

Gateway to the Earth

Characteristics of deformation bands and relationship to primary deposition: an outcrop study from the Wirral, north-west England

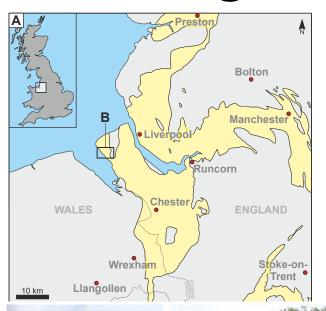
Ed Hough*, Oliver Wakefield, Cath Cripps, Joanna Thompson British Geological Survey, Nottingham, UK

* eh@bgs.ac.uk

© NERC All rights reserved

Introduction

A talk of three halves:


Primary sedimentology: Fluvial/Aeolian sandstone- lithology and environments of deposition

Secondary processes: geometry, style and properties of deformation bands – the Wirral ...but not their formation and timing

Consequence: potential impacts on subsurface management

Geological context

Mid-Triassic Sherwood Sandstone Group

Onshore extent of southern East Irish Sea Basin

Preserved geologyfluvial and aeolian terrestrial dryland

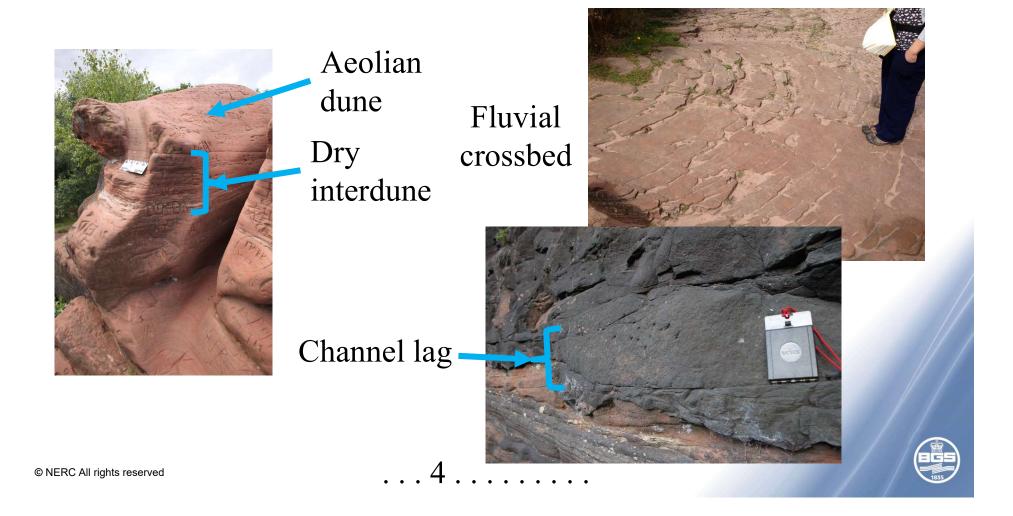
Frodsham Member (FsS) (20 m Sandstone red-brown medium well-sorted, prosp-stratified, sin

Delamere Member (DmS) (95 m Sandstone, reddish-brown and grey medium-grained, poorly to ebbly, cross-stratified, modern

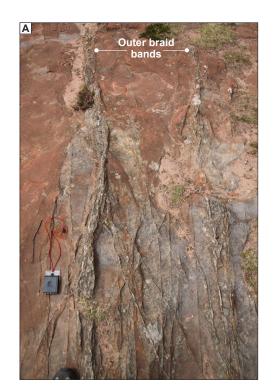
Thurstaston Sandstone Membe Sandstone, deep red-brown wit yellowish-grey molties, medium well-sorted pross-stratified, ascameded

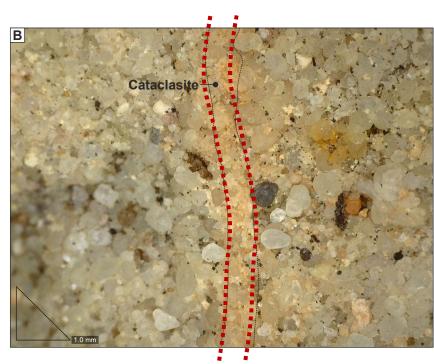
Thursdayfon Mard Sandstone Bad (ThHB) (2 n Sandstone, reddish by pebbles, well cemented

F1

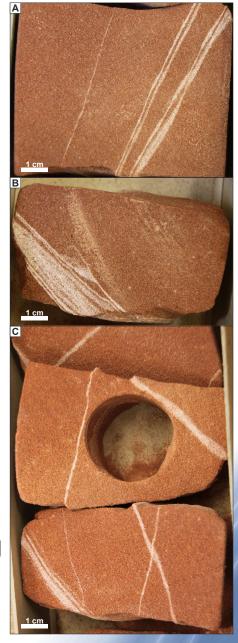


BGS Liverpool sheet




Sedimentology- Thurstaston and Grange Hill, Wirral

Detailed facies include:


Deformation Bands

Thurstaston Hill

Planar zones of crushing of framework grains, fusing and grainsize reduction; commoner in 'clean' sandstone; result in formation of flow barriers and baffles

