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Abstract

Knowledge about sexual segregation and gender-specific, or indeed individual specializa-

tion, in marine organisms has improved considerably in the past decade. In this context, we

tested the “Intersexual Competition Hypothesis” for penguins by investigating the feeding

ecology of Gentoo penguins during their austral winter non-breeding season. We consid-

ered this during unusual environmental conditions (i.e. the year 2009 had observations of

high sea surface and air temperatures) in comparison with the long term average at Bird

Island, South Georgia. Through conventional (i.e. stomach contents) and stable isotopic

values from red blood cells, plasma and feathers of both male and female Gentoo penguins,

we showed that there were significant differences between sexes, with males feeding mainly

on fish (54% by mass) followed by crustaceans (38%) whereas females fed mainly on crusta-

ceans (89% by mass) followed by fish (4%). Themisto gaudichaudii was the most important

crustacean prey for males (64% by mass; 82% by number; 53% by frequency of occurrence)

and females (63% by mass; 77% by number; 89% by frequency of occurrence), contrasting

with all previous studies that found Antarctic krill Euphausia superba were generally the main

prey. Stable isotopic data showed that, in terms of habitat use (based on δ 13C), there were

significant differences in short-term carbon signatures between males and females (based

on plasma and red blood cells), suggesting that both sexes explored different habitats, with

females exploring more offshore pelagic waters and males feeding more in coastal benthic

waters. Based on δ 15N, males fed on significantly higher trophic level than females (based

on plasma and red blood cells), in agreement with our diet results., Thus, Gentoo penguins

behave in a similar manner to other non-breeding penguins species (e.g. king, macaroni

and rockhopper penguins), albeit at a smaller spatial scale (as they do not disperse as these

other penguins do), in that they have a wider habitat and trophic niche during the Antarctic

Winter (in comparison to Summer). We also detected individual specialization in feeding/
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trophic levels for each gender, with certain males feeding mainly on fish and certain females

mainly on crustaceans, which may be driven the prevailing environmental conditions that

lead individuals to search for alternative prey, and cause sexual diet segregation. Our results

provide further information to help improve understanding about sexual segregation and indi-

vidual specialization of marine organisms, while contributing valuable information on the win-

ter diet for Antarctic monitoring programs and for modelling Antarctic marine food webs.

Introduction

Understanding the natural variability of a marine ecosystem, and how organisms are able to

adapt/acclimatize to environmental change, is crucial to the conservation and management of

marine ecosystems. In the Southern Ocean, the network of food web interactions is now recog-

nised as being important in determining the resilience, and hence response, of marine ecosys-

tems to change [1, 2]. With the Southern Ocean currently showing signs of unusually rapid

warming [3–7], habitat modification is affecting species at all trophic levels, but particularly

those species at higher trophic levels that might integrate and/or amplify effects of change, e.g.

penguins [8–14].

Penguins (Spheniscidae) are a major component of the Antarctic marine ecosystem, consti-

tuting approximately 80% of the avian biomass, and as such occupy an important role as

meso-predators [15, 16]. Information on the diet and feeding ecology of penguins is vital for

parameterising consumption models in Antarctic food webs [17–19]. However, it is currently

unknown how penguin behaviour could adapt to change, over the longer term (i.e. decades),

to exploit alternative prey types [17]. Some studies have suggested that penguins may have dif-

fering success in adapting to the loss of Antarctic krill Euphausia superba [20] or fish [21] in

their diets. Such changes could then be linked to changes in populations; for example, Adélie

penguins Pygoscelis adeliae on the Antarctic Peninsula are declining, whereas Gentoo penguins

Pygoscelis papua [22, 23] are increasing, though data are not yet sufficiently comprehensive.

In this study, we assess the feeding ecology of a predator of the Southern Ocean, the Gentoo

penguin, at Bird Island, South Georgia (54˚ S, 38˚ W; Fig 1), during the austral winter, to assess

their levels of sexual and individual segregation. We consider this under unusual and extreme

environmental conditions, assuming that this will ensure differences between genders are

more extreme. Gentoo penguins are an inshore-feeding species and a year-round resident [24,

25], making them an excellent biological sampler of local prey abundance/availability, particu-

larly in inshore areas. The foraging range of Gentoo penguins is generally within 30 km of

South Georgia [25, 26], and their diet comprises largely Antarctic krill and fish [26–28].

Male Gentoo penguins are typically larger than females (i.e. dimorphic), although the dif-

ferences can be difficult to detect visually in the field [28, 29] as body size and morphology are

highly variable [30, 31]. Sexual segregation in birds is often linked to differing energetic con-

straints or nutrient requirements (particularly during the breeding season or related to repro-

duction duties) [32–34] and relatively little is known about sexual differences in the feeding

ecology of seabird species during their non-breeding period [27, 28, 32, 35–38]. Furthermore,

only a very few studies are available that explore individual specialization in the foraging and

feeding strategies of penguins [39], with only one on individual specialization in the diet of

Gentoo penguins at the Kerguelen archipelago during the austral summer [40]. Differences

between individuals may have a strong impact on ecological processes (e.g. competition

within/between sexes) and on population/species dynamics, as it may promote speciation [41].

Foraging segregation in penguins
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Therefore, it is important to understand both diet segregation and individual specialization

within a population. In our study, we looked at these mechanisms when animals have no

reproductive obligation (to assess their diet flexibility) during the austral winter at Bird Island,

South Georgia.

We focused on a period of unusual environmental conditions as such conditions are most

likely to reveal individual differences, and because information on such conditions is impor-

tant as they are likely to affect the ecology, management and conservation of Antarctic ecosys-

tems [42].

Ocean warming has been recorded at South Georgia during the austral winter (i.e. August),

with a mean increase of ~2.3˚ C since 1925 [43]. In 2009 (when our study took place), high sea

surface and temperatures occurred across many consecutive months, and coincided with

extremely low catches in local fisheries and poor breeding success in higher predators at South

Georgia [44, 45] (Fig 2). Prior to the fieldwork at Bird Island, a research cruise (March-April

2009) in the Scotia Sea (including around South Georgia), showed that Antarctic krill density

was lower (2.2 g m-2) than in previous years (Antarctic krill density assessments made annually

since 1996) [46]. These findings suggest that this region, during the austral winter of 2009, was

atypical for prey availability/abundance to penguins and other predators in the region. Indeed,

anomalous oceanographic, sea-ice and/or weather conditions can cause changes in prey avail-

ability [12, 47, 48] and are known to have negative impacts on populations of seabirds, includ-

ing mass mortalities (also known as “wrecks” of seabirds) [49–52].

