1	Evidence	for a c	lynamic	grounding-	-line	in outer	Filchner
---	----------	---------	---------	------------	-------	----------	----------

- 2 Trough, Antarctica, until the early Holocene
- 3 Jan Erik Arndt¹, Claus-Dieter Hillenbrand², Hannes Grobe¹, Gerhard Kuhn¹, and

4 Lukas Wacker³

5 ¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am

- 6 Handelshafen 12, 27570 Bremerhaven, Germany
- 7 ²British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET, UK
- 8 ³ETH Zürich, Laboratory of Ion Beam Physics, Schafmattstrasse 20, CH-8093 Zürich,
- 9 Switzerland

10 ABSTRACT

11 Previous reconstructions of ice-sheet changes in Antarctica's Weddell Sea sector 12 since the Last Glacial Maximum (LGM) at 19–23 (calibrated) cal. kyr B.P. suffered from 13 large uncertainties and were partly contradictory. As a consequence, the contribution of 14 this sector to the LGM sea-level low stand and post-LGM sea-level rise was unclear. 15 Furthermore, whether and how precursor water masses for Antarctic Bottom Water 16 (AABW) were formed in the Weddell Sea Embayment under glacial conditions is 17 unknown, as this today requires the existence of the floating Filchner-Ronne Ice Shelf. 18 Here we present new marine geophysical and marine geological data from the outer shelf 19 section of the Filchner paleo-ice stream trough documenting that grounded ice had 20 advanced onto and retreated from the outer shelf prior to 27.5 cal. kyr B.P., i.e., more 21 than 4,500 years before the LGM. The data reveal the presence of a stacked grounding-22 zone wedge (GZW) just south of 75°30' S. This GZW was formed during two episodes of

23	grounding-line re-advance onto the outer shelf after 11.8 cal. kyr B.P., with data further
24	inshore implying paleo-ice stream retreat from the GZW location prior to 8.7 cal. kyr
25	B.P Our findings show that (i) ice-sheet build-up in the Weddell Sea sector made only
26	limited contributions to the LGM sea-level low stand, (ii) ice-ocean interaction below an
27	ice shelf in outer Filchner Trough could contribute to AABW production at the LGM,
28	and (iii) numerical models need to take into account a highly dynamic ice-sheet behavior
29	in regions of WAIS and EAIS confluence.
30	INTRODUCTION
31	Today, the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet
32	(EAIS) drain \sim 20% of Antarctica's ice volume into the Weddell Sea Embayment (WSE;
33	Figure 1 inset), where ~40% of AABW, a major component of the global ocean
34	conveyor, are formed by ice-ocean interactions below and in front of the Filchner-Ronne
35	Ice Shelf (Meredith, 2013). Despite its glaciological and oceanographic significance,
36	however, the WSE is the Antarctic sector with the largest uncertainties in reconstructions
37	of grounded ice-sheet extent at the LGM and the timing of post-LGM grounding-line
38	retreat (RAISED Consortium, 2014). A review of geological data available from this
39	sector presented two conflicting ice extent scenarios (Hillenbrand et al., 2014). For
40	Filchner Trough, the largest cross-shelf trough in the WSE, the first scenario proposed a
41	maximum grounding-line position on the inner shelf just south of 80 °S based on limited
42	ice-sheet thickening reconstructed from terrestrial geomorphological data and
43	cosmogenic nuclide surface exposure ages on erratics in the Shackleton Range (Fig. 1
44	inset, e.g., Hein et al., 2011). The second scenario, which is mainly based on
45	geomorphological and sediment core data from the WSE shelf, concluded a grounding-

46	line position at the shelf break, i.e., ~650 km further offshore. Recently, the feasibility of
47	both LGM scenarios was confirmed by a flow-line modeling study (Whitehouse et al.,
48	2017). Furthermore, cosmogenic-nuclide data from the Ellsworth Mountains (Fig. 1
49	inset) suggest that the LGM ice-sheet thickness was maintained at the WAIS into the
50	early Holocene (Hein et al., 2016) and new glaciological evidence from ice rises has
51	shown that ice-sheet retreat from the WSE shelf during the Middle and Late Holocene did
52	not occur uniformly, but was characterized by switches in ice-stream flow and
53	grounding-line re-advances (e.g., Winter et al., 2015; Kingslake et al., 2016).
54	Despite this recent research progress, it is still unclear whether the WSE
55	contributed significantly to post LGM sea-level rise, including phases of rapid, global
56	sea-level rise (meltwater pulses) (Golledge et al., 2014; Hein et al., 2016), and if and how
57	AABW formed in the WSE under LGM conditions (Mackensen et al., 1996). Therefore,
58	additional information from paleo-records is required. Here we present new swath
59	bathymetry, acoustic sub-bottom profiler and sediment core data from the outer part of
60	Filchner Trough (north of 75°50' S) providing evidence that a highly dynamic ice-stream
61	system existed there until the early Holocene.
62	MATERIALS
63	Most of the multibeam bathymetry data and acoustic sub-bottom profiles from the

study area (Fig. 1a) were collected on expedition PS96 with RV "Polarstern" in austral
summer 2015/2016 using the hull-mounted Atlas-Teledyne Hydrosweep DS3 and

- 66 Parasound P-70 systems. Pre-existing bathymetric data were added to the new data set
- 67 (GSA Data Repository¹). Gravity cores PS96/079–3 and PS96/080–1 were recovered on

68 cruise PS96 from the study area (Fig. 1a). Sampling and analytical procedures followed

69 standard methods and are outlined in GSA Data Repository.

