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Abstract In order to understand atmospheric methane (CH4) biogeochemistry now and in the future, we
must apprehend its natural variability, without anthropogenic influence. Samples of ancient air trapped
within ice cores provide the means to do this. Here we analyze the ultrahigh-resolution CH4 record of the
West Antarctic Ice Sheet Divide ice core 67.2–9.8 ka and find novel, atmospheric CH4 variability at centennial
time scales throughout the record. This signal is characterized by recurrence intervals within a broad
80–500 year range, but we find that age-scale uncertainties complicate the possible isolation of any periodic
frequency. Lower signal amplitudes in the Last Glacial relative to the Holocene may be related to incongruent
effects of firn-based signal smoothing processes. Within interstadial and stadial periods, the peak-to-peak
signal amplitudes vary in proportion to the underlyingmillennial-scale oscillations in CH4 concentration—the
relative amplitude change is constant. We propose that the centennial CH4 signal is related to tropical climate
variability that influences predominantly low-latitude wetland CH4 emissions.

Plain Language Summary Using a newmethod tomeasure methane concentrations of ancient air
trapped in ice cores, we have detected variability in atmospheric methane concentration on centennial time
scales in the Last Glacial Period for the first time.We know these signals represent past changes in atmospheric
methanebecause they appear in several ice core records.Wepropose that changes inmethane emissions from
tropical wetlands are responsible. How this new variability might be related to similar signals found in the late
Holocene ice core records and the instrumental record of atmospheric methane is an open question.

1. Introduction

Accurately predicting the future evolution of atmospheric methane (CH4) is critical because methane is a sig-
nificant greenhouse gas that currently accounts for 17% of the radiative forcing from all long-lived green-
house gases [Myhre et al., 2013]. While the unprecedented ~2.5-fold increase in atmospheric methane
since the industrialization of the western world can be linked to anthropogenic activity, other unexplained
trends, superimposed on this rise, have been observed over the last few decades [Dlugokencky et al., 2009;
Nisbet et al., 2016]. For example, the high atmospheric methane growth rates of the 1980s, equivalent to
1% growth each year, were followed by a decade of near-zero growth before methane levels increased again
from 2006. These decadal-scale changes in methane growth rate have been attributed to many factors
including variability in natural wetland emissions [Kirschke et al., 2013; Saunois et al., 2016], bacterial activity
associated with agriculture [Schaefer et al., 2016; Schwietzke et al., 2016], and anthropogenic fossil fuel emis-
sion rates [Aydin et al., 2011; Rice et al., 2016; Schaefer et al., 2016; Schwietzke et al., 2016]. Recently, climate-
sensitive biogenic emissions from agriculture or wetlands have been identified as the most probable causes
of the post-2006 methane rise by Schaefer et al. [2016] with Nisbet et al. [2016] emphasizing the contribution
of such emissions from the tropics in particular. In summary, even with extensive atmospheric monitoring
programs, it is difficult to attribute fluctuations in atmospheric methane to variability in a specific source or
sink. This problem is compounded in the observational era by significant anthropogenic emissions that
may mask natural variability.

Preindustrial Holocene (pre-1850 A.D.) atmospheric methane records from polar ice cores also exhibit multi-
decadal variability [Ferretti et al., 2005; MacFarling Meure et al., 2006; Mitchell et al., 2011; Rhodes et al., 2013,
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2016]. Here too, it has proved challenging to distinguish between variability in CH4 emissions resulting from
natural, climate-related forcing (e.g., influence of precipitation and temperature on wetland emissions) and
anthropogenic forcing (e.g., influence of agricultural practices). Two tools can be used to help identify the
origin of CH4 variability: the interpolar difference and isotopic ratios δD and δ13C. Both suggest that
climate-related emissions from Southern Hemisphere wetlands and anthropogenic emissions from the
Northern Hemisphere jointly influenced the broad upward trend in CH4 over the preindustrial Holocene
[Ferretti et al., 2005; Mitchell et al., 2013]. While the interpolar difference across individual multidecadal
features has not been investigated, Sapart et al. [2012] suggested that multidecadal variations in δ13C could
be linked to changes in pyrogenic and biogenic CH4 sources, potentially connected to climatic phenomena
such as the Medieval Climate Anomaly or to human phenomena such as the fall of the Roman empire.
Potential past changes in the strength of the main CH4 sink, destruction by OH radicals in the atmosphere,
must also be considered. This is well constrained by atmospheric measurements for the past few decades
[Montzka et al., 2011], but beyond this, we have to rely on atmospheric chemistry models that suggest little
change in sink strength has occurred since the Last Glacial [Levine et al., 2011; Murray et al., 2014].

In order to isolate the natural CH4 variability from human-influenced changes, CH4 data are required from a
time period free from anthropogenic influence and polar ice cores provide these records. Additionally, ice
core CH4 records allow us to investigate how CH4 variability at the centennial-scale interacts with major cli-
matic transitions, such as glacial-interglacial cycles. Ice core CH4 data of sufficiently high temporal resolution
and level of precision have become available recently due to analytical advances utilizing laser spectroscopy
[Stowasser et al., 2012].

Here we investigate novel, centennial-scale, CH4 variability during the recent deglaciation and Last Glacial
Period (67.2–9.8 ka before present (B.P.) (1950 A.D.)) resolved within the ultrahigh-resolution continuous
CH4 record from the WAIS (West Antarctic Ice Sheet) Divide (WD) ice core [Rhodes et al., 2015]. Thus far, only
the millennial-scale features of this record have been examined, revealing new abrupt features attributed to
Hudson Strait Heinrich events [Rhodes et al., 2015] and constraining timings of the bipolar seesawmechanism
of abrupt climate change [West Antarctic Ice Sheet (WAIS) Divide Project Members, 2015]. We now examine the
pervasive, higher frequency signals of the WD continuous CH4 record to further advance our understanding
of natural methane variability.