Fig 1. Map of the Southern Ocean, with emphasis to Bird Island, South Georgia (our study area) and the 1,000 m isobaths.

https://doi.org/10.1371/journal.pone.0174850.g001
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In the context of low Antarctic krill abundance, the behaviour of male and female penguins

could provide valuable data on diet sexual segregation and individual specialization. The

“Intersexual Competition Hypothesis” (see also [53] for intraspecific competition) predicts

that, in dimorphic species, reduction in competition for food between sexes results from the

capture of different prey types by each sex and that this is one of the main selective forces

maintaining sexual dimorphism [54, 55]. Here, we had the unique opportunity to investigate

the feeding ecology of Gentoo penguins during an oceanographically abnormal non-breeding

season. The objectives of the study were:

• Characterize the winter diet of Gentoo penguins using conventional techniques (i.e. stomach

contents), and stable isotope analyses of red blood cells, plasma and feathers to evaluate diet

changes, under known environmental conditions;

• Evaluate differences in diets according to sex and individual specialization;

• Assess implications of these results on the conservation of Gentoo penguins, under extreme

and low food availability.

Material and methods

Fieldwork and stomach content analyses

Fieldwork was carried out during the austral winter of 2009, between June and September,

at Bird Island, South Georgia. The British Antarctic Survey (BAS) provided all the support

related to the permits for the fieldwork (as fieldwork was carried out from a British Antarctic

research base): "The animal procedures used in this this study were reviewed and approved by

the Joint BAS–Cambridge University Animal Welfare and Ethical Review Committee. Permits

to operate were issued by the Government of South Georgia and the South Sandwich Islands".

Stomach samples were obtained each month (N = 13–15 penguins handled, always ensuring

that at least 10 samples contained food) from non-breeding Gentoo penguins at one colony

(known locally as Landing Beach).

For each month, all samples were collected within a 4-day period. Penguins were selected

randomly when returning to the colony at dusk. Birds may, or may not have used the site for

breeding, as Gentoo penguins move around the archipelago during the winter [25]. Each

Fig 2. Abnormal sea surface temperatures around South Georgia in 1999 (Sea surface temperature

(SST) data ± SD). Mean monthly sea surface temperature (SST) data for the 1˚ by 1˚ grid square centred at

34.5˚W, 54.5˚S, from the “OI.V2 Monthly SST” data set [109].

https://doi.org/10.1371/journal.pone.0174850.g002
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penguin was handled as follows: after putting a cover on the penguin’s head (to reduce stress),

the bill was measured (length and depth), followed by the height of the penguin and its weight

(a harness was produced to specifically hold each penguin comfortably) using a 5 kg Pesola1

spring balance (Pesola AG, Barr, Switzerland). Post-molt feathers (6–8 chest feathers) and

blood were collected, following Ceia et al. [56], adapted to penguins; the blood samples were

collected using 1 ml syringes (25 G needles) and were separated into plasma and red blood

cells (RBC) using a centrifuge (15 min at 3000 rpm), stored frozen (– 20˚C), and later freeze-

dried and homogenized prior to stable isotopic analyses. Finally, a food sample was obtained

by stomach flushing, following Xavier et al. [57] adapted to penguins (stomach samples were

successfully obtained with a maximum of 3 flushes), following the Convention for the Conser-

vation of Antarctic Marine Living Resources (CCAMLR) Ecosystem Monitoring Program

(CEMP) Standard Methods. If the first flush produced a green or yellow coloured sample, it

was assumed that the penguins were without food and they were released. All penguins han-

dled were then marked to ensure they were sampled only once, and released. The procedures

lasted, on average, 15 minutes.

The analyses of the food samples were carried out at the Bird Island research station labora-

tory within 24 hours of collection. Each food sample was analysed following Xavier et al. [58].

The samples were weighed and the overall mass was recorded. To remove the liquid, each food

sample was washed carefully through two sieves (1.00 and 3.35 mm). Only fresh (recently con-

sumed) material was found (i.e. no old cephalopod beaks nor other indigestible material (e.g.

stones or plastics) was found). All components were then sorted into categories (crustaceans,

fish, cephalopods and others; the latter comprising other fresh prey). Crustaceans were identi-

fied when possible using the BAS and Royal Belgium Institute of Natural Sciences reference

collections, and the key reference bibliography of Kane [59] and Boltovskoy [60]. The total

length of crustaceans was measured when possible (from tip of the eyes to the end of uropods/

telson). The fish otoliths were identified following Hecht [61], Williams and McEldowney

[62], Smale et al. [63], Reid [64] and fish size relationships used were given by Adams and

Klages [65], Hecht [61], Williams and McEldowney [62], Smale et al. [63], Reid [64], Olsson

and North [66], Berrow and Croxall [67] and Croxall et al. [68, 69]. We putatively identified

one group of very small otoliths as? Gymnoscopelus braueri (preliminary identification sug-

gested by Marcella Libertelli) but subsequent genetic analyses using flesh did not confirm this

identification. The number of fish was estimated from the number of intact crania containing

both otoliths, and loose otoliths, in each sample. These loose otoliths were compared with each

other (right otolith compared with left otolith by size and level of erosion) and paired if possi-

ble (e.g. if four loose otoliths were found with similar sizes and similar sizes of erosion, and

two were left otoliths and the other two were right otoliths, it was assumed that there had been

two fish). The cephalopod beaks were counted (both upper and lower), identified and mea-

sured. Only the lower cephalopod beaks were measured, using the lower rostral length (LRL)

following Xavier and Cherel [70] and the BAS beak reference collection. Allometric equations,

of mantle length (ML) and estimated mass (W) for cephalopods were taken from Xavier and

Cherel [70]. The components and species were analysed by frequency of occurrence, number

and by mass following Xavier et al. [58].

Stable isotopic analyses

Tissue δ13C and δ15N values provide useful information about seabird diet at different temporal

scales [71]. The carbon stable isotope value (δ13C) mainly reflects consumers’ foraging habitat,

while the nitrogen stable isotope value (δ15N) is mainly used to define consumers’ diet and tro-

phic position. The isotopic niche of each adult was determined by using three complementary
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tissues (plasma, RBC and feathers) that record trophic information at different time scales [72].

Plasma and RBC retain information on diet (carbon source and trophic level) from a few hours/

days prior to sample collection to the previous 3–4 weeks, respectively [73, 74]. Hence, the isoto-

pic signature of plasma is representative of the food and feeding ecology of the penguins during

their last few daily foraging trips. Breast feathers represent the diet during the previous pre-

moulting stage, since feather keratin is metabolically inert after synthesis, which in Gentoo pen-

guins from South Georgia occurs generally between March and April [75]. Therefore, based on

stable isotopic analyses of different tissues from the same penguin we are able to test for short-

term (i.e. days/weeks–RBC versus plasma) and medium-term (i.e. weeks to months–RBC versus

feathers, when these were grown) consistency in individual foraging niche [56].

Lipids are depleted in 13C relative to whole tissues and were removed from plasma using

successive rinses in a 2:1 chloroform: methanol solution [56, 76]. The low lipid content of

whole blood (or RBC) does not typically require lipid extraction [77]. Prior to stable isotopic

analyses, feathers were cleaned of surface contaminants using successive rinses in a 2:1 chloro-

form: ether solution, air-dried and then ground to a fine powder in a freezer mill operating at

liquid nitrogen temperature.

