

Article (refereed) - postprint

Duan, Yun-Feng; Reinsch, Sabine; Ambus, Per; Elsgaard, Lars; Petersen, Søren O. 2017. Activity of type I methanotrophs dominates under high methane concentration: methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen. *Journal of Environmental Quality*, 46 (4). 767-775. <u>10.2134/jeq2017.02.0047</u>

© 2017

This version available http://nora.nerc.ac.uk/517125/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://dl.sciencesocieties.org/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Methanotrophic activity in slurry surface crusts as influenced by CH₄, O₂, and inorganic N

Yun-Feng Duan ¹*, Sabine Reinsch ²#, Per Ambus ²[§], Lars Elsgaard ¹, and Søren O. Petersen ¹

¹ Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark

² Department of Chemical and Biochemical Engineering, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark

* Corresponding Author: Yun-Feng Duan, Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark; E-mail: Kevin.YF.Duan@gmail.com.

[#] Present address: Centre for Ecology and Hydrology, Deiniol Rd, Bangor Gwynedd, LL57 2 UW, UK

[§] Present address: Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark

Abbreviations

MOB: Methane oxidizing bacteria; PLFA: Phospholipid fatty acid; FAME: Fatty acid methyl esters

Keywords

Methane oxidation; Inorganic nitrogen; Microsensor; PLFA stable-isotope probing; Methane oxidizing bacteria.

Core Ideas

- Oxygen penetration into surface crusts is shallow.
- Nitrous oxide accumulates at oxic-anoxic interfaces in surface crusts.
- Oxygen availability is important to high-concentration methane oxidation.
- Microbial methane oxidation is affected by interactions of inorganic N and oxygen.
- Activity of Type I methanotrophs dominates under high methane concentration.

1 Abstract

2 Livestock slurry is a major source of atmospheric CH₄, but surface crusts harboring methane oxidizing 3 bacteria (MOB) could mediate against CH₄ emissions. This study examined conditions for methane oxidation 4 by in-situ measurements of O_2 and N_2O , as a proxy for inorganic N transformations, in intact crusts using 5 microsensors. This was combined with laboratory incubations of crust material to investigate effects of O₂, CH₄, and inorganic N on methane oxidation, using ¹³CH₄ to trace C incorporation into lipids of MOB. Oxygen 6 7 penetration into the crust was 2–14 mm, confining the potential for aerobic methane oxidation to a shallow 8 layer. Nitrous oxide accumulated within or below the zone of O_2 depletion. With 10^2 ppmv CH₄ there was no 9 O_2 limitation on methane oxidation at O_2 concentrations as low as 2%, whereas methane oxidation at 10^4 10 ppmv CH₄ was reduced at \leq 5% O₂. As hypothesized, methane oxidation was in general inhibited by inorganic 11 N, especially NO₂⁻, and there was an interaction between N inhibition and O₂ limitation at 10^2 ppmv CH₄, as 12 indicated by consistently stronger inhibition of methane oxidation by NH_4^+ and NO_3^- at 3% compared to 20% 13 O₂. Recovery of ¹³C in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with 14 Type I dominating high-concentration methane oxidation. Given the structural heterogeneity of crusts, 15 methane oxidation activity likely varies spatially as constrained by the combined effects of CH₄, O₂, and 16 inorganic N availability in microsites.

17 Introduction

18 In regions with intensive livestock production such as Western Europe and North America, up to 40% of 19 livestock CH₄ emissions may be related to manure management (Francesco et al., 2013). In most cases, CH₄ 20 capture and/or biofiltration is neither technically feasible nor economical (Melse and van der Werf, 2005), 21 and more cost-effective alternatives must be considered. When manure is stored as liquid slurry, a dense 22 floating crust is often formed either naturally from dry matter in the slurry, or by facilitation of admixing 23 with chopped straw (Hansen et al., 2009). Studies have demonstrated a potential for aerobic methane 24 oxidation in such surface crusts (Petersen and Ambus, 2006; Petersen et al., 2005), where diverse 25 communities of methane-oxidizing bacteria (MOB) were also documented (Duan et al., 2014). These findings suggest that surface crusts could act as a low-cost filter for manure-derived CH₄, but the physical, chemical,
 and biological regulation of methane oxidation inside crusts is largely unknown.

28 Methane oxidation potential depends on CH_4 and O_2 availability, which are highly variable due to the 29 heterogeneous structure of the crust. Since surface crusts overlie liquid manure with a high methanogenic 30 potential, they are typically high-CH₄ environments with concentrations far above the atmospheric level. We 31 have observed up to 200 ppmv CH₄ in the stagnant atmosphere immediately above the surface crust (Y.F. 32 Duan, unpublished data), and headspace CH₄ concentrations of 10^2 and 10^4 ppmv were used previously to 33 simulate this range of CH₄ availability for MOB in laboratory incubations (Duan et al., 2013). Due to the often 34 loose structure of the crust, sectioning for extraction and determination of *in situ* CH₄ availability by 35 sampling are impractical. While a CH₄ biosensor has been described (Damgaard and Revsbech, 1997), it is 36 not commercially available and has not been tested in heterogeneous environments such as surface crusts. 37 In contrast to CH₄, the distribution of O₂ in surface crusts can be readily determined using a microsensor 38 (Revsbech, 2005), as demonstrated by Hansen et al. (2009) and Nielsen et al. (2010) who investigated O₂ 39 penetration into various slurry crusts.

40 Inhibition of methane oxidation by inorganic N is known from many environments (Bosse et al., 1993; 41 Dunfield and Knowles, 1995; Wang and Ineson, 2003), as well as in surface crusts (Duan et al., 2013), but 42 stimulation or no effect can also occur (Liu and Greaver, 2009). Livestock slurry and surface crusts are highly 43 enriched in inorganic N (Table 1): the slurry phase may contain up to 200 mM ammoniacal N (NH_3/NH_4^+) 44 (Nielsen et al., 2010; Sommer et al., 2007), while up to 35 mM NO_3^- (Hansen et al., 2009) and 98 mM NO_2^- 45 (Nielsen et al., 2010) have been found at the oxic-anoxic interface in surface crusts. These concentration 46 ranges (Table 1) represent a high variability of inorganic N at microsites within surface crusts due to 47 fluctuations in water content as a result of precipitation and insolation (Nielsen et al., 2010). Due to this 48 heterogeneity, bulk N concentrations are insufficient to characterize N distribution and thus potential 49 interference with methane oxidation in microsites. While specialized sensors are available to determine 50 micro-scale concentrations of NH₄⁺, NO₂⁻, and NO₃⁻ in aqueous environments (De Beer et al., 1997; De Beer

et al., 1991; Larsen et al., 1996), they are difficult to apply in unsaturated matrices such as surface crusts,
where contact to liquid phase may be intermittent. Instead, the accumulation of N₂O in the crust was used in
this study as a proxy for the distribution of N transformations and thus presence of inorganic N (Larsen et al.,
1996), as both nitrification and denitrification can produce N₂O under sub-oxic conditions (Bollmann and
Conrad, 1998).

56 The effects of environmental factors on methane oxidation in surface crusts will ultimately depend on the 57 MOB present (Bodelier, 2011; Hu and Lu, 2015). Aerobic MOB have been conventionally categorized into 58 Type I and Type II based on phylogenetic and functional traits, including the presence of signature 16-carbon 59 (C₁₆) or 18-carbon (C₁₈) phospholipid fatty acids (PLFAs) (Hanson and Hanson, 1996). Type I MOB have been 60 reported to thrive in N-sufficient, high-O₂ and low-CH₄ environments, whereas Type II MOB seem to favor 61 the opposite (Amaral et al., 1995; Amaral and Knowles, 1995; Graham et al., 1993). It is still unclear to what 62 extent CH₄, O₂, and inorganic N conditions will select one type of MOB over another in surface crusts, but 63 previous studies found that Type I MOB are more abundant and diverse than Type II MOB in this 64 environment (Duan et al., 2014; Hansen et al., 2009; Nielsen et al., 2013). In recent years, novel methane 65 oxidation pathways, such as NO₂⁻ dependent anaerobic methane oxidation (Ettwig et al., 2010; Welte et al., 66 2016), as well as aerobic methane oxidation coupled with partial denitrification (Kits et al., 2015a; Kits et al., 67 2015b), have also been described, but the importance of these processes and the presence of relevant 68 microorganisms in surface crusts remain unclear.