2. Materials and Methods
2.1. WAIS Divide Continuous CH4 Data

For this study it is important to highlight the precision and resolution WD continuous CH4 measurements
(Table 1) (for further details, see Table S1 in the supporting information [Rhodes et al., 2015]). Measurements
are reproducible to within ±1.5–4.2 ppb and each experiment time-integrated data point has an internal pre-
cisionof ±0.4–1.4 ppb (2σ).Mean sampling resolution,which is dictatedby theoptimal integration timeused in
data processing, varies from 0.4 to 1.1 years depending on the analytical setup and the depth/age range being
sampled in the ice core.Mixing anddiffusion of the gas samplewithin the analytical system causes some signal
smoothing and gives rise to a limit of resolution (shortest resolvable scale) that varies between 0.5 and
12.6 years, again dependent upon the analytical setup and the ice core depth/age (Table 1).

In practice, the temporal resolution of theWD continuous atmospheric CH4 record is governed by the temporal
resolution of the ice core gas archive itself; diffusive mixing within the firn column and the gradual occlusion of
air bubbles cause smoothing of the atmospheric signal and effective removal of high-frequency signals such as
the seasonal cycle [Schwander et al., 1997]. At WD this effect is minimal in comparison to other Antarctic ice
cores because accumulation rates are relatively high (22 cm ice yr�1 present day and 10 cm ice yr�1 Last
Glacial Maximum (LGM) [Buizert et al., 2015]). However, estimated gas age distribution widths (full width at half
maximum (FWHM)) at the base of the firn for this interval in WD range from 20 to 57 years (Table 2), so the
effects of firn smoothing must still be considered if we attempt to examine centennial-scale features
(section 3.2.3). For the WD record, the degree of smoothing resulting from firn-based processes always
exceeds that resulting from the analytical system, possibly excepting gas ages>60 ka B.P. [Rhodes et al., 2015].

In order to fill data gaps, reduce noise, and obtain an even time step, a cubic smoothing spline was fitted to
the experiment-time-integrated WD CH4 measurements by Rhodes et al. [2015]. We continue to utilize this
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approach here. Experiment-time-integrated data are also displayed in Figures 1 and 2 for reference. The
WD2014 time scale and age uncertainties are described by Sigl et al. [2016] and Buizert et al. [2015].

2.2. Isolating the Centennial-Scale Component

In order to isolate the centennial-scale component of CH4 variability, we mask the abrupt transitions of
Dansgaard-Oeschger (DO) events, which dominate the millennial-scale variability of the Last Glacial Period
(Figure 3a). This prevents the generation of signal artifacts, which result from applying Fourier transform-
based filters to nonsinusoidal features. The record is first divided into stadial and interstadial periods using

Table 1. Resolution and Precision of WD Continuous CH4 Measurements MadeWith Three Different Laser Spectrometers
Over Two Analytical Campaignsa

Units

Year

2012 2013 2013
Instrument Picarro CFADS36 Picarro G2401 SARA

Optimal integration time (s) 20 20 5
(year) 0.4 (0.2–0.7) 1.1 (0.5–3.0) 0.6 (0.2–1.1)

Shortest resolvable scaleb (cm) 5.5 6.2 5.4
(year) 1.2 (0.5–2.0) 3.7 (1.7–10.1) 6.3 (1.4–12.6)

System response time (t10–90)
c (s) 104 138 121

(year) 2.1 (0.8–3.4) 7.6 (3.4–20.5) 13.6 (3.0–26.0)
Internal precision (2σ)d (ppb) 1.4 0.4 0.7
Long-term reproducibilitye (ppb) 2.8 1.5 4.2
Age range analyzed (ka, WD2014) 9.819–23.631 26.715–26.987 26.362–26.715

27.596–45.532 26.987–27.596
52.841–60.354 45.532–52.841

60.354–67.344

aDifferences may be the result of instrument change or minor alterations to continuous melter and/or gas extraction
system. Measurement resolution is expressed as amean with the range given in parentheses in units of experiment time,
depth, and/or gas age.

bA periodic signal of this wavelength would be attenuated by 90% at melt rate of 5.5 cmmin�1.
cTime taken for CH4 concentration to change between 10 and 90% of total normalized concentration change result-

ing from switch between two different air standards mixed with degassed water and circulated through the analytical
system at gas flow rate of 1.8mLmin�1.

d2* Allan deviation at optimal integration time.
ePooled standard deviation between original analyses and replicate stick analyses [see Rhodes et al., 2015, Figure S2].

Table 2. Estimates of the Impact of Firn-Based Smoothing on the Atmospheric Trace Gas Record of the WD Ice Corea

Gas Age at
Midpoint of
5000 Year
Window (ka)

Temperature
(°C)b

Accumulation Rate
(cm ice yr�1)c

Δ Age
(year)c

FWHMd

(year) fA100 fA150 fA200

A100 (ice core/atm)
(ppb) Δ = 1.5 ppb

A150 (ice core/atm)
(ppb) Δ = 3 ppb

12.32 �31.4 22.3 215 20 0.67 0.78 0.84 10/15 15/19
17.32 �38.0 12.6 423 31 0.52 0.66 0.74 4/8 7/11
22.32 �40.8 11.2 496 58 0.24 0.45 0.57 4/19 8/18
27.32 �38.6 12.6 416 36 0.45 0.62 0.71 7/15 15/24
32.32 �38.3 11.4 438 36 0.44 0.61 0.70 6/13 10/16
37.32 �37.2 15.6 349 28 0.57 0.70 0.77 7/13 9/13
42.32 �37.7 16.0 347 35 0.48 0.65 0.73 9/18 11/17
47.32 �36.8 18.5 305 30 0.55 0.69 0.77 10/19 12/17
52.32 �35.9 18.3 296 32 0.52 0.67 0.76 9/17 11/17
57.32 �35.8 18.1 297 36 0.47 0.64 0.74 9/20 10/16
62.32 �37.2 17.5 324 41 0.41 0.60 0.71 9/21 12/20

a“Firn filters” were produced for each gas age window by using temperature and accumulation values shown by using the OSU firn air transport model [Rosen
et al., 2014]. fA100 denotes the fraction of the amplitude of a 100 year wavelength periodic signal remaining after applying the filter. Left-hand A100 value is the
median peak-to-peak signal amplitude identified in the ice core for that time window by using Δ = 1.5 ppb in peak detection code (Figure 3c). Right-hand A100
value is an estimate of the original peak-to-peak amplitude of the atmospheric signal prior to firn smoothing. A150 values are the equivalent for a 150 year wave-
length signal identified by using Δ = 3 ppb.

