Smith, M.S., Davis, R.H., Beamish, D., 1985. An automatic system for data logging and verification of multi-channel, multi-size
geophysical data, Advances in Engineering Software (1978), Volume 7, Issue 3, July 1985, Pages 137-141.

DOI: 10.1016/0141-1195(85)90169-X

An automatic system for data logging and verification of

multi-channel, multi-size geophysical data

M. S. SMITH and R. H. DAVIS

Department of Computer Science, Heriot-Watt University, Edinburgh, Scotland

D. BEAMISH

Institute of Geological Science, Edinburgh, Scotland

INTRODUCTION

Geophysical background

William Gilbert announced in 1600 that the Earth is a
great magnet. Since that time, numerous methods and
techniques have been developed to utilise the many proper-
ties of the Earth’s natural magnetic field. One such geo-
physical technique utilises the time changes in the natural
geomagnetic field, which occur with frequencies from
kilohertz to periods of the order of one day, to investigate
the electrical properties of the Earth. When time changes
with periods of the order of several seconds to one day are
used, the technique is referred to as the magnetotelluric
(MT) method.!

The MT method is a way of determining the distribution
of the Earth’s electrical conductivity structure from measure-
ments of the naturally occurring time changes in the
electric and magnetic fields on the ground surface.?

For a complete description of the geo-electromagnetic
field, five orthogonal field components must be recorded.
The five data components are referred to as X, Y, H, D and
Z, all being functions of time.

The first two data components are the potential differ-
ences between two points on the Earth’s surface. X is a
measure of the induced electric field in the north-south
direction, Y is a measure of the electric field in the east-
west direction.

H, D and Z represent the three orthogonal components
of the magnetic field. H is a measure of the magnetic field
in the north-south direction, D is a measure in the east-
west direction and Z is the vertical component. In practice,
a sixth data channel is also recorded. This channel is tem-
perature which is used to correct the instruments response
response to thermal effects.

The six-channel MT instrumentation produces analogue
output of the field values. These voltages are sampled
at a discrete rate that defines the sampling interval simul-
taneously on all six channels. A discrete six- channel time
series, suitable for computer analysis, is thus formed.

The goal of each field MT system is to obtain such data
over a long continuous period of time (say six months) to
act as a data base for subsequent analysis. The data base
will consist of time variations of the Earth’s electric and
magnetic fields recorded every 5s. Five such field systems
are arranged in a spatial array, giving 30 data channels of
simultaneous magnetotelluric data.

Such an MT-based field monitoring system is to be set
up in western Turkey, a region which is seismically active
and earthquake prone.

The purpose of the experiment is to use the recorded
data base to investigate stress-induced changes in the crust
of the region which may be detected by the fields recorded.

Project specification

There is therefore a requirement to measure, capture and
verify data from several sets of six-channel magnetotelluric
sounding systems deployed in the field, and operating
simultaneously.

Up to six field systems may be in operation at any one
time over an area of 100 km? These six remote field
systems will be provided with radio-link telemetry to a
common base computer system, which will ‘handle’ all
6 x 6 = 36 possible data sources.

The radio-links are not described here but the assumption
is that a standard RS 232-C serial data line exists between
each field system and the base computer.

The software development work for the above system
concerned the data capture and its subsequent verification
by the base computer system. The minimum hardware
specification of this system consisted of a DEC PDP-11/23
mini-computer with 128k RAM, a 20 Mbyte Winchester
disk for data file storage, a terminal/hard copy listing
device, together with a magnetic tape deck.?

Incoming data is received on six ports (i.e. 2 x DEC
DLVI11-J serial line interface boards provide eight such
ports), which are configured as part of the system. The
incoming data from each field system arrives every 5s, and
for each field system the full data sample consists of
6 x 2 =12 bytes. Each data word (two bytes), consists of
12 bits of data and a four-bit redundancy.

It was required to write: (1) a ‘front end’ interrupt based
data logger in DEC MACRO 11 16-bit assembler code,* to
service each of the six serial lines (five chosen for the actual
field system) as data is received and an interrupt is generated
and; (2) a FORTRAN, driver® to verify, store and in general
handle the logged data.

