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ABSTRACT

The uppermost Lower Jurassic (Lower and Middle Toarcian) succession of the northern
Lusitanian Basin in western Portugal was examined for palynomorphs. Two localities,
the Maria Pares and the Vale das Fontes sections, were sampled. The material spans the
Dactylioceras polymorphum, Hildaites levisoni and Hildoceras bifrons ammonite
biozones. The samples produced relatively low diversity dinoflagellate cyst floras which
are typical of those from coeval European successions; the most abundant species is

Luehndea spinosa. The other forms encountered were Mancodinium semitabulatum,
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Mendicodinium microscabratum, Mendicodinium spinosum subsp. spinosum,
Mendicodinium sp., Nannoceratopsis ambonis, Nannoceratopsis gracilis and
Nannoceratopsis senex. Dinoflagellate cysts typically dominate throughout the
Dactylioceras polymorphum ammonite biozone; they significantly decreased in relative
proportions in the overlying Hildaites levisoni and Hildoceras bifrons ammonite
biozones. The low diversity Luehndea-Nannoceratopsis dinoflagellate cyst flora of the
Lusitanian Basin is characteristic of the Sub-Boreal region of Europe. This is a
transitional region, intercalated between the Boreal and Tethyan realms. The Toarcian
Oceanic Anoxic Event (T-OAE) in the Lusitanian Basin is characterised by a sudden
decline in palynomorph abundance and diversity, including the virtual absence of
acritarchs and dinoflagellate cysts. Following the T-OAE, Mancodinium semitabulatum
and Mendicodinium spp. were the only dinoflagellate cysts recorded. This ‘blackout’ of
dinoflagellate cysts during the T-OAE, and their partial recovery following the event, is
indicative that the benthic anoxia was extremely high in intensity throughout the

Lusitanian Basin.

1. Introduction

This aim of this study is to document the Lower Jurassic (Lower and Middle
Toarcian) palynomorphs from the Figueira da Foz and Rabagal areas in the northern
part of the Lusitanian Basin in western Portugal, and to examine the response of
dinoflagellate cysts and other marine microplankton to the Toarcian Oceanic Anoxic
Event (T-OAE). Two successions were studied, the Maria Pares and Vale das Fontes
sections which are located between Figueira da Foz and Rabagal (Fig. 1).

The T-OAE occurred at ¢. 182 Ma, and is the oldest of the three major
Mesozoic-Cenozoic oceanic anoxic events (Jenkyns, 2010, fig. 1). These events were
amongst the most profound palacoenvironmental perturbations during the Phanerozoic.
The T-OAE was characterised by rapid rises in marine extinctions, marine stratification,
oxygen reduction and seawater temperatures (Cohen et al., 2007; Suan et al., 2008a,b;
2010; 2011). Oceanic Anoxic Events were global palaeoenvironmental phenomena, and
the T-OAE was likely to have been caused by a massive carbon injection into the
atmosphere from gas hydrates and/or methane release from sedimentary rocks due to
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intrusive vulcanism (Hesselbo et al., 2000; Kemp et al., 2005; McElwain et al., 2005;
Svensen et al., 2007; Hesselbo and Pienkowski, 2011).

A distinctive prominent negative carbon isotope excursion (5'°C), recorded in
marine carbonates and sedimentary organic matter, characterises the T-OAE. In the
Lusitanian Basin, the T-OAE has been confidently identified using carbon isotope
evidence (Hesselbo et al., 2007; Suan et al., 2008a,b; Pittet et al., 2014). The
distribution of dinoflagellates is influenced by factors such as benthic oxygen levels,
light, nutrients, ocean currents, salinity, temperature and water depth (Dale, 1996).
Hence Toarcian dinoflagellate populations would have been profoundly affected by the
T-OAE (Bucefalo Palliani et al., 2002).

Previous studies on the Jurassic palynology of the Lusitanian Basin are Davies
(1985), Mohr and Schmidt (1988), van Erve and Mohr (1988), Smelror et al. (1991),
Bucefalo Palliani and Riding (1999a; 2003), Barrén and Azerédo (2003), Oliveira et al.
(2007) and Barron et al. (2013). Only three of these included material from the Toarcian
(Davies, 1985; Oliveira et al., 2007; Barron et al. 2013). However dinoflagellate cysts
were not discussed in detail by these authors; Davies (1985) is a purely
biostratigraphical study, and Oliveira et al. (2007) and Barrén et al. (2013) mainly

discussed pollen and spores.

2. Geological background

The Lusitanian Basin is a marginal marine depocentre located in central western
Portugal, and is oriented NE-SW (Fig. 1). It is 300 km long and 150 km wide, with a
maximum basin fill of 5 km. The sediments are mainly Jurassic, but range from Upper
Triassic to Paleogene. Its formation and evolution was related to the breakup of Pangaea
during the opening of North Atlantic. Structurally, the Lusitanian Basin is divided into
the northern, central and southern sectors, all of which are bounded by Variscan faults.
Four rifting phases occurred between the Late Triassic and the Cretaceous (Azerédo et
al., 2003; Kullberg et al., 2013).

Throughout the Lusitanian Basin, most of the Toarcian comprises the Sdo Gido
Formation. This unit spans the Dactylioceras polymorphum to the lowermost

Dumortieria meneghinni ammonite biozones, and is subdivided into five members (Fig.

3
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2; Duarte and Soares, 2002; Duarte, 2007). The type section of the Sdo Gido Formation
is the Maria Pares succession in the Coimbra-Rabacal region, located in the northern
part of the Lusitanian Basin (Fig. 1). This section exposes a continuous Toarcian—
Aalenian succession which yields ammonite faunas throughout (Henriques, 1992;
1995).

During the Early Jurassic, marine carbonate ramps rapidly formed in the
Lusitanian Basin. Consequently Lower Jurassic strata are extensive, and are represented
by a richly fossiliferous Pliensbachian and Toarcian interbedded marl-limestone
succession (Comas-Rengifo et al., 2013; Mattioli et al., 2013; Henriques et al., 2014).
However, the Lower Toarcian carbonate-dominated succession exhibits different facies
(Duarte, 1997; Duarte and Soares, 2002; Azerédo et al., 2014). The lowermost beds are
fossiliferous grey marl and limestone couplets, belonging to the Dactylioceras
polymorphum ammonite biozone (Azerédo et al., 2003). The lower Hildaites levisoni
ammonite biozone is represented by the Chocolate Marls, which are carbonate and
sparsely fossiliferous; this unit is absent in the Maria Pares section. The middle
Hildaites levisoni ammonite biozone normally comprises bioclastic limestones often
rich in brachiopods. Marl-limestone alternations, similar to the lowermost Toarcian,
constitute the upper Hildaites levisoni and Hildoceras bifrons ammonite biozones
(Duarte, 1995).

The Lower and Middle Jurassic ammonite faunas of the Lusitanian Basin
indicate a Sub-Boreal (Atlantic) affinity (Mouterde et al., 1979). However, mixed
ammonite faunas indicate periodic communication between the Boreal and Tethyan
realms (Terrinha et al., 2002). The earliest Toarcian Dactylioceras polymorphum
ammonite biozone of the Mediterranean region is broadly coeval with the Dactylioceras
tenuicostatum ammonite biozone of the Subboreal and Submediterranean realms (Fig.
3). Succeeding this, the Mediterranean Hildaites levisoni ammonite biozone is the age
equivalent of the Harpoceras falciferum ammonite biozone of northwest Europe and the

Harpoceras serpentinum ammonite biozone of southern Europe (Fig. 3; Page, 2003).

