Noname manuscript No.
(will be inserted by the editor)

On the Strong Scalability of Maritime CFD

J. Hawkes - G. Vaz - A.B. Phillips - S.J. Cox - S.R. Turnock

Received: date / Accepted: date

Abstract Since 2004, supercomputer growth has been con-
strained by energy efficiency rather than raw hardware
speeds. To maintain exponential growth of overall comput-
ing power, a massive growth in parallelization is under way.
To keep up with these changes, computational fluid dynam-
ics (CFD) must improve its strong scalability — its ability
to handle lower cells-per-core ratios and achieve finer-grain
parallelization. A maritime-focused, unstructured, finite-
volume code (ReFRESCO) is used to investigate the scal-
ability problems for incompressible, viscous CFD using two
classical test-cases. Existing research suggests that the lin-
ear equation-system solver is the main bottleneck to incom-
pressible codes, due to the stiff Poisson pressure equation.
Here, these results are expanded by analysing the reasons for
this poor scalability. In particular, a number of alternative
linear solvers and preconditioners are tested to determine
if the scalability problem can be circumvented, including
GMRES, Pipelined-GMRES, Flexible-GMRES and BCGS.
Conventional block-wise preconditioners are tested, along
with multi-grid preconditioners and smoothers in various
configurations. Memory-bandwidth constraints and global
communication patterns are found to be the main bottle-
neck, and no state-of-the-art solution techniques which solve

J. Hawkes - S.J.Cox and S.R. Turnock
University of Southampton
Boldrewood Campus

Southampton

United Kingdom

E-mail: j.hawkes @soton.ac.uk

J. Hawkes - G.Vaz

Maritiem Research Instituut Nederlands (MARIN)
Wageningen

Netherlands

A.B. Phillips

National Oceanography Centre
Southampton

United Kingdom

the strong-scalability problem satisfactorily could be found.
There is significant incentive for more research and devel-
opment in this area.

Keywords High-Performance Computing, Strong Scala-
bility, Software Profiling, Linear Solvers

1 Introduction

A recent report by Slotnick et al [28] attempted to create
a “vision” of CFD in 2030, identifying some of the areas
which must be improved to allow more widespread and suc-
cessful use of CFD. Among these were improved turbulence
and separation modelling; better automatic mesh genera-
tion and adaptivity; more capable multi-disciplinary simu-
lations (for example, coupled CFD and structural simula-
tions); improved post-processing, particularly of large simu-
lations; greater accuracy through higher-order methods; and
more practical design optimization. All of these goals re-
quire improvements to the underlying CFD algorithms —
making them more efficient and more scalable — particularly
considering the major changes in supercomputer architec-
ture expected in the same era. Indeed, more scalable numer-
ical methods are one of the areas highlighted by Slotnick
et al [28], stating that development has been stagnant for
too long. The particular numerical methods that require im-
provement are not clear, and depend upon the type of CFD
code and application.

Here, the strong scalability of CFD is reviewed in de-
tail, using ReFRESCO. ReFRESCO is an incompressible-
flow, unstructured, finite-volume, SIMPLE-based, segre-
gated solver specialized for maritime applications; similar
in formulation to many open-source and commercial codes.
A general scalability study of the whole code has been per-
formed (section 4), which shows that the linear equation-
system solver is the bottleneck in incompressible flow simu-



J. Hawkes et al.

lations. This study details the reason for their poor scalabil-
ity, and shows that there are new problems facing scalable
CFD since earlier literature [12], due to increasing memory
bandwidth issues. Two test cases are used: lid-driven cav-
ity flow (LDCF) and the KRISO Very Large Crude Carrier
(KVLCC2) [20], each with around 2.67-million cells — cho-
sen to show the full range of intra-nodal and inter-nodal scal-
ability bottlenecks on the University of Southampton super-
computer (Iridis4).

Following this, a variety of other linear solvers and pre-
conditioners are tested to determine whether the scalabil-
ity problems can be circumvented (section 5) and provide
a comprehensive overview of the current ‘best’ solvers for
strong scalability. These studies will aid CFD practioners
in choosing suitable solvers and guide developers to find
more scalable solutions. Widely-used solvers such as GM-
RES, Flexible-GMRES, BCGS and SOR are tested, along
with state-of-the-art solvers such as Pipelined GMRES [11]
which is designed to improve scalability. Similarly, multi-
grid preconditioners such as Sandia’s ML [10] could bring a
significant improvement when compared to block-wise pre-
conditioners (such as Block Jacobi) or simple smoothers
(such as SOR).

2 The Strong Scalability Problem

Over the last few decades, growth in supercomputing power
has been exponential, with floating-point-operation (FLOP)
rates doubling approximately every 14 months [29]. Whilst
this growth is relatively constant, the underlying architec-
tures which achieve such growth are not. Until 2004, the
speed and electricity consumption of transistors was gov-
erned by Dennard’s Scaling: as transistors shrank in size,
their speed increased linearly and their electricity consump-
tion dropped quadratically [7]. Unfortunately, the transistors
used in modern processors are so small that electrons are
able to ‘leak’ across the dielectric gates, and voltages must
be increased to maintain stability. This limitation, known as
the ‘power wall’, makes it more efficient for manufacturer’s
to provide multiple, slower cores in place of fewer, faster
cores. Figure 1 shows the exponential growth rate of com-
puting power and figure 2 shows how this computing power
is provided — in terms of FLOP-rate-per-core and number
of cores. The critical point in 2004 is clearly visible, where
the shift towards a multi-core (‘Chip-Level Multiprocess-
ing’) architecture occurred. This trend is relentless, and has
lead to supercomputers with almost 200 cores-per-node. By
2020, it is expected that the cores-per-node ratio could be as
high as 10-thousand; with the fastest supercomputers con-
taining a total of 10- to 100-billion cores. Meanwhile, mem-
ory capacity is growing at an ever-slower rate, limiting the
absolute size of simulations; and memory bandwidth (per

core) is decreasing, creating new issues for CFD algorithms
[27, 19, 17].

T T

Sum —8—

log1o(GFLOPs)
S = D W A LN 0 O
L

° # —o— |
B #500 ]
! L | l L |
1995 2000 2005 2010 2015 2020
Date

Fig. 1 Total floating-point operation (FLOP) rate of the most powerful
500 supercomputers in the world, using data from the Top500 organiza-
tion [29]. The data shows the benchmark FLOP rate of the #1 machine,
the #500 machine and the sum of all 500 machines over time. The ex-
ponential growth rate corresponds to a doubling every 13.85 months.