Nitrogen and carbon isotope ratios were determined by a continuous-flow isotope ratio

mass spectrometer (Delta V Advantage, Thermo Scientific) coupled to an elemental analyser

(Flash EA1112, Thermo Scientific) in the LIENSs, Université de La Rochelle, France. Approxi-

mately 0.3 mg of each sample was combusted in a tin cup for the simultaneous determination

of nitrogen and carbon isotope ratios. Results are presented in the usual δ notation based on

the Vienna PeeDee Belemnite (V-PDB) for carbon and atmospheric N2 (AIR) for nitrogen.

Replicate measurements of internal laboratory standards (acetanilide) indicate measurement

errors <0.15 ‰ for both δ13C and δ15N.

To analyse stable isotope data in the context of isotopic niche between sexes, we

adopted the recent metrics based in a Bayesian framework (Stable Isotope Bayesian Ellip-

ses in R: SIBER [78]), which allows for robust statistical comparisons. The Bayesian app-

roximation of the standard ellipse area (SEAb) is a metric used to test whether Group 1

(males) standard ellipse area (SEA) is smaller than Group 2 (females) and is calculated

based on 1000 replications. The SEA corrected for small sample sizes (SEAc, an ellipse that

contains 40% of the data regardless of sample size) was adopted to compare niche width

between sexes (see Jackson et al. (2011) for more details). The SEAb and the layman metric

of convex hull area (TA) [79] were also calculated as a measure of isotopic niche area.

SEAb was used to test whether Group 1 is smaller than Group 2 (i.e. p, the proportion of

ellipses in males that were lower than females), following Jackson et al. (2011). We used

the computational code to calculate the metrics from SIBER implemented in the package

SIAR [80] under R 3.2.1.

Molecular sexing

Blood samples from Gentoo penguins were collected, as mentioned above, from 55 individuals

to identify their sex. DNA from blood was isolated using an adaptation of the Chelex extrac-

tion method [81]. All samples were centrifuged for 3 min and a small portion of blood was

removed for extraction with a spatula. 50 μl of distilled H2O and 20 μl of InstaGene™ Matrix

(BioRad) were added to each sample. The samples were then incubated at 50˚C for 30 min,

followed by 8 min at 100˚C. One negative control (a tube with all the reagents but without a

blood sample) was included for each set of 24 extractions to monitor for possible contamina-

tion with exogenous DNA. Primers P2/P8 [82] were used for PCR amplification. These prim-

ers have been commonly used for penguins [83, 84] and provided sufficient separation of
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bands (~20 base pairs) to be differentiated on an agarose gel. All PCRs included two positive

controls to test for the success of the amplification and two negative controls, prepared with

distilled water, to test for possible contamination. Each male result was repeated at least three

times and each female result was repeated at least twice. Amplifications were performed using

a Multiplex kit, carried out in 10 μl reactions containing 1x of QIAGEN1 Multiplex PCR Mas-

ter Mix, 0.2 μM of each primer and 0.8 μl of DNA template (~1 ng/μl). The thermal conditions

were 95˚C for 15 min, 35 cycles of 95˚C for 1 min, 47˚C (annealing temperature) for 1 min

30 s, 72˚C for 1 min 30 s, and a final extension at 72˚C for 10 min. All reactions were carried

out using an Applied Biosystems Veriti1 Thermal Cycler PCR machine. Samples were run for

about 2h on 3% weight/volume agarose gels stained with ethidium bromide.

Dead counts

In September 2009 (1st and 8th Sept.), two surveys for dead Gentoo penguins (n = 111) were car-

ried out at Bird Island (at Landing Beach, Iceberg Point, Freshwater Beach, Stinker Point and

Everman Cove), due to the appearance of numerous dead Gentoo penguins on the beaches of

Bird Island, South Georgia. After identifying a body of a Gentoo penguin, the bill length and

bill depth were measured, as above. Sex was estimated using equations from Williams [85]. It

was also reported if it was recently dead or an old carcass. To avoid duplicating the identifica-

tion of dead animals in the second survey, stock marker was used to paint the bill of the

penguins.

Data were statistically analysed using Minitab statistical software (Sowers Printing Com-

pany, PA, USA) and R [86]. The values are as mean ± standard deviation, unless stated (signifi-

cance threshold: 0.05).

Results

The feeding ecology of 55 Gentoo penguins from Bird Island (South Georgia) was studied during

the austral winter of 2009 (Table 1; S1 Dataset). Of these, 12 had empty stomachs (or only minor

residues of food), which were removed from further analyses. Based on individuals whose stom-

ach contents were analysed, our study showed that male Gentoo penguins (N = 17; body mass =

6666 ± 653 g) were significantly heavier than females (N = 26; body mass = 5334 ± 520 g; Mann-

Witney U test, U = 409, P< 0.01). The mean solid proportion of Gentoo penguin food samples

ranged from 4 to 414 g (141 ± 101 g), with females having significantly more solids than males

(Mann-Witney U test, U = 114, P< 0.01).

Diet composition

Overall, when samples for both sexes were combined, Gentoo penguins fed primarily on crus-

taceans (68% by mass) followed by fish (25%; Table 2). Cephalopods and other prey/debris

represented <1% and 7% by mass, respectively. By prey species, Themisto gaudichaudii was

the most important crustacean by frequency of occurrence (74%), by number (77%) and by

mass (63%; Table 2). The proportion of crustaceans and fish consumed differed significantly

Table 1. Parameters collected from Gentoo penguins during winter 2009 at Bird Island, South Georgia (F = Female, M = Male).

Bill length (mm) Bill depth (mm) Penguin size (cm) Penguin mass (g) Sample solids (g)

Sex n Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range

F 30 49.1±0.4 44.4–54.4 15.5±0.1 13.5–17.0 42.0±0.2 39.0–44.0 5277±98 4350–6380 172.2±19.6 24.5–413.7

M 25 53.2±0.5 49.1–60.0 17.2±0.2 15.3–18.6 44.8±0.3 41.7–48.0 6524±127 5050–7500 92.7±20.5 4.4–297.8

F+M 55 50.9±0.4 44.4–60.0 16.3±0.2 13.5–18.6 43.3±0.3 39.0–48.0 5844±115 4350–7500 140.8±15.4 4.4–413.7

https://doi.org/10.1371/journal.pone.0174850.t001
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Table 2. Number of samples, frequency of occurrence (F), number of crustaceans/fish/cephalopods (N), and mass (M; with SD for main compo-

nents). Percentages of the species were calculated within each main diet component, collected from female (26 samples) and male (17 samples) Gentoo

penguins.