3. Material and methods
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In this study, two Toarcian successions from the northern part of the Lusitanian
Basin were sampled. The most extensive of these is the Maria Pares section near
Rabagal, where fifty-four samples (prefixed PZ) were collected (Figs. 1, 4). This is the
type section of the Sdo Gido Formation, and four members were sampled. These are the
Marly Limestones with Leptaena Facies (MLLF), the Thin Nodular Limestones (TNL),
the Marls and Marly Limestones with Hildaites and Hildoceras (MMLHH), and the
Marls and Marly Limestones with Sponge Bioconstructions (MMLSB) members. The
other section examined was at Vale das Fontes, near the coast at Boa Viagem Mountain
in the Cape Mondego region. Here, fourteen samples (prefixed PVF) were taken from
the base of the Sdo Gido Formation (Figs. 1, 5). They are all from the MLLF and the
lowermost TNL members. The samples therefore span the Dactylioceras polymorphum,
Hildaites levisoni and Hildoceras bifrons ammonite biozones. Pittet et al. (2014) located
the T-OAE in the equivalent of sample PZ9 in the Maria Pares section and sample
PVF14 in the Vale das Fontes section (Figs. 6, 7).

The samples were all prepared using standard palynological techniques
comprising acid digestion (Wood et al., 1996), however the organic residues were not
oxidised. All residues were sieved using a 15 um mesh sieve. When possible, a
minimum of 300 palynomorphs were counted for each sample. The samples, aqueous
residues, microscope slides and figured specimens are all curated in the collections of

the LNEG (Portuguese Geological Survey), Sio Mamede de Infesta, Portugal.

4. Palynology

4.1.  Introduction

In this section, the Lower and Middle Toarcian palynofloras from the Maria
Pares and the Vale das Fontes successions are described, interpreted and the relevant
horizons related to the T-OAE. The percentages of the principal dinoflagellate cysts,
and the overall dinoflagellate cyst associations are illustrated in Figs. 6 and 7.
Additionally, the relative abundances of the six major palynomorph groups are
documented (Figs. 8, 9,). The aggregated percentages of the four groups of marine
palynomorphs (i.e. acritarchs, dinoflagellate cysts, foraminiferal test linings and

prasinophytes) are depicted in Figs. 10 and 11. Selected palynomorphs are illustrated in
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Plates I and II, and Tables 1 and 2 are comprehensive palynomorph datasets for each of
the two sections. In tables 1 and 2, all the palynomorphs which were identified are
documented, and the data are presented as percentages of the respective overall
palynoflora. The palynomorph taxa at and below species level which were recorded
herein, or were mentioned in the text, are listed in Appendix 1 with their respective
author citations. Appendix 2 is included to document our taxonomic concepts of the

dinoflagellate cyst species Nannoceratopsis gracilis and Nannoceratopsis senex.

4.2.  The Maria Pares section

Fifty-four samples were studied from four members of the Sdo Gido Formation
at the Maria Pares section in the Coimbra-Rabacal region (Figs. 1, 4). The samples are
assigned to the Lower and Middle Toarcian Dactylioceras polymorphum, Hildaites
levisoni and Hildoceras bifrons ammonite biozones of the Mediterranean scheme (Figs.
2—4; Mouterde et al., 1964-1965; Elmi et al., 1989). Two of the samples, PZ14 and
PZ37, proved entirely barren of palynomorphs (Fig. 8, Table 1). However, eight
dinoflagellate cyst taxa were encountered throughout this section. These are: Luehndea
spinosa; Mancodinium semitabulatum; Mendicodinium microscabratum;
Mendicodinium spinosum subsp. spinosum; Mendicodinium sp.; Nannoceratopsis
ambonis; Nannoceratopsis gracilis; and Nannoceratopsis senex (Fig. 6, Plate I, Table
1).

Luehndea spinosa was recorded from samples PZ1 to PZ8 (Table 1). All these
occurrences are in the MLLF Member within the Dactylioceras polymorphum
ammonite biozone. Due to the known range of Luehndea spinosa, the Maria Pares
succession is no older than Late Pliensbachian (Amaltheus margaritatus ammonite
biozone), and no younger than earliest Toarcian (Dactylioceras polymorphum ammonite
biozone) by comparison with elsewhere in Europe (Morgenroth, 1970; Riding, 1987;
Bucefalo Palliani and Riding, 1997a,b; 2000; 2003; Bucefalo Palliani et al., 1997a). The
presence of Luehndea spinosa in the Maria Pares section is consistent with Davies
(1985), who also recorded this species, as Luehndea sp. A, at Brenha, Peniche and
Zambujal in the Lusitanian Basin between the Late Pliensbachian (Emaciaticeras
emaciatum ammonite biozone) and the Early Toarcian (Dactylioceras polymorphum
ammonite biozone).

In the Maria Pares section, the inceptions of Mancodinium semitabulatum,

Nannoceratopsis gracilis and Nannoceratopsis senex are all in sample PZ1.
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Mancodinium semitabulatum ranges throughout the entire succession, but
Nannoceratopsis ambonis, Nannoceratopsis gracilis and Nannoceratopsis senex are
confined to the MLLF, TNL and the lowermost MMLHH members (Dactylioceras
polymorphum and Hildaites levisoni ammonite biozones) (Table 1). In Europe, the
consistent range bases of Mancodinium semitabulatum, Nannoceratopsis ambonis,
Nannoceratopsis gracilis and Nannoceratopsis senex are all Late Pliensbachian
(Morgenroth, 1970; Woollam and Riding, 1983; Bucefalo Palliani and Riding, 2003;
Poulsen and Riding, 2003). Mancodinium semitabulatum ranges from the Pliensbachian
to the Early Bajocian (Riding, 1984a; Feist Burkhardt and Wille 1992; Riding and
Thomas 1992), and Nannoceratopsis ambonis extends from the Late Pliensbachian to
the Late Bajocian (Riding, 1984b). The overall ranges of Nannoceratopsis gracilis and
Nannoceratopsis senex are Late Pliensbachian to Early Bajocian (Feist Burkhardt and
Monteil, 1997; Poulsen and Riding, 2003). The presence of these four species is hence
entirely consistent with an Early Toarcian age for the succession studied herein.

Mendicodinium was recorded sporadically, and in low abundances, between
samples PZ16 and PZ54 at Maria Pares (Table 1). This interval spans the Hildaites
levisoni and Hildoceras bifrons ammonite biozones. Three representatives were
recognised. These are Mendicodinium microscabratum; Mendicodinium spinosum
subsp. spinosum and Mendicodinium sp. Representatives of the typically, but not
exclusively, southern European genus Mendicodinium are not present in the
Dactylioceras polymorphum ammonite biozone herein (Table 1). This is inconsistent
with the records from the lowermost Toarcian Dactylioceras tenuicostatum ammonite
biozone reported by Bucefalo Palliani et al. (1997b) from central Italy, and the
occurrences from the earliest Pliensbachian to the Early Toarcian (Hildoceras bifrons
ammonite biozone) of the Lusitanian Basin documented by Davies (1985) and Bucefalo
Palliani and Riding, 2003).