N 220 — T T
918 L Cores

> 216 LFLOPs/Core

Z ol4 | FLOPs —

+~ 212

o 2
N 0 O

Variable Normalized to
i

2
30 Multi-Core (CMP)
b2 L ! I Nt
1995 2000 2005 2010 2015
Date

Fig. 2 The FLOP rate, FLOP/core ratio and number of cores (average
of the Top500 [29]) over time, normalized to a snapshot in November
1993. Since the advent of chip-level-multiprocessing (CMP) in 2004,
FLOP/core ratio has grown by only a factor of approx. 4, whereas num-
ber of cores has grown by a factor of approx. 64.

It is often regarded that the CFD algorithm benefits from
good ‘weak scalability’ (the ability to maintain computa-
tional efficiency with a fixed cells-per-core ratio), thus re-
alizing the benefits of supercomputing advances when the
growth in core-count was moderate [3]. Although difficult
to quantify, it can be assumed that the capabilities of CFD
have grown more-or-less in proportion with supercomputing
power because of this trait; especially given that the maxi-
mum problem size (limited by total memory) has more-or-
less grown with the number of nodes.



On the Strong Scalability of Maritime CFD

The ‘strong scalability’ of CFD — the ability to de-
crease the cells-per-core ratio efficiently — is more impor-
tant in a massively-parallel era; and is generally poor [6, 3].
By 2020, supercomputers are expected to contain approx-
imately 3000-times more cores, but the size of CFD sim-
ulations can only increase by a factor of ~11, thus the ef-
ficient cells-per-core ratio of CFD must drop by a factor
of at least 250'. Furthermore, in the maritime industry the
majority of state-of-the-art simulations are unsteady com-
putations. Since it is difficult to parallelize the time domain,
greater spatial domain-decomposition is required to improve
CFD capabilities, requiring further improvements to strong
scalability.

Whilst both forms of scalability have been investigated
for incompressible CFD, the results are often subjective to
the particular code and hardware, and difficult to general-
ize. In Bhushan et al [3] the linear-equation system solver,
particularly for the Poisson pressure equation, is the main
bottleneck to scalability. Culpo [6] reinforces this by consid-
ering the main elements of the linear-equation system solver
and how they could be improved. However, neither paper
investigates the reason for their poor scalability in detail,
and neither considers alternative solver algorithms. Gropp
et al [12] provides a good grounding in both these areas, but
is now 15 years old — and the conclusions drawn could be
somewhat outdated due to changes in hardware.

3 Experimental Setup Using ReFRESCO

In order to conduct scalability experiments, a sample CFD
code (ReFRESCO) is used on two classical test cases. In
order to get information on the run-time of ReFRESCO,
the code is profiled by injecting timers into the code in key
places. The test cases are run across a range of core-counts,
from 1 to 512, on the University of Southampton supercom-
puter: Iridis4. The various aspects of the experimental setup
are discussed below.

3.1 ReFRESCO

ReFRESCO? is a viscous-flow CFD code that solves mul-
tiphase, unsteady, incompressible flows for unstructured
meshes [30]. It is complemented by various turbulence,
cavitation and volume-fraction models. In many ways, Re-
FRESCO represents a general-purpose CFD code, with

! Based on Tianhe-2, the current (January 2016) #1 supercomputer
and conservative estimates of an exascale machine expected in 2020.
Maximum capabilities of CFD are based on trends of total computa-
tional power, doubling every 13.85 months. Realistically, maximum
CFD capabilities are limited by memory capacity which grows even
more slowly [19], thus amplifying the problem.

2 See www.refresco.org.

state-of-the-art features such as moving, sliding and deform-
ing grids and automatic grid refinement — but it has been ver-
ified, validated and optimized for numerous maritime indus-
try problems. ReFRESCO is currently being developed at
MARIN (Netherlands) and a number of universities around
the world [8, 24, 26, 18, 2] including the University of
Southampton [13, 14, 15].

In ReFRESCO, the governing equations are discretized
in strong-conservation form using a finite-volume approach
with cell-centred collocated variables. Simulations are par-
allelized with MPI (Message Passing Interface) and parti-
tioned using METIS [9]. ReFRESCO is based on the SIM-
PLE (Semi-Implicit Method for Pressure-Linked Equations)
solver with pressure-weighted interpolation (PWTI) [18].

The SIMPLE algorithm is shown in figure 3. The coars-
est loop in the SIMPLE algorithm is responsible for un-
steady time-stepping. Time integration is performed implic-
itly with first- or second-order backward schemes. All non-
linearity is tackled in the ‘outer loop’, which is performed
several times per time-step (until satisfactory convergence).

In each outer loop, a Picard-linearized version of each
transport equation is assembled into a system of linear equa-
tions, based on the discretization of all the equation terms
(time-derivatives, convection, diffusion, source terms) in the
associated mesh. This process creates a sparse matrix of im-
plicit terms (A) and a vector of explicit terms (b); which can
be solved to find new values for the flow field (x): Ax = b. It-
erative solvers are used to solve for X to a given convergence
tolerance (based on the ¢>-norm of the residual) in an ‘inner
loop’, with typical tolerances between 0.1 and 0.001. Re-
FRESCO uses PETSc (Portable Extensible Toolkit for Sci-
entific Computing)[1] for its large range of linear solvers
and preconditioners.

Since each MPI process has its own memory space and
its own portion of the mesh, the updated values for x along
partition boundaries must be shared via MPI data exchange.
The gradient of the flow-field variable can then be computed
using Gauss theorem, and the updated gradients exchanged
across domain boundaries once again.

These four routines {assembly, solve, exchange and
}, which can be seen in figure 3, are the heart of
the SIMPLE algorithm and are the most expensive part of
the solution process. They are also the linchpin of other
SIMPLE-derived algorithms and common alternatives such
as SIMPLEC, SIMPLER and PISO.

In order to observe how these key routines scale, Re-
FRESCO has been profiled using Score-P [VI-HPS Acc.
2013]. Score-P is a compile-time wrapper which automati-
cally logs various run-time events, such as function calls and
durations. It has been carefully filtered such that only criti-
cal functions are measured, and the effect on total run-time
is less than 2%. Score-P can be linked to PAPI (Performance



J. Hawkes et al.

Initial Guess of Flow Values

/

Time-Step Loop: Until Simulation Time

Outer Loop: Until Convergence :

! * AN

| : > Solve Equation System 0
| CompUte Flow Momentum (x,y,z) e S E— Iteratively solve the linear equation-system |

| E > MPI Data Exchange

X Compme Flow Pressure - Update partition boundaries with flow values

! . | Compute Gradients

! Compute Other Flow Variables ! > Using Gauss Theorem

' (Turbulence, Cavitation, etc.) € ¢

E X I MPI Data éxchange

Assemble Equation System ~
Discretization, Eccentricity Corr., Orthogonality Corr. |

Update partiion boundaries with flow gradients

Fig. 3 An overview of the SIMPLE algorithm. Time discretization is handled by the time-step loop at the coarsest level. Within each time-step a
number of outer loops are performed in order to solve non-linearity and couple the governing equations. Within each outer loop, the solutions to
the governing equations (momentum, pressure, etc.) are computed in their uncoupled, linearized, discretized form. The solution of each equation

follows the same five steps as illustrated on the right.