An interrupt based logging system was chosen in prefer-
ence to a device handler based system, as the former was
considered to be faster, simpler and to offer easier access
for the main FORTRAN driver to the logged data.

These two routines in conjunction, formed the Real-
Time data collection system.

When such a system is established and working, it was
intended to establish the MACRO 11 routine in a fore-
ground mode, with the data collected being transferred to
array space allocated in a FORTRAN program working in
background mode.

In developing the program however, it was later found
to be more suitable to load the FORTRAN driver into the
foreground as well as the MACRO 11 ISR routines, thereby
releasing the background mode for other important tasks.
One such task would be, for example, the transfer of logged
data files to tape.

With a few exceptions, each incoming data channel can
only be fully verified by considering properties of Vsamples.
Typically N =720 would be provided from each channel
in 1 h of real-time.

At this point, some specified processing of the data
series will take place, and related information is to be listed
on the line printer enabling the performance of the field
systems to be monitored in a consistent manner. The data
processing routines can be considered as standard, and the
project requirement includes the implementation of such
routines in relation to the real-time data collection system.

In parallel with the above, the raw data series will form
file-store, and will be transferred to the mass storage device
(Winchester disk). The format of the files will be discussed
later on.

The project goal consists therefore of working, verified
and tested software made up from the interrelated back-
ground program (FORTRAN) and its associated foreground,
interrupt driven subroutines (MACRO 11).

The performance of this software system is critical from
two main points of view.

The first is that the logger must be sufficiently robust
and general as to perform even with loss of data on any or
all of the input lines. Fault recovery procedures were also
required here.

The second pertormance function requiring investigation
was the ‘probability’ of simultaneous data arrival, and the
established procedures under the DEC system for handling
such an event.

The system is to run effectively for periods of the order
of months so that these performance viewpoints are con-
sidered fundamental. Although the field system will not be
unattended, minimal interruption to data capture and
storage is a requirement.

Program efficiency and simplicity in helping to reduce
any possible timing problems, are also important from a
power consumption viewpoint. Problems exist with the
local power grid in Turkey and therefore, minimising power
consumption and device usage is desirable to reduce the
demands made upon the secondary backup power supply.

The potential developments and possible complementary
additions to the core data collection system running on the
PDP-11/23 are numerous, so that as a core system for
possible future enhancement, the implementation of simple,
well structured and documented software modules is of
importance in facilitating the ease of such development.

The advantages of designing applications programs as
aggregates of small program modules are well documented &7
They include ease of development, testing, debugging and
modification, as well as facilitating the possibilities of
reducing core memory requirements for the active system.

Most of the programs were constructed on the PDP-11/03
Laboratory (Lab) system allocated for software develop-
ment. The single user DEC O/S used on this machine was
RT11SJ — Real-Time 11 Single Job O/S, although in the

later stages RT11FB — foreground/background environment
was mounted. This equipment was similar in most important
aspects to the eventual field system to be purchased.®®

To supply the test data to develop the logging programs,
data generators/transmitters were constructed to run on the
two other available machines namely the PDP-11/03 rack
mounted low-power field-based system, and a lab-based
PDP-11/23 data processing system.

Although the eventual field system is designed for five
site operation, a maximum of four only was achievable
using these machines. Data array and buffer allocations,
however, were made for five sites, to ensure that no space
allocation problems would occur when implementing the
field program in RT11FB.

One of the data storage devices used was the DEC
TUS8 dual cartridge tape drive unit on the data generating
Field 11/03 system. Test data generators were downloaded
from the Lab 11/03 system on to this unit and then run on
the Field 11/03.

The other storage device used, was the DEC RX02 dual
8 in floppy disk drive unit. Each of these disks were format-
ted for double density giving them a capacity of 974 RT11
blocks (1 block = 512 bytes), i.e. approximately 4 M bits
each. RT11SJ/FB and its associated editors, compilers etc.
occupied almost all of one disk (DYO:), while the other
disk (DY1:) carried the developed programs and associated
data files.

