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Abstract

Climate change is increasingly altering the composition of ecological communities, in combination with other envi-

ronmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent

to which intensive human land use constrains community responses to climate change is currently unclear. A generic

indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that

both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over

600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced

these changes. We partitioned community changes into warm- and cold-associated assemblages and found that Eng-

lish bird communities have not reorganized successfully in response to climate change. CTI increases for birds are pri-

marily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended

to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these

community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in

response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird

and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing

landscapes to promote climate change adaptation.
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Introduction

Climate change affects individual species differently,

reflecting their contrasting environmental limits and

requirements (Parmesan, 2006; Sober�on, 2007), and may

cause local extinctions and colonizations in any given

location. This species turnover also has impacts on

existing species through species interactions such as

competition, predation, and mutualism (Cahill et al.,

2013; Ockendon et al., 2014a). Therefore, as the climate

changes, the balance of different species and thus the

nature of ecological communities change (Devictor

et al., 2008, 2012; Bellard et al., 2012).

There is also clear evidence that land-use change can

have profound impacts on biological communities

(Lambin & Meyfroidt, 2011; Kampichler et al., 2012).

Both land-use and climate changes are expected to

interact in their effects upon species (Oliver & More-

croft, 2014). For example, land-use patterns affect the

tendency of some species to shift their ranges in

response to climate change (Warren et al., 2001) and

can influence population (Newson et al., 2014; Oliver

et al., 2015) and community (De Palma et al., 2016)

responses to extreme climate events. However, little is

known about the extent to which land-use patterns

affect the longer-term capacity of biological communi-

ties to adapt in response to climate change.

Changes in community structure attributable to cli-

mate change have been previously captured through

indicators such as the ‘community temperature index’

(CTI; Devictor et al., 2008, 2012). The CTI reflects

changes in the balance of warm- and cold-associated

species in a given location. Species are first differenti-

ated on the basis of the long-term average temperature

across their European range (the ‘species temperature

index’; STI), reflecting their association with tempera-

ture. These STI scores are then weighted by species’

abundances to give a CTI score for any given location,

expressed in degree Celsius. CTI scores of bird and but-

terfly assemblages across several European countries
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have been shown to increase over time, consistent with

an expected response to a warming climate (Devictor

et al., 2008, 2012). Therefore, the CTI has been viewed

as reflecting the tendency of biological communities to

‘track’ climate change (Devictor et al., 2008; Settele

et al., 2014; Ga€uz�ere et al., 2016). The CTI metric has

consequently been adopted as an indicator of climate

change impact by the pan-European framework

supporting the Convention on Biological Diversity

(Devictor et al., 2012).

Indicators, by their nature, necessitate aggregation

of complexity into simple metrics. These are useful for

summarizing overall changes in communities, but it is

important to recognize that they may mask contrasting

trends in different components of the community. Here,

we investigate changes in the species assemblages

which underpin overall changes to community struc-

ture, to assess whether current interpretations of the

CTI indicator are appropriate. We also investigate

how land-use patterns may interact with species

assemblages to mediate responses. We use long-term

monitoring data from the UK Butterfly Monitoring

Scheme (UKBMS; Pollard & Yates, 1993; Rothery & Roy,

2001) and the Common Birds Census (CBC; Marchant

et al., 1990). These schemes represent an excellent

source of data for this analysis as each site is sampled

extensively by multiple visits throughout the year

(UKBMS up to 26 visits and CBC sites up to 10 visits),

and sampling is replicated across land-use gradients,

with sites being monitored over many years. Our analy-

sis comprises three sequential components (Fig. 1).

First, we assess changes in CTI in England over time,

as in a well-cited study (Devictor et al., 2012). We then

disaggregate the data to consider different abundance

responses of cold- and warm-associated species, allow-

ing us to better understand the mechanisms underlying

changes in CTI.

Second, we assess the extent to which changes in the

CTI may be an artefact of other drivers such as habitat

loss and degradation. Trends in individual species and

the subsequent composition of biological communities

are the outcome of multiple drivers of change (Brook

et al., 2008; Burns et al., 2016), and these drivers could

alter communities in ways that may obscure or out-

weigh climate change signals (Oliver et al., 2012). It has

been suggested that changes in CTI may be driven by

changes in habitat extent, due to correlations between

species’ STI and habitat associations (Clavero et al.,

2011; Barnagaud et al., 2012; Kampichler et al., 2012;

Nieto-S�anchez et al., 2015). Therefore, here we assess

spatial patterns in the CTI of bird and butterfly commu-

nities with respect to land use around monitoring sites.

We use these spatial relationships (where they exist) to

ascertain whether land-use change in England could be

responsible for the observed changes in CTI.