bCuffey et al. [2016].
cBuizert et al. [2015].
dFull width at half maximum (FWHM) is a measure of the gas age distribution spread in the closed porosity at the close-off depth (where no open porosity

remains). Higher values indicate more mixing of the atmospheric signal over time in the firn pack and stronger damping of high-frequency signals.
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Figure 1. Centennial-scale variability inWD continuous CH4 record replicated by discretemeasurements. Experiment-time-
integrated data (gray) and 2 year spline fit (red) are shown. (a) CH4 variability through the Bølling-Allerød. Discrete WD
CH4measurements performed at Oregon State University (black symbols, uncertainty bars 3.1 ppb 2σ) [Marcott et al., 2014].
(b) CH4 variability across DO 16-17. Discrete WD CH4 measurements performed at Pennsylvania State University (black
symbols, uncertainty bars 7.3 ppb 1σ (replicate samples contiguous in depth)) [WAIS Divide Project Members, 2015].

Figure 2. WD continuous CH4 record compared to other ice core CH4 records. WD experiment-time-integrated data (gray)
and 2 year spline fit (red) are shown. (a) Earliest Holocene in WD CH4 and NEEM discrete measurements (gray crosses and
pale blue line). (b) Initiation of deglacial CH4 rise in WD compared to GISP2 continuous data (purple) and Fletcher
Promontory (Antarctica) continuous data (dark blue). (c) WD CH4 across DO12 compared to NEEM CH4 record (pale blue)
measured using continuous technique [Chappellaz et al., 2013]. NEEM CH4 values are reduced by 20 ppb CH4 to aid
viewing. (d) CH4 variability within the Younger Dryas resolved in WD and Fletcher Promontory (dark blue) records. Fletcher
Promontory data have been transferred to the WD2014 time scale using tie points shown (black crosses). NEEM and GISP2
data are plotted on the GICC05modelext time scale [Rasmussen et al., 2013; Seierstad et al., 2014], which is multiplied by
1.0063 in Figure 2c to translate age to WD2014. Where data from different ice cores are plotted on the same panel, the two
x axes may be offset to aid viewing. This alignment of age scales indicates that WD2014 and NEEM GICC05modelext gas
ages are offset by 132 years at the preboreal oscillation CH4 minimum (Figure 2a) and that WD2014 and GISP2
GICC05modelext gas ages are offset by ~600 years at the initial CH4 deglacial increase (Figure 2b).
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the transition midpoint ages provided by Buizert et al. [2015]. At each transition midpoint, 50 years of data are
removed from either side. Any remaining stadial or interstadial period <300 year duration is removed from
analysis. Each individual period is then linearly detrended and its mean is subtracted to generate anomalies
that characterize the centennial-scale component of the CH4 record (Figure 3b).

2.3. Characterizing the Centennial-Scale Component

Two different methods are used to characterize the centennial-scale CH4 variability.
2.3.1. Peak Detection
First, we utilize a simple Matlab peak detection algorithm designed to pick data maxima and minima. It
requires a threshold value (Δ) to be specified. A data point is considered a maximum if it has the maximal
value and was preceded by a minimum value lower by Δ (Figure S1). The peak detection algorithm is applied
to the CH4 record after DO event transitions have been removed (red and blue lines in Figure 3a). We test Δ

Figure 3. Recurrence intervals and amplitude of the centennial component of WD CH4 variability. (a) WD CH4 2 year spline
(black) divided into interstadial (red) and stadial (blue) periods. (b) Detrended CH4 anomalies after removal of ±50 years
either side of each stadial-interstadial transition and exclusion of periods <300 year duration. (c) Median peak-to-peak
amplitude of CH4 centennial component (red and blue in Figure 3a) for 5000 year duration nonoverlapping windows
(points plotted at center of window). The results obtained using different Δ values (section 2.3.1) are color coded as
indicated by legend. Uncertainty bars (for Δ values of 4 and 1.5 ppb only) denote the median absolute deviation; (d) 10% of
the gas age-ice age difference (Δage) through the WD ice core, intended to give a rough indication of the change in
firn-based smoothing effect though time, with larger values suggesting more smoothing of the atmospheric gas record.
The values should be read from the right-hand axis, which is inverted. (e) Fraction of the amplitude (fA) of a periodic
atmospheric signal with 100 year wavelength (λ) that would be preserved in the WD ice core after smoothing of the gas
record by firn-based processes, as predicted by the Oregon State University firn air model (black triangles, see also Table 2).
(f) As in Figure 3c but for median recurrence interval.
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values of 1.5–4 ppb, equivalent to the long-term reproducibility of the data (Table 1). We additionally specify
a minimum time interval between adjacent maxima and minima of 25 years (equivalent to 50 year signal
wavelength) because it is highly unlikely that a higher frequency signal could survive the smoothing action
of firn-based processes (see FWHM, Table 2). Once the maxima and minima of adjacent peaks have been
identified, recurrence intervals and peak-to-peak amplitudes are calculated. Median recurrence intervals
and peak-to-peak amplitudes are calculated for 5000 year duration, nonoverlapping time windows.
2.3.2. Time Series Analysis
Second, we employ spectral analysis using the freely available REDFIT software [Schulz and Mudelsee, 2002].
REDFIT uses the Lomb-Scargle method that is suitable for data with gaps. We apply REDFIT to the WD CH4

anomalies (Figure 3b) from 67.2 to 27 ka B.P. to avoid the effects of time-varying firn smoothing on the
centennial-scale signal amplitudes (see section 3.2.3). The average sample interval is 2.62 years, and analysis
is performed using Welch spectral windows, an oversampling factor of 15, and 3 overlapping windows. A
“hifac” value of 0.102 is used to set the highest frequency analyzed to 0.0195 years (51 year wavelength).
To assess the significance of spectral peaks, confidence levels were produced by fitting 1000 Monte Carlo
simulations of autoregressive (AR(1)) red noise to the data and calculating power spectra for each. The
90% and 95% quantiles of all the AR(1) power spectra are used as confidence levels.