A main objective of this study was to examine the potential for microbial methane oxidation under realistic storage conditions by characterizing *in situ* distributions of O₂ and inorganic N transformations in a cattle slurry surface crust using microsensors. Effects and interactions of O₂ and inorganic N species with respect to methane oxidation could not be quantified *in situ* where microbial activities occur in micro-sites, and instead this was investigated under controlled laboratory conditions. Here, ¹³CH₄ was used as substrate, allowing ¹³C stable isotope probing of PLFAs to study the involvement of Type I and Type II MOB in methane oxidation in surface crusts. Based on previous results (Duan et al., 2014; Duan et al., 2013) we hypothesized that

- 76 methane oxidation activity in surface crusts would be determined by both CH_4 and O_2 availability, and
- inhibited by inorganic N, and that Type I MOB would be primarily responsible for methane oxidation.

78 Materials and Methods

79 *Microsensor Measurement of O₂ and N₂O Distribution*

Dairy cattle slurry was collected from a full-scale manure storage facility in May, 2012, and transferred to two tanks at a pilot-scale storage system (Petersen et al., 2009) at Aarhus University (Foulum, Denmark). The slurry was stored for six weeks prior to the measurement in June, by which time a 5–6 cm thick surface crust with a stable structure had developed on top of the slurry. The development of surface crust reflected typical storage conditions, where a new crust is formed following the mixing of slurry in spring for field application.

Oxygen and N₂O concentration profiles in the surface crust were determined using, respectively, an O₂ and a
 N₂O microsensor with a tip diameter of 0.5 mm (both produced by Unisense, Aarhus, Denmark). Both
 microsensors were calibrated according to manufacturer's instructions. Detection limits for O₂ and N₂O were
 0.3 µmol L⁻¹ and 0.1 µmol L⁻¹, respectively.

90 A custom-made mounting system was used to place the microsensors over the surface crust (Supplemental 91 Fig. S1). Oxygen profiles were recorded at 20-cm intervals from 20 to 180 cm along the 200-cm diameter of 92 the storage tank. During measurement, the microsensor was introduced stepwise into the crust at 0.5 mm 93 increments to a maximum depth of 30 mm using a motorized micromanipulator (Unisense). At each depth, 94 the microsensor was stationary for 3 s to allow gas equilibration, and then the O₂ concentration was 95 determined as the average of a 3 s reading. The signal was amplified by a multimeter (Unisense), and 96 registered by the SensorTrace PRO v3.0 software (Unisense). Nitrous oxide profiles were determined at the 97 same locations as O_2 profiles, but with a +2 mm offset to avoid any disturbance to the crust caused by the O_2 98 microsensor. The N_2O profiles were recorded with the same procedure as O_2 profiles, and initially over the

- 99 same depth. However, due to incidences of significant N₂O accumulation at 30 mm depth, the maximum
- 100 depth was extended to 60 mm starting from the 5th profile (at 100 cm distance from the edge).

Due to the uneven surface of the crust, a fixed depth cannot accurately define the crust-air interface. For O₂, an abrupt decrease from atmospheric concentration defined the crust-air interface. For N₂O, which was produced inside the crust and diffused towards the atmosphere, the crust-air interface was defined as the depth where N₂O concentration dropped below the detection limit. Using these two criteria, the O₂ and N₂O concentration profiles were aligned.

106 *Methane Oxidation in Response to O₂ and N Amendments*

Surface crust was collected from a full-scale storage tank at the biogas plant of Aarhus University in March,
2012. The 10-cm surface crust had developed on slurry co-digested with maize silage. Homogenized crust
samples were stored in closed plastic containers at 2°C until used for experiments within four weeks. Duan
et al. (2013) showed that MOB can survive and recover activity under these storage conditions for at least
three months.

112 Methane oxidation rates were determined by incubating 3-g crust samples in liquid media under a controlled 113 atmosphere. To reduce background N, crusts were washed three times by vortexing with 20 mL deionized 114 water followed by centrifugation at 10,000 × q for 10 min. The washing did not remove all NH₄⁺, but the 115 residual NH₄⁺ was negligible compared to the received NH₄⁺ amendment (Duan et al., 2013). Washed crust 116 materials were transferred to 125 mL serum bottles, and resuspended in 20 mL basal salt (BS) medium 117 prepared according to Whittenbury et al. (1970), but excluding N salts. The BS medium was dispensed using 118 a customized system designed to remove dissolved O₂ and maintain anoxia during sample preparation 119 (Supplemental Fig. S2).

Various treatments with combinations of different CH₄, O₂, and inorganic N were prepared (Table 2). For N
 amendments, pre-made solutions of (NH₄)₂SO₄, KNO₃, or KNO₂ were injected into the serum bottles to

122 achieve the desired N concentrations. The bottles were purged using a vacuum pump and refilled with 123 helium, and this step was repeated three times to exhaust residual O2. Then, air and ¹³C-labeled CH4 (99 124 atom% ¹³C, ISOTEC, Miamisburg, OH, USA) were injected to achieve the desired headspace gas 125 concentrations. To meet the requirement for CO_2 by some MOB, 4 mL pure CO_2 was also added (Acha et al., 126 2002). After gas injection, the bottles were mounted on a rotary shaker at 150 rpm for 30 min to allow for 127 liquid-gas equilibration. Headspace O₂ concentrations were verified using an Agilent 3000A MicroGC 128 (Hørsholm, Denmark) as described by (Petersen et al., 2009). For treatments with $0\% O_2$, residual headspace 129 O₂ concentration was undetectable (< 10–20 ppmv). The bottles were then incubated on a rotary shaker at 130 200 rpm at ca. 21°C; Duan et al. (2013) had shown that there is no gas diffusion limitation under these 131 incubation conditions. Headspace CH₄ concentrations were measured after 0, 2, 4, 6, 8, 24, 48, and 72 h 132 using a Shimadzu 14B GC as described by Duan et al. (2013). 133 In each batch of assays, a control with crust material in N-free BS medium at atmospheric O₂ concentration 134 was included to check for batch-to-batch variations in crust MOB activity, and a blank control without crust 135 material to correct for loss of pressure during repeated gas samplings.

First-order rate constants for the first 8 h of incubation and relative activities were calculated according to
Duan et al. (2013). First-order rate constants were compared between treatments using R v3.2.2 (R Core
Team, 2015). For each CH₄ concentration, effects of O₂ and inorganic N, and their interaction, were analyzed
by a two-way ANOVA. Differences between treatments were determined by Duncan's post-hoc multiple
comparison test.

141 PLFA Extraction and GC-c-IRMS Analysis

After incubation with ¹³C-labeled CH₄, selected crust samples were processed for PLFA analysis (Table 2). Prior to lipid extraction it was necessary to reduce the organic load since otherwise the humic material would bind the chloroform phase and prevent isolation of lipid-soluble compounds. Crust samples were vortexed and centrifuged for 10 min at $3000 \times g$ to extract microbial cells. The supernatant was filtered through 0.2 µm chloroform-soluble polycarbonate filters, and the material retained on the filter was used
for lipid extraction. Hence, lipid results refer to the fraction of extractable low particle size material only.
Polar lipid fatty acid methyl esters (FAMEs) from each filter were prepared as previously described by
Petersen et al. (2002).

150 FAMEs were analyzed using a HP6890 GC (Agilent, Santa Clara, CA, USA) coupled via a GC combustion interface (Thermo Scientific, Bremen, Germany) in continuous flow mode to a Finnigan Delta PLUS isotope 151 152 ratio mass spectrometer (Thermo Scientific, Bremen, Germany). The oxidation reactor on the interface was 153 maintained at 940 °C, the reduction reactor at 650 °C. Samples (1 µL) were injected at 240 °C in splitless 154 mode. The column temperature was held at 50 °C for 2 min, then increased at 15 °C min⁻¹ to 100 °C, subsequently at 2 °C min⁻¹ to 220 °C, and finally at 15 °C min⁻¹ to 240 °C, where the final temperature was 155 156 held for 5 min. Separated compounds were measured against a CO₂ reference gas calibrated with reference 157 to Vienna PeeDee belemnite. PLFAs were identified by relative retention time comparing samples against a 158 FAME standard mix (Supelco 37 component FAME mix, 47885-U, Sigma Aldrich). All δ^{13} C values were 159 corrected for the methanol C added during methanolysis:

160
$$\delta^{13}C_{\text{FAME}} = \frac{(N_{\text{FA}} + 1)\delta^{13}C_{\text{FAME}} - \delta^{13}C_{\text{MeOH}}}{N_{\text{FA}}}$$

161 where N_{FA} refers to the number of carbon atoms of the fatty acid component, $\delta^{13}C_{FAME}$ is the observed $\delta^{13}C$ 162 value of the FAME, and $\delta^{13}C_{MeOH}$ is the $\delta^{13}C$ value of the methanol used for methanolysis (-37.7 ‰ ± 3.2 ‰). 163 The $\delta^{13}C$ isotope ratios were converted to atom%, and atom% excess was then calculated by subtraction of 164 an unlabeled control. The incorporation of ${}^{13}CH_4$ into membrane PLFAs (n_{13C} , nmol) was calculated as n_{13C} = 165 (PA_{FAME} / PA_{ISME}) × n_{ISME} × (atom% ${}^{13}C$ excess), where PA_{FAME} and PA_{ISME} are peak areas of the FAME and 166 internal standard *Me*19:0, respectively, and n_{ISME} (nmol C) is the concentration of the internal standard fatty 167 acid. The lower limit of identified peaks corresponded to 0.1 ng ${}^{13}C$ g⁻¹ crust material.