70 GLACIAL GEOMORPHOLOGY AND SUB-SEAFLOOR STRATIGRAPHY

71 Our new bathymetry data reveal a 15 km wide and \geq 35 km long depression with a 72 maximum depth of 745 m in the outer shelf section of Filchner Trough (Fig. 1a). The 73 depression is bounded by a shallow (<700 m depth) western flank, while its eastern part is overlain by a ≤ 5 km wide and ~ 20 m high "terrace" (~ 720 m depth), which is bounded 74 75 by a shallow eastern flank (<700 m depth). A wedge-shaped "sill" with a steep northern flank, a gentle backslope and a crest reaching a minimum depth of ~700 m is located to 76 77 the south of the depression and the terrace. The seafloor within the depression and on the 78 terrace is carved by highly elongated and parallel, NNE-directed lineations (up to 11 km 79 length, 2–6 m amplitude, 200–400 m spacing), hereafter referred to as Lineations A and 80 B, respectively (Fig. 1b). We interpret these lineations as mega-scale glacial lineations 81 (MSGLs) formed at the base of fast flowing ice (cf. Clark, 1993; King et al., 2009; Stokes 82 and Clark, 2001). The strike direction of both MSGL sets is nearly the same (A = $\sim 15^{\circ}$, B 83 $= \sim 12^{\circ}$) and in common with the orientation of the central axis of Filchner Trough. On 84 the backslope of the wedge-shaped sill and the shallow trough flanks, the seafloor is 85 characterized by randomly oriented, slightly curved to curvilinear furrows (150 m to 500 86 m width, ~ 10 m average incision) that we interpret to have been eroded by iceberg keels 87 into the seafloor under glacimarine conditions (e.g., Dowdeswell and Bamber, 2007; 88 Klages et al., 2015). These iceberg ploughmarks occur down to a water depth of \sim 710 m 89 around the depression. South of the sill they are observed down to \sim 730 m depth.

90	The acoustic sub-bottom profiler data (Fig. 1b) show that in the depression a ~ 3 m
91	thick horizontally stratified unit (acoustic facies AF1) drapes an acoustically transparent
92	unit (AF2) of variable thickness (0-4 m). The surface of AF2 corresponds to Lineations
93	A and its base is defined by a smooth and flat basal reflector. Draping AF1 continues
94	underneath the wedge-shaped sill, which itself consists of a thick acoustic transparent
95	unit (AF3). At the terrace, which also consists of AF3, AF1 splits into a thicker lower
96	part dipping underneath the terrace and a thinner upper part, forming the near-seafloor
97	sediments on the western slope of the terrace. On top of the terrace, where Lineations B
98	are present, AF1 pinches out. Lineations A were formed on top of AF2, so this unit is
99	interpreted to consist of soft deformation till that facilitated fast ice flow (cf. Alley et al.,
100	1986; Ó Cofaigh et al., 2005). AF1 represents a drape of glacimarine sediments, whereas
101	AF3 mainly corresponds to a soft deformation till, which is evident from the sediment
102	cores (see below).
103	Based on the bathymetric findings and the sub-seafloor stratigraphy we interpret
104	the wedge-shaped sill and the terrace as grounding-zone wedges (GZW, cf. Batchelor and
105	Dowdeswell, 2015) and refer in the following to the terrace as GZW 1a and the wedge-
106	shaped sill as GZW 1b. GZWs are formed at the grounding line of an ice stream by
107	continuous till deposition during a period of grounding-line stillstand (Alley et al., 1989;
108	Ó Cofaigh et al., 2008). The backslope of a newly formed GZW is typically characterized
109	by MSGLs, such as Lineations B on GZW 1a, unless the maximum draft of icebergs after
110	the grounding line has retreated further upstream is sufficient to obliterate the MSGL by

111 ploughing, such as on GZW 1b (cf. Batchelor and Dowdeswell, 2015).

112 CORE LITHOLOGY AND CHRONOLOGY

113	Sediment core PS96/079–3 was retrieved from AF1 within the depression (Fig.
114	1a; GSA Data Repository). It recovered a 181 cm long sequence of predominantly
115	terrigenous, laminated to stratified muds, sandy muds and muddy gravelly sands with
116	relatively high water content (mean 32 wt.%), low shear strength (≤ 6.5 kPa) and variable
117	wet-bulk density (mean 1.74 g cm ⁻³) and volume corrected magnetic susceptibility (Fig.
118	2a). The lithofacies of these sediments indicates deposition in a glacimarine setting, often
119	under ice-shelf or permanent sea-ice cover (GSA Data Repository). The AMS 14 C date
120	obtained from benthic for aminifera at 17 cm depth provided an age of 9934 \pm 243 cal. yr
121	B.P., while mixed benthic/planktic foraminifera from 150 cm depth gave an age of
122	$27,530 \pm 243$ cal. yr B.P. (Fig. 2a; GSA Data Repository). The core show no indication of
123	a glacial unconformity, subglacial over-compaction or till sedimentation and suggests
124	deposition of normally consolidated glacimarine sediments since pre-LGM times.
125	Core PS96/080-1 was retrieved from Lineations B on GZW 1a (Fig. 1a) and
126	recovered a 223 cm long sequence (Fig. 2b; GSA Data Repository). The upper 25 cm of
127	the sediments consist of a massive muddy diamicton, which probably corresponds to the
128	uppermost part of AF1 and bears some diatoms in the top 11 cm indicating the deposition
129	of the near-surface sediments in a (seasonally) open marine setting (e.g., Domack et al.,
130	1999). This unit is underlain by 26 cm of consolidated sandy mud with gravel- to pebble-
131	sized intraclasts and a \geq 172 cm thick purely terrigenous, homogenous muddy diamicton
132	(GSA Data Repository). Within this lower diamicton, which corresponds to AF3 (Fig.
133	1b), water content is low (mean 21 wt.%), magnetic susceptibility and wet-bulk density
134	are uniform, with the latter being relatively high (mean 1.98 g cm ⁻³), and shear strength
135	increases down-core from \sim 5 to 16 kPa (Fig. 2b). The two AMS ¹⁴ C dates obtained from