3. Results
3.1. High-Frequency Variability: Climate or Artifact?

Figure 1 shows two examples of the novel centennial-scale variability resolved within theWD continuous CH4

record plotted with discrete CH4 measurements made on the same ice core. The submillennial-scale variabil-
ity of the continuous CH4 data, particularly the amplitude and wavelength of the signals, is reproduced extre-
mely well by the discrete data throughout the record, confirming that it is a reproducible feature of the WD
ice core gas archive. Despite the relatively high resolution (1–3m or 15–80 years) of the discrete data, some of
this signal may have been dismissed as analytical or archival noise without the incredibly detailed continuous
CH4 information.

To ascertain whether or not this new variability is unique to WD, we compare WD continuous CH4 to other
CH4 data available at comparably high resolution (Figures 2a–2d). Discrete measurements on the North
Greenland Eemian (NEEM) ice core from the earliest Holocene faithfully reproduce the variability observed
in the WD record (Figure 2a). The full amplitude of the preboreal oscillation at 11.3 ka (WD2014) is captured
along with small variations in CH4 concentration during the sharp transitions toward and away from the CH4

minimum. Furthermore, the broad trough centered at 10.7 ka (WD2014) and abrupt decrease at 10.2 ka are
reproduced, together with quasi-centennial-scale oscillations superimposed on the record.

In another example, a 24m section of CH4 data from the Greenland Ice Sheet Project 2 (GISP2) ice core, ana-
lyzed using our continuous-flow system, reproduces the onset of the deglacial CH4 rise at 17.7 ka and captures
some of the centennial-scale oscillations in CH4 shown in theWD continuous record (Figure 2b), most notably
between 18.2 and 17.7 ka. The agreement betweenWD CH4 and the recently obtained continuous CH4 record
from the Fletcher Promontory (Antarctica) ice core is extremely impressive (Figure 2b). Nearly every
centennial-scale feature visible in WD is replicated in the Fletcher Promontory record, the only exception
being a short section 19–18.8 ka. This correspondence is all themore remarkable because the same 2650 years
of data are contained within just 2m depth of ice core at Fletcher Promontory, compared to 88m at WD.

Although the NEEM continuous-flow data set [Chappellaz et al., 2013] CH4 is relatively noisy and suffers from
frequent data gaps, when it is plotted together with WD, it becomes clear that the NEEM record picks up
many of the same centennial-scale features across DO12 (Figure 2c). Finally, continuous CH4 data from the
Fletcher Promontory ice core exhibit centennial variability within the Younger Dryas that matches remarkably
well with that of the WD record (Figure 2d).

In summary, all the available ice core CH4 data support the fidelity of the new centennial-scale features we
observe in the WD CH4 record. This indicates that the features represent past variability in global atmospheric
methane concentrations and negates the possibility that they are site-specific artifacts resulting from biolo-
gical in situ production [Rhodes et al., 2013] or layered gas bubble trapping [Etheridge et al., 1992; Rhodes
et al., 2016].
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3.2. Characterizing the Centennial-Scale CH4 Variability
3.2.1. The Centennial-Scale Component
The detrended anomalies that comprise the centennial-scale component of the WD CH4 record exhibit varia-
bility that is pervasive throughout the 67.2–9.8 ka record (Figure 3b). By eye, it is possible to see that the nat-
ure of the centennial signal changes with time; most notably, the signal amplitude appears reduced around
the LGM (Figure 3b). Additionally, the oscillations appear to be the most frequent in the youngest section of
the record, the earliest Holocene (Figure 3f). We will explore these observations quantitatively in the
following sections.

3.2.2. Recurrence Interval and Signal Amplitude
Peak detection analysis of the centennial-scale component reveals that the WD CH4 record is characterized
by median recurrence intervals of 80–200 years (Figure 3f). The choice of Δ value used in the peak detection
algorithm influences the recurrence interval outcome, with lower Δ values leading to shorter recurrence
intervals. It is difficult to confidently decide on a Δ value; higher values likely cause some real atmospheric
variability to bemissed, particularly in regions of the record with relatively strong firn-based signal smoothing
(i.e., 35–20 ka; section 3.2.3), while it is also possible that some of the variability identified using a 1.5 ppb Δ
value is not paleoatmospheric signal (Figure S1).

However, for most age windows, the median absolute deviations of the recurrence interval estimates (uncer-
tainty bars in Figure 3f) for Δ values of 1.5 ppb and 4 ppb overlap, suggesting that the choice of Δ value does
not produce a significant bias. It is only in the data window centered on 22.32 ka that the two estimates differ
significantly, with a median recurrence interval of 80 years estimated using Δ=1.5 ppb and a median recur-
rence interval of 200 years estimated using 4 ppb. The range of recurrence interval durations with different
Δ values is smallest for the age window encompassing the earliest Holocene, for which all Δ values suggest
a recurrence time of <100 years.

Median peak-to-peak signal amplitudes are typically 8–12 ppb for each 5000 year window between 67 and
35 ka and show no discernible variation with time (Figure 3c). Again, different Δ values produce a range of
peak-to-peak amplitude values, but these distributions overlap. Between 25 and 15 ka the peak-to-peak
amplitudes are reduced for all Δ values to 4–8 ppb. Amplitudes consistently increase to 10–14 ppb for all Δ
values in the 14.82–9.82 ka window of the record.