- 168 In view of the uncertain recovery of microbial cells following centrifugation and filtration, statistical testing
- 169 of treatment effects was not performed, and results will only be presented as means ± standard errors.

170 **Results**

171 **Oxygen and N₂O Distribution in Natural Surface Crusts**

- 172 Surface crusts from the two storage tanks showed a high spatial variability in shape and penetration depth of
- 173 individual O₂ and N₂O profiles, yet the distribution patterns were qualitatively similar between the two
- tanks. Thus, results presented here are from one of the storage tanks only (Fig. 1).
- 175 Oxygen penetration depth varied from 2 to 14 mm, with either a steep or more gradual decline in
- 176 concentration. Irregularities such as a secondary increase following the initial decline were also observed
- 177 (e.g., at 60 cm).
- 178 Nitrous oxide profiles showed peak concentrations at 5–25 mm depth below the crust-air interface. Some
- 179 N₂O profiles consisted of more than one zone of N₂O accumulation (e.g., at 60, 100, and 160 cm). Maximum
- 180 N₂O accumulation often coincided with sub-oxic or anoxic zones indicated by O₂ profiles. In a few cases (e.g.,
- at 60 and 180 cm), N₂O production took place where O₂ availability was relatively high.

182 **Response of CH₄ Oxidation to O₂ Concentrations**

- 183 Figure 2 shows the changes in headspace CH₄ concentrations during the 72-h incubation study with different
- 184 initial O₂ levels and two initial CH₄ levels. For both 10² and 10⁴ ppmv CH₄, consistent methane consumption
- 185 throughout the incubation was observed only at 20% initial O_2 , with a > 90% decline in headspace CH_4
- 186 concentrations after 72 h. In treatments with \leq 5% initial O₂, CH₄ consumption was generally observed within
- 187 the first 24 h, followed by net CH₄ accumulation. At 0% initial O₂, net CH₄ production was observed
- 188 throughout the incubation.

The strength of methane oxidation activity was expressed as first-order rate constants during the first 8 h of incubation (Fig. 3). At 10^2 ppmv initial CH₄ there were no significant differences in first-order rate constants at O₂ levels from 20% down to 2%, but at 1% O₂ the rate was significantly impaired. At 10^4 ppmv initial CH₄, methane oxidation rates were significantly reduced at lower O₂ levels, though not significantly different between 2% and 1% O₂.

194 **Response of CH₄ Oxidation to Interactions between O₂ and Inorganic N**

When samples with manipulated O₂ and CH₄ concentrations were amended with inorganic N, complex patterns in microbial methane oxidation were observed. For each of the two initial CH₄ concentrations, twoway ANOVA showed significant effects of O₂ concentrations and N amendments, as well as their interaction, on methane oxidation rates.

199 At 10² ppmv CH₄, first-order rate constants in all N-amended samples were lower than in the N-free control

200 (Table 3). The inhibition was strengthened at increasing concentrations of both NH₄⁺ and NO₃⁻. Samples

201 treated with NO₃⁻ consistently showed less inhibition than treatments receiving other N salts, whereas NO₂⁻

was a potent inhibitor as indicated by similar inhibitions with 1 mM NO_2^- and 50 mM NH_4^+ . At 3% O_2 ,

203 inhibition by individual N species and concentrations was slightly stronger than at 20% O₂, but the difference

204 was not always statistically significant.

At 10^4 ppmv CH₄ the order of inhibition by different N species was similar to that at 10^2 ppmv CH₄, with NO₂⁻ as the strongest inhibitor (Table 3). Yet, several NO₃⁻ treatments caused a weak stimulation rather than inhibition as compared to the N-free control. Generally, the N amendments inhibited methane oxidation at 20% O₂, but not at 3% O₂, where low rates were already observed in the N-free control. One exception, though, was the inhibition caused by the treatment with 50 mM NH₄⁺.

210 ¹³C Incorporation into C₁₆ and C₁₈ PLFAs

211 The yields of PLFA varied considerably between samples, and ¹³C incorporation was below the detection limit 212 for several PLFAs, precluding a detailed quantitative analysis. Instead of absolute PLFA concentrations, an 213 index based on peak area was calculated (Fig. 4, a1–a4). Recovery of ¹³C PLFAs was consistently low in 214 incubations with 10^2 ppmv CH₄ (Fig. 4, a1). At 10^4 ppmv CH₄ there was an 8–9 times higher ¹³C recovery in 215 PLFAs at 20% and 3% O_2 than at 1% O_2 (Fig. 4, a2). While NH_4^+ and NO_3^- considerably reduced ¹³C recovery, 216 NO_2^- caused no or only moderate inhibition of ¹³C recovery (Fig. 4, a3 and a4). The total recovery of ¹³C was 217 5–15 times higher with NO_2^- amendment than with the other two N species. 218 Two ¹³C-labeled PLFA clusters, C₁₆ and C₁₈, were defined in accordance with the predominance of these

PLFAs in Type I and Type II MOB, respectively (Bodelier et al., 2009). The C_{16} cluster included peaks identified as 16:0, 16:1 ω 6, 16:1 ω 7, and 16:1 ω 8, whereas the C_{18} cluster included 18:0, 18:1 ω 7, 18:1 ω 9, and probably also small peaks of 18:1 ω 8. Also, 16:1 ω 6 probably co-eluted with 10*Me*16:0, and 16:1 ω 8 with i17:0, but this did not influence the calculated ¹³C incorporation for the cluster.

Due to the low recovery of total ¹³C PLFA (Fig. 4, a1) and low percentage (3–9%) of ¹³C in C₁₆ and C₁₈ clusters at 10^2 ppmv CH₄ (Fig. 4, b1), no detailed interpretation of these results was possible. At 10^4 ppmv CH₄ the recovery of ¹³C in the C₁₆ and C₁₈ clusters together accounted for an average of 52% of ¹³C recovered in PLFAs. A higher percentage of ¹³C was always recovered in the C₁₆ than in the C₁₈ cluster, and the percentage of the C₁₆ cluster was particularly high in treatments with NO₂⁻ amendment (Fig. 4, b3 and b4).

228 **Discussion**

229 Due to the heterogenous nature of surface crusts, microbial activities within this environment are controlled

- 230 by physical and chemical properties of individual microsites rather than overall bulk properties. However,
- 231 detailed analysis of surface crusts is challenged by the often loose and fibrous structure of the material, and
- this was also the case with the straw-containing cattle slurry crust used in this study. Therefore, we chose to

characterize O₂ and inorganic N distributions *in situ* by microsensors, while regulation of microbial activities were investigated by controlled laboratory incubations. For logistic reasons, the *in situ* gas measurements and laboratory incubations were performed using different surface crusts. However, previous studies have shown that crusts of different origin are qualitatively similar with respect to, e.g., depth of O₂ penetration and the presence of MOB (Duan et al., 2014; Hansen et al., 2009; Nielsen et al., 2010; Nielsen et al., 2013), and results from the two parts are therefore analyzed and discussed together.

