al., 2007; Sileshi et al., 2012) indicate that combining maize
with fertiliser trees results in greater water availability and crop
utilization of water than in sole maize. According to a study at Makoka
(Chirwa et al., 2007), water use efficiency (WUE) was higher in maize
intercropped with gliricidia than in sole maize. In another analysis
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(Akinnifesi unpublished), gliricidia-maize intercropping was more
stable (lower coefficient of variation) in terms of rain use efficiency
than unfertilized sole maize. This result indicates that, where N is more
limiting than water, gliricidia-maize intercropping can significantly
increase WUE and stabilize crop yields.

The ability of the Next Generation version of APSIM to simulate
short- and long-term tree-crop interactions suggests that it would be
useful to further develop the model to include a broader range of tree
and crop species and evaluate performance across a broader range of
environmental and management contexts. Such developments need to
occur in the context of the current and other relevant modelling
activities. For example, WaNuLCAS was calibrated to model the
productivity, carbon-stock dynamics and economic value of a gliricidia
woodlot under a range of pruning and residue management decisions
and for varying levels of land degradation (Wise and Cacho, 2005) but
no validation was provided. The RothC model for soil organic carbon
was used to simulate soil C turnover in Zambia (Kaonga and Coleman,
2008). RothC simulates the effect of annual above- and below-ground
plant residue inputs to the soil on total organic C, microbial biomass,
and radiocarbon age of the soil, over a period ranging from a few years
to centuries. In Eastern Zambia, RothC estimated that soil C stocks
increased by 29% (26.2 to 33.9 t·ha−1) where gliricidia was used, and
that the decomposable:resistant plant material ratio needed to be
increased (tuned) from 0.25 to 1.1 to achieve satisfactory simulation
results. Comparable values for simulations at Makoka were a 22%
increase in soil C (8.2 to 10.0 g·kg−1) with a decomposable:resistant
ratio of 0.66. The RothC model is not designed to simulate crop
production, but instead focuses on soil C dynamics with user-prescribed
inputs, preferably of crop residues and other organic amendments.
Although APSIM simulates both crop yields and soil C, it is likely to be
useful to compare simulated soil C with RothC outputs where soil C is a
major focus of research.

A maize agroforestry system was also simulated by Senaviratne
et al. (2014), but this did not include crop or tree production. Instead,
water quality of small catchments was simulated empirically using the
APEX model. Sediment, total N and total P in runoff water were
adequately predicted after an extensive parameter optimisation pro-
cess. Although APSIM is not primarily a catchment model, it can be
used to simulate water and nitrate leaching and salinity, and, as for
similar field-scale models, it could be interfaced with catchment models
to simulate stream-flow (Almeida et al., 2016) and contaminants (Wang
et al., 2009).

Tree root behaviour is very important in determining tree-crop
interactions, and so needs to be adequately dealt with in crop models.
At the Makoka site, repeated coppicing would be expected to have kept
tree root length density and distribution relatively stable during the
study period. Whereas at the Machakos site where trees grew large, tree
roots were extending laterally year-on-year, so that the zone of
competition with crops would have increased correspondingly. In this
situation, tree roots were already present and active when the crop was
planted and could extract water before germinating seedlings. Tree
water use and root distribution were important under semi-arid tropical
conditions in Machakos, but were less of an issue in the frequently
pruned and more N-limited sub-humid sub-tropical system in Makoka.
In these contrasting agro-ecologies, the model was shown to integrate
the distribution and density of tree roots with the availability and
uptake of water and N reasonably well.

5. Conclusion

The agroforestry model in APSIM represents a major advance in
being able to reliably predict the impact of trees on crop yield and
water and soil carbon dynamics. The model demonstrated this capacity,
in two contrasting African sites, even though there were some
uncertainties in data inputs (exact planting and harvesting dates, exact
gliricidia pruning dates and amounts of residues, and uncertainties for

some soil water characteristics, tree root length densities, and soil C and
N). This initial evaluation used a version of APSIM with N as the only
nutrient under consideration, a proxy tree model that includes only
limited dynamics in some tree variables (roots, shade), as well as fixed
soil properties (BD, water characteristics, pH, FBiom, FInert), and no
capacity to simulate the effects of waterlogging. There are few crops
currently available in APSIM Next Generation, and no mechanistic
modelling of crop germination and mortality. Hence, the model appears
to work well for water and N limited situations, but it would benefit
from further development to cope with other limiting nutrients and
water logging, as well as including a broader range of trees and crops,
before it can be widely used to help refine our understanding of how
different agroforestry options will perform across different locations in
Africa.
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