Overall Females Males

F (%) N (%) M (%) F (%) N (%) M (%) F (%) N (%) M (%)

Crustaceans 86.0 98.4 68.4±16.0 80.8 99.0 88.7±21.5 58.8 89.1 37.5±40.8

Amphipoda

Ampeliscidae

Byblis securiger 16.3 0.1 0.3 26.9 0.1 0.3 <0.1 <0.1 <0.1

Eurytheneidae

Eurythenes gryllus 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Hyperiidae

Hyperiidae sp. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Themisto gaudichaudii 74.4 76.9 62.8 88.5 76.7 62.7 52.9 81.5 63.5

Oedicerotidae

Oediceroides cf. lahillei 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Pontogeneiidae

Djerboa furcipes 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Eusiroides sp. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Gondogeneia antarctica 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Gondogeneia georgiana 18.6 10.9 4.6 26.9 11.4 4.8 5.9 0.4 0.2

Paramoera walkeri 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Pontogeneiidae sp. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Euchaetidae

Euchaeta sp. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Lysianassidae

Orchomenopsis acanthura 4.7 <0.1 <0.1 7.7 <0.1 <0.1 0.0 0.0 0.0

Vibiliidae

Vibilia antarctica 9.3 1.3 0.4 15.4 1.4 0.4 0.0 0.0 0.0

Decapoda

Crangonidae

Notocrangon antarcticus 32.6 0.2 0.5 30.8 0.1 0.2 35.3 1.6 5.7

Decapoda undet. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Euphausiacea

Euphausiidae

Euphausia frigida 14.0 <0.1 0.1 19.2 <0.1 0.1 5.9 0.1 <0.1

Euphausia superba 65.1 6.2 19.8 76.9 5.8 19.2 47.1 14.2 29.1

Euphausia triacantha 2.3 <0.1 <0.1 3.8 <0.1 <0.1 5.9 <0.1 <0.1

Euphausiidae sp. 4.7 <0.1 <0.1 3.8 <0.1 <0.1 5.9 0.1 <0.1

Thysanoessa sp. 39.5 2.6 3.4 57.7 2.6 3.5 11.8 2.0 1.2

Isopoda

Serolidae

Serolis bouvieri 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Lophogastrida

Gnathophausiidae

Gnathophausia sp. 2.3 <0.1 <0.1 3.8 <0.1 <0.1 0.0 0.0 0.0

Mysida

Mysidae

Antarctomysis maxima 30.2 1.7 8.1 42.3 1.7 8.5 11.8 0.2 0.1

Fish 88.4 1.5 24.9±38.3 96.2 1.0 3.7±8.0 76.5 10.6 57.4±43.4

(Continued )
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between sexes (i.e. males consumed more fish (Mann-Witney U test, U = 348, P< 0.01) and

females more crustaceans (Mann-Witney U test, U = 26, P < 0.01), see below), whereas the

proportion of cephalopods (Mann-Witney U test, U = 242, P = 0.6) and other prey (Mann-

Witney U test, U = 212, P = 0.8) did not differ. Prey sizes of Gentoo penguins ranged from

5.6 mm total length (?Gymnoscopelus braueri) to 447 mm (Parachaenychthis georgianus;
Table 3), with females eating bigger crustaceans (Mann-Witney U test, U = 157963, P < 0.01)

and fish (Mann-Witney U test, U = 18034, P< 0.01) than male penguins (Table 3; see below).

However, by comparing sizes (total length) of prey between penguin sexes (with� 10 individ-

ual prey in both sexes), T. gaudichaudii had similar sizes for both sexes (Mann-Witney U test,

U = 118166, P = 0.70; Fig 3), as well as Champsocephalus gunnari (Mann-Witney U test, U =

307, P = 0.98), Lepidonotothen larseni Mann-Witney U test, U = 364, P = 0.25), and? Gymnosco-
pelus braueri (Mann-Witney U test, U = 407, P = 0.44). Only female Gentoo penguins fed on

significantly bigger Muraenolepis microps than males (Mann-Witney U test, U = 423, P< 0.01).

The mean solid proportion of male Gentoo penguin food samples ranged from 4 to 298 g

(93 ± 84 g). Males fed mainly on fish (54% by mass) followed by crustaceans (38%), other spe-

cies (5%) and cephalopods (< 1%). T. gaudichaudii was the most important crustacean prey

(64% by mass; 82% by number; 53% by frequency of occurrence) (Table 1). Euphausia superba
represented only 29% by mass and 14% by number, although it had 47% by frequency of

occurrence (Table 1). Within the fish component, P. georgianus was the most important fish

Table 2. (Continued)

Overall Females Males

F (%) N (%) M (%) F (%) N (%) M (%) F (%) N (%) M (%)

Bathydraconidae

Parachaenichthys georgianus 4.7 10.1 46.3 0.0 0.0 0.0 11.8 26.6 55.3

Channichthyidae

Champsocephalus gunnari 37.2 15.8 24.5 46.2 19.2 66.8 23.5 10.1 16.3

Channichthyidae 2.3 0.3 <0.1 0.0 0.0 0.0 5.9 0.7 <0.1

Pseudochaenichthys georgianus 4.7 0.5 1.4 3.8 0.4 4.1 5.9 0.7 0.9

Myctophidae

?Gymnoscopelus braueri 48.8 38.6 0.6 65.4 59.4 3.6 23.5 4.3 0.1

Krefftichthys anderssoni 4.7 0.5 <0.1 3.8 0.4 <0.1 5.9 0.7 <0.1

Muraenolepididae

Muraenolepis microps 44.2 12.8 1.4 50.0 13.1 1.3 35.3 12.2 1.4

Nototheniidae

Gobionotothen gibberifrons 4.7 0.5 8.7 0.0 0.0 0.0 11.8 1.4 10.3

Lepidonotothen larseni 30.2 18.2 12.4 23.1 6.6 24.2 47.1 37.4 10.1

Trematomus hansoni 2.3 0.5 4.7 0.0 0.0 0.0 11.8 1.4 5.7

Unknown fish (Osteichthyes) 14.0 2.2 <0.1 7.7 0.9 <0.1 23.5 4.3 <0.1

Cephalopods 11.6 <0.1 0.1±0.0 11.5 <0.1 <0.1±0.2 11.8 0.2 0.1±0.4

Brachioteuthidae

Slosarczykovia circumantarctica 7.0 66.7 75.9 3.8 66.7 45.9 11.8 66.7 100.0

Onychoteuthidae

Kondakovia longimana 4.7 33.3 24.1 3.8 33.3 54.1 5.9 33.3 <0.1

Others 11.6 <0.1 6.6±16.0 19.2 0.1 7.6±19.6 0.0 5.0±8.0

Sagittidae

Sagitta sp. 11.6 1.2 19.2 2.5 0.0 0.0

Debris/stones/unidentified material 44.2 98.8 42.3 97.5 47.1 100.0

https://doi.org/10.1371/journal.pone.0174850.t002
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Table 3. Measurements from crustaceans, fish and cephalopods obtained from the diet of Gentoo penguins.