3.2.3. Damping of Atmospheric Variability in the Firn Column
We now consider to what extent the variations in recurrence time and amplitude with age detailed above
may result from damping of the centennial-scale variability by diffusive smoothing of the atmospheric signal
in the firn pack. We use a firn air transport model adapted for paleoclimate applications [Rosen et al., 2014] to
generate filters that simulate the diffusive smoothing of atmospheric signals in the firn for each time window
(Table 2). The firn filters are each applied to synthetic time series consisting of sine waves with 100, 150, and
200 year periodicities to assess what fraction of the signal amplitude (fA) remains after firn-based smoothing
(Table 2). This exercise suggests that at WD an atmospheric signal of 100 year wavelength would be damped
by 33% in the earliest Holocene, 76% around the LGM, and 50% in Marine Isotope Stage (MIS) 3 (Figure 3e).
Unsurprisingly, the impact of firn smoothing is most extreme around the LGM when conditions were coldest
and driest (Table 2 and Figures 3d and 3e). This is exactly the time period when we observe relatively low-
amplitude centennial-scale CH4 variability. It is therefore possible that the relatively low amplitudes through
LGM compared to the Holocene or MIS 3 can be attributed to signal damping by firn-based processes, rather
than a real change in the nature of the original atmospheric signal.

The peak detection analysis suggests that recurrence intervals of 80–200 years characterize highest resolva-
ble frequency of the CH4 record (Figure 3f). If we assume a recurrence time of either 100 or 150 years (roughly
equivalent to results using Δ values of 1.5 and 3 ppb, respectively) and use the firn filters generated for WD,
then the peak-to-peak amplitudes of each time window can be crudely translated into the original peak-to-
peak amplitude of the centennial component of CH4 atmospheric variability (A100 and A150; Table 2). The
estimates for both cases are broadly in agreement: an average peak-to-peak amplitude of 16 ppb, with an
8–24 ppb range. The results appear to indicate that signal amplitudes in the 19.82–14.82 ka window are lower
than the others even after correction for firn smoothing. While this may be possible, it is likely that the rapid
changes in temperature and accumulation over this window cause the firn smoothing effect to be
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underestimated. Overall, once potential firn smoothing is taken into account, there is no significant
difference between the peak-to-peak amplitudes of the recurring 80–200 year signal between the
Holocene and Last Glacial Period. Additional, ultrahigh-resolution CH4 records are needed to verify this
result because the estimation of the firn smoothing effect is highly uncertain.
3.2.4. Comparison Between Stadials and Interstadials
We now focus on the WD CH4 record between 67.2 and 27 ka (DO events 3–18 only) to investigate whether
centennial-scale CH4 variability has the same characteristics in stadial versus interstadial periods. We take the
recurrence intervals and peak-to-peak amplitudes produced by the peak detection analysis and bin them
into stadial and interstadial periods. Probability distributions for the recurrence intervals in stadial and inter-
stadial periods are similar (Figure 4). The median recurrence interval is 102 years in stadial periods and
116 years in interstadial periods. In contrast, the probability distributions for signal peak-to-peak amplitude
are quite different for stadials versus interstadials; stadials are much more likely to have low-amplitude
signals (<7 ppb, mean= 8 ppb), while interstadials are more likely to have relatively large (>17 ppb,
mean= 12 ppb) amplitude signals (Figure 4). A Welch’s two-sample t test, assuming unequal variances, indi-
cates that the interstadial and stadial mean amplitudes are significantly different (5% significance level, for
Δ= 2ppb). However, if the peak-to-peak amplitudes are normalized to the underlying mean stadial or inter-
stadial CH4 concentration to calculate a relative amplitude, then the interstadial and stadial probability distri-
butions appear similar and their mean values are not significantly different (Figure 4). These two results
(significant difference for absolute amplitudes but not relative amplitudes) hold true for all Δ values tested.
This suggests that the amplitude of the centennial component varies in proportion to the longer-term CH4

background changes related to DO events.

Figure 4. Probability distributions of the recurrence intervals and peak-to-peak amplitudes identified for the centennial-
scale component of WD CH4 record (DO events 3–18 only). (top row) Stadial (n = 112) and (bottom row) interstadial
(n = 79) probability distributions are compared. Relative amplitude (Figure 4, right column) is the peak-to-peak amplitude
of the centennial-scale signal relative to the long-term CH4 background concentration (300 year running median). A Δ
value of 2 ppb was used in peak detection code. Population mean values (solid lines) and median values (dashed lines) are
indicated on each histogram.
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It is important to note that the differ-
ence between stadial and interstadial
signal amplitudes cannot be related
to the differences in the degree of
firn-based smoothing. WD is an
Antarctic ice core so accumulation
rate and temperature at the site vary
in step with Antarctic Isotope
Maxima, not DO events [Buizert et
al., 2015]. If we were studying a CH4

record from a Greenland ice core,
then we would be concerned that
the twofold increases in accumul-
ation rate [Rasmussen et al., 2013]
and 5–16.5°C temperature swings
[Kindler et al., 2014] across DO events
would cause significant changes in
signal damping in the firn pack.
3.2.5. Spectral Information
The Lomb-Scargle periodogramof the
67.2–27 ka portion of the CH4 record
(Figure 5a) exhibits some significant
spectral peaks at 95% confidence
level, but these peaks are very narrow.
If the spectrum is smoothed, then
only peaks between 100 and 300 year
periods are significant. This result is
broadly consistent with the findings
of the peak detection method.

Despite this apparent significant
periodicity to the signal, we are
cautious in our interpretation of this
result due to the age uncertainty
associated with the WD2014 age
scale. For the majority of the
67.2–27 ka record, mean gas age

uncertainty is 390 years (2σ), which is of course of the same order as the periodicities we are attempting to
isolate. To test the influence of age uncertainty on the Lomb-Scargle spectral analysis, we construct 10
synthetic WD2014 age scales by allowing the gas age to randomly vary within the age uncertainties while
maintaining stratigraphic order. The resulting 10 power spectra display significant periodicities within a
100–500 year range (Figure 5b). The significant periodicities differ between the 10 synthetic spectra and also
differ from those of the original data set (Figure 5). Therefore, we conclude that we cannot rule out the pre-
sence of significant periodicity in centennial-scale CH4 variability, but we equally cannot identify potential
periodicity to better than a broad 100–500 year range, given the associated age uncertainties.