239 Effects of O₂ Limitation and N Amendments

240 Methane oxidation kinetics are complex as the reaction involves two substrates, CH₄ and O₂ (Cai and Yan, 241 1999). We were not able to monitor O_2 concentrations during incubation, but instead calculated O_2 242 consumption by MOB based on the amounts of CH₄ consumed, the stoichiometry of methane oxidation 243 (Urmann et al., 2007), and the diffusion coefficients of CH_4 and O_2 in water (Broecker and Peng, 1974) 244 (Supplemental Table S1). These calculations suggested that there was no diffusional limitation of O2 for 245 methane oxidation, and that the amounts of O_2 used for methane oxidation were < 10% of the available O_2 246 even at 1% initial O₂. Thus, depletion of O₂ during incubation must have been mainly due to aerobic 247 processes other than methane oxidation, i.e., any O_2 limitation for MOB activity reflected competition for O_2 248 against other aerobes. Headspace CH₄ concentrations decreased exponentially during the first 8 h, indicating 249 that the rates of CH₄ uptake depended mainly on CH₄ availability. Therefore, the reaction was approximated 250 by first-order reaction kinetics, which have also been used previously in studies of microbial methane 251 oxidation (De Visscher et al., 1999; King and Schnell, 1994; King and Schnell, 1998; Petersen and Ambus, 252 2006). The apparent first-order kinetics suggest that the rate of CH₄ uptake, and thus demand for O₂, was 253 proportional to the CH₄ concentration, which explains our observation that methane oxidation became more 254 affected by O_2 limitation at 10⁴ ppmv than at 10² ppmv CH₄ (Fig. 3).

The neutral to alkaline pH of slurry (Nielsen et al., 2010; Petersen and Ambus, 2006) suggests the presence
 of free ammonia (NH₃), which is a competitive inhibitor for methane oxidation (Carlsen et al., 1991; Gulledge

and Schimel, 1998). In both the present (Table 3) and a previous study (Duan et al., 2013), inhibition by ammonia was less at 10^4 compared to 10^2 ppmv CH₄, suggesting that competitive inhibition is important for effects of ammonia. The observations that NO₂⁻ was a more potent inhibitor of methane oxidation than NO₃⁻ was also consistent with the report by Duan et al. (2013), where the concentration of NO₃⁻ resulting in 50% inhibition was 100-fold higher than that of NO₂⁻. It is likely that these N species both inhibit methane oxidation *via* nitrite toxicity (Stein and Klotz, 2011).

We further tested interactions of N inhibition with O_2 availability by comparing relative activities. If there were an interaction between O_2 and inorganic N, a given N amendment would result in different degree of inhibition at 20% and 3% O_2 concentrations. At 10^2 ppmv initial CH₄, 10 mM, but not 50 mM, NH₄⁺ or NO₃⁻ amendments caused a stronger inhibition at 3% than at 20% O_2 (Table 3), confirming an interaction between N inhibition and O_2 limitation at low N concentrations. At 10^4 ppmv CH₄, the fact that N amendments generally inhibited methane oxidation at 20% O_2 but not further at 3% O_2 suggested that high-concentration methane oxidation is more sensitive to O_2 limitation rather than to N inhibition.

Generally, as an essential substrate for aerobic methane oxidation, O₂ has a direct and immediate effect on aerobic methanotrophic activity. On the other hand, the mechanism of N inhibition on methane oxidation is much more complex and may include immediate toxicity to cell growth and enzyme synthesis, as well as delayed influence on microbial community composition (Bodelier and Laanbroek, 2004). The mechanisms behind interactions between controlling factors in surface crusts could not be explained with the data presented here, and more research is needed to further elucidate this matter.

276 13C PLFA Signatures for MOB

Type I and Type II MOB produce unique membrane PLFAs, 16:1ω8 and 18:1ω8, respectively (Bodelier et al.,
2009; Hanson and Hanson, 1996). These signature PLFAs are not always present, or present only in low
amounts. However, there is also a general predominance of C₁₆ and C₁₈ PLFAs among Type I and Type II
MOB, respectively (Bodelier et al., 2009), and this has been used to evaluate sources of methane oxidation

by stable isotope probing (Qiu et al., 2008). In the present study, both types of MOB were active, with Type I
MOB dominating the methanotrophic activity especially where CH₄ availability was high (Fig. 4, b1 and b2).
Molecular analyses of microflora in other crust materials likewise suggested that Type I MOB dominated the
methanotrophic community in terms of both diversity and abundance (Duan et al., 2014).

285 Interestingly, the incorporation of 13 C into PLFAs was high in surface crusts incubated with NO₂⁻ as compared 286 to those with other N species (Fig. 4, a3 and a4), especially considering that crusts incubated with NO_3^- had 287 over two-fold higher ¹³CH₄ uptake than NO₂⁻ treatments (data not shown). Roslev et al. (1997) reported that 288 NH₄⁺ decreased C conversion efficiency and increased respiration of C assimilated by MOB, which is 289 consistent with the low 13 C recovery from NH₄⁺ treatments in this study. However, the mechanism by which 290 NO_3^- and NO_2^- could interfere with C assimilation for MOB remains unclear. Alternative pathways for CH_4 291 uptake may have contributed to the particularly high ¹³C assimilation in NO₂⁻ amended crusts. The 292 microorganism Candidatus Methylomirabilis oxyfera is able to couple anaerobic methane oxidation with 293 nitrite reduction (Ettwig et al., 2010), and may be widespread in natural environments (Ettwig et al., 2009; 294 Wang et al., 2012; Zhu et al., 2012). We recovered $10MeC_{16:0}$ in the present study, which is characteristic of 295 the lipid profile of *M. oxyfera* (Kool et al., 2012). Still, more concrete evidence, such as the recovery of 296 specific gene markers of *M. oxyfera* (Luesken et al., 2011), is needed to confirm the presence of *M. oxyfera* 297 in surface crusts. More recently, gammaproteobacterial (Type I) methanotrophs Methylomonas denitrificans 298 and Methylomicrobium album have been reported to be able to oxidize methane under hypoxia using 299 oxidized nitrogen as electron acceptor (Kits et al., 2015a; Kits et al., 2015b). The involvement of such a 300 process would be consistent with the high proportion of C_{16} PLFAs recovered from NO₃⁻ and NO₂⁻ 301 treatments, and the genera Methylomonas and Methylomicrobium are widespread (Knief, 2015) and were 302 indeed present in surface crusts (Duan et al., 2014). However, there was no direct evidence in the present 303 study to evaluate the presence of these specific strains.

304 In-situ O₂ and N₂O Distribution and Implications for CH₄ Oxidation

305 Oxygen distribution in surface crusts vary over short distances, as shown in this and other studies (Hansen et 306 al., 2009; Nielsen et al., 2010). Despite this variation, the depth of O_2 penetration is generally shallow and 307 was never more than 25% of the thickness of the crust (Nielsen et al., 2010). The restriction of significant O₂ 308 penetration is likely due to surface crusts being a floating organic structure on top of liquid slurry, where the 309 bottom of the crust is always saturated, while aerobic processes actively consume O₂ in upper layers. Nielsen 310 et al. (2010) proposed that trapping of gases formed in the slurry could elevate the crust above the liquid 311 slurry phase and, as a result, improve O_2 penetration. Measurements of O_2 at a fixed depth over 48 h did 312 indicate gas pockets that lifted the crust, but they were intermittently deflated (Supplemental Fig. S3). 313 Structural voids in the crusts, such as pores and crevices, could also provide access for O_2 to deeper parts of 314 the crusts, and weather conditions such as precipitation and drought will influence O₂ permeability by 315 altering the wetness of the crust (Hansen et al., 2009).

316 The present study observed N₂O levels as high as 100 μ mol L⁻¹, which was far above the N₂O concentrations 317 commonly found in other environments. For example, Baral et al. (2014) and Zhou et al. (2016) reported N₂O concentrations of < 5 μ mol L⁻¹ near the soil surface. Careful examination of potential interferences to the 318 319 microsensor is therefore warranted. Surface crusts may contain up to 300 μ mol L⁻¹ of H₂S (Nielsen et al., 320 2010), and H_2S is known to affect the signal of N_2O microsensors. However, the microsensor used here is 321 equipped with an alkaline oxygen guard which converts incoming H₂S to ionic forms, and this offers some 322 protection to the cathode from H₂S (Andersen et al., 2001). With the same type of microsensor used in this 323 study, Andersen et al. (2001) found a reduction in the sensitivity towards N₂O with increasing concentrations 324 of H₂S up to 350 µmol L⁻¹, indicating that any H₂S interference would result in lower, not higher, N₂O 325 readings. Therefore, the high N₂O concentrations observed were not likely to be a result of H₂S interference. 326 In the above mentioned studies where soil N₂O concentrations were $<5 \mu$ mol L⁻¹, the corresponding N₂O emissions were 3.6 and 25 µmol m⁻² h⁻¹ (Baral et al., 2014; Zhou et al., 2016). For livestock slurry with 327 328 surface crusts, N₂O emissions as high as 393–1,429 µmol m⁻² h⁻¹ have been reported (Hansen et al., 2009;

Sommer et al., 2000). Considering the relationship between N₂O concentration and emission, N₂O concentrations up to 100 μ mol L⁻¹ in surface crusts seem plausible.