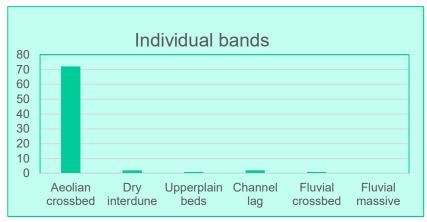
Saughall Massie OBH

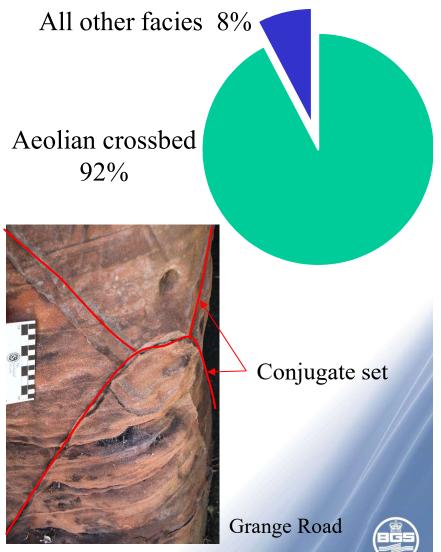
. 6

Impact on flow-paleo-indicator

Thurstaston Heath- aeolian dune facies

Character of deformation bands

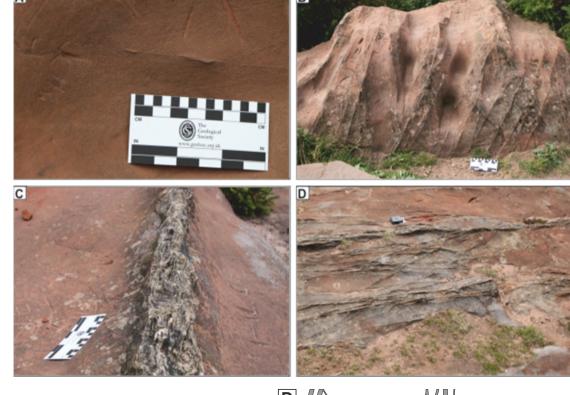

- Mapped out and measuredthickness, lateral and vertical extents where possible; host lith and facies
- Allocated to one of 4 morphological classes
- Permeability measured in the field and from cores- mini-permeameter
 - A field portable instrument
 - Probe measures resistance of gas flow by formation
 - Correction factor translates to permeability estimate

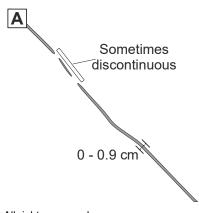


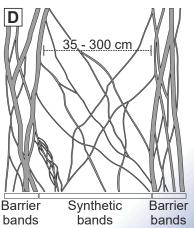
. 9

Facies control on occurrence; influence of primary deposition

Facies type	Individual bands	
Aeolian crossbed	72	74
Dry interdune	2	, -
Upperplain beds	1	
Channel lag	2	4
Fluvial crossbed	1	4
Fluvial massive	0	

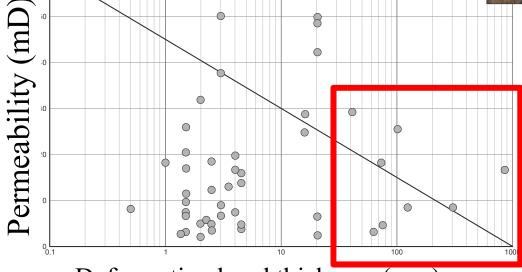



© NERC All rights reserved 7


Morphology of deformation

bands

- Individual 'thread'
- Conjugate set
- Braid
- Composite



Permeability vs. classes

Class	Perm min (mD)	Perm max (mD)
Thread	2.10	25.97
Braid	2.41	49.43
Conjugate	3.47	50.11
Composite	4.73	25.46
Undeformed host (Bloomfield et al., 2006)	69	5100

Permeability vs. thickness

Deformation band thickness (mm)

. 10 . . .

Discussion-impacts

- Wood Report- maximise production in the depleting North Seacompartmentalise where reservoir pressures are lower
- Aquifer management- enhance production; inform contaminant models
- Effect on monitoring and testing in the regions subsurface-NERC Energy Security Innovation and Observation System (ESIOS)
- Identification in cores/seismic reflection problematical
- Potential lateral and vertical extent informed by understanding facies geometries

Conclusions

- Supports influence of lithology on development:
 More common in grain fall and grain flow (dune) facies; less common in interdune and channel/channel lag
- 4 distinct classes proposed, based on morphology
- Permeabilities up to 2 orders of magnitude lower than undeformed host
- Primary sedimentology as a tool for prediction
- ... a factor in extending the life of mature basins?
- ...relevance to groundwater fluid flow models- better aquifer management; a consideration for ESIOS?

Gateway to the Earth

Characteristics of deformation bands and relationship to primary deposition: an outcrop study from the Wirral, north-west England

Thanks for listening

Any questions?

Ed Hough*, Oliver Wakefield, Cath Cripps, Joanna Thompson British Geological Survey, Nottingham, UK

eh@bgs.ac.uk

© NERC All rights reserved