In the Maria Pares section, the relative abundance of dinoflagellate cysts
decreased markedly at the T-OAE in the lower part of the Hildaites levisoni ammonite
biozone (sample PZ9). From that point, the occurrences of dinoflagellate cysts remained
low throughout the remainder of the Hildaites levisoni ammonite biozone and in the
Hildoceras bifrons ammonite biozone (Figs. 6, 8, Table 1).

In the Dactylioceras polymorphum ammonite biozone, Luehndea spinosa
dominates the dinoflagellate cyst assemblages. In samples PZ5, PZ6 and PZ7, this
species represents 90.8%, 68.2% and 76.7% of the palynoflora respectively (Fig. 6,

7



229  Table 1). It is possible that this abundance peak represents a transgressive event (Pittet
230 etal., 2014). Nannoceratopsis gracilis and Nannoceratopsis senex are also relatively
231 common in the Dactylioceras polymorphum ammonite biozone, however they each

232 never exceed 20% of the overall palynoflora (Fig. 6). Nannoceratopsis ambonis is rare,
233 and is only present in sample PZ8 (Table 1). Mancodinium semitabulatum is present
234 throughout the Dactylioceras polymorphum, Hildaites levisoni and Hildoceras bifrons
235  ammonite biozones, and is the only species present in all three of these biozones. The
236  range top of consistent Nannoceratopsis is in sample PZ8, in the Dactylioceras

237 polymorphum ammonite biozone. Hence in the majority of the Hildaites levisoni

238  ammonite biozone, and throughout the Hildoceras bifrons ammonite biozone,

239  Mancodinium semitabulatum is present persistently in low numbers, occasionally co-
240  occurring with sparse representatives of Mendicodinium spp. (Table 1).

241 Marine palynomorphs are significantly partitioned in the Maria Pares section.
242  Dinoflagellate cysts dominate the palynomorph assemblages in the middle and upper
243  part of the Dactylioceras polymorphum ammonite biozone. By contrast, small clumps of
244 prasinophytes and dispersed specimens of this group dominate throughout the Hildaites
245 levisoni and Hildoceras bifrons ammonite biozones (Figure 8, Table 1). The small

246  clumped prasinophytes are probably referable to Halosphaeropsis liassica. Acritarchs,
247  largely Micrhystridium spp., and foraminiferal test linings are also frequently present
248  throughout this succession.

249 Pteridophyte spores such as Cyathidites spp., Ischyosporites variegatus and

250 Leptolepidites spp., and the pollen grains Alisporites spp. and Classopollis classoides,
251  also dominate in certain samples. However, these terrestrially-derived palynomorphs do
252 not exhibit any coherent or specific trends (Fig. 8). The two lowermost samples from
253  the Dactylioceras polymorphum ammonite biozone (PZ1 and PZ2) are especially rich in
254  pollen and spores, notably Alisporites spp. and Classopollis classoides (Table 1). In
255  contrast, between samples PZ3 and PZ9, marine palynomorphs consistently dominate.
256  Stratigraphically higher than sample PZ9, some samples exhibit a relatively high

257  terrestrial influence. However marine palynomorphs dominate most of these samples
258  but, as previously stated, with no coherent and sustained patterns (Figs. 6, 8, Table 1).
259 In terms of palynomorph abundance and diversity during the T-OAE (sample
260  PZ9), acritarchs, dinoflagellate cysts and foraminiferal test linings are entirely absent.
261  The only marine palynomorphs present are prasinophytes; small clumps of

262  prasinophytes dominate the assemblage. Together with dispersed specimens of
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Tasmanites spp., prasinophytes comprise 94.9% of the overall palynoflora in sample
PZ9 (Table 1). This dominance of prasinophytes, largely in the absence of dinoflagellate
cysts, is typical of the T-OAE of northern and southern Europe (Wille, 1982a,b; Loh et
al., 1986; Prauss; 1989; 1996; Prauss and Riegel 1989; Prauss et al., 1991; Bucefalo
Palliani and Riding, 1999b; 2000; Bucefalo Palliani et al., 2002). Pteridophyte spores,
including Cyathidites spp. and Leptolepidites spp., are present in low proportions in

sample PZ9 (5.1%), but no pollen grains were encountered (Table 1).

4.3.  The Vale das Fontes section

Fourteen samples from the Lower Toarcian MLLF and TNL members of the Sao
Gido Formation succession at Vale das Fontes, Boa Viagem Mountain were studied
herein (Figs. 1, 5). They all proved palynologically productive, and are correlated with
the Dactylioceras polymorphum and Hildaites levisoni ammonite biozones of the
Mediterranean scheme (Figs. 2, 3, 5; Table 2; Elmi et al., 1989; Mouterde et al., 1964-
1965). Five dinoflagellate cyst species were recorded, these are: Luehndea spinosa;
Mancodinium semitabulatum; Nannoceratopsis ambonis; Nannoceratopsis gracilis; and
Nannoceratopsis senex (Fig. 7, Table 2, Plate 1). This dinoflagellate cyst association is
substantially similar to those from the coeval part of the Maria Pares section, however
represenatatives of Mendicodinium were not found at Vale das Fontes. Dinoflagellate
cysts are relatively common in the middle and upper part of the MLLF Member
(Dactylioceras polymorphum ammonite biozone, samples PVF1-PVF13), but they are
absent in the TNL Member (Hildaites levisoni ammonite biozone, sample PVF14)
(Figs. 7, 9; Table 2).

As in the Maria Pares section, Luehndea spinosa was found throughout the MLLF
Member/Dactylioceras polymorphum ammonite biozone at Vale das Fontes. It is the
most abundant dinoflagellate cyst in most of the samples (PVF4, PVF6-PVF9, PVF11-
PVF13). In the middle and upper part of this unit/biozone, in samples PVF§, PVF9,
PVF12 and PVF13, Luehndea spinosa attains 70.9%, 89.1%, 70.0% and 75.3% of the
palynoflora respectively (Fig. 7; Table 2). As at Maria Pares, this major acme may
represent a transgressive event (Pittet et al., 2014). The acme and the pattern of
occurrences of this species at Vale das Fontes is, somewhat unsurprisingly, virtually
identical to that at Maria Pares. The main acme of Luehndea spinosa underlies the T-

OAE, and has two distinctive peaks with an intervening ‘swallow tail” (Figs. 6, 7). The
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presence of this species confirms that the MLLF Member is no younger than earliest
Toarcian (subsection 4.2).

Mancodinium semitabulatum, Nannoceratopsis gracilis and Nannoceratopsis senex
are also consistently present throughout the MLLF Member at Vale das Fontes. These
species are persistent and relatively common, but they never exceed 16% (Table 2).
Like with Luehndea spinosa, the profiles for Mancodinium semitabulatum and
Nannoceratopsis spp. appear to be similar to those at Maria Pares. There are minor
acmes of Mancodinium semitabulatum and Nannoceratopsis spp. stratigraphically
below the abundance peak of Luehndea spinosa (Figs. 6, 7; Table 2). Nannoceratopsis
ambonis is rare, as in the Maria Pares section. This species is sparsely present only in
samples PVF2 and PVFS5 in the lower part of the Dactylioceras polymorphum ammonite
biozone (Table 2). The occurrence of Mancodinium semitabulatum and
Nannoceratopsis spp. is compatible with an Early Toarcian age for this succession
(subsection 4.2).