136	benthic for aminifera at 20 cm and 120 cm below surface provided ages of $15,\!436\pm299$
137	cal. yr B.P. and 11,836 \pm 447 cal. yr B.P., respectively (Fig. 2b; GSA Data Repository).
138	All the sedimentological properties of the lower muddy diamicton in core PS96/080-1
139	indicate its deposition as a soft deformation till at the base of an ice stream (GSA Data
140	Repository). This interpretation is also consistent with the occurrence of Lineations B on
141	top of the GZW 1a and the observed down-core age reversal suggesting subglacial
142	reworking of foraminifer shells. In any case, the chronological constraints from core
143	PS96/080-1 imply that GZWs 1a and 1b were deposited after 11.8 cal. kyr B.P
144	HISTORY OF GROUNDING-LINE ADVANCE AND RETREAT
145	Our results allow us to constrain the advance and retreat of the Filchner paleo-ice
146	stream during the Late Quaternary. During phase 1 , i.e., at some time before 27.5 cal. kyr
147	B.P., the ice stream had advanced seaward of the study area, thereby forming Lineations
148	A. Anderson and Andrews (1999) linked the deposition of large amounts of ice-rafted
149	debris on the Weddell Sea continental rise to a grounding-line position at the shelf break
150	and reported its cessation, possibly coinciding with the end of phase 1, at ~29 cal. kyr
151	B.P In phase 2 the grounding line retreated south of the depression, probably between
152	~29 and 27.5 cal. kyr B.P., and allowed glacimarine deposition draping Lineations A to
153	prevail in the study area throughout the LGM (Fig. 3a). The Filchner paleo-ice stream re-
154	advanced during phase 3 , i.e. after 11.8 cal. kyr B.P. and possibly during the onset of the
155	Holocene at 11.7 cal. kyr B.P., thereby eroding previously deposited glacimarine
156	sediments and reworking them. The grounding line stopped upstream of the depression
157	but advanced further seaward along the eastern flank of Filchner Trough (Fig. 1a),
158	thereby depositing the 20 m thick GZW 1a on top of Lineations A and the lower part of

159	the stratified drape (Fig. 3b). The center of Filchner Trough was probably covered by an
160	ice shelf during that time. In successive phase 4 , the grounding line retreated upstream
161	along the eastern flank of Filchner Trough but stopped just south of the depression or
162	even re-advanced to this location, where it paused and deposited the 50 m thick GZW 1b
163	across the center of the trough (Fig. 3c). Thereby, the toe of GZW 1b prograded over
164	Lineations A and the stratified drape in the depression as well as over Lineations B on top
165	of GZW 1a. Phase 4 took place before 8.7 cal. kyr B.P. when glacimarine conditions had
166	established 220 km upstream in Filchner Trough (see date from core G7 in Hillenbrand et
167	al., 2014, inset in Fig 1a, and GSA Data Repository). The chronological constraints (<3
168	k.y.) for the build-up of GZWs 1a and 1b (maximum thickness 50 m) imply subglacial
169	depositional rates >1.7 cm yr ⁻¹ , confirming that GZW formation requires high rates of
170	sediment delivery to a fast-flowing ice-stream margin (Batchelor and Dowdeswell, 2015).
171	During phase 5 , spanning the middle and late Holocene, the grounding line had retreated
172	far upstream of our study area (e.g., Hillenbrand et al., 2014). Icebergs calved from the
173	Filchner-Ronne Ice Shelf front eroded ploughmarks into GZW 1b and the shallow
174	seafloor on the Filchner Trough flanks (Fig. 3d). While MSGLs on GZW 1b were
175	obliterated by iceberg scouring, Lineations A and B that occur in deeper waters (>710 m
176	depth) were protected from most iceberg keels by the surrounding shallower seafloor.
177	IMPLICATIONS AND CONCLUSIONS
178	Our data reveal that the Filchner paleo-ice stream had advanced onto the
179	outermost WSE shelf north of $75^{\circ}30$ 'S and possibly to the shelf edge before, but not

- 180 during the LGM, when the grounding line was located further landward, i.e., south of
- 181 75°40'S. Two re-advances onto the outer shelf (\sim 75°30'S and \sim 75°40'S) occurred at the

182	onset of the Holocene between 11.8 and 8.7 cal. kyr B.P These findings imply: (1) Ice in
183	the WSE contributed little to meltwater pulses during the last deglaciation but was
184	involved in Holocene sea-level rise, which is consistent with recent studies on LGM to
185	Holocene ice-sheet thinning in the SW hinterland of the WSE (Hein et al., 2016). (2)
186	AABW could be formed under an ice shelf that existed in outer Filchner Trough during
187	the LGM, probably in conjunction with AABW production in glacial-time polynyas over
188	the WSE slope (e.g., Mackensen et al., 1996) and under ice shelves covering the outer
189	Ross Sea shelf (Anderson et al., 2014). (3) The Filchner paleo ice-stream grounding line
190	underwent highly dynamical fluctuations on the outer WSE shelf until the early
191	Holocene. These fluctuations probably are a response to major reorganizations of ice-
192	stream flow resembling those reported from the inner shelf during the middle and late
193	Holocene (e.g., Winter et al., 2015; Kingslake et al., 2016). Importantly, models suggest
194	that only ice-flow reorganization re-directing the ice streams draining the WAIS into the
195	Ronne Ice Shelf today (Foundation, Möller and Institute ice streams; Fig. 1) into Filchner
196	Trough, would have enabled grounding-line advance to the outermost part of Filchner
197	Trough (Whitehouse et al., 2017). Indeed, bathymetric evidence for such a paleo-flow
198	pathway exists for Foundation Ice Stream (Larter et al., 2012), while glaciological
199	findings show that the Möller and Institute ice streams fed into the Filchner paleo-ice
200	stream until the Mid-Holocene (e.g., Winter et al., 2015). Ice flow switching and different
201	histories of precipitation over the WAIS and EAIS possibly also explain the restricted
202	LGM expansion and late (i.e. early Holocene) readvance of the Filchner paleo-ice stream.
203	Pre-LGM advance and retreat of the EAIS could have blocked and delayed WAIS

- 204 drainage through Filchner Trough until the early Holocene, which needs to be taken into
- 205 account in ice-sheet models.