331 Maximum N₂O accumulation occurred near the oxic-anoxic interface in most cases, and therefore both 332 nitrification and denitrification were potential sources of N₂O (Braker and Conrad, 2011). Law et al. (2012) 333 found a correlation between N₂O production and ammonia oxidation rate, possibly as a result of nitrifier 334 denitrification to conserve O_2 or prevent NO_2^- toxicity (Lawton et al., 2013), and similar mechanisms could 335 lead to N₂O accumulation via ammonia oxidation in surface crusts. At or below oxic-anoxic interfaces, 336 incomplete heterotrophic denitrification was likely the main source of N₂O due to intolerance of N₂O 337 reductase towards trace O₂ (Thomson et al., 2012). Nitrous oxide could also be released as a terminal 338 product from methane oxidation coupled with partial denitrification by *M. denitrificans* (Kits et al., 2015b) 339 and *M. album* (Kits et al., 2015a; Nyerges et al., 2010), which can be enabled by hypoxia developed at the 340 oxic-anoxic interfaces. Denitrification could also act as a sink for NO_3^- or, particularly, NO_2^- which is a strong 341 inhibitor of aerobic methane oxidation. The ubiquitous presence of N₂O in the surface crusts indicated active 342 transformations of N species which could interfere with methane oxidation. Yet, as seen from the incubation 343 experiments, the effect of N species on MOB may be either inhibitory or stimulatory depending on other 344 factors. Moreover, Type I MOB utilizing NO_2^- and/or NO_3^- for methane oxidation are presumably more 345 resilient to N inhibition than others (Zhu et al., 2016). In support of this, M. denitrificans and M. album have 346 been shown to tolerate and grow under 10 mM NO_3^- (Kits et al., 2015b) and 2.5 mM NO_2^- (Nyerges et al., 347 2010), respectively. Also, Hu and Lu (2015) found that, while NH_4^+ and NO_3^- both stimulated Type I MOB as 348 determined from *pmoA* gene copy numbers, Type II MOB were inhibited by NH₄⁺ as concentrations 349 increased.

Clearly, various physio-chemical and biological properties are involved in regulating methane oxidation in
 surface crust. Firstly, the heterogeneous structure of the crust adds complexity to the distribution of gases.
 Secondly, there are complex interactions between CH₄ and O₂ levels, and inorganic N species and
 concentration, with respect to methanotrophic activity. In parts of the crust where CH₄ availability is

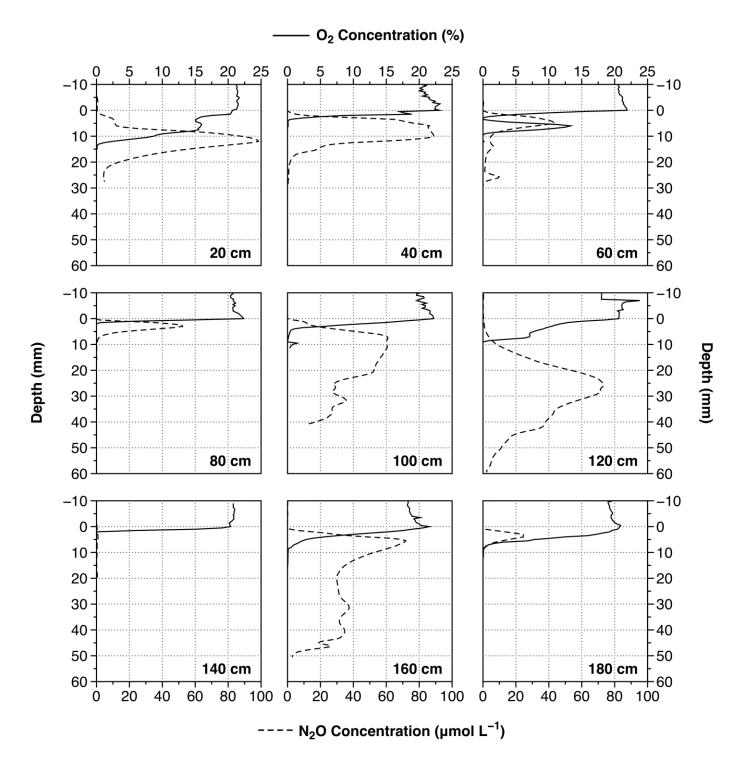
- relatively low, moderate O₂ limitation probably has little impact on aerobic methane oxidation activity,
- 355 whereas N inhibition could be significant depending on N species and concentration. In contrast, in parts of
- 356 the crust with high CH₄ availability, O₂ limitation is likely the main control of aerobic methane oxidation, and
- 357 inhibition due to inorganic N is only important where O_2 is not limiting.

358 Conclusions

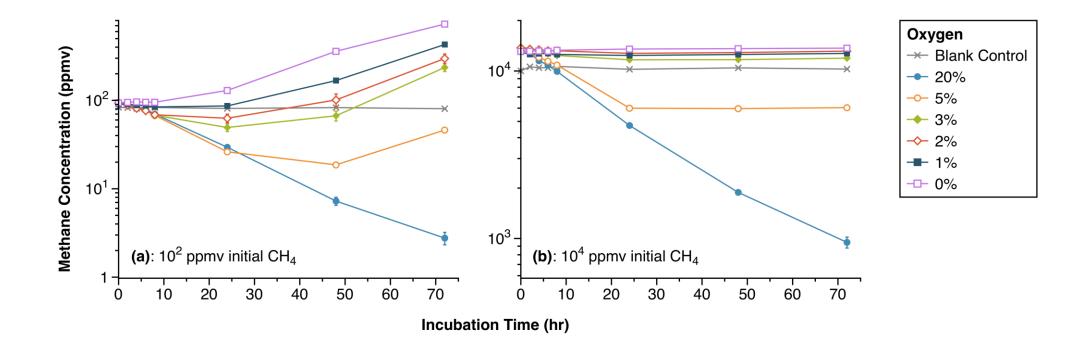
- Microsensor measurements of *in situ* O₂ and N₂O profiles revealed shallow penetration of O₂ into slurry
 surface crusts and active N transformations around oxic-anoxic interfaces. Laboratory incubations suggested
- 361 that O₂ availability was more important to high-concentration than low-concentration methane oxidation,
- 362 and there were complex interactions between inorganic N and O₂ limitation. The incorporation of ¹³C from
- 363 CH₄ into membrane PLFAs indicated that both Type I and Type II MOB were actively involved in methane
- oxidation, but with Type I MOB dominating the activity at high CH₄ concentrations. These observations
- 365 together imply that manipulation of storage conditions to increase headspace CH₄ concentration, as
- proposed by Petersen and Miller (2006), could stimulate methane oxidation by Type I MOB in the upper
- 367 parts of the crust where O₂ is non-limiting and mineral N availability low.

368 Acknowledgements

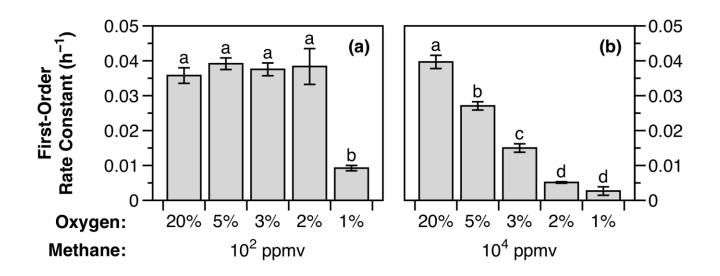
- 369 This study was partly funded by the Danish Agency for Science, Technology and Innovation. We thank Bodil
- 370 Stensgaard for technical assistance, and Kristian Kristensen for statistical support.