Only samples PVF1 and PVF4 in the lower part of the Dactylioceras polymorphum
ammonite biozone at Vale das Fontes exhibit more terrestrial influence than marine, due
mainly to the abundance of Classopollis classoides (Table 2). However, in the middle
and upper Dactylioceras polymorphum ammonite biozone (samples PVF7-PVF13),
marine influence dominates. This reaches a maximum of 94.7% marine palynomorphs
in sample PVF9, largely due the abundance of Luehndea spinosa (Fig. 9, Table 2). As in
the Maria Pares section, this marine acme is virtually all due to abundant dinoflagellate
cysts stratigraphically below the T-OAE. There are five dinoflagellate cyst abundance
peaks in samples PVF7, PVF§, PVF9, PVF12 and PVF13, (Fig. 7; Table 2). The pre-T-
OAE dinoflagellate cyst acme is twin-peaked in both sections examined, with a
‘swallow-tail’ underlying a thick limestone bed (Figs. 6, 7).

Acritarchs (Micrhystridium spp.), foraminiferal test linings and prasinophytes are
present in all the samples. Spores, such as Cyathidites spp. and Kraeuselisporites
reissingeri, are also consistently present, generally in low percentages. Gymnospermous
pollen, largely Classopollis classoides and Alisporites spp., is relatively common
throughout (Table 2). There is a general decrease in the relative abundance of pollen up-
section, but no other obvious coherent trends in the non-dinoflagellate cyst
palynomorphs (Fig. 9). During the T-OAE (sample PVF14), no acritarchs or

dinoflagellate cysts were recorded. This relatively sparse assemblage is dominated by
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indeterminate spores; foraminiferal test linings, pollen and prasinophytes are also

present (Table 2).

4.4.  Overview of the palynology of the two successions studied

The Maria Pares and Vale das Fontes Toarcian sections studied herein yielded abundant
and moderately well-preserved palynofloras. The dinoflagellate cysts recognised
comprise: Luehndea spinosa; Mancodinium semitabulatum; Mendicodinium
microscabratum; Mendicodinium spinosum subsp. spinosum; Mendicodinium sp.;
Nannoceratopsis ambonis; Nannoceratopsis gracilis; and Nannoceratopsis senex (Plate
I, Tables 1, 2). This association is typical of the Lower and Middle Toarcian throughout
Europe and adjacent regions (Wille, 1982a; Riding, 1984c; 1987; Davies, 1985; Riding
etal., 1991; 1999; Koppelhus and Nielsen, 1994; Bucefalo Palliani and Riding, 1997a,b;
1999a,b; 2000; 2003; Bucefalo Palliani et al., 1997b). Luehndea spinosa is confined to
the MLLF Member, and is by far the most abundant species, followed by Mancodinium
semitabulatum, Nannoceratopsis gracilis and Nannoceratopsis senex (Figs 6, 7; Tables
1, 2). Nannoceratopsis ambonis was recorded occasionally in low numbers, and
Mendicodinium is only sparsely present above the T-OAE in the Maria Pares section
(Table 1). Dinoflagellate cysts dominate the palynomorph assemblages throughout the
Dactylioceras polymorphum ammonite biozone (Figs 8, 9). Luehndea spinosa is the
most stratigraphically significant species. The relative abundances of Luehndea spinosa,
Mancodinium semitabulatum and Nannoceratopsis spp. are substantially similar in both
sections, and it seems likely that the abundance peaks of Luehndea spinosa represent
transgresssive events (Figs. 6, 7; Pittet et al., 2014).

These dinoflagellate cyst records are generally consistent with previous research
on the palynology of the Lower Toarcian of the Lusitanian Basin (Davies, 1985;
Oliveira et al., 2007; Barron et al., 2013). Davies (1985) identified Luehndea spinosa,
Mancodinium semitabulatum, Mendicodinium spp., Nannoceratopsis senex and
Scriniocassis weberi. The latter species was not recorded in this study. The Ponta do
Trovao section, near Peniche is the Toarcian Global Stratotype Section and Point
(GSSP), in the Peniche area (Elmi et al., 2007). Mancodinium semitabulatum,
Nannoceratopsis gracilis and Nannoceratopsis sp. were identified from this important
succession by Oliveira et al. (2007) and Barrén et al. (2013).
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Pollen, prasinophytes and spores are also present in relatively high proportions.
The pollen grains largely comprise Alisporites spp., Araucariacites australis,
Cerebropollenites macroverrucosus, Classopollis classoides and Perinopollenites
elatoides. The spores are chiefly Cyathidites spp., indeterminate forms and
Kraeuselisporites reissingeri (Tables 1, 2). Most of the prasinophytes are cither large,
dispersed specimens of Tasmanites or clumps of small (c. 20 um diameter) bodies
which are referable to Halosphaeropsis liassica (see Madler 1968; Bucefalo Palliani
and Riding, 2000, fig. 7I). By contrast, acritarchs and foraminiferal test linings are
relatively sparse (Figs. 8, 9, Tables 1, 2). All the non-dinoflagellate cyst palynomorphs
are entirely consistent with an Early Jurassic age (Srivastava, 1987; 2011; Weiss, 1989;
Ziaja, 2006). The consistent presence of significant levels of marine palynomorphs
indicates a sustained marine depositional setting relatively close to the sources of the
terrestrially-derived palynomorphs.

The most abundant continental palynomorph recorded throughout both sections
was Classopollis classoides (Tables 1, 2). Classopollis is a gymnosperm pollen genus
produced by plants belonging to the extinct Mesozoic conifer family Cheirolepidiaceae
(Francis, 1983). These were thermophilic and xerophytic conifers that tolerated semiarid
conditions, and lived in both low-lying water margin and upland environments (Pocock
and Jansonius, 1961; Batten, 1975; Filatoff, 1975; Srivastava 1976). These plants
covered large areas, but their abundance declined sharply with increasing palaeolatitude
(Vakhrameev, 1981; Riding et al. 2013). Classopollis has been reported from the Lower
Jurassic of the Lusitanian Basin (Davies, 1985; Oliveira et al., 2007; Barrén et al.,
2013). The presence of Classopollis classoides, and the absence of Callialasporites, is a
characteristic of the Late Sinemurian to Early Toarcian interval (Helby et al. 1987;
Quattrocchio et al., 2011). The bryophyte spore Kraeuselisporites ressingeri is present
only in the Dactylioceras polymorphum ammonite biozone in the successions studied
herein (Tables 1, 2). The range of this species is Late Triassic to Early Jurassic
(Rhaetian—Early Sinemurian) of northwest Europe according to Morbey (1978) and
Morbey and Dunay (1978). However, Barron et al. (2010) reported Kraeuselisporites
ressingeri from the Toarcian—Aalenian GSSP at Fuentelsaz, Spain.