As can be seen from Fig.1, most of the Dec machines
used interfaced with peripherals through the DLV11-J.
This is a four-channel asynchronous serial line unit which
links peripherals to the DEC LSI11 bus over EIA com-
patible data lines. It uses a UART chip to convert data
from parallel to serial and serial to parallel.

The DLV11-J allows for the configuration of four
independent channels of differing baud rates if required,
depending on the associated peripheral. The baud rates on
the eventual field system will be identical, but the baud
rates used during the laboratory development phase were
nearly all different. This, however, caused no major prob-
lems although it did necessitate careful consideration in
setting up a multichannel test run using all three machines.

Device control/status and I/O buffer register addresses
associated with each of the four DLV11-J channels were
transparent from the main memory addressing.

THE RT11SJ/FB SYSTEM AND COMPONENTS

RT11, as a modular Real-Time O/S is adapted to user
requirements for both software and hardware configurations

‘9600 READER
2400,
[o
B B i
[os00 Mraoen
op 2000 '
i
b W —— j o]]
2-7 [30,
= 1
|
|
| R
m !
1 2400
.......... Development Systes 300

' fouv | PDE

N s s sia e 115 1203
PROGRAS oo

Figure 1

by the SYSGEN system facility. This facility allows the
user to create a minimum or maximum system configuration
which is usually stored on disk or tape.’

In RTI11, all files are named with a six-character name,
followed by a dot and a three character file type code.
Thus for example, PROGRAM.FOR is a FORTRAN source
file which when compiled forms a PROGRM.OBJ object
file version. This object file is then linked to form either
a PROGRM.SAV executable file in RT11SJ/FB, or a
PROGRM.REL relocatable file for foreground execution
in RTI11FB.'°

The RT11SJ system is booted up from a default system
device, automatically on power on, requiring only a simple
‘y’ confirmation of start up. Once booted, the system’s
command file is consulted, from which the final (user
specified) touches to the system’s configuration are added
before passing control to the Resident Monitor.

Two problems are worth noting at this point. The first
is that with the foreground program running in an infinite
loop — as the main data logging program LOGS.FOR does,
no time would normally be allocated to the background
job.

Consequently, an ISLEEP RTI1FB macro call was
inserted into LOGS.FOR, to allocate time for any back-
ground job to proceed. The amount of time allocated by
this system call is a tradeoff between the data collector’s
responsiveness, input double buffers size and the processing
demands made by any background jobs. The ISLEEP value
above, was found to suffice.

The second problem is that it is relatively easy to stop the
execution of the foreground job by typing ‘CONTROL C’
twice. This in the field has disastrous implications, and so
consequently it is recommended that a method of locking
the foreground program in be used.

The ISLEEP system macro call used above is one example
of the numerous system macro calls available for use on the
RT11FB system.!!

The following lists and summarises the system macro
calls used in programs associated with this project. Most of
these were used in direct RT11 block I/O transfers, and in
automatic I/O channel and file allocations.

This subroutine terminates activity on a specified
channel and frees it for use in another operation.
Allocates space on the specified device and
creates a tentative directory entry for the named
file.

Returns a specified RT11 channel to the pool
of available channels.

Allocates an RT11 channel, in the range 0-17
(octal), to be used by other routines and marks
it in use so that the FORTRAN I/O system will
not access it.

Converts a specified number of ASCII characters
to RADIX-50, and returns the number of
characters converted. N.B. RADIX-50 is a DEC
compressed character code.

IREADW Transfers a specified number of words from the
indicated channel into memory.

ICLOSE

IENTER

IFREEC

IGETC

IRADSO

ISLEEP Suspends the main program execution of a job
for a specified amount of time. RT11FB only.

IUNTIL Suspends main program execution of the job
until the time of day specified.

IWAIT Suspends execution of the main program until

all I/O operations on the specified channel are
complete.

IWRITW Transfers a specified number of words from
memory to the specified channel. Control
returns to the user program when the transfer
is complete.