206 ACKNOWLEDGMENTS

- 207 We thank all captains, crews and scientists involved in collecting the data used in
- 208 this study, especially Jean-Guy Nistad (AWI) and Boris Dorschel (AWI) for assistance
- 209 on cruise PS96 and Michael Seebeck (AWI) and Maricel Williams (BAS) for laboratory
- 210 support. We are grateful to Robert D. Larter (BAS) for providing the bathymetry data of
- 211 cruise JR97. We thank John B. Anderson, Rob McKay and one anonymous reviewer for
- their comments that improved the work. J.E.A. was funded by the Deutsche
- 213 Forschungsgemeinschaft (DFG, German Research Foundation) AR 1087/1–1. This
- study is part of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine
- 215 Research program Polar Regions and Coasts in the changing Earth System (PACES II;
- 216 J.E.A., H.G., G.K.) and the British Antarctic Survey's Polar Science for Planet Earth
- 217 Programme (C.D.H.) which is funded by the Natural Environment Research Council
- 218 (NERC).

219 **REFERENCES CITED**

Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T., 1986, Deformation

of till beneath ice stream B, West Antarctica, Nature, v. 322, p. 57-59,

- doi:10.1038/322057a0
- Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R., 1989, Sedimentation
- beneath ice shelves the view from ice stream B, Marine Geology, v. 85, p.101-
- 225 120, doi: 10.1016/0025-3227(89)90150-3.

- 226 Anderson, J.B., and Andrews, J.T., 1999, Radiocarbon constraints on ice sheet advance
- and retreat in the Weddell Sea, Antarctica: Geology, v. 27, p. 179–182,
- 228 doi:10.1130/0091-7613(1999)027<0179:RCOISA>2.3.CO;2.
- Anderson, J.B., et al., 2014, Ross Sea paleo-ice sheet drainage and deglacial history
- during and since the LGM: Quaternary Science Reviews, v. 100, p. 31–54,
- doi:10.1016/j.quascirev.2013.08.020.
- 232 Batchelor, C.L., and Dowdeswell, J.A., 2015, Ice-sheet grounding-zone wedges (GZWs)
- on high-latitude continental margins: Marine Geology, v. 363, p. 65–92,
- doi:10.1016/j.margeo.2015.02.001.
- 235 Clark, C.D., 1993, Mega-scale glacial lineations and cross-cutting ice-flow landforms:
- Earth Surface Processes and Landforms, v. 18, p. 1–29,
- doi:10.1002/esp.3290180102.
- 238 Domack, E.W., Jacobson, E.A., Shipp, S., and Anderson, J.B., 1999, Late Pleistocene-
- 239 Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2 -
- 240 Sedimentologic and stratigraphic signature: Geological Society of America Bulletin,
- 241 v. 111, p. 1517–1536, doi:10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2.
- 242 Dowdeswell, J.A., and Bamber, J.L., 2007, Keel depths of modern Antarctic icebergs and
- implications for sea-floor scouring in the geological record: Marine Geology, v. 243,
- 244 p. 120–131, doi:10.1016/j.margeo.2007.04.008.
- 245 Golledge, N.R., Menviel, L., Carter, L., Fogwill, C.J., England, M.H., Cortese, G., and
- Levy, R.H., 2014, Antarctic contribution to meltwater pulse 1A from reduced
- 247 Southern Ocean overturning: Nature Communications, v. 5, p. 5107,
- 248 doi:10.1038/ncomms6107.

- 249 Hein, A.S., Fogwill, C.J., Sugden, D.E., and Xu, S., 2011, Glacial/interglacial ice-stream
- stability in the Weddell Sea embayment, Antarctica: Earth and Planetary Science
- 251 Letters, v. 307, p. 211–221, doi: 10.1016/j.epsl.2011.04.037.
- Hein, A.S., Marrero, S.M., Woodward, J., Dunning, S.A., Winter, K., Westoby, M.J.,
- 253 Freeman, S.P.H.T., Shanks, R.P., and Sugden, D.E., 2016, Mid-Holocene pulse of
- thinning in the Weddell Sea sector of the West Antarctic ice sheet: Nature
- 255 Communications, v. 7, p. 12511, doi:10.1038/ncomms12511.
- 256 Hillenbrand, C.-D., et al., 2014, Reconstruction of changes in the Weddell Sea sector of
- 257 the Antarctic Ice Sheet since the Last Glacial Maximum: Quaternary Science
- 258 Reviews, v. 100, p. 111–136, doi:10.1016/j.quascirev.2013.07.020.
- 259 King, E.C., Hindmarsh, R.C.A., and Stokes, C.R., 2009, Formation of mega-scale glacial
- 260 lineations observed beneath a West Antarctic ice stream: Nature Geoscience, v. 2,
- 261 p. 585–588, doi:10.1038/ngeo581.
- 262 Kingslake, J., Martín, C., Arthern, R.J., Corr, H.F.J., and King, E.C., 2016, Ice-flow
- 263 reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial
- flow velocities: Geophysical Research Letters, v. 43, p. 9103–9112,
- 265 doi:10.1002/2016GL070278.
- 266 Klages, J. P., Kuhn, G., Graham, A. G. C., Hillenbrand, C. D., Smith, J. A., Nitsche, F.
- 267 O., Larter, R. D., and Gohl, K., 2015, Palaeo-ice stream pathways and retreat style in
- 268 the easternmost Amundsen Sea Embayment, West Antarctica, revealed by combined
- 269 multibeam bathymetric and seismic data: Geomorphology, v. 245, p. 207-222, doi:
- 270 10.1016/j.geomorph.2015.05.020.