4. Discussion
4.1. Origin of Centennial-Scale CH4 Variability

We have identified a previously undetected mode of natural CH4 variability in the WD continuous CH4 record
(67.2–9.8 ka). Our analysis indicates that the magnitude of CH4 variability within stadial versus interstadial
periods scales in proportion to the underlying CH4 concentration (Figure 4), which changes by up to
260 ppb between stadial and interstadial levels. Uncertainty on the degree of signal damping exerted by
firn-based processes in the Last Glacial compared to the Early Holocene prevents us from reaching any similar
conclusion about the relative amplitude of CH4 variability between the glacial and interglacial. As a result, our

Figure 5. (a) Lomb-Scargle power spectrum of the WD CH4 edge-masked,
detrended anomalies (from Figure 3b) from 67.2 to 27 ka only (gray line)
and a 51-point running mean of that power spectrum (blue line). The 90%
and 95% confidence levels (CLs) (red lines) are the 90th and 95th quantiles of
1000Monte Carlo-generated autoregressive noise (AR(1)) model spectra. The
50% quantile is also shown (dashed black line). Spectral peaks in the WD
CH4 power spectra must exceed the 90% or 95% confidence levels for them
to be significantly different to purely red noise features. The 6 dB bandwidth
is 8.77e�5. (b) Ten 51-point smoothed power spectra of the same WD CH4
data but with the WD2014 gas ages modified within 2σ uncertainties (gray
lines). The 95% confidence level is also shown (red line).
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discussion of source or sink change attribution focuses on the centennial-scale CH4 variability 67.2–27 ka,
across the major DO events of MIS 3.

The sub-DO event centennial-scale atmospheric CH4 variability must result from an imbalance of CH4

emissions and CH4 removal. The typical peak-to-peak amplitude of this CH4 variability (17 ppb in stadials
and 24 ppb in interstadials corrected for firn smoothing using a firn air transport model; section 3.2.3) is only
about half the modern-day CH4 seasonal cycle at the South Pole (https://www.esrl.noaa.gov/gmd/)—a
fraction of that associated with the transition from the Last Glacial to Holocene (~320 ppb) or stadial to inter-
stadial transitions (50–260 ppb).

The CH4 atmospheric burden (B) varies between 1020 and 1780 Tg across the major DO events of MIS 3. The
magnitude of change in CH4 emissions (CH4 emis) or sink strength (CH4 lifetime= τCH4) required to produce
an observed change in B can be calculated by rearranging equation (1).

dB=dt ¼ CH4 emis– B =τCH4 (1)

For 67.2–27 ka, CH4 emis varies between 135 and 210 Tg yr�1 and the increase in CH4 emissions (ΔCH4 emis) at
the onset of major DO events, such as DO 17, exceeds 50 Tg yr�1. To roughly estimate the CH4 emissions
change required to produce the smaller centennial-scale variability, we consider stadials and interstadials
separately, using mean signal amplitudes that have been corrected to the same degree for the damping
effect of firn-based smoothing (Table 3) and a uniform signal wavelength of 100 years in both cases.
Slightly different τCH4 values are used for stadial and interstadial periods (Table 3) following Levine et al.
[2012], but this makes a negligible difference to the result.

The estimated ΔCH4 emis is 6.0 Tg yr
�1 in stadials and 9.1 Tg yr�1 in interstadials (Table 3). This is about half the

global CH4 emissions’ increase between 2005 and 2010 (15–20 Tg yr�1 [Nisbet et al., 2014]), but an order of
magnitude lower than the estimated emissions changes at onset of major DO events.
4.1.1. Sink Change?
The sink strength change (ΔτCH4) required to generate the centennial-scale CH4 variability observed is
estimated by holding the CH4 emis term in equation (1) constant. For the idealized stadial period, a 0.3 year
change in τCH4 is required, while a 0.4 year change is required in the interstadial scenario. These values
appear small; they equate to a 4.0 or 4.9% increase in τCH4 over 50 years, but could such changes in τCH4

occur on centennial time scales?

Modeling studies suggest that the CH4 removal rate remained constant across both glacial-interglacial
[Levine et al., 2011; Murray et al., 2014] and stadial-interstadial transitions [Levine et al., 2012]. Levine et al.
[2011, 2012] attribute this to a balance between two opposing processes: (1) the control of OH production
by humidity, which is closely related to air temperature, and (2) emissions of nonmethane volatile organic
compounds (NMVOCs) that promote OH removal, which are also partly controlled by air temperature. As
Levine et al. [2011] outline, at the LGM, lower air temperature and decreased humidity resulted in less OH pro-
duction, but this was offset by reduced NMVOC emissions from plants that in turn caused less OH to be
removed from the troposphere. This implies that τCH4 is sensitive to tropical air temperatures—the majority
of tropospheric OH is located at tropical latitudes and so most oxidation of CH4 also occurs there [Crutzen and
Zimmermann, 1991]. Levine et al. [2012] report that the promotion of OH production by higher humidity has a
slightly greater influence than the opposing process so that a warming event actually leads to a small net
decrease in τCH4. In their model, a 2.6% reduction in τCH4 occurs across an idealized stadial-interstadial
transition, equivalent to a 9 ppb reduction in atmospheric CH4 concentration [Levine et al., 2012]. The

Table 3. Estimated Changes in CH4 Source or Sink Strength Responsible for Centennial-Scale CH4 Signals in Stadial and Interstadial Periodsa

Source Change Sink Change

Mean p2p Amplitude in Ice
Core (ppb)

Mean p2p Amplitude in
Atmosphere (ppb)

Long-Term CH4
Concentration (ppb)

τCH4
(year)

ΔCH4 emis
(Tg yr�1)

Constant CH4 emis
(Tg yr�1)

ΔτCH4
(year)