Crustaceans Sex n CL Mean (range) TL Mean (range) Mass Mean (range)

Antarctomysis maxima F 101 8.4 (4.8–12.0) 33.1 (19.0–47.0) n/a

M 0

F+M 101 8.4 (4.8–12.0) 33.1 (19.0–47.0) n/a

Byblis securiger F 13 n/a 37.1 (34.0–39.0) n/a

M 0

F+M 13 n/a 37.1 (34.0–39.0) n/a

Euphausia frigida F 3 n/a 18.3 (12.0–23.0) n/a

M 1 n/a 23.0 n/a

F+M 4 n/a 19.5 (12.0–23.0) n/a

Euphausia superba F 254 n/a 44.5 (27.0–58.0) n/a

M 19 n/a 45.7 (40.0–55.0) n/a

F+M 273 n/a 44.6 (27.0–58.0) n/a

Euphausia triacantha F 1 n/a 26.0 n/a

M 0

F+M 1 n/a 26.0 n/a

Eurythenes gryllus F 2 n/a 25.0 (24.0–26.0) n/a

M 0

F+M 2 n/a 25.0 (24.0–26.0) n/a

Gondogeneia georgiana F 13 n/a 18.3 (15.0–21.0) n/a

M 0

F+M 13 n/a 18.3 (15.0–21.0) n/a

Notocrangon antarcticus F 8 n/a 37.3 (32.0–42.0) n/a

M 1 n/a 20.0 n/a

F+M 9 n/a 35.3 (20.0–42.0) n/a

Themisto gaudichaudii F 1202 n/a 22.0 (15.0–35.0) n/a

M 200 n/a 21.9 (17.0–25.0) n/a

F+M 1402 n/a 22.0 (15.0–35.0) n/a

Thysanoessa sp. F 185 n/a 28.0 (15.0–35.0) n/a

M 0

F+M 185 n/a 28.0 (15.0–35.0) n/a

Vibilia antarctica F 1 n/a 12.0 n/a

M 0

F+M 1 n/a 12.0 n/a

Fish OL Mean (range)

Champsocephalus gunnari F 77 1.1 (0.7–1.9) 142.3 (89.4–230.8) 17.1 (3.1–74.1)

M 25 1.4 (0.9–3.4) 168.5 (113.5–401.2) 67.7 (6.9–472.3)

F+M 102 1.2 (0.7–3.4) 148.3 (89.4–401.2) 29.5 (3.1–472.3)

Gobiotothen gibberifrons F 0

M 2 7.4 (6.8–8.0) 318.5 (285.5–351.5) 300.3 (199.4–401.1)

F+M 2 7.4 (6.8–8.0) 318.5 (285.5–351.5) 300.3 (199.4–401.1)

Krefftichthys anderssoni F 2 0.9 34.7 0.4

M 1 0.7 23.1 0.2

F+M 3 0.8 (0.7–0.9) 28.9 (23.1–34.7) 0.3 (0.2–0.4)

Lepidonotothen larseni F 26 3.2 (0.9–5.1) 82.7 (38.7–181.2) 18.7 (0.5–54.7)

M 82 2.6 (0.9–4.7) 83.7 (38.7–168.5) 11.7 (0.5–43.7)

F+M 108 2.7 (0.9–5.1) 89.1 (38.7–181.2) 13.5 (0.5–54.7)

Muraenolepis microps F 52 1.1 (0.7–2.5) 34.3 (15.9–121.8) 0.5 (<0.1–11.1)

(Continued )
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Table 3. (Continued)

Crustaceans Sex n CL Mean (range) TL Mean (range) Mass Mean (range)

M 33 1.7 (1.0–3.2) 69.8 (28.1–180.8) 4.8 (0.1–42.5)

F+M 85 1.3 (0.7–3.2) 47.1 (15.9–180.8) 2.0 (<0.1–42.5)

Parachaenychthis georgianus F 0

M 64 2.4 (1.7–5.3) 198.9 (143.3–446.7) 86.8 (35.9–469.5)

F+M 64 2.4 (1.7–5.3) 198.9 (143.3–446.7) 86.8 (35.9–469.5)

Pseudochaenichthys georgianus F 2 1.9 160.1 46.2

M 1 2.0 168.6 51.8

F+M 3 1.9 (1.9–2.0) 164.3 (160.1–168.6) 49.0 (46.2–51.8)

Trematomus hansoni F 0

M 4 4.9 (4.8–5.0) 249.5 (244.4–254.7) 164.5 (152.6–176.3)

F+M 4 4.9 (4.8–5.0) 249.5 (244.4–254.7) 164.5 (152.6–176.3)

Gymnoscopelus braueri F 260 0.8 (0.4–1.5) 27.1 (5.6–69.5) 0.3 (0.1–2.4)

M 10 0.9 (0.4–1.3) 34.7 (5.6–57.9) 0.7 (0.1–1.3)

F+M 270 0.8 (0.4–1.5) 27.3 (5.6–69.5) 0.3 (0.1–2.4)

Cephalopods LRL Mean (range) ML Mean (range)

Kondakovia longimana F 1 1.1 18.7 2.5

M yes (upper beak)

F+M 2 1.1 18.7 2.5

Slosarczykovia circumantarctica F 2 0.7 30.4 1.0

M 2 1.4 (1.0–1.8) 44.6 (36.5–52.6) 2.9 (1.7–4.0)

F+M 4 1.1 (0.7–1.8) 37.5 (30.4–52.6) 1.9 (1.0–4.0)

(LRL = Lower rostral length (mm); OL = Otolith length (mm); CL = Carapace length (mm); TL = Total length (mm); ML = Mantle length (mm); F = Female;

M = Male) (n/a = not applicable)

https://doi.org/10.1371/journal.pone.0174850.t003

Fig 3. Length frequency distribution of Themisto gaudichaudii from the diet of Gentoo penguins

(females and males) obtained at Bird Island, South Georgia in winter 2009.

https://doi.org/10.1371/journal.pone.0174850.g003
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prey by mass (55% by mass; 27% by number; 12% by frequency of occurrence) and L. larseni
by number and frequency of occurrence (10% by mass; 37% by number; 47% by frequency of

occurrence; Table 1).

The mean solid proportion of female Gentoo penguins food samples ranged from 25 to 414

g (172 ± 100 g), significantly heavier than males (see above). Females fed mainly on crusta-

ceans (89% by mass) followed by fish (4%), others (8%) and cephalopods (< 1%). T. gaudi-
chaudii was the most important crustacean prey (63% by mass; 77% by number; 89% by

frequency of occurrence), followed by E. superba (19% by mass; 6% by number; 77% by fre-

quency of occurrence). Of the fish, C. gunnari (67% by mass; 19% by number; 46% by fre-

quency of occurrence) was the most important fish prey by mass (Table 1). P. georgianus (the

most important fish species in male Gentoo penguins) was absent in female Gentoo penguins

(Table 1).