Application Programming Interface)[4] which gathers addi-
tional information from physical hardware-counters.

Two hardware counters are enabled for these tests. The
first measures floating point operations per second, which
helps to determine whether the processing units are satu-
rated. For an unstructured CFD code this is an unlikely sit-
uation, as the indirect memory access bottlenecks the pro-
cessor. Structured-mesh codes are more likely to reach these
limits due to better memory layout and vectorization.

Hardware counters for pure memory bandwidth are not
available, but level one (L1) cache misses give a good indi-
cation of memory-fetching issues (since a cache miss must
result in a memory or next-level cache transaction). How-
ever, there are two issues. Firstly, the compiler will often
prefetch memory into the cache, resulting in memory band-
width usage which is not detected by this hardware counter.
Secondly, an L1 cache-miss will be registered even when
the data resides in L2 or shared cache (which is still very
fast compared to off-chip memory). Despite these imperfec-
tions, it is possible to see certain bottlenecks due to memory
bandwidth, particularly when combined with other hardware
counters or profiling.

Other hardware counters are available (such as L2 cache
misses), but they cannot be enabled at the same time due to
register sizes or competing circuitry.

3.2 Iridis4

ReFRESCO is run on the University of Southampton’s lat-
est supercomputer. Iridis4 has 750 nodes, consisting of two

Intel Xeon E5-2670 Sandybridge processors (8 cores, 2.6
Ghz), for a total of 12,200 cores. Each 16-core node is disk-
less, but is connected to a parallel file system, and has 64GB
of memory. The nodes run Red Hat Enterprise Linux version
6.3. Nodes are grouped into sets of 30, which communicate
via 14 Gbit/s Infiniband. Each of these groups is connected
to a leaf switch, and inter-switch communication is then via
four 10 Gbit/s Infiniband connections to each of the core
switches. Management functions are controlled via an eth-
ernet network.

Iridis4 ranked #179 on the Top500 list of November
2013 with a peak performance of 227 TFLOPS [29]. Iridis4
cannot be classified as a next-generation, many-core ma-
chine, with only 16 cores per node. Indeed, it is several years
behind the state-of-the-art. Nonetheless, it should be able to
give sensible insight into the limitations of the CFD algo-
rithm.

3.3 LDCF & KVLCC2

Two test cases are used in the experiments. The first is a
laminar-flow, canonical, unit-length, three-dimensional lid-
driven cavity flow (LDCF). A uniform structured mesh of
2.68-million cells (139%) is used, and only momentum and
pressure equations are solved. The simulation mimics an
infinite domain, with two cyclic boundary conditions. The
remaining four boundaries are constrained with Dirichlet
boundary conditions, one of which specifies a tangential,
non-dimensional velocity of 1.



On the Strong Scalability of Maritime CFD

The second test case is the KRISO Very Large Crude
Carrier (KVLCC2) double-body wind-tunnel model [20].
The mesh is a three-dimensional multi-block structured
mesh consisting of 2.67-million cells. A k-w, two-equation
shear stress transport turbulence model is used [22]. The do-
main and mesh are shown in figures 4 and 5 respectively.

The two test-cases are designed to have a similar number
of cells. The size of the mesh has been chosen to show the
full range of scalability issues. On 512 cores, the cells-per-
core ratio reaches approximiately 5200 which helps demon-
strate the parallel bottlenecks on a large number of cores; yet
the problem is substantial enough to show memory band-
width issues on a single node (with approximately 167k
cells-per-core).

In both cases, 400 outer-loops are performed with no
time-stepping, with an inner-loop (linear) relative conver-
gence tolerance of 0.1 (0.01 and 0.001 later). Relaxation is
applied to all outer-loops to stabilize the non-linear itera-
tive process. QUICK (Quadratic Upstream Interpolation for
Convective Kinematics) and first-order upwind schemes are
used to discretize the convective terms of the momentum
and turbulence equations respectively. A GMRES (General-
ized Minimal Residual method) solver is used with a Block
Jacobi preconditioner, as in Gropp et al [12].

Inflow Non-Slip Wall

Symmetry

Pressure

Slip Wall

Fig. 4 The domain used for the KVLCC2 double-body wind-tunnel
simulation. Symmetry boundary conditions are applied at the water-
plane, but port- and starboard-sides of the centre-line are both simu-
lated.

4 General Scalability Study

The scalability of the SIMPLE algorithm has been examined
by measuring the run-time of the two test cases as succes-
sively more cores are added to the simulation. A scalabil-
ity factor S can be defined as S = T/T¢ where T¢ is the
wall-time using C cores. Ideal scalability is when S = C, al-
though this is rarely achieved. This scalability factor can be
found for various subroutines in the SIMPLE algorithm in
order to identify potential bottlenecks. Here, the scalability

Fig. 5 The KVLCC2 mesh is a multi-block structured mesh consisting
of 2.67-million cells.

factor is normalized to serial operation (C = 1), and is often
called a parallel ‘speed-up’ factor for this reason.

Figure 6.a and 6.b show the scalability of the code as the
number of cores increases. The embedded bar charts show
absolute core-hours (C X T¢, which would ideally remain
constant) in serial operation (C = 1), single-node operation
(C = 16) and highly-parallel operation (C = 512). Total
core-hours is shown with black bars; the composite parts are
coloured and keyed with respect to the enclosing scalability
plot. This shows the denormalized costs of various routines;
and also highlights where the scalability bottlenecks occur
— at the intra-nodal or inter-nodal level. The results from the
hardware counters are shown in figure 7, for the LDCF test
case.

Total scalability is poor overall, suffering significantly
on just 16 cores due to intra-nodal bottlenecks and wors-
ening to the point at which almost no speed-up is gained
from adding additional nodes. On 512 cores the parallel
speed-up is just 128 (KVLCC2) and 100 (LDCF). This
scalability is similar to other codes, such as OpenFOAM
[25, 6], STAR-CCM+ [5] or Ansys Fluent [HP 2014] — al-
though some published results are normalized to nodal per-
formance (i.e. C = 16, which hides intra-nodal inefficiency
and gives overly-optimistic results) or are truncated (hiding
inter-nodal bottlenecks). Exact comparisons between vari-
ous codes on identical hardware were not feasible, but only
minor differences are expected since all of these packages
are based off the same algorithm and share similar imple-
mentations. Major differences should only be observed if
coupled solvers or inferior partitioning schemes are used.