Stadial 8 17 420 8.5 6.0 170 0.3
Interstadial 12 24 509 8.3 9.1 176 0.4

aCalculations assume that the signal wavelength is uniformly 100 years. Peak-to-peak (p2p) amplitudes observed in the ice core are crudely corrected for firn-
based signal damping of fA100 = 0.49 (mean value for 24.82–64.82 ka; Table 2).
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temperature change at the tropics is 1°C in this simulation. If the sensitivity of τCH4 to climatic change, in par-
ticular to tropical temperatures, is correct in Levine et al.’s model, then their results suggest that for a sink
change to be solely responsible for the 7–24 ppb CH4 oscillations within stadial and interstadial periods,
repeated tropical air temperature fluctuations on the order of 1°C would be required at centennial time
scales. Reconstructions over the last 400 years suggest that tropical SSTs in individual basins varied on multi-
decadal (20–80 years) time scales by <0.5°C [Tierney et al., 2015, Figure 10].
4.1.2. Source Change?
Having largely ruled out a change in sink strength as the mechanism behind the centennial CH4 variability,
we now assess the three major CH4 sources that could be responsible for the estimated 6–9.1 Tg yr�1

fluctua-
tions in CH4 emissions: boreal wetlands (or peatlands), tropical wetlands, and biomass burning.

Of the major CH4 sources, boreal wetlands are the least likely to be responsible for the relatively constant
centennial CH4 variability throughout the record because their ability to produce CH4 was severely reduced
during the Last Glacial due to the cold temperatures and expanded Northern Hemisphere ice sheets
[Kaplan, 2002].

While tropical wetland emissions did also change substantially across DO events [Brook et al., 2000; Hopcroft
et al., 2011; Sperlich et al., 2015], it is conceivable that a different mode of shorter time scale variability could
operate concurrently—akin to the decadal-scale variations in CH4 growth rate superimposed on long-term
CH4 increase in the instrumental period [Dlugokencky et al., 2009; Nisbet et al., 2016; Schaefer et al., 2016]. It
is generally accepted that an atmospheric teleconnection between the high northern latitudes and the
tropics caused relatively warm, wet interstadial periods in the tropics and subtropics with relatively high
tropical wetland CH4 emissions, and vice versa during stadial periods [Brook et al., 2000; Chiang and Bitz,
2005]. This teleconnection explains the tight coupling between Greenland ice core δ18O, (sub-)tropical
climate archives, and CH4 across DO events (Figure 6). When WD CH4 and Greenland ice core δ18O are
compared at the centennial scale, two categories of centennial-scale feature are common to both: (1) many
interstadial periods begin with a short duration (~100 years) CH4 peak that reaches the highest concentration
within that period, and analogous features are identifiable in Greenland δ18O (yellow shading, Figure 6); (2)
several DO events display an abrupt rebound event just prior to a sharp decrease to stadial levels. As noted
and exploited by Buizert et al. [2015] for the purposes of ice core synchronization, these events are also
identifiable in Greenland δ18O (green shading, Figure 6). In addition, we argue that some of the rebound
events mentioned above are identifiable in the Cariaco and Arabian Sea sediment reflectance records and
also in some highly resolved sections of the Bermuda Rise SST reconstruction (Figure 6). This apparent
coincidence of centennial-scale features in CH4, Greenland ice core δ18O and (sub-)tropical proxy archives
suggests that a similar high-latitude tropical teleconnection to that operating across DO events is responsible
for the two categories of centennial-scale feature identified, with variations tropical wetland emissions
causing the CH4 signal.

However, other variability in CH4 and Greenland ice core δ18O within stadial or interstadial periods shows lit-
tle correspondence at centennial time scales (Figure 6). Cross-wavelet analysis indicates that the two records
are only sporadically coherent at centennial periods (Figure S2). This mismatch may be due to inaccuracies in
the time scales of both records, but, visually at least, it is difficult to conclude that the two signals are coherent
at centennial time scales, except across the features mentioned above. Perhaps a high-latitude tropical tele-
connection is not responsible for all the CH4 variability, or Greenland ice core δ18O does not faithfully record
such variability at centennial time scales.

In comparison to tropical wetlands, biomass burning is a small source of CH4 emissions in the Last Glacial
[Möller et al., 2013] but one capable of responding rapidly to climatic change [Daniau et al., 2010; Fischer
et al., 2015]. If tropical climate did vary on centennial time scales during the Last Glacial, then it is likely that
biomass burning emissions, as well as tropical wetland emissions, would have responded to this.
Investigation of high-resolution ice core black carbon and ammonium records holds some promise for recon-
structing region fire frequency at these time scales [Bisiaux et al., 2012; Fischer et al., 2015]. Additionally, the
δ13CH4 signature of tropical wetland CH4 (�55‰ [Dlugokencky et al., 2011]) is significantly different from that
of C4 plant species in tropical grasslands that are vulnerable to biomass burning (�17‰ [Dlugokencky et al.,
2011]), potentially allowing reconstruction of relative changes in source strength.
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Constraints on possible CH4 source contributions might be gained by calculating the interpolar difference at
centennial-scale resolution, but no Greenland ice core CH4 record of equivalent quality (precision and
temporal resolution) is available at present and careful consideration of the firn-based smoothing would
be required.

4.2. Possible Mechanisms Behind CH4 Variability

At present, our understanding of possible source changes is limited by the lack of other comparable
resolution paleoarchives. However, we present a working hypothesis to stimulate future investigation. We

Figure 6. WD CH4 compared to other high-resolution records of paleoclimate across (top) DO8 and (bottom) DO12. All
records have been transferred to the WD2014 age scale. WD CH4 (red) is plotted with no lag relative to NGRIP δ18O
(blue lines); i.e., age is WD2014 age + 25 years. A filter representing smoothing-action of firn-based processes at WD during
MIS3 (Table 2) has been applied to NGRIP δ18O 20 year mean data (light blue) to generate a version of NGRIP δ18O with
comparable smoothing to WD CH4 (dark blue). Cariaco basin (light brown, 50-point runningmedian) and Arabian Sea (dark
green, 50-point running median) sediment core reflectance data [Deplazes et al., 2013] and alkenone-derived sea surface
temperatures from Bermuda Rise (black) [Sachs and Lehman, 1999] show some similar sub-DO event features (green
shading). The isolated centennial-scale variability of the WD CH4 and firn-smoothed NGRIP δ18O records are shown in
Figure 6 (bottom).