The effects of the T-OAE are markedly evident in samples PZ9 and PVF14, due
to the sharp decline in palynomorph diversity and numbers. Furthermore, acritarchs and

dinoflagellate cysts are absent (Figs 6, 7; Tables 1, 2). Clumps of the small prasinophyte
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394  Halosphaeropsis liassica dominate sample PZ9, indicating a strong marine trend (Figs.
395 8§, 10). By contrast, spores dominate sample PVF14 from the Chocolate Marls (Fig. 9).

396
397
398 5. Comparison of the Lusitanian Basin marine palynofloras with other studies
399
400 Fossil biotas, including dinoflagellate cysts, have allowed the characterisation of

401  two distinct palacogeographical areas in Europe. These are the northern Boreal Realm
402  and the southern Tethyan Realm (Figure 12). They are separated by an intermediate
403  Sub-Boreal region with mixed faunal/floral characteristics. This area comprises

404  southern France, southern Germany, Hungary and Portugal (Bucefalo Palliani and

405  Riding, 1997b; 2003).

406 During the Pliensbachian and Early Toarcian, dinoflagellate cyst associations
407  from the Boreal Realm are dominated by Luehndea spinosa, Mancodinium

408  semitabulatum and Nannoceratopsis spp. (Riding, 1987, fig. 3; Riding et al., 1999, fig.
409  11; Bucefalo Palliani and Riding, 2000, fig. 3). The range base of the Parvocysta suite
410 isin the Hildoceras bifrons ammonite biozone (Wille, 1982, fig. 2; Riding et al., 1991,
411 fig. A2), however most of the constituent species of this group are typically Late

412  Toarcian (Riding, 1984c, fig. 3). The northern area typically exhibits markedly higher
413  species diversities than the Tethyan Realm (Bucefalo Palliani and Riding, 2003, figs. 2,
414  3). This appears to be a sustained trend as this phenomenon was continued significantly

415 later in the Jurassic (Riding and Michoux, 2013).

416 By contrast, Pliensbachian and Lower Toarcian successions of the Tethyan

417  Realm yield lower diversity floras, including Mancodinium semitabulatum and

418  relatively high levels of Mendicodinium spp. (Bucefalo Palliani and Riding, 2003, fig.
419  3). Mendicodinium is also prominent in the Early Jurassic of Australia (Riding and

420  Helby, 2001), hence appears to be a characteristically circum-Tethyan genus. However
421  this genus is also present, in low proportions, in Denmark and northern England in the
422  Boreal Realm (Poulsen, 1996; Bucefalo Palliani and Riding, 2000, fig. 3). Furthermore,
423 in the Tethyan Realm, Luehndea spinosa and Nannoceratopsis spp. are never as

424  prominent as they are further north, and the Parvocysta complex is virtually absent.
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Nannoceratopsis is entirerely absent throughout this interval in central Italy (Bucefalo
Palliani and Riding, 2003).

The Early/Middle Toarcian dinoflagellate cyst floras recorded herein from the
Lusitanian Basin are of relatively low diversity. Luehndea spinosa is the dominant
species, followed by Nannoceratopsis gracilis, Nannoceratopsis senex and
Mancodinium semitabulatum; Mendicodinium spp. proved rare (Tables 1, 2). Other
forms reported from this interval in the Lusitanian Basin and Hungary such as
Scriniocassis weberi, Umbriadinium mediterraneense and Valvaeodinium spp. were not
encountered herein (Baldanza et al., 1995; Davies, 1985; Bucefalo Palliani and Riding,
2003). Moreover, the genus Valvaeodinium, which is present elsewhere in the Northern
Hemisphere, is entirely absent. Unfortunately, the nearby Algarve Basin of southern
Portugal, which is within the Submediterranean Province of the Tethyan Realm
(Azerédo et al., 2003), has not yielded any marine palynomorphs from the Lower
Jurassic (Borges et al., 2011).

However, the levels of species richness recorded and the taxa encountered in the
Lusitanian Basin are broadly similar with coeval floras from northern Europe and
Russia (Wille, 1982a, fig. 2; Riding, 1984c. fig. 3; 1987, fig. 3; Feist-Burkhardt and
Wille, 1992, fig. 2; Poulsen, 1996, fig. 12; Riding et al., 1999, fig. 11; Bucefalo Palliani
and Riding, 2000, figs. 3, 4; Bucefalo Palliani et al., 2002, figs. 3, 9, 13). The
dominance of Luehndea spinosa, Mancodinium semitabulatum, Nannoceratopsis
gracilis and Nannoceratopsis senex throughout the Early Toarcian is therefore relatively
constant from northern Siberia through the North Sea southwards to the Lusitanian
Basin.

Overall therefore, this low diversity Luehndea-Nannoceratopsis dominated flora
of the Lusitanian Basin is more characteristic of the Boreal than the Tethyan Realm.
However, the principal difference between the Boreal Realm and the Lusitanian Basin is
the consistent presence of several species of Nannoceratopsis and the genus
Scriniocassis in the former. For example Nannoceratopsis deflandrei subsp.
anabarensis, Nannoceratopsis spiculata, Nannoceratopsis raunsgaardii and
Nannoceratopsis triceras are confined to the Boreal Realm (Bucefalo Palliani and
Riding, 2003). Furthermore, the high diversity levels of Mendicodinium, and forms such
as Luehndea cirilliae, Umbriadinium mediterraneense and Valvaeodinium hirsutum

characteristic of the Tethyan Realm (Bucefalo Palliani and Riding, 1997c; Bucefalo
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Palliani et al., 1997a), are not present in central west Portugal. It therefore appears that,
unsurprisingly, the low diversity dinoflagellate cyst assemblage recorded from the
Lusitanian Basin is most typical of the intermediate Sub-Boreal region (Davies, 1985;

Bucefalo Palliani and Riding, 2003; Olivera et al., 2007; Barrén et al., 2013).

6. The effects of the Toarcian Oceanic Anoxic Event

The Toarcian Oceanic Anoxic Event (T-OAE) significantly diminished all biotas,
especially benthic ones, due to the effects of the intense bottom water anoxia. This event
directly caused some extinctions (Fig. 12; Harries and Little, 1999; Bucefalo Palliani et
al., 2002; Caswell et al., 2009; Caswell and Coe, 2012; 2013). The profoundness of the
anoxia was greater in the Boreal Realm than in the Tethyan region, and the event was
more sustained in the north (Bucefalo Palliani and Riding, 2003). In the Boreal Realm,
this event caused the extinction of Luehndea spinosa (see Riding, 1987). In the
Lusitanian Basin, the T-OAE caused the virtual disappearance of all dinoflagellate cyst
taxa within the lowermost part of the Hildaites levinsoni ammonite biozone which is
consistent with the Boreal Realm (Figs. 6-9, 12). It is therefore clear that the

dinoflagellates and their cysts were responding to a major palacoenvironmental change.

In northern Europe, the dinoflagellate cyst record became re-established in the
Hildoceras bifrons ammonite biozone by floras returning from refugia in the littoral
zone when the marine environments became re-oxygenated (Fig. 12; Bucefalo Palliani
et al., 2002). Furthermore, there was significant speciation in northern Europe and
surrounding regions at this time (Riding, 1984c; Riding et al., 1991; 1999). This
renewal and diversification did not occur in the the Lusitanian Basin and throughout the
Tethyan Realm (Fig. 12; Bucefalo Palliani and Riding, 2003). An example of this is that
Nannoceratopsis gracilis and Nannoceratopsis senex are absent immediately above the
T-OAE in the Lusitanian Basin (Figs. 6, 12). Further north, these species quickly
became re-established in the Harpoceras falciferum ammonite biozone (Fig. 12; Riding,
1987, fig. 3; Bucefalo Palliani and Riding, 2000, fig. 3).