Stable isotopic and niche analyses

Stable isotopic and niche analyses, both δ13C and δ 15N, were carried out on RBC, plasma and

breast feathers of male and female Gentoo penguins (all individuals; n = 55) (Table 4). Overall,

the values in terms of δ13C in Gentoo penguins ranged between -21.0 and -17.8 ‰ (blood cells:

between -21.0 and -18.7 ‰ δ 13C; plasma: between -21.3 and -18.0 ‰ δ 13C; feathers: -21.0 and

-17.8 ‰ δ 13C) whereas in terms of δ15N, the values ranged between 8.6 and 15.1 ‰ (blood

cells: between 9.8 and 14.1 ‰ δ 15N; plasma values: between 10.5 and 15.1 ‰ δ 15N; feathers:

varied between 8.6 and 13.6 ‰ δ 15N) (Table 4).

Sexual differences

In terms of foraging habitat (δ13C), there were significant differences between sexes in plasma

values, with males having higher plasma δ 13C values (Mann-Witney U test, U = 471, P <0.05),

but not in RBC values (Mann-Witney U test, U = 380, P = 0.57) (Table 4). Feather δ13C values

showed that females had significantly higher δ13C values than males (Mann-Witney U test,

U = 172, P<0.01).

In terms of trophic level (δ15N), there were significant differences between sexes in plasma

values (Mann-Witney U test, U = 618, P<0.01) and in RBC values (Mann-Witney U test,

U = 626, P< 0.01), with males having higher values (Table 4). Feather δ15N values showed no

sex-related differences (Mann-Witney U test, U = 384, P = 0.52; Table 4).

There were also positive significant relationships between isotopic values of δ13C and δ15N,

both in plasma and RBC, with relationships significantly higher in males (δ13C versus δ15N in

RBC: Pearson correlation 0.92, P< 0.01; plasma: Pearson correlation 0.92, P< 0.01) than for

females (RBC: Pearson correlation 0.54, P< 0.01; plasma: Pearson correlation 0.43, P = 0.02).

Table 4. Stable isotopic values of plasma, red blood cells and feathers from female (F) and male (M) Gentoo penguins.

Temporal

integration

Plasma (few days) Red blood cells (few weeks) Feathers (March- April, when

producing them)

Sex F M F+M F M F+M F M F+M

n 30 25 55 30 25 55 30 25 55

δ13C -20.1±0.5 -19.6±0.8 -19.9± 0.7 -20.1 ± 0.4 -19.8±0.5 -20.0±0.5 -19.5±0.5 -20.0±0.8 19.7±0.7

Range (-21.3;

-19.5)

(-20.8;

-18.0)

(-21.3;

-18.0)

(-21.0;

-19.4)

(-20.7;

-17.5)

(-21.0;

-18.7)

(-20.6;

-18.5)

(-21.0;

-17.8)

(-21.0;

-17.8)

δ15N 11.7±0.5 13.3±1.2 12.4±1.2 10.8±0.5 12.1±1.0 11.4±1.0 11.5±1.0 11.8±1.1 11.7±1.0

Range (10.5; 13.2) (11.1; 15.1) (10.5; 15.1) (9.8; 11.8) (10.4; 14.1) (9.8; 14.1) (8.6; 13.2) (9.6; 13.6) (8.6; 13.6)

C:N mass ratio 3.5±0.1 3.4±0.1 3.4±0.1 3.3±0.1 3.3±0.1 3.3±0.1 3.2±0.0 3.2±0.0 3.2±0.0

https://doi.org/10.1371/journal.pone.0174850.t004
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However, no significant relationships between isotopic values of δ13C and δ15N in feathers

were found in males (Pearson correlation 0.08, P = 0.18) or females (Pearson correlation 0.12,

P = 0.06).

The isotopic niche width (SEAb) was estimated and found to be significantly higher in

males than in females using plasma (p = 0.01) and RBC (p = 0.04), and practically no overlap

was detected in the isotopic data (i.e. the area of the standard ellipses; SEAc) of males and

females, with males having higher levels of δ15N (Table 5; Fig 4). On the other hand, although

SEAb was also higher in males than in females using feathers (p = 0.05), a relatively high over-

lap was detected in the isotopic niche between sexes, with overall larger areas than in blood tis-

sues (Table 5).

Individual specialization

Both males and females exhibited individual specialization (Figs 4,5 and 6). A strong positive

relationship relating δ13C in RBC versus plasma was found for both males (Pearson correlation

0.80, P< 0.01) and females (Pearson correlation 0.77, P< 0.01) (Fig 5). Similarly, when relating

δ15N in RBC versus plasma, a strong positive relationship was found for both males (Pearson

correlation 0.88, P< 0.01) and females (Pearson correlation 0.76, P< 0.01) (Fig 5). Furthermore,

a group of female individuals (n = 4) segregated with lower δ13C and δ15N from most females

whereas a group of male individuals (of variable number) clearly segregated with higher δ13C

and δ15N from most males (Figs 4 and 6). Also, when assessing individuals with highly diver-

gent diets, male individuals that fed on> 80% by mass on fish and compared with females that

fed on> 80% by mass on Antarctic krill, the differences in δ15N is even more obvious (Fig 4).

Finally, when relating δ13C in feathers versus RBC, no relationships were found for either

males (Pearson correlation 0.22, P = 0.29) or females (Pearson correlation 0.24, P = 0.24). Sim-

ilar results were found when assessing δ15N in feathers versus RBC, with no relationships

found for either males (Pearson correlation 0.26, P = 0.21) or females (Pearson correlation

0.01, P = 0.95).

Dead counts

A total of 111 individual dead Gentoo penguins (of which 34 individuals were classified as

recently dead) were found along Bird Island beaches in the two surveys. The bill length

Table 5. Metrics of isotopic niche width in plasma and red blood cells’ tissues of Gentoo penguins obtained at Bird Island, South Georgia in winter

2009. The area of the standard ellipse (SEAc), the layman metric of convex hull area (TA) and the overlap between males and females for each metric were

calculated from SIBER (see Jackson et al. 2011 for more details on these metrics).

SEAc Overlap (SEAc) TA Overlap (TA)

Plasma

Overall (n = 55) 1.58 - 6.40 -

Males (n = 25) 1.23 < 0.01 3.71 1.12

Females (n = 30) 0.78 2.79

Red blood cells

Overall (n = 55) 1.08 - 4.21 -

Males (n = 25) 0.65 < 0.01 2.05 0.57

Females (n = 30) 0.56 1.93

Feathers

Overall (n = 55) 2.14 - 9.15 -

Males (n = 25) 2.58 0.95 7.24 4.79

Females (n = 30) 1.51 6.22

https://doi.org/10.1371/journal.pone.0174850.t005
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measurements were from 42.3 to 57.2 mm (50.7 ± 0.4 mm) and the bill depth between 13.3 to

18.6 mm (16.0 ± 0.1 mm), with females and males representing 69.8% and 30.2% of the pen-

guins, respectively (n = 86 of penguins with measurable bills). There were no differences

between the dead penguins and studied penguins in bill length measurements (Mann-Witney

U test, U = 1813, P = 0.86) nor bill depth measurements (Mann-Witney U test, U = 2011,

P = 0.42). No bodies were identified as being attacked by leopard seals Hydrurga leptonyx or

other predators.