LOOKUP This function associates a specified channel
with a device and/or file for the purposes of
performing I/O operations.

This subroutine returns the current time of
day as an eight-character ASCII string.

TIME

INTERRUPTS, LANGUAGES AND FORMATS USED

The PDP 11/03 has two levels of priority. However, the
PDP 11/23, the eventual field machine, has eight levels of
priority ranging from zero, the lowest, to seven, the highest.
When the CPU is operating at level seven an external device
cannot interrupt it.

Device priority is also influenced by the distance between
the device and the processor on the bus. Thus if two
devices of equal priority, e.g. the keyboard and the printer,
both at priority level four, interrupt simultaneously, the
device nearer the processor on the bus will receive the
interrupt grant acknowledgement.

The Interrupt Service routines used were constructed to
be fast, simple and efficient. The worst case example of
five simultaneous interrupts would result in each of the
device channels being serviced as above, i.e. nearest to the
CPU first. As each ISR takes approximately 40.7 s, with
a field data input baud rate of 300, no timing problems
are anticipated in using this interrupt driven programmed
data transfer.

Each data file will contain all the data collected from
one site in a day, i.e. 360 RT11 blocks each. Thus for five
sites, approximately 922 K bytes of data will be collected
every day and the 20 M byte Winchester storage disk will
have to be backed off to tape at least once every three
weeks.

Having thus examined the various geological and com-
puting background aspects to this project, we may now
move on to examine the development and structure of the
data collection and verification system itself.

DEVELOPMENT OF DATA COLLECTION AND
VERIFICATION SYSTEM

In the construction of the logging system, it soon became
apparent that there were three main developmental areas,
whilst a fourth area of ancillary programs emerged later.

These three main areas were Data Generation, Data
Collection and Data Verification, and each of these will be
examined separately with their associated programs and
subroutines within this and the following three sections.

The particular specification supplied for the data logging
system, dictated a defensive posture for the system in the
sense that all real-time values required by the base computer
were externally supplied. Each field site had its own very
accurate clock, thereby enabling each of the five field sites
to transmit its 12 byte data burst very accurately every S s.

Consequently, the data logging routines had to act purely
as recipients of the transmitted data, and were designed
and constructed with this design imposition.

Several overall design considerations for such externally
driven real-time systems need accurate system design as the
time scale of events is not controlled by the base computer ®
In such cases, it is also pointed out that such systems are
to function on the basis of random input.

Each of the eight software modules of the final logging
suite, and all of the ancillary programs are considered to be
self-documented. Listings of them are available on request.

Data generation and the initial development phase

Before any development of the data logging programs
could take place, data generators had to be written to
supply the test data to develop these programs, after which
the next logical task was to develop programs to accept the
data transmitted and display it for visual verification.

Thus complementary programs were written as data
acceptors to these data generators. They may also be
identified as the program precursors of the data logging
programs, as they tackled the problem of accepting data on
a serial port, storing its byte by byte arrival in a buffer and
then displaying the 12-byte buffer contents on a console
or line printer for verification.

At the same time, the concept of double buffering was
introduced here, so that once a 12-byte data buffer is full
and awaiting display, a further 12 bytes can be stored with-
out corrupting the first 12 thereby giving the main program
time to deal with the first data buffer.

This standard data logging technique was exercised for
the first time at this stage and developed later on for use in
the final data collection and verification system.

These data generating and early data accepting programs
formed an important base for the development of the final
field system. They provided the test data for program
development, and the ability to easily check these data
sources.

In addition ancillary programs were developed to support
the data collection and verification system.

THE LOGGING SYSTEM — OVERVIEW

The data logging system to be described in this section con-
sists of one main co-ordinating program (LOG5.FOR) and
six subroutines (SETUP5.MAC, BEEP.MAC, STORES5.FOR,
CHNGF5.FOR, FILEX5.FOR and LISTER.FOR). These
plus the data verification subroutine make up the actual
data collection and verification system.