271 Larter, R.D., Graham, A.G.C., Hillenbrand, C.-D., Smith, J.A., and Gales, J.A., 2012, 272 Late Quaternary grounded ice extent in the Filchner Trough, Weddell Sea, 273 Antarctica: New marine geophysical evidence: Quaternary Science Reviews, v. 53, 274 p. 111-122, doi:10.1016/j.quascirev.2012.08.006. 275 Mackensen, A., Hubberten, H.-W., Scheele, N., and Schlitzer, R., 1996, Decoupling of 276 $\tilde{o}^{13}\Sigma CO_2$ and phosphate in recent Weddell Sea deep and bottom water: Implications 277 for glacial Southern Ocean paleoceanography: Paleoceanography, v. 11, p. 203–215, 278 doi:10.1029/95PA03840. 279 Meredith, M.P., 2013, Oceanography: Replenishing the abyss: Nature Geoscience, v. 6, 280 p. 166–167, doi:10.1038/ngeo1743. 281 Ó Cofaigh, C., Dowdeswell, J. A., Allen, C. S., Hiemstra, J. F., Pudsey, C. J., Evans, J., 282 and Evans, D.J.A., 2005, Flow dynamics and till genesis associated with a marine-283 based Antarctic palaeo-ice stream: Quaternary Science Reviews, v. 24, p. 709-740, 284 doi:10.1016/j.quascirev.2004.10.006. 285 Ó Cofaigh, C., Dowdeswell, J. A., Evans, J., and Larter, R. D., 2008, Geological 286 constraints on Antarctic palaeo-ice-stream retreat, Earth Surface Processes and 287 Landforms, v. 33, p. 513-525, doi:10.1002/esp.1669 288 Reconstruction of Antarctic Ice Sheet Deglaciation (RAISED) Consortium, 2014, A 289 community-based geological reconstruction of Antarctic Ice Sheet deglaciation since 290 the Last Glacial Maximum: Quaternary Science Reviews, v. 100, p. 1–9, 291 doi:10.1016/j.quascirev.2014.06.025. 292 Stokes, C.R., and Clark, C.D., 2001, Palaeo-ice streams, Quaternary Science Reviews, v. 293 20, p. 1437-1457, doi:10.1016/S0277-3791(01)00003-8.

294	Whitehouse, P.L., Bentley, M.J., Vieli, A., Jamieson, S.S.R., Hein, A.S., and Sugden,
295	D.E., 2017, Controls on Last Glacial Maximum ice extent in the Weddell Sea
296	embayment, Antarctica: Journal of Geophysical Research, Earth Surface, v. 122,
297	p. 371–397, doi:10.1002/2016JF004121.
298	Winter, K., Woodward, J., Ross, N., Dunning, S. A., Bingham, R. G., Corr, H. F. J., and
299	Siegert, M. J., 2015, Airborne radar evidence for tributary flow switching in Institute
300	Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics:
301	Journal of Geophysical Research Earth Surface, v. 120, p. 1611–1625.
302	
303	FIGURE CAPTIONS
304	
305	Figure 1. A: Bathymetry of the study area in outer Filchner Trough showing a depression
306	(blue to yellow) with grounding zone wedge (GZW) 1a on its eastern side (yellow) and
307	GZW 1b (orange/red) to the south. Note NNE striking mega-scale lineations within the
308	depression (Lineations A) and on GZW 1a (Lineations B) and iceberg ploughmarks on
309	top of GZW 1b and the trough flanks. White circles mark sites of studied cores. Inset
310	shows the location of the study area (red box) within the wider Antarctic context and
311	location of core G7; EAIS = East Antarctic Ice Sheet, WAIS = West Antarctic Ice Sheet,
312	FRIS = Filchner Ronne Shelf Ice, FT = Filchner Trough, WSE = Weddell Sea
313	Embayment, EM = Ellsworth Mountains, SR = Shackleton Range, I = Institute Ice
314	Stream, M = Möller Ice Stream, F = Foundation Ice Stream. B: Acoustic sub-bottom
315	profile across the depression (with Lineations A), GZW 1a (with Lineations B), and
316	GZW 1b (for location see A); stratified acoustic facies (AF1) and transparent acoustic

317	facies (AF2 and AF3) are also indicated. Note the splitting of AF1 at GZW 1a into a top
318	layer draping the toe of GZW 1a and a bottom layer dipping under GZW 1a and the
319	continuation of AF1 underneath GZW 1b.
320	
321	Figure 2. Lithofacies, shear strength, wet-bulk density (WBD), magnetic susceptibility,
322	water content, grain-size composition of the sediment matrix and AMS 14 C dates for
323	cores PS96/079-3 (A) and PS96/080-1 (B).Lithofacies: Ml: laminated mud, MGSI:
324	laminated and stratified mud alternating with gravelly sandy mud and gravelly muddy
325	sand, Mf: folded mud, MSI: consolidated sandy mud with gravel- to pebble-sized
326	intraclasts, SGMm: massive gravelly muddy sand with inclined (erosional) base, Dmb:
327	massive muddy diamicton with some diatoms, Dmt:
328	massive, purely terrigenous muddy diamicton (for details, see GSA Data Repository).
329	
330	Figure 3. Cartoon of environmental conditions during different phases of the last glacial
331	cycle in the study area (for details see text). A: Phase 2: glacimarine conditions with
332	possible ice-shelf cover lead to sediment draping (gray) of Lineations A (yellow) which
333	were formed during Phase 1 (not shown). B: Phase 3: after its advance to outer Filchner
334	Trough a stillstand of the grounding-line causes the formation of GZW 1a with
335	Lineations B at the eastern trough edge and in the trough center south of the depression.
336	C: Phase 4: after a short retreat the grounding-line re-advances in the trough center and
337	its subsequent stillstand causes the formation of GZW 1b with Lineations B on its top. D
338	Phase 5: under marine conditions icebergs float through the study area and erode
339	ploughmarks into the trough flanks and the top of GZW 1b.