References

- Acha, V., J. Alba and F. Thalasso. 2002. The absolute requirement for carbon dioxide for aerobic methane oxidation by a methanotrophic-heterotrophic soil community of bacteria. Biotechnology Letters 24: 675-679. doi:10.1023/a:1015265530501.
- Amaral, J.A., C. Archambault, S.R. Richards and R. Knowles. 1995. Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiology Ecology 18: 289-298.
- Amaral, J.A. and R. Knowles. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiology Letters 126: 215-220. doi:10.1111/j.1574-6968.1995.tb07421.x.
- Andersen, K., T. Kjær and N.P. Revsbech. 2001. An oxygen insensitive microsensor for nitrous oxide. Sensors and Actuators B: Chemical 81: 42-48. doi:http://dx.doi.org/10.1016/S0925-4005(01)00924-8.
- Baral, K.R., A.G. Thomsen, J.E. Olesen and S.O. Petersen. 2014. Controls of nitrous oxide emission after simulated cattle urine deposition. Agriculture, Ecosystems & Environment 188: 103-110. doi:http://dx.doi.org/10.1016/j.agee.2014.02.029.
- Bodelier, P.L.E. 2011. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability 3: 379-388. doi:http://dx.doi.org/10.1016/j.cosust.2011.06.002.
- Bodelier, P.L.E., M.-J. Bar Gillisen, K. Hordijk, J.S. Sinninghe Damste, W.I.C. Rijpstra, J.A.J. Geenevasen, et al.
 2009. A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria.
 ISME J 3: 606-617. doi:10.1038/ismej.2009.6.
- Bodelier, P.L.E. and H.J. Laanbroek. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47: 265-277. doi:10.1016/s0168-6496(03)00304-0.
- Bollmann, A. and R. Conrad. 1998. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology 4: 387-396. doi:10.1046/j.1365-2486.1998.00161.x.
- Bosse, U., P. Frenzel and R. Conrad. 1993. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. Fems Microbiology Ecology 13: 123-134. doi:10.1016/0168-6496(93)90030-b.
- Braker, G. and R. Conrad. 2011. Chapter 2: Diversity, Structure, and Size of N₂O-Producing Microbial Communities in Soils – What Matters for Their Functioning? In: S. S. Allen I. Laskin and M. G. Geoffrey, editors, Advances in Applied Microbiology. Academic Press. p. 33-70.
- Broecker, W.S. and T.H. Peng. 1974. Gas exchange rates between air and sea. Tellus 26: 21-35. doi:10.1111/j.2153-3490.1974.tb01948.x.
- Cai, Z.C. and X.Y. Yan. 1999. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biology & Biochemistry 31: 715-725.
- Carlsen, H.N., L. Joergensen and H. Degn. 1991. Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Applied Microbiology and Biotechnology 35: 124-127. doi:10.1007/bf00180649.
- Damgaard, L.R. and N.P. Revsbech. 1997. A Microscale Biosensor for Methane Containing Methanotrophic Bacteria and an Internal Oxygen Reservoir. Analytical Chemistry 69: 2262-2267. doi:10.1021/ac9611576.
- De Beer, D., A. Schramm, C.M. Santegoeds and M. Kuhl. 1997. A nitrite microsensor for profiling environmental biofilms. Applied and Environmental Microbiology 63: 973-977.
- De Beer, D., J.-P.R.A. Sweerts and J.C. van den Heuvel. 1991. Microelectrode measurement of ammonium profiles in freshwater sediments. FEMS Microbiology Letters 86: 1-6. doi:10.1111/j.1574-6968.1991.tb04789.x.


- De Visscher, A., D. Thomas, P. Boeckx and O. Van Cleemput. 1999. Methane Oxidation in Simulated Landfill Cover Soil Environments. Environmental Science & Technology 33: 1854-1859. doi:10.1021/es9900961.
- Duan, Y.-F., W. Abu Al-Soud, A. Brejnrod , S.J. Sørensen, L. Elsgaard, S.O. Petersen, et al. 2014. Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts. Journal of Applied Microbiology 117: 1066–1078. doi:10.1111/jam.12584.
- Duan, Y.-F., L. Elsgaard and S.O. Petersen. 2013. Inhibition of methane oxidation in a slurry surface crust by inorganic N: An incubation study. Journal of Environmental Quality 42: 507-515. doi:10.2134/jeq2012.0230.
- Dunfield, P. and R. Knowles. 1995. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Applied and Environmental Microbiology 61: 3129-3135.
- Ettwig, K.F., T.v. Alen, K.T.v.d. Pas-Schoonen, M.S.M. Jetten and M. Strous. 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology 75: 3656-3662. doi:10.1128/aem.00067-09.
- Ettwig, K.F., M.K. Butler, D. Le Paslier, E. Pelletier, S. Mangenot, M.M.M. Kuypers, et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548. doi:10.1038/nature08883.
- Francesco, N.T., S. Mirella, R. Simone, F. Alessandro, F. Nuala and S. Pete. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters 8: 015009.
- Graham, D.W., J.A. Chaudhary, R.S. Hanson and R.G. Arnold. 1993. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microbial Ecology 25: 1-17. doi:10.1007/bf00182126.
- Gulledge, J. and J.P. Schimel. 1998. Low-Concentration Kinetics of Atmospheric CH4 Oxidation in Soil and Mechanism of NH4+ Inhibition. Applied and Environmental Microbiology 64: 4291-4298.
- Hansen, R.R., D.A. Nielsen, A. Schramm, L.P. Nielsen, N.P. Revsbech and M.N. Hansen. 2009. Greenhouse Gas Microbiology in Wet and Dry Straw Crust Covering Pig Slurry. Journal of Environmental Quality 38: 1311-1319. doi:10.2134/jeq2008.0336.
- Hanson, R.S. and T.E. Hanson. 1996. Methanotrophic bacteria. Microbiological Reviews 60: 439-471.
- Hu, A. and Y. Lu. 2015. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biology and Biochemistry 85: 31-38. doi:http://dx.doi.org/10.1016/j.soilbio.2015.02.033.
- King, G.M. and S. Schnell. 1994. Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at Low Methane Concentrations. Applied and Environmental Microbiology 60: 3508-3513.
- King, G.M. and S. Schnell. 1998. Effects of Ammonium and Non-Ammonium Salt Additions on Methane Oxidation by Methylosinus trichosporium OB3b and Maine Forest Soils. Applied and Environmental Microbiology 64: 253-257.
- Kits, K.D., D.J. Campbell, A.R. Rosana and L.Y. Stein. 2015a. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Frontiers in Microbiology 6: 1072. doi:10.3389/fmicb.2015.01072.
- Kits, K.D., M.G. Klotz and L.Y. Stein. 2015b. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environmental Microbiology 17: 3219-3232. doi:10.1111/1462-2920.12772.
- Knief, C. 2015. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Frontiers in Microbiology 6. doi:10.3389/fmicb.2015.01346.

- Kool, D.M., B. Zhu, W.I.C. Rijpstra, M.S.M. Jetten, K.F. Ettwig and J.S. Sinninghe Damsté. 2012. Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer "Candidatus Methylomirabilis oxyfera". Applied and Environmental Microbiology 78: 8650-8656. doi:10.1128/aem.02099-12.
- Larsen, L.H., N.P. Revsbech and S.J. Binnerup. 1996. A microsensor for nitrate based on immobilized denitrifying bacteria. Applied and Environmental Microbiology 62: 1248-1251.
- Law, Y., B.-J. Ni, P. Lant and Z. Yuan. 2012. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Research 46: 3409-3419. doi:10.1016/j.watres.2012.03.043.
- Lawton, T.J., K.E. Bowen, L.A. Sayavedra-Soto, D.J. Arp and A.C. Rosenzweig. 2013. Characterization of a Nitrite Reductase Involved in Nitrifier Denitrification. Journal of Biological Chemistry 288: 25575-25583. doi:10.1074/jbc.M113.484543.
- Liu, L. and T.L. Greaver. 2009. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters 12: 1103-1117. doi:10.1111/j.1461-0248.2009.01351.x.
- Luesken, F.A., B. Zhu, T.A. van Alen, M.K. Butler, M. Rodriguez Diaz, B. Song, et al. 2011. pmoA primers for detection of anaerobic methanotrophs. Applied and Environmental Microbiology. doi:10.1128/aem.02960-10.
- Melse, R.W. and A.W. van der Werf. 2005. Biofiltration for Mitigation of Methane Emission from Animal Husbandry. Environmental Science & Technology 39: 5460-5468. doi:10.1021/es048048q.
- Nielsen, D.A., L.P. Nielsen, A. Schramm and N.P. Revsbech. 2010. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts. J. Environ. Qual. 39: 1813-1820. doi:10.2134/jeq2009.0382.
- Nielsen, D.A., A. Schramm, L.P. Nielsen and N.P. Revsbech. 2013. Seasonal Methane Oxidation Potential in Manure Crusts. Applied and Environmental Microbiology 79: 407-410. doi:10.1128/aem.02278-12.
- Nyerges, G., S.-K. Han and L.Y. Stein. 2010. Effects of Ammonium and Nitrite on Growth and Competitive Fitness of Cultivated Methanotrophic Bacteria. Applied and Environmental Microbiology 76: 5648-5651. doi:10.1128/aem.00747-10.
- Petersen, S. and P. Ambus. 2006. Methane Oxidation in Pig and Cattle Slurry Storages, and Effects of Surface Crust Moisture and Methane Availability. Nutrient Cycling in Agroecosystems 74: 1-11. doi:10.1007/s10705-005-3822-6.
- Petersen, S.O., B. Amon and A. Gattinger. 2005. Methane Oxidation in Slurry Storage Surface Crusts. J. Environ. Qual. 34: 455-461. doi:10.2134/jeq2005.0455.
- Petersen, S.O., P.S. Frohne and A.C. Kennedy. 2002. Dynamics of a Soil Microbial Community under Spring Wheat. Soil Science Society of America Journal 66: 826-833. doi:10.2136/sssaj2002.8260.
- Petersen, S.O. and D.N. Miller. 2006. Greenhouse gas mitigation by covers on livestock slurry tanks and lagoons? Journal of the Science of Food and Agriculture 86: 1407-1411. doi:10.1002/jsfa.2543.
- Petersen, S.O., M. Skov, P. Drøscher and A.P.S. Adamsen. 2009. Pilot Scale Facility To Determine Gaseous Emissions From Livestock Slurry During Storage. J. Environ. Qual. 38: 1560-1568. doi:10.2134/jeq2008.0376.
- Qiu, Q., M. Noll, W.-R. Abraham, Y. Lu and R. Conrad. 2008. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2: 602-614.