Each of these software modules is described using
Blackman’s'? approach, is considered to be self-documented,
is available on request, and is consistent with other geo-
magnetic software.!314

Low level macro 11 routines

Two MACRO 11 subroutines are used in the data
logging system. These are SETUP5.MAC, the main assembly
language routine which sets up the interrupt based multi-
channel data logging service routines and BEEP.MAC, a
simple routine to attract operator attention to error con-
ditions detected by the logging system.

SETUPS.MAC is the interrupt driven DEC assembler
routine, which sets up five ISR’s to service each of five
serial input lines from the two DLV11-J I/O boards. The
basic data unit used is the 8-bit byte. Each byte is stored
from the input buffer associated with a channel, into a
storage buffer location in the double buffer. Each double
buffer is 3456 bytes consisting of two single 1728 byte
buffers. Once one of these single buffers is full for a channel,
a flag is set and the main program is thereby prompted to
clear the full buffer.

The second MACRO 11 routine used in the data collec-
tion system is BEEP.MAC. BEEP simply loops ten times
sending 10 ASCII ‘7’ (BEEP) characters to the console. It is

called only when a system error message has been generated
and printed.

These then are the two MACRO 11 routines developed
for the data collection system. We may now move on to
examine the FORTRAN IV program and subroutines com-
prising the rest of the system.

HIGHER LEVEL FORTRAN IV ROUTINES

Description of these routines which form the remainder of
the logging system can be divided into four sub-task areas:

(1) Logical control of the logging operation — LOGS5.FOR.
(2) Continuous data storage — STORES.FOR.

(3) Data file handling — CHNGF5.FOR and FILEX5.FOR.
(4) Error handling — LISTER.FOR.

Logic control of the logging operation

As an automatic system, barring equipment failures,
LOGS and the data collection and data verification system
will log day files of data indefinitely as specified. The only
compulsory operator requirements are a backing off to tape
of the data files at least once every three weeks, and an
occasional resetting of the PDP 11/23 base computer internal
clock if required.

LOGS consists of three main sections of code: declaration
and initialisations, logging control and status checking.

Continuous data storage.

STORES.FOR is the subroutine called from within
LOGS, to partially process, load and store the full data
buffers for each channel onto the 20 Mbyte Winchester
disk. In addition to this data storage function, it is also
responsible for updating block and hour counters and for
summing the data series components (X, Y, H, D and 2) to
enable hourly statistical verification to occur.

Data file handling

The two subroutines included in this third sub-task area
are CHNGF5.FOR and FILEXS.FOR. Both use specific
RT11 system macro calls to open and close data files on an
RT11 block structured disk. These DEC system macros
have been summarised previously and include IWAIT,
ICLOSE, IFREEC, IGETC, IRADS50 and IENTER.

The function of CHNGF5.FOR is to close an old data
file named with the parameters passed in from LOGS3,
rename and open a new data file on the disk with the
next data file name in the series. To do this latter task,
FILEX5.FOR is called from within CHNGF5.

The second subroutine used in handling the data files is
FILEX5.FOR. Although its function could be considered
as a simple extension to CHNGF3, is specific internal
functions associated with renaming and opening a new data
file on the DEC system coupled with its need to be called
from within LOGS5 as well as CHNGF 5, justified its existence
as a separate subroutine.

Error handling
The subroutine concerned with printing meaningful

error messages for the whole data collection and verification
system is LISTER.FOR.

DATA VERIFICATION

Two approaches to data verification were used in the
development of the logging system. The first approach as

mentioned in the project specification, involved verifying
the data by considering properties of V samples of the data
series using statistical means. The second approach, however,
involved the more arbitrary verification of the data received
and logged by the system.

As each magnetotelluric site produces 144 data integers
for each of the five MT components evern 12 minutes, an
hourly check of 5 x 144 = 720 samples for each component
was incorporated into the logging system for continuous
data verification.

CONCLUSIONS

The ISR’s, necessarily in machine code, are externally driven.
Data from each site enters the system via an asynchronous
serial line device. Each data byte generates an interrupt
which the ISR services to collect and store successive data
bytes (i.e. multiple-channel) from each site. A sample
sequential store mode also preserves the sequential nature
of the channels. .