The range top of Luehndea spinosa throughout Europe is within the

Dactylioceras polymorphum ammonite biozone or equivalent (Fig. 12). This bioevent
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was observed slightly stratigraphically higher, in the lowermost part of the Hildaites
levisoni ammonite biozone, in the Lusitanian Basin (Figs. 6, 12). Apparently, only
Mancodinium semitabulatum recolonised the Lusitanian Basin in the Hildaites levisoni
and Hildoceras bifrons ammonite biozones (Figs. 6, 12; Table 1). Bucefalo Palliani and
Riding (2003, fig. A3.4) documented the occurrence of Nannoceratopsis gracilis and
Nannoceratopsis senex in the Harpoceras falciferum ammonite biozone, following the
T-OAE throughout Europe. However, this cosmopolitan genus did not recolonise the
two successions studied here from the Lusitanian Basin (Fig. 12). This was perhaps due
to the severe intensity of the T-OAE in central-west Portugal. It therefore appears that
Mancodinium semitabulatum was more resilient to benthic anoxia and marine

stratification than was Nannoceratopsis.

7. Conclusions

A palynological study of Lower Toarcian strata at Maria Pares and Vale das
Fontes in the Lusitanian Basin of Portugal yielded low diversity dinoflagellate cyst
floras typical of the latest Early Jurassic of Europe. The dominant species is Luehndea
spinosa, and Mancodinium semitabulatum, Mendicodinium microscabratum,
Mendicodinium spinosum subsp. spinosum, Mendicodinium sp., Nannoceratopsis
ambonis, Nannoceratopsis gracilis and Nannoceratopsis senex were also recorded.
Dinoflagellate cysts normally dominate the palynofloras in the Dactylioceras
polymorphum ammonite biozone, but their relative proportions markedly decreased in
the Hildaites levisoni and Hildoceras bifrons ammonite biozones. The Lower Toarcian
of the Lusitanian Basin yielded a low diversity Luehndea-Nannoceratopsis dominated
dinoflagellate cyst flora. This is characteristic of the transitional Sub-Boreal region
which is characterised by a flora which appears to be intermediate between the Boreal

and Tethyan realms (Bucefalo Palliani and Riding, 2003).

The T-OAE in the Lusitanian Basin is marked by the absence of acritarchs and
dinoflagellate cysts, and an abrupt decline in palynomorph abundance and diversity.
After the T-OAE, only Mancodinium semitabulatum and Mendicodinium spp. were
recorded. This complete ‘blackout’ of dinoflagellate cysts in the T-OAE, and their
limited recovery following this event strongly suggests that the benthic anoxia was of
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523  high intensity in the Lusitanian Basin. Other Toarcian successions in the Lusitanian
524  Basin should be studied in order to better understand the palaeobiological effects of the
525  T-OAE on dinoflagellate populations, and to clarify the palacogeographical affinity of
526  this important depocentre.
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535

536  Appendix 1

537

538 A list of all palynomorphs which were recovered from the material studied
539  herein, or were mentioned in the text with full author citations. The 18 dinoflagellate
540  cyst taxa listed which were not found in the material from the Lusitanian Basin are
541  asterisked. The taxa are listed alphabetically in four groups. References to the

542  dinoflagellate cyst author citations can be found in Fensome and Williams (2004).
543

544  Dinoflagellate cysts:

545  *Luehndea cirilliae Bucefallo Palliani et al. 1997

546  Luehndea spinosa Morgenroth 1970 (Plate I, 7-9)

547  Mancodinium semitabulatum Morgenroth 1970 (Plate I, 10-12)

548  *Mendicodinium brunneum Bucefalo Palliani et al. 1997

549  Mendicodinium microscabratum Bucefalo Palliani et al. 1997 (Plate 1, 5)

550  Mendicodinium spinosum Bucefalo Palliani et al. 1997 subsp. spinosum (autonym)
551 (Plate I, 4)

552 *Mendicodinium umbriense Bucefalo Palliani et al. 1997

553  Mendicodinium sp. (Plate I, 6)

554  Nannoceratopsis ambonis Drugg 1978 (Plate I, 3)

555  *Nannoceratopsis deflandrei Evitt 1961

556  *Nannoceratopsis deflandrei Evitt 1961 subsp. anabarensis Ilyina et al. 1994
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Nannoceratopsis gracilis Alberti 1961 (Plate I, 1)
*Nannoceratopsis magnicornis Bucefalo Palliani & Riding 1997
*Nannoceratopsis raunsgaardii Poulsen 1996

Nannoceratopsis senex van Helden 1977 (Plate I, 2)
*Nannoceratopsis spiculata Stover 1966

*Nannoceratopsis symmetrica Bucefalo Palliani & Riding 2000
*Nannoceratopsis triceras Drugg 1978

*Scriniocassis weberi Gocht 1964

*Susadinium scrofoides Dorhofer & Davies 1980

*Umbriadinium mediterraneense Bucefalo Palliani & Riding 1997
*Valvaeodinium hirsutum Bucefalo Palliani & Riding 1997
*Valvaeodinium koessenium (Morbey 1975) Below 1987
*Valvaeodinium perpunctatum (Wille & Gocht 1979) Below 1987
*Valvaeodinium punctatum (Wille & Gocht 1979) Below 1987
*Valvaeodinium stipulatum (Wille & Gocht 1979) Below 1987

Miscellaneous microplankton:

foraminiferal test linings (Plate II, 12)
Halosphaeropsis liassica Médler 1968 (prasinophyte)
Micrhystridium spp. (acritarch) (Plate 11, 10)
Tasmanites spp. (prasinophyte) (Plate 11, 11)

Spores:

Calamospora tener (Leschik 1955) Madler 1964

Cibotiumspora juriensis (Balme 1957) Filatoff 1975

Cingutriletes sp.

Conbaculatispora sp.

Concavisporites toralis (Leschik 1955) Nilsson 1958
Concavisporites spp.

Cyathidites spp. (Plate II, 1)

Ischyosporites variegatus (Couper 1958) Schulz 1967 (Plate II, 2)
Kraeuselisporites reissingeri (Harris 1957) Morbey 1975 (Plate I, 3)
Leptolepidites spp. (Plate 11, 4)

Lycopodiacidites rugulatus (Couper 1958) Schulz 1967 (Plate II, 5)
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Osmundacidites wellmanii Couper 1953

Plicifera delicata (Bolchovitina 1953) Bolchovitina 1966
Retitriletes spp.

Todisporites spp.

Pollen:

Alisporites spp. (Plate II, 6)

Araucariacites australis Cookson 1947 ex Couper 1958 (Plate II, 7)
Cerebropollenites macroverrucosus (Thiergart 1949) Schulz 1967 (Plate II, 8)
Classopollis classoides (Pflug 1953) Pocock & Jansonius 1961 (Plate II, 9)
Exesipollenites spp.