- 340
- ¹GSA Data Repository item 2017xxx, xxxxxxx, is available online at
- 342 http://www.geosociety.org/datarepository/2017/ or on request from
- 343 editing@geosociety.org.

1 GSA Data Repository [# will be assigned after acceptance]

2 Evidence for a dynamic grounding-line in outer Filchner

3 Trough, Antarctica, until the early Holocene

4 Jan Erik Arndt, Claus-Dieter Hillenbrand, Hannes Grobe, Gerhard Kuhn, and

5 Lukas Wacker

6

7 MATERIAL, METHODS AND LABORATORY TECHNIQUES

8 Marine geophysical data

9 Most of the multibeam bathymetry data and acoustic sub-bottom profiles from the 10 study area (Fig. 1a) were collected on expedition PS96 with RV Polarstern in austral 11 summer 2015/2016 using the hull-mounted Atlas-Teledyne Hydrosweep DS3 and 12 Parasound P-70 systems (Schröder, 2016). Pre-existing bathymetric data acquired 13 during expeditions JR97 (2005) with RRS James Clark Ross using a Kongsberg-14 Simrad EM120 system and ANT-VIII/5 (1989/1990) with RV Polarstern using an 15 Atlas Hydrosweep DS1 system (Miller and Oerter, 1991) were added to the 16 bathymetry map of the study area. All bathymetric data were corrected on board by 17 applying sound velocity profiles derived from conductivity-temperature-depth casts 18 and post-processed to reject outlying soundings in CARIS Hips & Sips or in MB 19 System, respectively. The final database was jointly gridded at 25×25 m resolution 20 with a weighted moving average gridding algorithm in QPS Fledermaus.

22 Marine geological data

23 Methods: Gravity cores PS96/079-3 and PS96/080-1 were recovered on cruise PS96 24 from the study area (Fig. 1a; Table DR1) (Schröder, 2016). Physical properties 25 (magnetic susceptibility, wet bulk density and P-wave velocity) were measured at 1-26 cm intervals on the whole cores with a GEOTEK multi-sensor core logger (MSCL) 27 at the Alfred Wegener Institute in Bremerhaven. The cores were then split into 28 working and archive halves, and their lithology and sedimentary structures were 29 described visually, using X-radiographs and using smear slides. Shear strength was 30 measured on the working halves of the cores with a hand-held shear vane. Water 31 content and grain-size composition were analyzed on discrete samples taken from the 32 cores. Water content was determined by weighing of the wet and freeze-dried 33 samples, and gravel (>2 mm), sand (63 μ m-2 mm) and mud (2 μ m-63 μ m) contents 34 were analyzed by wet and dry sieving of 1-cm thick sediment samples taken from the 35 working halves of the cores (volume: ca. 50 cm³). Because gravel content may not be 36 determined in a statistically reliable way on samples of this volume, we only present 37 the sand and mud contents in Figure 2, which inform on the grain-size composition 38 of the matrix of the sediments. Gravel and pebble abundance was evaluated visually 39 and on the X-radiographs. The sand fraction was investigated under a microscope for 40 the presence of calcareous microfossils.

41

Lithofacies classification and interpretation: The sediments recovered in cores
PS96/079-3 and PS96/080-1 were assigned to seven different lithofacies, with each
facies occurring in one of the cores only. The characteristics of each lithofacies and

the interpretation of their depositional and their paleoenvironmental settings, which
followed previously published literature on lithofacies in marine sediment cores
from glaciated continental margins, are given in Table DR1. X-radiograph examples
for each lithofacies are given in Figure DR5.

49

50 Chronology: Two horizons in each core were identified, which contained a few 51 calcareous foraminifer shells (benthic species *Globocassidualina* spp. and 52 *Cibicidoides* spp. and planktic species *Neogloboquadrina pachyderma* sinistral). 53 Importantly, the two dated horizons in core PS96/079-3 are from lithofacies showing 54 no indication of sediment reworking by gravitational downslope or glacial processes (Fig. DR6). All the foraminifer shells were picked for MICADAS AMS ¹⁴C dating 55 (Wacker et al., 2010) at the Laboratory of Ion Beam Physics, ETH Zürich. The ¹⁴C 56 57 dates were calibrated with the CALIB 7.1 calibration program (Stuiver and Reimer, 58 1993) using a regional marine reservoir correction of 1215±30 years (Hillenbrand et 59 al., 2012) and the MARINE13 calibration dataset (Reimer et al., 2013) (Table DR2). 60 For the full set of core photos and X-radiographs of cores PS96/079-3 and 61 PS96/080-1, see https://doi.org/10.1594/PANGAEA.864391 and 62 https://doi.org/10.1594/PANGAEA.864392, respectively.

- 63 Table DR1: Summary of lithofacies observed in the studied cores, and inferred processes and paleoenvironments. Preferred
- 64 interpretations for each lithofacies are underlined. References: 1) McKay et al., 2009; 2) McKay et al., 2012; 3) Passchier et al.,
- 65 2011; 4) Tripsanas et al., 2008; 5) Hillenbrand et al., 2010; 6) Licht et al., 1999; 7) Domack et al., 1999.