The routines outlined earlier {assembly, solve, exchange
and gradients}, for each equation in each outer loop, account
for the large majority of overall run-time. The remaining
time (other) is spent (mostly) in one-off functions such as file
IO or MPI initialization, thus is subjective to the length of
the simulation and amount of IO required. These other rou-



J. Hawkes et al.

tines may also increase significantly if additional features
such as moving, deforming and adapative grids are used —
again, this is highly subjective.

The assembly and routines scale favourably,
reaching almost 90% parallel efficiency. The high, and in-
creasing, cache-miss rate of the gradients routines is curi-
ous, as it does not seem to affect performance (FLOP rate is
maintained). It is likely that the data required resides in L2
or shared-cache, rather than off-chip memory, so the impact
of these L1 cache misses is much lower.

The data exchange routines are not visible in the scal-
ability plots, because normalizing against (7} =~ 0) gives
negative scalability (no communications are required in se-
rial operation). In reality, these routines scale reasonably —
as the number of cores increases the size of the messages be-
come smaller, and these messages can be sent concurrently.
With inadequate load-balancing these data exchanges can
become costly, due to the implicit synchronization of MPI
processes. However, the results show that these communi-
cations account for a small proportion of overall run-time.

As consistent with literature, the solve routines have
poor scaling and are a major contributor to total run-time,
thus are the main concern for scalability. The hardware per-
formance counters show a high cache-miss rate between 16
and 128 cores, corresponding to saturated memory band-
width at the intra-nodal level.

Memory-bandwidth-per-node has been growing at ap-
proximately half the rate of processing-power-per-node
leading to today’s problems with memory bandwidth [27].
In Gropp et al [12], conducted in 2000 on single-core pro-
cessors, memory-bandwidth problems were apparent but not
as concerning — changes in architecture over the last decade
have made memory bandwidth issues more critical.

Beyond 128 cores, cache misses in the solve routines be-
come less frequent but FLOP rate continues to decrease and
scalability worsens. This is due to the oft-observed global
communication bottleneck. An illustration of a single GM-
RES iteration is shown in figure 8. This pattern is computa-
tionally similar to most Krylov Subspace (KSP) solvers, in-
cluding conjugate gradient methods — although some differ-
ences will be mentioned in section 5. In particular, two dis-
tinct communication routines are required by KSP solvers.

Firstly, sparse-matrix-vector-multiplication (SpMV) re-
quires concurrent neighbour-to-neighbour communication
as in the data exchange routines — scaling reasonably well.

Secondly, two global reduction-broadcast routines are
required for orthogonalization and normalization of the
Krylov vectors. These require a hierarchical global com-
munication pattern which scales poorly, usually with T¢ &
log,(C) (where the proportionality factor depends primar-
ily on network latency). These communication patterns are
blocking, and cannot easily be overlapped or hidden by other
useful work. On a large number of cores spread over an

inter-nodal network with relatively high latency, these global
communications become a bottleneck to scalability of the
linear solvers. Whilst most routines reduce in wall-time as
more cores are added (with less-than-ideal efficiency), wall-
time for global communications increases, as each time the
number of cores doubles, an extra set of messages must be
sent (incurring the latency cost of the network).

These global communications create a scalability bot-
tleneck when a high number of nodes are used, and has
been well-documented in the literature [6]. The memory-
bandwidth problems previously noted are often overlooked,
but are an important bottleneck to overcome for next-
generation supercomputing.

Figure 6.c and 6.d shows the breakdown of time spent
in the various equations (pressure, momentum, turbulence).
In both cases, the single pressure equation took considerable
time to compute — similar to all three momentum equations
combined. In incompressible-flow simulations the pressure
equation is much harder to solve than other transport equa-
tions, due to its elliptic Poisson form.

This can be illustrated by considering the spectral ra-
dius (maximum eigenvalue) of the Jacobi iteration matrix:
p(D~1(L+U)), where D, L and U are the diagonal, lower and
upper triangles of A respectively. The rate of convergence of
the Jacobi method is proportional to the spectral radius, and
must be less than unity for convergence. Using a smaller
version of the KVLCC2 mesh (317k cells), the spectral ra-
dius of the KVLCC?2 pressure equation was >0.9999, com-
pared to 0.8450 for the momentum equation and 0.5888 for
the turbulence equation®. Thus it would take at least 1700-
times more iterations of the pressure equation to reach the
same convergence as in the momentum equation, if using a
naive Jacobi solver. The pressure equation also gets stiffer
as the mesh gets larger, amplifying the problem. KSP meth-
ods, particularly with good preconditioning, close this gap
considerably, but there is still a large difference between the
pressure equation and other transport equations [14].

The above results were performed using an inner-loop
(linear) relative convergence tolerance of 0.1 for all equa-
tions. The results were repeated using a tolerance of 0.01
and 0.001 (see figure 9). Note the significant increase in
wall-time, entirely due to the solve routines for the pressure
equation.

These results were also re-run using alternative convec-
tive discretization schemes [13], which had no significant
effect on scalability. Higher order methods, such as QUICK,
apply their high-order terms explicitly (into the b vector);
with only the low-order terms affecting the matrix (A). It is

3 The spectral radii were found by extracting the matrices from the
fifth outer loop in a separate batch of simulations. The maximum eigen-
value, and thus spectral radius, of the corresponding Jacobi iteration
matrix could be found using ARPACK routines [21] based on Arnoldi
iterative methods. The size of the matrix that could be tested was lim-
ited by memory capacity.



On the Strong Scalability of Maritime CFD

(a) ' ' 100
Core-hrs ¥—v Assemble
i 180 ¢ Solve |
512 ¢ &~ Exchange
> o—o Gradients
= *—x QOther
a — Total
©
©
(&}
wn
. =1 .
2561 71 Cores = 16
N cores =512
P‘\’
128} o
64t ]
0 A A A
0 64 128 256 Cores 512
(© ' ' 100°
Core-hrs _ a— Momentum x3
512} 480 e—e Pressure i
»—x Turbulence x2
> 460 — Total
E
o
©
o
wn
256
128
64
0 1 1 1
0 64 128 256 Cores 512

(b) T T 50 T
Core-hrs  _ v Assemble
440 ¢— Solve
512¢ ¢ »— Exchange ]
> o—o Gradients
= »—x Other
a — Total A
)
©
(o]
wn
| M cores=1 4
256 cores = 16
N cores =512
P“\'
128} o¢ |
64}
O A A A
0 64 128 256 Cores 512
(d) T T 50
Core-hrs  _ +—a Momentum x3
512} 440 e—e Pressure
»—x  Turbulence x2
> 430 — Total
E1| ao_ o
o) 20
)
S - 10
wn N « N,
o cores =1 |
256 cores = 16
N cores =512
\
P
641 R
O Il Il Il
0 64 128 256 Cores 512

Fig. 6 Scalability of the code, and the profiled routines within, as the number of cores increases. These results used GMRES as the linear solver
with a Block Jacobi preconditioner, and an inner-loop relative convergence tolerance of 0.1. (a) KVLCC2 breakdown by routine, (b) LDCF
breakdown by routine, (c) KVLCC2 breakdown by equation, (d) LDCF breakdown by equation.

suggested that higher-order discretization will be a promi-
nent development in the next decade [28], so this is a promis-
ing result. However, there are difficulties when going to even
higher-order methods, and this remains an area of active
linear-solver development [23].