Discussion

Our study showed that the feeding ecology of Gentoo penguins during their winter non-breed-

ing season, under abnormal environmental conditions, presented significant differences in

sexual and individual segregation between males and females, with males feeding more on fish

and females more on crustaceans. Further evidence came from differences noted both in terms

of foraging habitat (δ13C values; using plasma and feathers) and trophic level (δ15N; using

plasma and red blood cells). Individual specialization was also detected with individual males

and individual females segregating from the majority of the individuals. Such levels of sexual

Fig 4. Isotopic niche area based on stable isotope values (δ13C and δ15N) in plasma and Red blood cells of

male (black) and female (red) Gentoo penguins breeding at Bird Island in winter 2009 (A and B), and individuals

showing prey preference (C and D, i.e. males with > 80% fish and females with > 80% krill in their stomachs).

The area of the standard ellipses (SEAc, 40% credible interval) was represented by the solid bold lines (ellipses),

and the Layman metric of convex hull area (TA) by black dotted lines (see Jackson et al. (2011) for more details

on these metrics of isotopic niche width).

https://doi.org/10.1371/journal.pone.0174850.g004
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and individual segregation, in terms of diet, foraging habitat and trophic level under abnormal

environmental conditions, related to a bias of more female dead individuals, may have a nega-

tive impact in the population of local Gentoo penguin populations.

Characterization of the diet of Gentoo penguins during the austral winter

at South Georgia

Gentoo penguins at South Georgia during the austral winter feed mainly on crustaceans and

fish (our study; Kato et al. 1991; Williams 1991; Williams et al. 1992) (Table 6). Within the

crustacean component, our study showed that Gentoo penguins at South Georgia fed more on

Themisto gaudichaudii (63% by mass,) rather than Antarctic krill Euphausia superba (20% by

mass), contrasting with previous studies [26–28]. These previous studies have shown that Ant-

arctic krill dominated the diet in winter 1987 and 1988 (> 87% by mass). In 1989, fish (not

identified to species level) dominated the first sampling period, in early July (73–76% by mass)

and Antarctic krill dominated the second sampling period, in late July (> 89% by mass) [27].

Williams et al. [26] also conducted their study in late July, with Antarctic krill also dominating

the diet (63.3–100.0% by mass).

The variation in diets of Gentoo penguins at South Georgia have been linked to food avail-

ability locally [26–28], as Gentoo penguins are inshore-feeding species. Under the context of

low Antarctic krill availability in autumn 2009 [44, 46], the diet shift of Gentoo penguins to T.

gaudichaudii implies that high abundances of Antarctic krill did not occur during the follow-

ing austral winter 2009 in inshore areas where Gentoo penguins forage. Moreover, the occur-

rence of Gentoo penguins found dead on the beaches (potentially a seabird wreck; see [47])

may support such a statement, although we need to be cautious as no counts of dead penguins

from previous years are available, nor their cause of death. From other data available, it sug-

gests that in years of good Antarctic krill availability, Gentoo penguins do feed mainly on Ant-

arctic krill (Table 6). In years of low Antarctic krill availability, the importance of fish increases

and the crustacean component is replaced by T. gaudichaudii or other (not Antarctic krill)

crustaceans [20, 45, 87–90] (Table 6).

Fig 5. Individual relationships of stable isotope values (δ13C and δ15N) in plasma and Red blood cells of male (black) and female (red) Gentoo

penguins breeding at Bird Island in winter 2009.

https://doi.org/10.1371/journal.pone.0174850.g005
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Sexual foraging segregation and individual specialization in Gentoo

penguins

To our knowledge, this is the first study to assess sexual dietary differences in austral winter

under known (abnormal) environmental conditions, when Gentoo penguins are not con-

strained by breeding duties. Female Gentoo penguins had significantly heavier meals (i.e. sol-

ids) than males (see Results) but as prey were inadequate (i.e. the availability of T. gaudichaudii
was low), this fact was reflected in females struggling during austral winter 2009; with more

dead female Gentoo penguins found than males on shores (see Results).

Although both sexes of Gentoo penguins are known to forage in inshore waters [25], males

exhibited a different diet in comparison with females (Tables 1, 4 and 7): sexual differences in

Gentoo penguins were found, with females taking more crustaceans (i.e. T. gaudichaudii) and

Fig 6. Stable isotope values of carbon (δ13C) and nitrogen (δ15N) (means ± SD) in plasma and red

blood cells of male and female Gentoo penguins breeding at Bird Island in winter 2009 (the number of

individuals used are in brackets, which were grouped according to their different values of carbon

and nitrogen).

https://doi.org/10.1371/journal.pone.0174850.g006
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males more fish. Also, Bearhop et al. [91] found that Gentoo penguin males foraged at a

slightly higher trophic level than females (although not statistically significant), during the aus-

tral summer. Therefore, the “Intersexual Competition Hypothesis” for dimorphic species, does

apply to Gentoo penguins. This is potentially due to the ability of male Gentoo penguins, with

slightly larger bills compared to females (and also heavier mass; see Results) being able to catch

fish prey when confronted with low availability of Antarctic krill around South Georgia during

their non-breeding period [26–28], as suggested for other penguins elsewhere [92, 93]. More-

over, male Gentoo penguins are larger, heavier and are able to go deeper to forage than females

[94, 95], and are able to feed on more bentho-pelagic prey (i.e. Lepidonotothen larseni, Para-
chaenichthys georgianus [96, 97]) than females, which tend to be limited to shallower pelagic

waters. However, Croxall et al. [89] and Bost et al. [98] found no significant differences in the

diving parameters of male and female Gentoo penguins. With such flexibility in their diet and in

foraging habitat, male Gentoo penguins may be more resilient, especially in years when pelagic

prey (i.e. Antarctic krill, T. gaudichaudii) are generally scarce (see below); this interpretation is also

supported by our results in finding more females dead on the beaches than males (see results).

Volkman et al. [99] also showed that males fed significantly more on fish than female Gentoo pen-

guins, breeding at King George Island, despite the lack of differences in energy expenditure or for-

aging trip duration demonstrated for this species [75]. This supports the theory that sex differences

in dietary preference changes of Gentoo penguins may largely reflect local changes in the availabil-

ity of particular prey species within the inshore area exploited by this all-year-round predator,

where intraspecific competition is intense (particularly during the winter when food availability is

low). To avoid competition, Gentoo penguins switched their foraging behaviour by foraging at

deeper depths to limit competition with Adélie penguins Pygoscelis adeliae at West Antarctic Pen-

insula [23].