The ISR’s are of modular construction i.e. each asyn-
chronous line (i.e. site) is serviced by equivalent code but
distinguished by individual entry points and hardware
addresses. ISR functionality is divided into two parts:

(1) Interrupt initialisations — which enables data collection
to begin at a specified real-time.

(2) Interrupt service — once initialised, the ISR collects
and stores data generating interrupts in the hardware
addresses set up in (1).

In order to service the ISR’s,a FORTRAN driving program
and associated sub-routines is operated in real-time. The basic
function of this software is to create a logical progression of
file store from the data collected by the ISR’s. This driving
program accesses the systems line-time clock and thus
manages the real-time aspect of data collection.

Each data integer is 16 bits (double byte), and arrives
from the UART in the form of two consecutive bytes (MSB
first). The size of the double buffers used has a real-time
significance for the system, in that they represent 12 min
of real-time. With five sites, a maximum of 15 RT11 blocks
are written to Winchester storage disk every 12 min, which
is considered to be a minimal disk access demand.

This main FORTRAN driver (LOGS) was designed to be
simple in its logical structure with specific value parameters
passed into the commonly used subroutines. This increased
modularity,” and eased the documentation of the module
interfaces.

The dynamic considerations of systems status (LOGS)
and data verification (STATSS) have made it more flexible

and informative. Concern about possible corruption of the
systems simple integrity by the addition of data verification
code, has been dispelled by the robust nature of STATSS,
and the dual role has eased and simplified the code over-
heads required for real-time data verification.

The common use of the error listing subroutine LISTER
and indeed the common use of all data handling routines,
greatly eases system expansion and possible adaptation to
other analogous applications and tasks.

In conclusion, the development of a modular, tested
data collection and verification system for the I.G.S. has
been satisfactorily achieved, and the main body of this
report details how this has been done. Full listings of the
programs are available on request. The system is at present
being applied in the field in Turkey, and commenced in
March 1984.

ACKNOWLEDGEMENT

We are indebted to J. Riddick and J. MacDonald (Geo-
magnetism Unit) and C. Fyfe (Global Geigmology Unit)
of the Institute of Geological Science, Edinburgh for their
advice, support and practical assistance during this work.

REFERENCES

1 Sharma, P. V. Geophysical Methods in Geology, Elsevier
Scientific Publ., Amsterdam, 1976, Ch. 4
2 Vozoff, K. ‘The magnetotelluric method in the exploration of
sedimentary basins, Geophysics, 1972, 37(1), 98
3 Digital Equipment Corporation. (Dec.). Memories and Peri-
pherals Hand-book, 1978/9, Ch.1-2, DLV11] (pp. 2-147-
2-173)
4 Southern, R. W. PDP-11 Programming Fundamentals, South-
croft Publ., Canada, 1972
5 McCracken, D. D. A Guide to FORTRAN IV Programming
(2nd edn), Wiley and Sons, Chichester, 1972
6 Pritchard, J. A. An Introduction to On-Line Systems, NCC
Publ., 1976
7 Allworth, S. T. Introduction to Real-Time Software Design,
MacMillan Press Limited, London, 1981
8 DEC. RTI11 System User’s Guide, Vol. 2A, 1980
9 DEC. Software Support Manual, Vol. 3B, 1980
10 DEC.RTI1 FORTRAN IV Manual, 1980
11 DEC. Programmers Reference and MACRO 11 Language
Manual, RT11,Vol. 3A, 1980
12 Blackman, M. The Design of Real-Time Applications, Wiley
Interscience Publ., London, 1981
13 Kirkpatrick, 1. J. Software Development for a Programmable
A.D.C. Device Internal Report
14 Riddick, J., Forbes, A. and Green, C. ‘The recording and
processing of digital magnetic data from the UK observatories’,
G.M.U. Report No. 27,N.E.R.C., L.G.S., Edinburgh.