- Revsbech, N.P. 2005. Analysis of Microbial Communities with Electrochemical Microsensors and Microscale Biosensors. In: R. L. Jared, editor Methods in Enzymology. Academic Press. p. 147-166.
- Roslev, P., N. Iversen and K. Henriksen. 1997. Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Applied and Environmental Microbiology 63: 874-880.
- Sommer, S., S. Petersen, P. Sørensen, H. Poulsen and H. Møller. 2007. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutrient Cycling in Agroecosystems 78: 27-36. doi:10.1007/s10705-006-9072-4.
- Sommer, S.G., S.O. Petersen and H.T. Søgaard. 2000. Greenhouse Gas Emission from Stored Livestock Slurry. Journal of Environmental Quality 29: 744-751. doi:10.2134/jeq2000.00472425002900030009x.
- Stein, L.Y. and M.G. Klotz. 2011. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochemical Society Transactions 39: 1826-1831. doi:10.1042/bst20110712.
- Thomson, A.J., G. Giannopoulos, J. Pretty, E.M. Baggs and D.J. Richardson. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of The Royal Society B 367: 1157-1168. doi:10.1098/rstb.2011.0415.
- Urmann, K., E.S. Norina, M.H. Schroth and J. Zeyer. 2007. Methanotrophic activity in a diffusive methane/oxygen counter-gradient in an unsaturated porous medium. Journal of Contaminant Hydrology 94: 126-138. doi:10.1016/j.jconhyd.2007.05.006.
- Wang, Y., G. Zhu, H.R. Harhangi, B. Zhu, M.S.M. Jetten, C. Yin, et al. 2012. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiology Letters 336: 79-88. doi:10.1111/j.1574-6968.2012.02654.x.
- Wang, Z.-P. and P. Ineson. 2003. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biology and Biochemistry 35: 427-433. doi:10.1016/s0038-0717(02)00294-8.
- Welte, C.U., O. Rasigraf, A. Vaksmaa, W. Versantvoort, A. Arshad, H.J.M. Op den Camp, et al. 2016. Nitrateand nitrite-dependent anaerobic oxidation of methane. Environmental Microbiology Reports 8: 941-955. doi:10.1111/1758-2229.12487.
- Whittenbury, R., K.C. Phillips and J.F. Wilkinson. 1970. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. Journal of General Microbiology 61: 205-218. doi:10.1099/00221287-61-2-205.
- Zhou, Z., X. Xu, Z. Bi, L. Li, B. Li and Z. Xiong. 2016. Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system. Environmental Science and Pollution Research 23: 7949-7961. doi:10.1007/s11356-015-5929-x.
- Zhu, B., G. van Dijk, C. Fritz, A.J.P. Smolders, A. Pol, M.S.M. Jetten, et al. 2012. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria. Applied and Environmental Microbiology 78: 8657-8665. doi:10.1128/aem.02102-12.
- Zhu, J., Q. Wang, M. Yuan, G.-Y.A. Tan, F. Sun, C. Wang, et al. 2016. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. Water Research 90: 203-215. doi:http://dx.doi.org/10.1016/j.watres.2015.12.020.

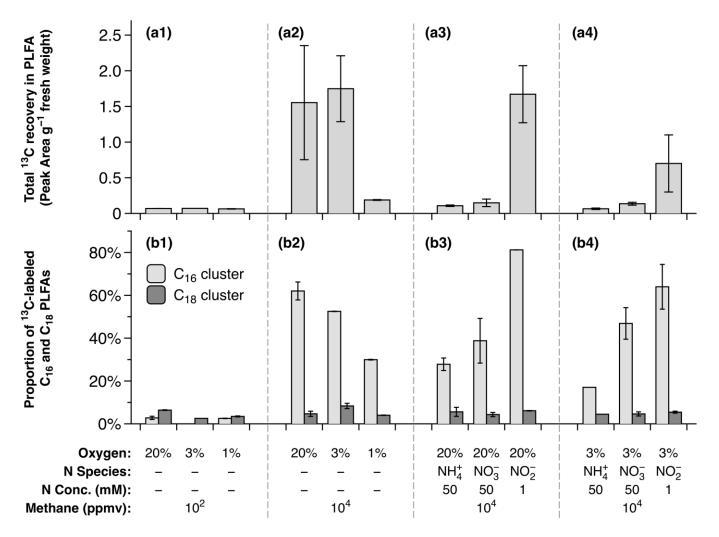

Figure 1: Profiles of oxygen (O₂, solid line, top X-axis) and nitrous oxide (N₂O, dashed line, bottom X-axis) profiles in a surface crust measured using microsensors at 20 cm intervals along the 200-cm diameter of a slurry storage tank. Distances of the sampling points from the edge of the tank are indicated on the bottom-right corner of each panel. Oxygen was traced to a depth of 30 mm in all cases; N₂O was traced to a depth of 30 mm at 20–80 cm and to a depth of 60 mm at 100–180 cm.

Figure 2: Dynamics of CH₄ concentrations during a 72-h incubation of slurry surface crusts with initial O₂ concentrations of 20, 5, 3, 2, 1, and 0%, and with initial CH₄ concentrations of 10² ppmv (a) and 10⁴ ppmv (b). Blank control contained 20% initial headspace O₂ and no crust material. Each point represents the mean of triplicate assays, and error bars show standard error.

Figure 3: First-order rate constants of potential CH₄ oxidation under different O₂ and CH₄ concentrations during the first 8 h of incubation. The bars show the mean of triplicate assays, and the error bars show standard error. For each CH₄ concentration, bars denoted with the same letter on top are not significantly different at α = 0.05.

Figure 4: Total recovery of ¹³C in PLFA (expressed as peak area per gram fresh crust) derived from incubation of surface crusts with ¹³CH₄ (a1–a4), and proportions of ¹³C incorporation into PLFA belonging to C_{16} or C_{18} clusters (b1– b4) at different combinations of O_2 , CH₄, and inorganic N availability. Data shown are means and standard errors of two replicates.

Table 1: Selected chemical properties of various livestock slurries and surface crusts from previous studies.

		Slurry			
Sample	NH₄⁺ µmol kg⁻¹ WW*	NO₃ ⁻ µmol kg ⁻¹ WW	NO₂⁻ µmol kg⁻¹ WW	рН	NH₄⁺ mM
Cattle slurry surface crusts developed for 3 years (Duan et al., 2013)	116.3	370.9	n.a.#	n.a.	n.a.
Various cattle and swine slurries and surface crusts (Nielsen et al., 2010)	n.a.	7– 3,602	2–98,000	6.96–7.7	84–205
Surface crusts of various dryness (Hansen et al., 2009)	n.a.	290–35,000	80–1,990	7.7	175
Various cattle and swine slurries (Sommer et al., 2007)	n.a.	n.a.	n.a.	n.a.	79–257
Surface crusts (Petersen et al., 2006)	1,432–54,923	91–16,378	3–50	7.13-8.89	1.7–69
Digested cattle slurry (Clemens et al., 2006)	n.a.	n.a.	n.a.	7.4–7.8	85–127

* WW, wet weight. [#] n.a., value not reported.

Table 2: Combinations of CH ₄ , O ₂ , and inorganic N amendments used in this study. The values indicate the
number of replicates prepared. Treatments marked with asterisks (*) were used for analysis of ¹³ C-labelled
phosphate lipid fatty acids (PLFAs).