A fully unstructured mesh was also tested using the
KVLCC2 test case [13]. The unstructured mesh was much
larger (12.5m) and did not directly match a structured mesh,
so the scalabiliy of two structured meshes was interpo-
lated (10.0m and 15.8m). The interpolated scalability of the
structured meshes was virtually identical to the unstructured
mesh. Note that ReFRESCO treats all meshes as unstruc-
tured meshes, in terms of data structure — and therefore
does not take advantage of structured meshes and structured
memory layout.

This preliminary study concludes that in their basic
form, the linear equation-system solvers are the primary
bottleneck to strong scalability of CFD, in agreement with
recent literature. In particular, detailed profiling of Re-

FRESCO has revealed that memory bandwidth contention
and expensive hierarchical communication patterns are the
main bottleneck. However, the scalability may be signif-
icantly altered if different solvers and preconditioners are
used.

5 Effect of Linear Solvers & Preconditioners on
Scalability

Thus far, the results have used a basic GMRES solver with a
Block Jacobi preconditioner. More modern solvers or pre-
conditioners could provide very different scalability char-
acteristics. For example, a powerful preconditioner could
reduce the number of KSP iterations (and global commu-
nications) required; but may be unscalable in itself due to
communication or high setup costs. CFD is unique in that
a solution to the linear system is only approximated, since
the solution to the linear system is a small part of a non-
linear system. Compared to applications which require ma-



8 J. Hawkes et al.
50 T T T T 1.2
¥—v Assemble ¥—¥ Assemble
+— Solve — Solve
v 40 a4 Exchange o | 1.0 a—a Exchange 1
o o—o Gradients o—o Gradients
> © »—< Other »—x Other
B Total v 0.8 — Total |
z 1 S
g & 0.6 1
o S
g ] [T
0 Oo04 ) h
= S
— | 0-00000°
- 0.2 :
O 1 1 1 1 0.0 e ok ke
0 64 128 256 512 0 64 128 256 512
Cores Cores

Fig. 7 An example of the information gleaned from PAPI hardware counters. For all routines in the LDCF test case, the number of first-level (L1)
cache-misses per thousand clock cycles [left] and the total floating-point operation rate (FLOPs) [right] are shown.

reduct/bcast scale

local dot reduct/bcast

SpMV axpy

Fig. 8 An illustrative trace of a GMRES iteration on 8 cores (not to
scale). Note the local neighbour-to-neighbour communications per-
formed asynchronously in the SpMV routine, and the two reduction-
broadcast patterns. There are many variations of the reduction-
broadcast algorithm which cannot be illustrated clearly. The most com-
mon is the ‘butterfly’ algorithm which completes in log,(C)-time, com-
bining the reduction and broadcast into a single hierarchy of latency-
bound messages. As the number of cores increases, this reduction-
broadcast takes longer, whilst other routines take less time.

chine accuracy of linear systems, CFD is very sensitive to
start-up (initialization of linear solvers, memory allocation,
etc.) costs which may rule out the most advanced solvers or
preconditioners. Indeed, it may be that simpler precondition-
ers than Block Jacobi provide better scaling. In this section,
the scalability of the linear solvers will be tested. Following
this, a number of preconditioning techniques will be inves-
tigated — including block preconditioning techniques, multi-
grid methods and simple smoothers.

5.1 Solvers

A recent improvement to GMRES has been developed, so-
called Pipelined GMRES (PGMRES) [11], which removes
one of the global communications from the standard GM-
RES iteration — replacing it with a correction routine, and
allowing the remaining reduction to be overlapped with

other useful work. The scalability of GMRES and PGM-
RES are compared in figure 10. Flexible GMRES (FGM-
RES) has been tested, as it allows a wider range of pre-
conditioning techniques to be used later. A Bi-Conjugate
Gradient Squared (BCGS) method has also been tested. All
of the KSP methods use Block Jacobi as a preconditioner.
A successive over-relaxation (SOR) method is also shown,
demonstrating the differences between KSP and non-KSP
methods.

GMRES performs as previously noted, with poor per-
formance at the intra-nodal level due to memory-bandwidth
contention and poor performance on a large number of cores
due to global communication patterns. FGMRES exhibits
slightly worse inter-nodal scalability than GMRES. PGM-
RES scales worse in the memory-bandwidth zone than ei-
ther GMRES or FGMRES, but the gradient of the scalability
factor, dS/dC, between 256 and 512 cores is approximately
double that of GMRES - consistent with the algorithmic
improvement (half the number of global communications).
Overall, the wall-time gains from PGMRES on 512 cores
are minimal.

BCGS gives strong numerical performance in serial op-
eration and similar memory-limited scaling at the intra-
nodal level. BCGS requires four global communications per
iteration, thus inter-nodal scaling suffers.

As expected, SOR performs much worse than the KSP
methods, but has far superior scalability. SOR is limited by
memory bandwidth briefly, but quickly recovers this as the
simulation fits into cache. The SOR algorithm still uses one
global communication pattern to compute a residual at the
end of each iteration; thus its final gradient is similar to that
of PGMRES. Residuals could be calculated less frequently
to improve scalability of SOR considerably.



On the Strong Scalability of Maritime CFD

(@) ' ' 160’
Core-hrs | 140 ¥ Assemble
5121 +— Solve |
1120 a—a Exchange
- 1100 o—e Gradients
= 480 < Other
'_rau {go — Total
< -1 40
@] i
wn v A O X N | (2)0
. l cores=1 E
256 cores = 16
N cores =512
\%
<P
128 ©
64 ]
0 A A A
0 64 128 256 Cores 512
(©) ' ' 160’
Core-hrs | 140 &4 Momentum x3
512| e—e Pressure |
o 1120 %— Turbulence x2
> § 4100 — Total
= § 4\ 80
i) N 160
© N
o AN 440
9 I ? X H20
() N
% N
| M cores=1 E
256 cores = 16
N cores =512
\%
<P
128} ©
641 ]

00 64 128 256 Cores 512

(b) T T
¢Core-hrs Assemble
Solve
512 Exchange d
> Gradients
= Other
a Total
)
©
(o]
wn
256 cores = 16 i
N cores =512
5%
128} ©
64} ]
O A A
0 64 128 256 Cores 512
(d) ‘ ‘ 250
Core-hrs g a~— Momentum x3
512 ® 41200 ®—e Pressure
»—x  Turbulence x2
> N1 150 — Total
s
e - 100
)
© 50
sl A X
u =0
o cores =1 |
256 cores = 16
N cores =512
\
P
128} ©
641 7

00 64 128 256 Cores 512

Fig. 9 Scalability of the code with an inner-loop convergence tolerance of (a,c) 0.01 and (b,d) 0.001 for the KVLCC2 test case as in figure 6,
showing scalability of (a,b) the various routines and (c,d) the various equations, using GMRES with a Block Jacobi preconditioner. The results
show poor scaling of the solve routines, which particularly influences the cost of the pressure equation. Similar results were obtained for the LDCF

test case.