Inaperturopollenites sp.

Perinopollenites elatoides Couper 1958

Appendix 2

In this contribution, we do not follow the taxonomic proposals of Ilyina et al.
(1994) with regard to the dinoflagellate cyst species Nannoceratopsis senex. These
authors changed the status of this taxon from a species to a subspecies of
Nannoceratopsis deflandrei. Ilyina et al. (1994) placed the newly attributed subspecies
senex, together with their new subspecies anabarensis and the autonym subspecies
deflandrei, into the species Nannoceratopsis deflandrei. This strategy was on the basis
that Nannoceratopsis deflandrei has a relatively untextured autophragm, in comparison
to Nannoceratopsis gracilis which has a rough, spongy wall. This difference between
the species Nannoceratopsis gracilis and Nannoceratopsis senex was also discussed by
Piel and Evitt (1980, p. 103). In the present author’s view, the principal criteria for
speciation in Nannoceratopsis should be the lateral outline and the number of
hypocystal horns, and not the fine-scale texture of the autophragm. Therefore we
maintain the original contention of van Helden (1977), who established
Nannoceratopsis senex as a distinctly tear-shaped form of this genus with a narrow
antapical margin defined by the distal part of the single hypocystal horn (Plate I, 2).
This contrasts with Nannoceratopsis gracilis, which has a subtriangular lateral outline

with a much wider antapical margin (Plate I, 1). Nannoceratopsis gracilis is therefore
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625 deemed to be a senior synonym of Nannoceratopsis deflandrei, as originally envisaged
626 by Evitt (1962).
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Display material captions:

Fig. 1. The location and geological setting of the Lusitanian Basin of western Portugal
(adapted from Reolid and Duarte, 2014). The sections studied are indicated by the
numbers 1 and 2. The Maria Pares section, close to Zambujal village in the Rabacal area
(1)is at40° 3’ 10°°’N, 8° 27’ 25>W. The Vale das Fontes section in the Figueira da Foz
area (2) is at 40° 12° 10°N, 8° 51° 31”°W.

Fig. 2. The ammonite biostratigraphy and lithostratigraphy of the Toarcian of the
northern and central parts of the Lusitanian Basin, western Portugal based on Perilli and
Duarte (2006). The grey shading indicates the four lithostratigraphical units which were

studied herein.

Fig. 3. Correlation of the Lower Toarcian ammonite biozones in the Mediterranean

(North Africa, Italy, Portugal, southern Spain), Submediterranean (southern England,
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1047  France, Germany, northern Spain) and Subboreal (northern Britain) provinces, adapted
1048  from Page (2003).

1049

1050  Fig. 4. The lithological log of the Lower and Middle Toarcian succession in the Maria
1051  Pares section (modified from Duarte, 1995), with the positions of the palynomorph
1052  samples PZ1-PZ54 indicated. The ammonite biozones are based on, and modified from,
1053  Mouterde et al. (1964-1965) and Elmi et al. (1989). MLLF = Marly Limestones with
1054  Leptaena Facies Member; TNL = Thin Nodular Limestones Member; MMLHH = Marls
1055  and Marly Limestones with Hildaites and Hildoceras Member; MMLSB = Marls and
1056  Marly Limestones with Sponge Bioconstructions Member.

1057

1058  Fig. 5. The lithological log of the Lower Toarcian succession in the Vale das Fontes
1059  section (modified from Duarte, 1995), with the positions of the palynomorph samples
1060 PVF1-PVF14 indicated. The ammonite biozones are based on, and modified from,
1061  Mouterde et al. (1964-1965) and Elmi et al. (1989). MLLF = Marly Limestones with
1062  Leptaena Facies Member; TNL = Thin Nodular Limestones Member.

1063

1064  Fig. 6. The relative proportions of the dinoflagellate cysts Luehndea spinosa,

1065  Mancodinium semitabulatum and Nannoceratopsis spp., expressed as a percentage of
1066  the overall palynoflora, from the Lower Toarcian (Dactylioceras polymorphum and
1067  Hildaites levisoni ammonite biozones) in the Maria Pares section. Mendicodinium spp.
1068 are not included. The right hand column illustrates the percentages of all dinoflagellate
1069  cyst taxa, including Mendicodinium spp. T-OAE = Toarcian Oceanic Anoxic Event.
1070

1071  Fig. 7. The relative proportions of the dinoflagellate cysts Luehndea spinosa,

1072  Mancodinium semitabulatum and Nannoceratopsis spp., expressed as a percentage of
1073  the overall palynoflora, from the Lower Toarcian (Dactylioceras polymorphum and
1074  Hildaites levisoni ammonite biozones) in the Vale das Fontes section. Mendicodinium
1075  spp. are not included. The right hand column illustrates the percentages of all

1076  dinoflagellate cyst taxa, including Mendicodinium spp. T-OAE = Toarcian Oceanic
1077  Anoxic Event.

1078

1079  Fig. 8. The relative abundances, expressed as percentages, of the six main palynomorph

1080  groups recorded from the Lower and Middle Toarcian (Dactylioceras polymorphum,
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Hildaites levisoni and Hildoceras bifrons ammonite biozones) of the Maria Pares
section (samples PZ1-PZ54). Samples PZ14 and PZ37 are entirely devoid of
palynomorphs. Note the dominance of prasinophytes in the T-OAE (sample PZ9). T-

OAE = Toarcian Oceanic Anoxic Event.

Fig. 9. The relative abundances, expressed as percentages, of the six main palynomorph
groups recorded from the Lower Toarcian (Dactylioceras polymorphum and Hildaites
levisoni ammonite biozones) of the Vale das Fontes section (samples PVF1-PVF14). T-

OAE = Toarcian Oceanic Anoxic Event.

Fig. 10. The relative abundances of marine palynomorphs (i.e. acritarchs, dinoflagellate
cysts, foraminiferal test linings and prasinophytes) within the overall palynofloras from
the Lower Toarcian (Dactylioceras polymorphum and Hildaites levisoni ammonite

biozones) of the Maria Pares section. Note the peaks at and below the T-OAE (Toarcian

Oceanic Anoxic Event).

Fig. 11. The relative abundances of the marine palynomorphs (i.e. acritarchs,
dinoflagellate cysts, foraminiferal test linings and prasinophytes) within the overall
palynofloras from the Lower Toarcian (Dactylioceras polymorphum and Hildaites
levisoni ammonite biozones) of the Vale das Fontes section. Note the peak in sample

PVF9. T-OAE = Toarcian Oceanic Anoxic Event.

Fig. 12. A comparison of the stratigraphical ranges of selected dinoflagellate cysts from
the Lower and Middle Toarcian (Dactylioceras polymorphum to Hildoceras bifrons
ammonite biozones or their equivalents) of the major European Basins. In the Tethyan
Realm, the ranges are plotted from central Italy and the Lusitanian Basin, Portugal. Data
from German and the U.K. are depicted for the Boreal Realm. The position of the major
dinoflagellate cyst disappearance event or ‘blackout’ caused by the T-OAE is depicted
in yellow. Note how this event appears to be slightly diachronous; it is older in the

Tethyan Realm than in the Boreal Realm.