Facies	Core	Depth (cmbsf)	Lithology and sedimentary	Depositional process and environmental setting
			structure	
Ml	PS96/079-3	[156/158]-[162/164]	laminated mud	Hemipelagic suspension settling ^{1,2}
MGS1	PS96/079-3	0-28	laminated and stratified mud	Suspension settling from turbid plumes ^{1,3} , current-
		76-117	alternating with gravelly sandy	influenced glacimarine deposition ³ , hemipelagic
		[129/132]-[156/158]	mud and gravelly muddy sand	sedimentation with deposition of ice-rafted debris
		[162/164]-181.5		<u>(IRD)^{1,3}</u>
Mf	PS96/079-3	28-76	folded mud	<u>Debris flow⁴</u> , slump ⁴
SGMm	PS96/079-3	117-[129/132]	massive gravelly muddy sand with	Redeposition by mass flow ^{1,3} , ice-shelf collapse
			inclined (erosional) base	sediment ³
MSI	PS96/080-1	25-51	consolidated sandy mud with	Glacimarine deposition proximal to grounding line ² ,
			gravel- to pebble-sized intraclasts	mass flow deposit ²
Dmb	PS96/080-1	0-[10/11]	massive muddy diamicton with	Glacimarine deposition proximal to grounding line ^{5,6} ,
			some microfossils (here: diatoms)	<u>iceberg-rafted diamicton^{5,7}</u> , iceberg turbate ^{5,6}
Dmt	PS96/080-1	[10/11]-25	massive, purely terrigenous	Subglacial till deposition ^{1-3,5-7} , IRD rainout proximal
		51-223	muddy diamicton	to grounding line ¹⁻³ , glacigenic debris flow ^{1,5}

Table DR2: Locations, conventional and calibrated AMS ¹⁴C dates on calcareous microfossils from the investigated and previously 66 published sediment cores from the Weddell Sea (for uncertainties affecting ¹⁴C dating of Antarctic shelf sediments, see Heroy and 67 Anderson, 2007). Sample depths are given in centimetres below seafloor (cmbsf). All ¹⁴C-dates were corrected using an offset 68 (ΔR) of 815±30 years from the global marine reservoir effect (R) of 400 years in accordance with both an uncorrected ¹⁴C-date of 69 seafloor surface sediments from the uppermost continental slope (see conventional ¹⁴C-age given in italics) and previous studies 70 from around Antarctica (e.g. RAISED Consortium, 2014). The corrected ¹⁴C-dates were calibrated with the CALIB Radiocarbon 71 Calibration Program version 7.1.0html (http://calib.gub.ac.uk/calib/; Stuiver and Reimer, 1993) using the MARINE13 calibration 72 73 dataset (Reimer et al., 2013). Errors of calibrated dates are given as a 2σ range. The ¹⁴C-dates marking minimum ages for grounded ice retreat from a core site are highlighted in bold. Coring devices: GBC: giant box core, GC: gravity core, PH: phleger core, PC: 74 piston core. Dated calcareous microfossils comprise benthic foraminifera (bF: unspecified benthic foraminifera, C: Cibicides spp., 75 76 G: Globocassidulina spp.), planktic foraminifera (N: Neogloboquadrina pachyderma sinistral) and bryozoans (B). If known, 77 number of dated foraminifer shells is also given. X-radiographs of dated horizons in cores PS96/079-3 and PS96/080-1 are shown 78 in Figure DR6. Preservation of all dated foraminifer shells was modest. References: A) Hillenbrand et al., 2012; B) Stolldorf et al., 70

/9	2012; C) Anderson and Andrews, 1999.

Area	Cruise	Gear	Core ID	Latitude (°)	Longitude (°)	Water depth (m)	Core recovery (m)	Sample depth (cmbsf)	Laboratory code	Dated microfossils (n)	Conventional ¹⁴ C age ±error (yrs BP)	R (yrs)	ΔR ±error (yrs)	Calibrated ¹⁴ C age ±error (cal yrs BP)	Reference
Filchner Trough (outer shelf)	PS96	GC	PS96/79-3	-75.6250	-31.8722	763	1.81	17	ETH-74959.1.1	G (35), C (1)	9995±75	400	815±30	9934±243	this study
								150	ETH-74960.1.1	G (4), C (1), N (3)	24560±250	400	815±30	27530±387	this study
Filchner Trough (outer shelf)	PS96	GC	PS96/80-1	-75.6890	-31.7983	720	2.23	20	ETH-74961.1.1	G (28)	14120±90	400	815±30	15436±299	this study
								120	ETH-74962.1.1	G (21)	11415±85	400	815±30	11836±447	this study
E' Crary Fan (uppermost slope)	ANT-IV/3	GBC	PS1418-1	-74.4750	-35.5933	769	4.89	0-1	HD-13273	В	1215±30	N/A	N/A	[0]	ref. A
Filchner Trough (mid-shelf)	IWSOE69	PC	G7	-77.3330	-36.5500	1079	1.57	0-5	CCAMS-95867	bF	9040±100	400	815±30	8738±273	ref. B
Weddell Sea (continental rise)	IWSOE68	PH	37	-69.6833	-46.2670	3777	0.90	56-60	AA-24841	N	26570±490	400	815±30	29580±1092	ref. C
Weddell Sea (continental rise)	IWSOE68	PH	52	-67.3667	-47.3667	3768	0.85	42-47	AA-19910	N (800)	25900±620	400	815±30	28930±1287	ref. C

Figure DR1: Locations of the investigated and previously published sediment cores
from the Weddell Sea. Background data from IBCSO V1.0, Arndt et al. 2013.

Figure DR2: (A) Line drawing of interpreted submarine landforms with locations
of bathymetric profiles: (B) along the trough centre over GZW 1b; (C) across GZW
la and GZW 1b.

89 locations and other transitions from draped lineations to GZW 1a and 1b.

92 PS96/080-1.

94 **Figure DR5 (next 3 pages):** X-radiograph (positives) examples for lithofacies

- 95 identified in the studied cores. PS96/079-3: a) Laminated mud (MI) in between
- 96 laminated and stratified mud alternating with gravelly sandy mud and gravelly
- 97 muddy sand (MGS1); b) laminated and stratified mud alternating with gravelly sandy mud
- 98 and gravelly muddy sand (MGSI); c) folded mud (Mf); d) massive gravelly muddy sand
- 99 with inclined, erosional base (SGMm) on top of laminated and stratified mud alternating
- 100 with gravelly sandy mud and gravelly muddy sand (MGS1). PS96/080-1: e) consolidated
- 101 sandy mud with gravel- to pebble-sized intraclasts (MSI); f) massive muddy diamicton with
- 102 some diatoms (Dmb) on top of massive, purely terrigenous muddy diamicton (Dmt); g)
- 103 massive, purely terrigenous muddy diamicton (Dmt). Each X-radiograph is 10 cm wide,
- 104 and white areas are voids in the sediment slabs caused by large gravel
- 105 grains/pebbles or sample processing.