ReFRESCO also has access to a large range of precondi-
tioners through its use of PETSc, many of which have been
tested as follows.

5.2 Block Preconditioners

The Block Jacobi algorithm used thus far implements a
block-wise Incomplete LU (ILU) factorization with zero-
level fill, and sets a high benchmark for other precondition-
ers. ILU(0) is performed on each MPI process’s local por-
tion of the matrix, leading to an interesting problem: con-
vergence deteriorates as the number of cores increases, as
the local portion becomes less significant to the global solu-

tion*. An Additive Schwarz Method (ASM) was tested, with
the same block-wise ILU(0O) solver. ASM is similar to Block
Jacobi, but allows communication between neighbouring
blocks to augment the process. The results are shown in
figure 11. The differences between Block Jacobi and ASM
were small, with ASM fairing worse overall due to addi-
tional communications. ILU(0), ILU(1) and ILU(2) were
also tested as preconditioners in their own right, with poor
results in all regards (not shown).

4 Indeed, this made it difficult to distinguish between convergence-
loss-problems and global-communication-problems in the previous
section. Profiling of an unpreconditioned GMRES reveals that glob-
als communications are the leading problem. However, the number of
iterations required with Block Jacobi increased when a tolerance of
0.001 was requested.



J. Hawkes et al.

10
T T 1O3I
Core-hrs ¢ e—e FGMRES + BJACOBI
512} v »— GMRES + BJACOBI |
° - 1102 ¥ PGMRES + BJACOBI
> X v R v—v BCGS + BJACOBI
£ N meg B ¢—0 SOR
S
o | (AN P {2
s I
O [ INENRARN
N 72Nl 2
2 | I ],
| @ cores=1 4
256 cores = 16
cores = 512 "
\
A
128} \Y
0 /)
64 o
OW - H |
0 64 128 256 Cores 512

Fig. 10 Scalability of the solve routines in the pressure equation, using
the KVLCC?2 test case with inner-loop convergence tolerance set to 0.1.
The results compare three Krylov Subspace solvers and a Successive
Over-Relaxation (SOR) algorithm operating as a Block Gauss-Seidel
method. Note the exponential scale of the inset core-hours chart.

5.3 Multi-grid Preconditioners

For elliptic equations (such as the pressure equation) multi-
grid methods such as ML [10] should be very powerful.
Multi-grid methods cover a broad category, with multiple
formulations and many opportunities for fine-tuning. They
are all based on the principle that multiple scales of the prob-
lem can be solved efficiently by solving coarse-grid approx-
imations to the actual (fine) grid. The coarsest grid will have
a much lower spectral radius than the finest, allowing low-
frequency errors to be reduced quickly. Meanwhile, the fine
grid solves high-frequency errors, and the results are com-
bined. Since each grid is much easier to solve, ‘smoothers’
are used instead of complete solvers at each level. A typi-
cal smoother may just be one iteration of SOR or an ILU
factorization, for example, although the coarsest grid is of-
ten solved directly. There are many variations of multi-
grid methods: different methods for coarse-grid construc-
tion; different methods for coarse-grid interpolation; various
methods of communicating (or not) on coarse grids; and so
on. All of these variations will have a large effect on scala-
bility.

ML is a state-of-the-art smoothed-aggregation algebraic
multi-grid method from Sandia’s National Labaratories, and
is one of the most commonly-used multigrid packages [10].
ML automatically creates coarse grids until a minimum size
is reached using a smoothed aggregation process. For the
KVLCC?2 test case, ML automatically decided to create six
grids when running on one core, and four grids on 512 cores.
FGMRES was necessary to accommodate the multi-grid
preconditioner, because the preconditioning matrix could
change between iterations.

The results shown in figure 11 show that ML is highly
capable at the intra-nodal level. It exhibits strong serial per-
formance and moderate scaling to 16 cores — better than
Block Jacobi. Unfortunately it rapidly breaks down beyond
64 cores where global communications dominate. It was
suspected that this was due to the direct solver used on the
coarsest grid, but replacing it with a smoother (5 iterations
of SOR) resulted in worse scalability. Another recommen-
dation is to restrict the number of levels created by ML,
thus reducing expensive start-up costs. Restricting ML to
three levels worsened the scalability; and two levels (not
shown) gave similar results. It is expected that less sophis-
ticated multigrid methods (such as non-smoothed aggrega-
tion) may provide better results for CFD, since start-up is
cheaper. It is also possible to re-use the coarse-grid map-
pings between non-linear iterations, which would improve
the results shown here. Furthermore, the multigrid method
could be used as a standalone solver rather than a precondi-
tioner, omitting FGMRES entirely. Clearly a much deeper
study of multi-grid methods is required as they certainly
cannot be used as a black-box for scalable CFD.

5.4 Smoothing as a Preconditioner

Finally, it is worth considering a much simpler precondi-
tioner than even Block Jacobi. Instead of preconditioning in
the classic sense, a smoother can be used before the main
solver (FGMRES). Ten iterations of SOR as a smoother
was optimal (compared to 1, 100 or 1000). Although it per-
formed worse than Block Jacobi in serial operation, where
Block Jacobi has good convergence, it was able to utilize the
super-linear scalability as noted in section 4 due to caching
of memory, thus providing excellent scalability. Since a
fixed number of smoother iterations were performed, resid-
ual computation in the SOR algorithm was unnecessary, im-
proving scalability further. This combination has minimal
setup costs, since SOR requires no additional memory or
pre-computation, so could be a viable option for scalable
CFD. However, the solver is still unavoidably limited by
memory bandwidth contention, and global reductions from
the overruling KSP solver. Furthermore, the numerical per-
formance is not good, so it is only competitive on a large
number of cores.