Global Biogeochemical Cycles 10.1002/2016GB005570

RHODES ET AL. CENTENNIAL-SCALE METHANE VARIABILITY 586



propose that the centennial-scale CH4 signal represents variability in low-latitude climate, i.e., oscillation
between warmer, wetter conditions and drier, cooler conditions, and that this variability leads to small
changes (~6–9.1 Tg yr�1) in cumulative emissions from tropical wetlands and biomass burning. We offer
three suggestions as to the possible driving mechanism behind our hypothesized variability in low-latitude
climate, in no particular order:

1. The Atlantic Multi-decadal Oscillation (AMO) results in variability in North Atlantic sea surface temperatures
over 65–80 years [Kerr, 2000] and has been linked to precipitation variability across the Sahel [Zhang and
Delworth, 2006] and the Indian monsoon region [Goswami et al., 2006]. This mechanism would cause
teleconnection between the North Atlantic and the tropics, which we find only limited evidence for at
centennial time scales in the paleoclimate archives.

2. Solar activity has been linked to various sea surface temperature and precipitation regimes over many
time scales [Gray et al., 2010, and references therein]. For example, Neff et al. [2001] found a good correla-
tion between the radiogenic isotope 14C record from tree rings and a speleothem δ18O record fromOman,
linking solar activity to monsoon intensity. The 80–90 year and the 208 year solar cycles (Gleissberg and
De Vries) are within the range of the recurrence intervals identified in WD CH4 variability, but we are
not able to confirm whether the CH4 variability is periodic in nature, as would be required by solar forcing.

3. Centennial-scale variability in tropical hydroclimate could be internal variability linked to the El Niño–
Southern Oscillation (ENSO) and the related Pacific Decadal Oscillation (PDO). Although ENSO typically
recurs at a 2–7 year interval, century-scale changes in signal variability have been identified in the
Holocene [Cobb et al., 2013]. Furthermore, ENSO has been shown to influence the interannual variability
in tropical wetland methane emissions [Hodson et al., 2011] and biomass burning [van der Werf et al.,
2006]. Recent work has also suggested that a combination of ENSO and AMO can explain much of the
variability in continental precipitation over the last century [García-García and Ummenhofer, 2015]. We
note that relatively little is known about ENSO variability or teleconnections in glacial periods and that
both may have differed from Holocene conditions [Ford et al., 2015; Merkel et al., 2010].

4.3. Links to Late Holocene CH4 Variability

The new mode of natural CH4 variability we identify in the WD ice core may be related to the subcentennial
features resolved in late Holocene ice core CH4 records [e.g., Mitchell et al., 2011]. Applying the simple peak
detection algorithm used earlier (section 2.3.1) to late Holocene CH4 data produces recurrence intervals and
signal amplitudes (40–150 years, 10–40 ppb) that are similar to those of the 15–9.8 ka period in the WD record
(Table 2).

Although some prominent individual late Holocene CH4 variations can be linked with reasonable certainty to
anthropogenic influences [Sapart et al., 2012], the analysis of Mitchell et al. [2011], which regressed late
Holocene CH4 against various environmental proxy records, showed the strongest significant correlations
(r= 0.35, p< 0.01) with tropical sea surface temperatures in the Cariaco Basin and with the PDO. Taken
together with the similarity of the signal variability, this provides some indication that analogous variability
in low-latitude hydroclimate may have persisted through to the late Holocene and even that it could
continue to influence the CH4 budget today [Nisbet et al., 2016]. A high temporal resolution, precise CH4

record that bridges the time gap between the earliest Holocene (9.8 ka) where the WD continuous record ter-
minates and Mitchell et al.’s [2013, 2011] late Holocene CH4 record begins would help to address this issue.

4.4. Potential for Ice Core Gas Record Synchronization

In addition to supplementing our knowledge of natural CH4 biogeochemistry, the centennial-scale CH4

signals resolved in the WD ice core provide an excellent target for rapid, precise synchronization of trace
gas records between different cores. The CH4 records can be aligned using centennial-scale features as an
age tie point, provided that the other ice core is also from a site with minimal firn-based smoothing of the
gas phase. Examples are shown in Figures 2b and 2d, where the CH4 record from the Fletcher Promontory
(Antarctica) ice core is aligned with the WD CH4 record. In past work, only the onset and termination of the
Younger Dryas would have been used as tie points, but here we use six additional tie points to align the
records (Figure 2d). The time period between DO2 (23.3 ka) and the Bølling warming (14.7 ka) has proved
problematic for aligning discretely measured CH4 records, but with two data sets measured by continuous
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analysis, six age tie points can be identified between 20 ka and 17 ka. Increased precision of time scale
alignment will assist future CH4 IPD studies, age-scale construction, and phasing analysis.

5. Conclusions

The centennial-scale CH4 variability we observe in the WD ice continuous CH4 record 67.2–9.8 ka is reprodu-
cible and atmospheric in origin. It is also pervasive throughout the record: stadial or interstadial, LGM, or ear-
liest Holocene (Figures 1–3). Our analysis does not identify a significant periodicity to the signal but indicates
that recurrence intervals fall within a broad 80–500 year band, with no notable trend over time. Once cor-
rected for the smoothing effect of firn-based processes, signal amplitude is estimated to be 16 ppb (peak-
to-peak) on average, with significantly lower absolute amplitudes in stadial periods (17 ppb) relative to inter-
stadial periods (24 ppb). There is no change in signal amplitude relative to the underlying (millennial-scale)
CH4 concentration across DO events.

It is difficult to constrain the origin of this variability without further data (e.g., CH4 isotopes, improved-quality
Greenland CH4, and additional high-resolution paleoarchives), but we hypothesize that it may be related to
tropical climate variability. Other paleoclimate archives show some evidence for tropical hydroclimate varia-
bility at analogous time scales. This work raises interesting questions about how the novel CH4 variability we
observe in the Last Glacial and early Holocene may be related to that recorded in late Holocene ice cores and,
to some extent, also to atmospheric variability over recent decades.
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