113 Figure DR5 (continued)

- 114
- 115
- 116
- 117
- 118

120 cores PS96/079-3 and PS96/080-1 (orange boxes) in relation to sediment lithology

- 121 visualised by X-radiograph positives. a) PS96/079-3 17 cmbsf (cm below surface):
- 122 b) PS96/079-3 150 cmbsf: c) PS96/080-1 20 cmbsf; d) PS96/080-1 120 cm cmbsf.
- 123 Each X-radiograph is 10 cm wide, and white areas are voids in the sediment slabs
- 124 caused by large gravel grains/pebbles or sample processing. For details of AMS ¹⁴C
- 125 dates, see Table DR2.
- 126

129 SUPPLEMENTARY REFERENCES

- Anderson, J. B., and Andrews, J. T., 1999, Radiocarbon constraints on ice sheet
 advance and retreat in the Weddell Sea, Antarctica: Geology, v. 27, p. 179182.
- Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B.,
 Rebesco, M., Bohoyo, F., Hong, J.-K., Black, J., Greku, R., Udintsev, G.,
 Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R., 2013, The
 International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0
 A new bathymetric compilation covering circum-Antarctic waters:
 Geophysical Research Letters, v. 40, p. 3111-3117.
- Domack, E.W., Jacobson, E.A., Shipp, S., and Anderson, J.B., 1999, Late
 Pleistocene-Holocene retreat of the west Antarctic ice-sheet system in the
 Ross sea: Part 2. Sedimentologic and stratigraphic signature: Geological
 Society of America Bulletin, v. 111, p. 1517-1536.
- Heroy, D.C., and Anderson, J.B., 2007, Radiocarbon constraints on Antarctic
 Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM):
 Quaternary Science Reviews, v. 26, p. 3286-3297.
- Hillenbrand, C.-D., Larter, R.D., Dowdeswell, J.A., Ehrmann, W., Ó Cofaigh, C.,
 Benetti, S., Graham, A.G.C., and Grobe, H., 2010, The sedimentary legacy of
 a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: clues to
 West Antarctic glacial history during the Late Quaternary: Quaternary
 Science Reviews, v. 29, p. 2741-2763.
- Hillenbrand, C.-D., Melles, M., Kuhn, G., and Larter, R. D., 2012, Marine geological
 constraints for the grounding-line position of the Antarctic Ice Sheet on the
 southern Weddell Sea shelf at the Last Glacial Maximum: Quaternary Science
 Reviews, v. 32, p. 25-47.
- McKay, R., Browne, G., Carter, L., Cowan, E., Dunbar, G., Krissek, L., Naish, T.,
 Powell, R., Reed, J., Talarico, F., and Wilch, T., 2009, The stratigraphic
 signature of the late Cenozoic Antarctic Ice Sheets in the Ross Embayment:
 Geological Society of America Bulletin, v. 121, p. 1537-1561.
- McKay, R., Naish, T., Powell, R., Barrett, P., Scherer, R., Talarico, F., Kyle, P.,
 Monien, D., Kuhn. G., Jackolski, C., and Williams, T., 2012, Pleistocene
 variability of Antarctic Ice Sheet extent in the Ross Embayment: Quaternary
 Science Reviews, v. 34, p. 93-112.

- Miller, H., and Oerter, H. (eds.), 1991, The Expedition ANTARKTIS-VIII of RV
 "Polarstern" 1989/1990 Report of Leg ANT-VIII/5: Reports on Polar and
 Marine Research, v. 86, 155 pp.
- Passchier, S., Browne, G., Field, B., Fielding, C.R, Krissek, L.R, Panter, K., Pekar,
 S.F., and the ANDRILL-SMS Science Team, 2011, Early and middle
 Miocene Antarctic glacial history from the sedimentary facies distribution in
 the AND-2A drill hole, Ross Sea, Antarctica: Geological Society of America
 Bulletin, v. 123, p. 2352-2365.
- 171 RAISED Consortium, 2014, A community-based geological reconstruction of
 172 Antarctic Ice Sheet deglaciation since the Last Glacial Maximum: Quaternary
 173 Science Reviews, v. 100, p. 1-9.
- 174 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., 175 Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., 176 Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., 177 Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., 178 179 Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013, 180 INTCAL13 and MARINE13 radiocarbon age calibration curves, 0-50,000 181 years cal BP: Radiocarbon, v. 55, no. 4, p. 1869-1887.

Schröder, M. (ed.), 2016, The Expedition PS96 of the Research Vessel
POLARSTERN to the southern Weddell Sea in 2015/2016: Reports on Polar
and Marine research, v. 700, 143 pp.

- Stolldorf, T., Schenke, H.-W., and Anderson, J. B., 2012, LGM ice sheet extent in the
 Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets:
 Quaternary Science Reviews, v. 48, p. 20-31.
- Stuiver, M., and Reimer, P.J., 1993, Extended ¹⁴C data base and revised CALIB 3.0
 ¹⁴C age calibration program: Radiocarbon, v. 35, p. 215-230.
- Tripsanas, E., Piper, D.J.W., Jenner, K.A., and Bryant, W.R., 2008, Submarine masstransport facies: new perspectives on flow processes from cores on the eastern
 North American margin: Sedimentology, v. 55, p. 97-136.
- Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec, M., Ruff, M.,
 Suter, M., Synal, H. A., and Vockenhuber, C., 2010, MICADAS: Routine and
 High-Precision Radiocarbon Dating: Radiocarbon, v. 52, no. 2-3, p. 252-262.