This section has looked at various linear solver and pre-
conditioners. The most promising result was from a SOR
smoother instead of a classical preconditioner. Although it
was the slowest configuration for serial computation, supe-
rior scaling meant that it was often the best performer at
C = 512. A multi-grid preconditioner was tested, which per-
formed well on a low number of cores, but had poor scal-
ing. A more detailed study of multi-grid preconditioning
may yield better results. A more scalable version of GM-
RES was also tested (Pipelined GMRES) with mixed results



On the Strong Scalability of Maritime CFD

11

— global communication problems were halved; but at the
cost of more memory-bandwidth problems.

(a) T T 1O4|
Core-hrg M e—e BJACOBI
A T , &— ASM
512F N {10 ~— SORx10 1
> N g s ML (Direct)
2l e % N 4102 ¥ ML (Smoothed)
3| F NN AN v—v ML (Direct; 3-level)
o (| N lNIH A AL
s (W
SIREE L
NI NN 1 o
256 2 %
s=5
128
64
0
0 64 128 256 Cores 512
(b) T T 105|
Core-hrs e—e BJACOBI
i 4{10* &~ ASM i
512 M =< SORx10
- 4103 &2 ML (Direct)
= ° v—v ML (Smoothed)
el 4102 ¥~ ML (Direct; 3-level)
= |
S| 7 10
2l 7
7\ 10°
256 M cores =1 .
cores = 16
cores = 512
128
64
0
0 64 128 256 Cores 512
(©) I ! 100"
Core-hrs y e—e BJACOBI
i Y gd10* & ASM |
512 A RN § »—x  SORx10
> Q N4 103 &= ML (Direct)
e 4 s § v—v ML (Smoothed)
% gg g ?§ ?§ '§ 102 ¥ ML (Direct; 3-level)
© ?§ ¢ Z& ?i , 10*
SR L
/NN NI 10°
256 2 %
s=5
128
64
0

0 64 128 256 Cores 512

Fig. 11 Scalability of the solve routines in the pressure equation, us-
ing the KVLCC?2 test case with inner-loop convergence tolerance set
to (a) 0.1, (b) 0.01 and (c) 0.001. The results compare different pre-
conditioners including Block Jacobi, Additive Schwarz (ASM), SOR
smoothing (SORx10) and a multi-grid method (ML). FGMRES is used
as the solver to allow more flexible preconditioning. Note the exponen-
tial scale of the inset core-hours chart.

Overall, the best setup required using 10 iterations of
SOR as a smoother/preconditioner. The initial study is re-
illustrated using this configuration in figure 12. Inter-nodal
scaling is significantly improved (compared to figure 6.a),
which is encouraging, but parallel efficiency is still poor and
global communications are still limiting. Overall wall-time
on 512 cores has been improved by approximately 30%, but
with stricter convergence tolerances these gains are lost due
to the poor numerical properties of SOR.

- 90
Core-hrs 15, ¥ Assemble
i — Solve i
512 ¢ . _70 »—a Exchange
N 60 ¢
> N 0 o—o Gradients
= N1°% »— Other
3 N 140 — Total
9
© 1
: a
@ 7
%
2561
128
641
O A A A
0 64 128 256 Cores 512

Fig. 12 Scalability of the code for the KVLCC2 test case, and the pro-
filed routines within, as the number of cores increases. These results
used FGMRES with 10 iterations of SOR as a smoother, with an inner-
loop relative convergence tolerance of 0.1. Similar results were found
for the LDCEF test case.

6 Conclusions

The main causes of inefficiency and poor scalability of the
SIMPLE method have been analyzed by profiling the per-
formance of a state-of-the-art CFD code from 1 to 512
cores. The results show that the main bottleneck is the linear
equation-system solvers, particularly for the Poisson pres-
sure equation. The main problem with the linear equation-
system solvers is the large amount of expensive, unscalable
global communications that are performed. Profiling with
hardware counters has also revealed further problems at the
intra-nodal level due to memory-bandwidth contention.
Experiments were performed in order to measure per-
formance differences between various state-of-the-art linear
equation-system solvers and preconditioners. Recent devel-
opments such as a ‘pipelined’ version of GMRES showed
improved inter-nodal scalability but gave worse absolute
speed and intra-nodal scalability — overall giving only a
minor performance increase. Multigrid methods offer some
hope, but their performance is nuanced and difficult to pre-
dict. The results showed that multigrid preconditioners were



12

J. Hawkes et al.

able to offer better absolute speed, but did not scale as well
as simpler preconditioners such as Block Jacobi. Depending
on the convergence tolerance of the linear equation system,
simple smoothers often gave the best performance. Replac-
ing the classical Block Jacobi preconditioner with ten iter-
ations of Successive Overrelaxtion improved overall wall-
time on 512 cores by 30%.

By 2020, supercomputers are expected to be 3000-times
more parallel [19], with total power (and practical simula-
tion size) growing by a factor of just ~11. Based on these
hardware predictions, the cells-per-core ratio must drop by
a factor of at least 250 in order to maintain a practical simu-
lation time. Today, a practical simulation of 50-million ele-
ments, using 512 cores of Iridis4, would achieve a cells-per-
core ratio of approximately 100-thousand. Dividing this by
250 gives a predicted cells-per-core ratio of just 391. The re-
sults have shown that scalability at 5200 cells-per-core is al-
ready poor, with a maximum parallel efficiency of 25-50%.
Beyond 512 cores, negative scalability is likely, with sim-
ulation time increasing as more cores are added. With the
current state of the CFD algorithm, extrapolating to less than
500 cells-per-core is almost inconceivable.

There are currently developments to improve on the pre-
sented SOR results using ‘chaotic’ iterative methods, which
provide even better scalability by removing the implicit syn-
chronization in the sparse-matrix-vector communications;
improving cache-use at the intra-nodal level; and slightly
improving convergence rates. These chaotic methods could
also be used to accelerate multigrid methods [14, 15]. Re-
gardless of the specific methods, more research is needed
to carry incompressible CFD codes into the next era of su-
percomputing, where many-core machines (including GPU
or co-processor architectures) will be commonplace. Mi-
nor improvements can be expected from alternative soft-
ware models (such as hybrid parallelization), but significant
changes are required at the algorithmic level to keep up with
rapidly-evolving hardware.

Acknowledgements

Over 3000 simulations have been performed to obtain the re-
sults presented herein. The authors acknowledge the use of
the IRIDIS High Performance Computing Facility, and asso-
ciated support services at the University of Southampton, in
the completion of this work. The authors would also like to
thank C.M. Klaij (MARIN) for his guidance and expertise.

References

1. Balay S, Abhyankar S, Adams MF, Brown J, Brune
P, Buschelman K, FEijkhout V, Gropp WD, Kaushik
D, Knepley MG, Mclnnes LC, Rupp K, Smith BF,

10.

11.

12.

13.

14.