In comparison with other penguin species, comparable diet and foraging data is mostly

available for the summer breeding season (Table 7). Adélie penguins [99–101], southern

rockhopper penguins Eudyptes chrysocome [93, 102, 103], Magellanic penguins Spheniscus
magellanicus [92], Emperor penguins Aptenodytes forsteri [104] are also known to exhibit

sex differences in trip duration, foraging areas and diets. With these data, it is not clear why

these patterns vary across species (Tables 6 and 7), but differences during the breeding

period in some species (e.g. Emperor and Humboldt penguins Spheniscus humboldti) may

be related to body condition, and the role of each sex (e.g. females must produce the egg,

whereas Emperor penguin males are solely responsible for incubating the egg) [104, 105].

Table 6. Diets of Gentoo penguins at South Georgia according to poor/good Antarctic krill Euphausia superba years. (n = number of samples).

Diet (% by Mass) Antarctic

Year Season Females Males Krill abundance References

1976/1977 Summer 70.1% Antarctic krill/32.6% fish (n = 43) ? [90]

1985/1986 Summer 51.4% Antarctic krill/48.5.% fish (n> 100) Low? [20, 88, 89]

1987 Winter 87% crustaceans (n = 20) 83% fish (n = 13) ? [28]

1988 Winter > 87% Antarctic krill (n = 68) ? [28]

1989 Winter 27–99% Crustaceans (n = 36) 24–89% Crustaceans (n = 33) ? [27]

0.1–73% Fish (n = 9) 11–76% Fish (n = 9) ?

1993/1994 Summer 85.9% Fish (n = ?) Low [20]

1996 Winter 36.3–95.2% Antarctic krill (n = 48) ? [87]

1996/1997 Summer 42.6–61.3% Antarctic krill (n = 46) High [45, 87]

2009 Winter 89% Crustaceans/4% Fish (n = 26) 54% Fish/38% Crustaceans (n = 17) Low? Present study

https://doi.org/10.1371/journal.pone.0174850.t006
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In terms of habitat use (based on δ13C), there were variable results in short-term carbon sig-

natures between males and females of Gentoo penguins (based on plasma and red blood cells),

emphasising a changeable habitat use through the austral winter. Such a result is possibly a

reflection of male and female Gentoo penguins trying to avoid (when possible) competition

for the same prey (due to the lack of prey availability locally), and thus broadening their habitat

use.

In terms of the trophic level (based on δ15N), males fed significantly at higher trophic levels

than females (based on plasma and red blood cells; Figs 4 and 5), confirmed by male Gentoo

penguins feeding on bentho-pelagic/benthic high trophic level prey (i.e. fish) whereas females

feeding on pelagic low-trophic level prey (i.e. crustaceans; Table 2); fish has a higher trophic

level than crustaceans [106]. Moreover, within males, some individuals clearly fed on a higher

trophic level than other males whereas within females, some individuals fed on a lower trophic

Table 7. Studies that provide evidence on sexual segregation (by diet, prey size or foraging) and individual specialization in penguins.

Sexual Segregation

Penguin Species Breeding cycle Diet Prey

size

Foraging Ind. specialization References

Adélie penguins Breeding season

(Summer)

Yes Yes ? [99]

Adélie penguins Breeding season

(Summer)

Yes ? Yes/No Site fidelity (feeding area specialization– 63% of

birds)

[100, 101, 110, 111]

Chinstrap penguins Breeding season

(Summer)

No No ? [99]

Chinstrap penguins Breeding season

(Summer)

Yes ? ? [112]

Emperor penguins Breeding season (Winter) Yes No? Yes [104]

Gentoo penguins Non-breeding season

(Winter)

Yes No ? Present study, [26–

28]

Gentoo penguins Breeding season

(Summer)

Yes ? No [91]

Gentoo penguins Breeding season

(Summer)

Yes No ? [99]

Gentoo penguins Breeding season

(Summer)

Yes ? ? Diet (related to mercury levels) [40, 113]

Gentoo penguins Breeding season

(Summer)

Yes ? ? [112]

Humboldt penguins Breeding season (Winter) ? ? Yes/No [105]

King penguins Breeding season

(Summer)

? ? ? Short-term consistency in the foraging niches [114]

Little penguins Breeding season

(Summer)

? ? Yes Diving behaviour [115–117]

Macaroni penguins Breeding season

(Summer)

No ? Yes/No Short-term specialization in the foraging niche

during Winter

[38, 75, 91, 118]

Magellanic

penguins

Breeding season

(Summer)

Yes ? ? [92]

Rockhopper

penguins

Breeding season

(Summer)

Yes ? ? [93, 102, 103]

Rockhopper

penguins

Breeding season

(Summer)

? ? No [119]

Royal penguins Breeding season

(Summer)

? ? No [119]

Yellow-eyed

penguins

Breeding season

(Summer)

? ? No [120]

https://doi.org/10.1371/journal.pone.0174850.t007

Foraging segregation in penguins

PLOS ONE | https://doi.org/10.1371/journal.pone.0174850 March 31, 2017 18 / 25

https://doi.org/10.1371/journal.pone.0174850.t007
https://doi.org/10.1371/journal.pone.0174850


level than others. This suggests that, within sexes, there are clear feeding/habitat segregations

not identified before, which may be a reflection of the abnormal environmental conditions

causing individuals to search for alternative prey. Individual feeding preferences and adjust-

ments to spatial, seasonal and inter-annual variations in resources by exploiting different for-

aging niches were found in several other seabird species [39]. Therefore, fluctuations in

individual specialization within a population may be related to temporal changes in the avail-

ability and predictability of resources [107], and could be, to some extent, a consequence of

dietary sexual specializations. Indeed, when assessing sex-related specializations, females feed-

ing on Antarctic krill (i.e. individuals that fed more than> 80% on Antarctic krill) versus

males feeding on fish (i.e. individuals that fed more than > 80% on fish), females clearly feed

on lower trophic levels (on pelagic crustaceans) in comparison with males (on high trophic

levels (on benthic/bentho-pelagic fish); Fig 4). Therefore, in this abnormal season of low food

availability, males and females do exploit different prey in a consistent way (i.e. in various for-

aging trips, in various days, as confirmed by the red blood cells data).

Despite the significant differences in feather carbon signatures for the end of summer

(March-April; at the end of their breeding period, when their feathers were created), biologi-

cally both sexes may explore similar habitats, as these carbon stable isotopic values are similar

(from Southern Ocean waters; see Results). However, at this time of the year (i.e. pre-moulting

period), penguins may disperse more widely and feed in more profitable areas, despite their

foraging ranges during the breeding season being still relatively short (< 50 km, and often

much less) [37]. In terms of the trophic level (based on δ15N), no differences were found in

feathers, suggesting that both males and female Gentoo penguins also fed on similar prey

(likely to be T. gaudichaudii, that dominated the diet of C. gunnari [108]. Antarctic krill only

represented 12% by mass in Gentoo penguins diets during their breeding period [44]).

Supporting information

S1 Dataset. Raw dataset of the diet of gentoo penguins at Bird Island, South Georgia in

2009.

(XLSX)
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