N Species and		CH4:	CH ₄ : 10 ² ppmv				10 ⁴ ppmv							
Concen	trations	O ₂ :	0%	1%	2%	3%	5%	20%	0%	1%	2%	3%	5%	20%
None			3	3*	3	3*	3	3*	3	3*	3	3*	3	3*
${\sf NH_4}^+$	10 mM					2		2				2		2
	50 mM					2		2				2*		2*
NO₃ [−]	10 mM					2		2				2		2
	50 mM					2		2				2*		2*
NO_2^-	1 mM					2		2				2*		2*

Table 3: First-order rate constants (h ⁻¹) of CH ₄ oxidation in slurry surface crust samples under different O ₂
concentrations and N amendments. Numbers in parentheses indicate relative activity (the ratio of the
treatment activity as compared to the activity of the N-free control). Under each CH ₄ concentration, values
followed by the same letter are not significantly different at α = 0.05.

		First-Order Rate Constants (h ⁻¹)							
N Species and Concentrations		10 ² pp	mv CH ₄	10 ⁴ ppmv CH ₄					
concen		20% O ₂	20% O ₂ 3% O ₂		3% O ₂				
None		0.036 (1.00) a	0.037 (1.00) a	0.040 (1.00) b	0.016 (1.00) e				
${\sf NH_4}^+$	10 mM	0.015 (0.42) d	0.010 (0.27) ef	0.031 (0.78) c	0.017 (1.06) e				
	50 mM	0.007 (0.19) fg	0.005 (0.14) g	0.013 (0.33) e	0.005 (0.31) f				
NO_3^-	10 mM	0.029 (0.81) b	0.022 (0.59) c	0.054 (1.35) a	0.022 (1.38) d				
	50 mM	0.017 (0.47) d	0.013 (0.35) de	0.028 (0.70) c	0.021 (1.31) d				
NO_2^-	1 mM	0.008 (0.22) fg	0.008 (0.22) fg	0.016 (0.40) e	0.017 (1.06) e				

Methanotrophic activity in slurry surface crusts as influenced by CH₄, O₂, and inorganic N

Yun-Feng Duan¹*, Sabine Reinsch²[#], Per Ambus²[§], Lars Elsgaard¹, and Søren O. Petersen¹

¹ Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark

² Department of Chemical and Biochemical Engineering, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark

* Corresponding Author: Yun-Feng Duan, Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark; E-mail: Kevin.YF.Duan@gmail.com.

[#] Present address: Centre for Ecology and Hydrology, Deiniol Rd, Bangor Gwynedd, LL57 2 UW, UK

[§] Present address: Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark

(a). The 200-cm long aluminum bar with distance marks.

(b). The aluminum bar installed on the inner rim of the slurry tank.

(c). The motorized micromanipulator mounted on the aluminum bar.

(d). The microsensor fixed to the micromanipulator.

Figure S1: Custom-made mounting system for *in situ* measurement of O₂ and N₂O profiles using microsensors.

A 200-cm long aluminum bar with mm-scale distance marks (a) was installed on the inner rim of the storage tank, approximately 40 cm above the surface crust (b). A computer-controlled motorized micromanipulator (Unisense, Aarhus, Denmark) capable of vertical movement was mounted on a custom-made rack, which could be moved manually along the length of the aluminum bar (c). The microsensor was fixed to the micromanipulator using a rubber-lined clamp (d). When installed at the initial position for measurement, the tip of the microsensor was approximately 1 cm above the surface of the crust. During measurements, a cover was placed loosely over the storage tank to avoid heating of the surface crust by direct insolation.

When measurement at one sampling point was completed, the microsensor was retreated to initial position and temporarily detached from the micromanipulator to protect the tip from breaking during movement, and reinstalled after the micromanipulator had been moved to the next sampling point.

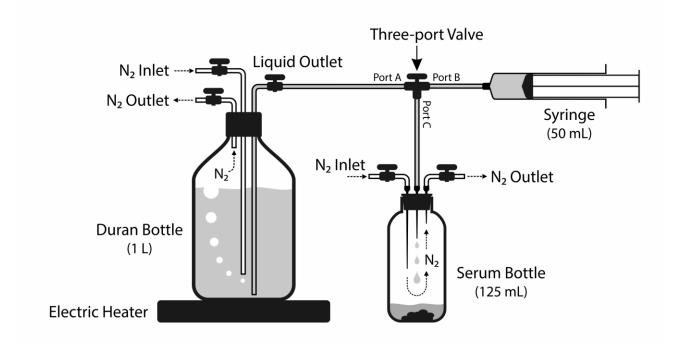
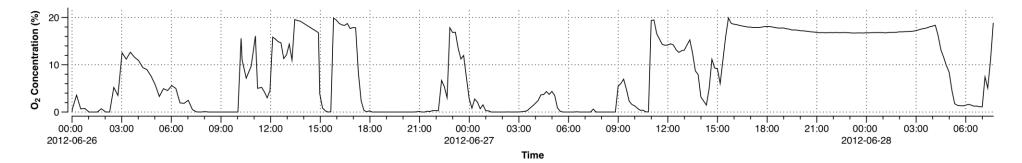



Figure S2: Diagram of the setup to prepare and distribute anoxic incubation medium.

A Duran bottle was modified to have three plastic tubes inserted through the cap: one as N_2 inlet, one as N_2 outlet, and the third as liquid outlet. The Duran bottle was filled with BS medium to ca. 70% of its volume and placed on an electric heater with the cap tightly secured. The BS medium was heated to the boiling point while bubbled with pure N_2 for at least 30 min, and then cooled to room temperature still under N_2 bubbling. Then, the N_2 outlet was closed and the liquid outlet valve was opened, and the entire tubing was flushed and filled with anoxic BS medium by the build-up of gas pressure inside the Duran bottle. When distributing BS medium to the serum bottle, a needle connected to pure N_2 flow was first inserted into the serum bottle through the rubber stopper and then, a second needle was inserted as N_2 outlet. The serum bottle was flushed with N_2 for 10 sec, and then a third needle connected to the three-port valve was inserted. Ports A and B of the three-port valve were opened while C was closed, and the syringe was filled with 20 mL incubation medium. Then, ports B and C were opened and A was closed and the incubation medium was injected from the syringe into the serum bottle while the bottle was being flushed by pure N_2 .

Figure S3: Dynamics of O₂ concentration at a fixed depth in a surface crust over 48 hours. The storage tank was covered to eliminate wind effect but was passively ventilated. The microsensor was initially fixed in a position where the tip just touched the surface of the crust. Oxygen concentrations were measured every 10–15 min as described in the manuscript. The peaks in O₂ profile showed that the microsensor was alternately exposed to atmospheric O₂ and more anaerobic conditions. This indicated that the surface of the crust periodically rose up and moved down, likely due to inflation and deflation of gas pockets underneath the crust.

Initial Sta	ate (time 0)	After 8 h				
Headspace O ₂ (%)	Dissolved O ₂ (μM)	CH₄ Consumed (µM)	O₂ Consumed (µM)	O ₂ Remaining (μM)		
20	256.0	4.92	9.84	246.2		
3	38.4	1.95	3.90	34.5		
1	12.8	0.57	1.14	11.7		

Table S1: Oxygen Consumption during CH₄ oxidation at 10,000 ppmv initial CH₄.

• Stoichiometry of CH₄ oxidation is:

 $\mathrm{CH}_4 + (2 - x)\mathrm{O}_2 \longrightarrow (1 - x)\mathrm{CO}_2 + x\mathrm{CH}_2\mathrm{O} + (2 - x)\mathrm{H}_2\mathrm{O}$

where x is the fraction of carbon that is assimilated into biomass (CH_2O) (Urmann et al., 2007). Therefore, CH_4 to O_2 ratio in CH_4 oxidation theoretically ranges between 1:1 (100% C assimilation) and 1:2 (no C assimilation). In this calculation, we assumed maximum O_2 consumption, i.e. a CH_4 to O_2 ratio of 1:2.

- Henry's Law constant (K) for O_2 and CH_4 are 1.28 and 1.34 mmol L^{-1} atm⁻¹, respectively.
- Dissolved O₂ was calculated as: $K \times$ [Headspace O₂].
- Diffusivities of dissolved O_2 and CH_4 in water at 20°C are 2.06 and 1.75×10^{-5} cm² sec⁻¹, respectively (Broecker and Peng, 1974). Therefore, there's no diffusion limit of O_2 for CH_4 oxidation.