Zhang H (2013) PETSc Users Manual. Tech. Rep.
ANL-95/11 - Revision 3.4, Argonne National Labora-
tory, http://www.mcs.anl.gov/petsc

. Bandringa H, Verstappen R, Wubbs F, Klaij C, Ploeg

A (2012) On Novel Simulation Methods for Com-
plex Flows in Maritime Applications, Numerical Tow-
ing Tank Symposium (NUTTS), Cortona, Italy

. Bhushan S, Carrica P, Yang J, Stern F (2011) Scalability

Studies and Large Grid Computations for Surface Com-
batant Using CFDShip-lowa. [JHPCA 25(4):466—487

. Browne S, Dongarra J, Garner N, Ho G, Mucci P

(2000) A portable programming interface for per-
formance evaluation on modern processors. Int J
High Perform Comput Appl 14(3):189-204, DOI
10.1177/109434200001400303

. CD-Adapco (2010) Star-CCM+ Performance Bench-

mark and Profiling, HPC Advisory Council (Best Prac-
tices)

. Culpo M (2011) Current Bottlenecks in the Scalability

of OpenFOAM on Massively Parallel Clusters. Tech.
rep., Partnership for Advanced Computing in Europe

. Dennard R, Gaensslen F, Rideout V, Bassous E, Leblanc

A (1999) Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions. Proceedings of the
IEEE 87(4):668-678

. Eca L, Hoekstra M (2012) Verification and Validation

for Marine Applications of CFD, 29th Symposium on
Naval Hydrodynamics, Gothenburg, Sweden.

. G Karypis (Acc. 2014) METIS: Serial Graph Par-

titioning And Fill-Reducing Matrix  Ordering,
v5.1.0, department of Computer Science and En-
gineering, University of Minnesota, MN, USA.
http://glaros.dtc.umn.edu/gkhome/views/metis

Gee M, Siefert C, Hu J, Tuminaro R, Sala M (2006) ML
5.0 Smoothed Aggregation User’s Guide. Tech. Rep.
SAND2006-2649, Sandia National Laboratories
Ghysels P, Ashby TJ, Meerbergen K, Vanroose W
(2013) Hiding Global Communication Latency in the
GMRES Algorithm on Massively Parallel Machines.
Journal of Scientific Computing 35(1):48-71

Gropp W, Kaushik D, Keyes D, Smith B (2000) Ana-
lyzing the Parallel Scalability of an Implicit Unstruc-
tured Mesh CFD Code. In: Valero M, Prasanna V, Va-
japeyam S (eds) High Performance Computing HiPC
2000, Lecture Notes in Computer Science, vol 1970,
Springer Berlin Heidelberg, pp 395-404

Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz
G (2014) Performance Analysis Of Massively-Parallel
Computational Fluid Dynamics, The 11th International
Conference on Hydrodynamics (ICHD), Singapore
Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz G
(2014) Potential of Chaotic Iterative Solvers for CFD,
The 17th Numerical Towing Tank Symposium (NuTTS



On the Strong Scalability of Maritime CFD

13

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

2014), Marstrand, Sweden

Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz G
(2015) Chaotic Linear Equation-System Solvers for Un-
steady CFD, The 6th International Conference on Com-
putational Methods in Marine Engineering (MARINE
2015), Rome, Italy

Hewlett-Packard Development Company (2014) Scala-
bility of ANSYS 15.0 Applications and Hardware Se-
lection. Tech. rep.

Horst S (2013) Why We Need Exascale And Why We
Won’t Get There By 2020, Optical Interconnects Con-
ference, Santa Fe, New Mexico, USA

Klaij C, Vuik C (2013) Simple-Type Preconditioners for
Cell-centered, Collocated, Finite Volume Discretization
of Incompressible Reynolds-averaged Navier-Stokes
Equations. International Journal for Numerical Methods
in Fluids 71(7):830-849

Kogge P, Bergman K, Borkar S, Campbell D, Carl-
son W, Dally W, Denneau M, Franzon P, Harrod W,
Hill K, Hiller J, Karp S, Keckler S, Klein D, Lucas R,
Richards M, Scarpelli A, Scott S, Snavely A, Sterling
T, Williams S, Yelick K (2008) ExaScale Computing
Study: Technology Challenges in Achieving Exascale
Systems, DARPA IPTO

Lee S, Kim H, Kim W, Van S (2003) Wind Tunnel Tests
on Flow Characteristics of the KRISO 3,600 TEU Con-
tainer Ship and 300K VLCC Double-Deck Ship Mod-
els. Journal of Ship Research 47(1):24-38

Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK
Users’ Guide: Solution of Large-Scale Eigenvalue
Problems by Implicitely Restarted Arnoldi Methods.
SIAM, Philadelphia, PA, USA

Menter F, Kuntz M, Langtry R (2003) Ten Years of In-
dustrial Experience with the SST Turbulence Model. In:
Turbulence, Heat and Mass Transfer 4, Antalya, Turkey
Olson LN, Schroder JB (2011) Smoothed Aggrega-
tion Multigrid Solvers For High-order Discontinuous
Galerkin Methods For Elliptic Problems. Journal of
Computational Physics 230(18):6959 — 6976

Pereira F, Eca L, Vaz G (2013) On the Order of Grid
Convergence of the Hybrid Convection Scheme for
RANS Codes, in proceedings of CMNI, Bilbao, Spain.
Pringle G (2010) Porting OpenFOAM to HECTOR,
EPCC, The University of Edinburgh

Rosetti G, Vaz G, Fujarra A (2012) URANS Calcu-
lations for Smooth Circular Cylinder Flow in a Wide
Range of Reynolds Numbers: Solution Verification and
Validation. Journal of Fluids Engineering, ASME p 549
Shalf J (2013) The Evolution of Programming Mod-
els in Response to Energy Efficiency Constraints, Ok-
lahoma Supercomputing Symposium, Norman, Okla-
homa, USA.

28.

29.
30.

31.

Slotnick J, Khodadoust A, Alonso J, Darmofal
D, Gropp W, Lurie E, Mavriplis D (2014) CFD
Vision 2030 Study: A Path to Revolutionary Com-
putational Aerosciences. Tech. Rep. March, NASA
Langley Research Center, Hampton, VA, URL
http://ntrs.nasa.gov/search.jsp?R=20140003093

Top 500 List (Acc. 2013) http://www.top500.org

Vaz G, Jaouen F, Hoekstra M (2009) Free-Surface Vis-
cous Flow Computations: Validation of URANS Code
FRESCO, 28th International Conference on Ocean,
Offshore and Arctic Engineering (OMAE), Honolulu,
Hawaii, USA.

VI-HPS, Score-P, v123 (Acc. 2013) http://www.vi-
hps.org/projects/score-p