Table 1. The palynomorph assemblages from the Lower and Middle Toarcian of the

Maria Pares section near Rabagal. The numbers represent percentages of the respective
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1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

taxon within the overall palynoflora; blank spaces indicate the absence of the respective

form.

Table 2. The palynomorph assemblages from the Lower Toarcian of the Vale das
Fontes section, north of Figueira da Foz. The numbers represent percentages of the
respective taxon within the overall palynoflora; blank spaces indicate the absence of the

respective form.

Plate I. Selected dinoflagellate cysts from Toarcian of the Maria Pares and Vale das
Fontes sections of the Lusitanian Basin, in west-central Portugal. All specimens are
housed in the collections of the LNEG (Portuguese Geological Survey), S. Mamede de
Infesta, Portugal. The sample number, slide number and England Finder coordinates are
provided. All the scale bars represent 20 pum.

1. Nannoceratopsis gracilis Alberti 1961 emend. Evitt 1962. Vale das Fontes
section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone), sample
PVF10, slide 1, R47/1. Right lateral view. Note the dorsal antapical horn and the
microreticulate autophragm.

2. Nannoceratopsis senex van Helden 1977. Vale das Fontes section, Lower
Toarcian (Dactylioceras polymorphum ammonite biozone), sample PVF2, slide 1, Q57.
Right lateral view. Note the single antapical horn and the microreticulate autophragm.
3. Nannoceratopsis ambonis Drugg 1978 emend. Riding 1984. Vale das Fontes
section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone), sample
PVF2, slide 1, Y36/1. Left lateral view. Note the prominent dark sagittal rim and the
microreticulate autophragm.

4. Mendicodinium spinosum Bucefalo Palliani et al. 1997 subsp. spinosum
(autonym). Maria Pares section, Lower Toarcian (Hildaites levisoni ammonite biozone),
sample PZ26, slide 1, F49/1. Oblique dorsal view. Note the spines and the smooth
autophragm.

5. Mendicodinium microscabratum Bucefalo Palliani et al. 1997. Maria Pares
section, Lower Toarcian (Hildaites levisoni ammonite biozone), sample PZ16, slide 1,
T36/1. Right lateral view. Note the microscabrate autophragm.

6. Mendicodinium sp. Maria Pares section, Lower Toarcian (Hildaites levisoni
ammonite biozone), sample PZ29, slide 1, M33/3. Oblique left lateral view. Note that

this form is larger than most Toarcian specimens of Mendicodinium; the width is 40 pum.
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1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

1172

1173
1174
1175
1176
1177
1178
1179

7. Luehndea spinosa Morgenroth 1970. Vale das Fontes section, Lower Toarcian
(Dactylioceras polymorphum ammonite biozone), sample PVFS, slide 1, 024. Mid-
ventral view, high focus. Note the prominent cingulum which is interrupted by the
sulcus.

8. Luehndea spinosa Morgenroth 1970. Vale das Fontes section, Lower Toarcian
(Dactylioceras polymorphum ammonite biozone), sample PVF10, slide 1, Y27/3.
Dorsal view, high focus. Note the uninterrupted cingulum.

9. Luehndea spinosa Morgenroth 1970. Maria Pares section, Lower Toarcian
(Dactylioceras polymorphum ammonite biozone), sample PZ5, slide 1, 022/2. Oblique
dorsal view. Note the antapical (1°°”") plate.

10.  Mancodinium semitabulatum Morgenroth 1970. Maria Pares section, Lower
Toarcian (Hildaites levisoni ammonite biozone), sample PZ32, slide 1, D42. Oblique
ventral-left lateral view. Note the well-preserved precingular plates which are involved
in the formation of the ‘disintegration’ archaeopyle, in which all the epicystal plates are
lost, apparently one-by-one. The anterior sulcal plate (the sulcal tongue) is visible; this
is clearly not involved in archaeopyle formation.

11.  Mancodinium semitabulatum Morgenroth 1970. Vale das Fontes section, Lower
Toarcian (Dactylioceras polymorphum ammonite biozone), sample PVF1, slide 1,
H56/2. Oblique right lateral-ventral view. Note the clearly detached 7°” plate, which is
immediately adjacent to the much narrower anterior sulcal plate (sulcal tongue).

12.  Mancodinium semitabulatum Morgenroth 1970. Maria Pares section, Lower
Toarcian (Hildaites levisoni ammonite biozone), sample PZ32, slide 1, K39. Slightly
oblique dorsal view. Note the anterior sulcal plate (sulcal tongue) and the release of all

the epicystal plates during archaeopyle formation.

Plate I1. Selected miscellaneous microplanton, pollen and spores from the Toarcian of
the Maria Pares and Vale das Fontes sections of the Lusitanian Basin, in west-central
Portugal. All specimens are housed in the collections of the LNEG (Portuguese
Geological Survey), S. Mamede de Infesta, Portugal. The sample number, slide number
and England Finder coordinates are provided. All the scale bars represent 20 pum.

1. Cyathidites sp. Maria Pares section, Lower Toarcian (Hildaites levisoni

ammonite biozone), sample PZ20, slide 1, F50.
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1180 2. Ischyosporites variegatus (Couper 1958) Schulz 1967. Maria Pares section,
1181  Lower Toarcian (Hildaites levisoni ammonite biozone), sample PZ19, slide 1, J51.
1182 3. Tetrad of Kraeuselisporites reissingeri (Harris 1957) Morbey 1975. Vale das
1183  Fontes section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone),
1184  sample PVFS5, slide 1, E34/3.

1185 4. Tetrad of Leptolepidites sp. Vale das Fontes section, Lower Toarcian

1186  (Dactylioceras polymorphum ammonite biozone), sample PVF13, slide 1, H28.
1187 5. Lycopodiacidites rugulatus(Couper 1958) Schulz 1967. Maria Pares section,
1188  Lower Toarcian (Hildaites levisoni ammonite biozone), sample PZ19, slide 1, J37/2.
1189 6. Alisporites sp. Maria Pares section, Lower Toarcian (Hildaites levisoni

1190 ammonite biozone), sample PZ15, slide 1, S70/4.

1191 7. Araucariacites australis Cookson 1947 ex Couper 1958. Vale das Fontes
1192  section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone), sample
1193  PVFS5, slide 1, 0O40.

1194 8. Cerebropollenites macroverrucosus (Thiergart 1949) Schulz 1967. Vale das
1195  Fontes section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone),
1196  sample PVF1, slide 1, P41.

1197 9. Tetrad of Classopollis classoides (Pflug 1953) Pocock & Jansonius 1961. Vale
1198  das Fontes section, Lower Toarcian (Dactylioceras polymorphum ammonite biozone),
1199  sample PVF2, slide 1, K39/3.

1200 10.  Micrhystridium sp. Vale das Fontes section, Lower Toarcian (Dactylioceras
1201 polymorphum ammonite biozone), sample PVF2, slide 1, E54/3.

1202 11.  Tasmanites sp. Vale das Fontes section, Lower Toarcian (Dactylioceras

1203  polymorphum ammonite biozone), sample PVF10, slide 1, J49/3.

1204 12.  Foraminiferal test lining. Vale das Fontes section, Lower Toarcian

1205  (Dactylioceras polymorphum ammonite biozone), sample PVF7, slide 1, H50.

1206
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