Finally, we adopt a temporally explicit perspective

and assess the degree to which community changes

over time are mediated by the land use around moni-

toring sites. Climate change and land use are well

known to interact in their impact on communities

(Forister et al., 2010; Stefanescu et al., 2011; Eglington &

Pearce-Higgins, 2012; Oliver & Morecroft, 2014; Oliver

et al., 2015). We hypothesize that large extents of inten-

sively managed land may limit immigration of warm-

associated species (e.g. through reduced probability of

colonization because intensively managed land is a bar-

rier to dispersal; Dolman et al., 2007; Dover & Settele,

2009) and reduce the resilience of cold-associated spe-

cies (e.g. through reduced resource and microclimate

availability; Oliver et al., 2010, 2013, 2015). We discuss

the implications of our results both for the interpreta-

tion of the indicators of climate change such as CTI and

for informing landscape management for climate

change adaptation.

Materials and methods

Data sources

Butterfly data were available for 1976–2009 and bird data for

1964–2000. To maximize comparability in habitat composition

between both schemes for our analysis (Fig. S1), we compared

Analysis 1 – How are bird and butterfly 
communities changing over time?
a) Trends in community temperature 

index (CTI)
b) Disaggregate trends to warm-and 

cold-associated species responses

Analysis 2 – Could changes in CTI be driven 
solely by broad habitat loss/gain?
a) Investigate spatial patterns in CTI with 

respect to habitat extent
b) Consider historic national habitat changes 

and potential to influence CTI trends

Analysis 3 – How does the land use around 
sites affect community changes over time?
a) Interaction effects between Year and 

extent of high-intensity land use on CTI
b) Individual site regressions of CTI trends 

for plotting only

Fig. 1 Schematic of the analytical workflow addressing three key questions regarding bird and butterfly community changes.
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UKBMS sites, which are self-selected and biased towards sem-

inatural habitat (i.e. away from intensive agricultural and

urban areas), with CBC sites centred on woodland. This

restricted analyses to 454 and 159 English butterfly and bird

monitoring sites, respectively. For consistency throughout, we

present results for these sites with complete land-cover data

available, but CTI trends are qualitatively similar for a UK-

wide analysis (i.e. an additional 22 Scottish and 17 Welsh sites;

results not shown). To assess bird and butterfly community

composition, we used annual indices of abundance for 114

species (Table S1) and 63 species (Table S2), respectively, at

CBC and UKBMS sites. For birds, these indices are the total

number of individual territories in (c. 20 ha) survey areas cal-

culated from 8 to 10 visits over the year by trained observers,

recording bird presences based on sight and sound. Bird terri-

tories are mapped by British Trust for Ornithology experts

using rigorous guidelines, to ensure consistency between esti-

mates across sites and years (Marchant et al., 1990). Bird obser-

vers maintain the same sites over many years, which

minimizes detectability biases affecting population trends

(Marchant et al., 1990). Even if observers do change, this has

very little effect on the results of territory analysis due to the

extensive training of new observers (O’connor & Marchant,

1981). The sample of plots from which CBC results are drawn

changed little in composition or character over the years

(Marchant et al., 1990). For butterflies on UKBMS sites, our

abundance indices are estimates of the total number of adult

individuals calculated along 5-m-wide belt transects ranging

from c. 2 to 5 km in length and from 20 to 26 visits throughout

the flight period (Rothery & Roy, 2001). These have been

shown to be good relative estimates of population size based

on mark–release–recapture comparisons (Pollard & Yates,

1993). Detectability of butterflies can vary between sites, but

variation in detectability is small compared with the variation

in true abundance, such that population density estimates

from the Pollard Walk transect method are highly correlated

with those derived from distance sampling (Isaac et al., 2011).

In addition, with little land-use change over the study period

(see Results), particularly on these UKBMS monitoring sites,

detectability within sites should remain reasonably consistent,

which is the important factor for these analyses of temporal

trends in community structure. For both species recording

schemes, we only used data for years in which at least 10 spe-

cies were present at a site and for which abundance indices

could be calculated for >75% of the species, so that our com-

munity metrics were reliable representations of actual species

assemblages. Analyses were restricted to sites with more than

five years’ data (n = 454 butterfly sites, n = 159 bird sites;

Fig. S2), to allow robust assessment of community change over

time.
To assess land use, we used remotely sensed 25-m resolu-

tion CEH Land Cover Map 2000 (Fuller et al., 2002) and Natu-

ral England field habitat surveys http://www.gis.naturale

ngland.org.uk/pubs/gis/GIS_register.asp; accessed 1.3.2010),

with land-use information collated at radii of 0.5, 2, 5, and

10 km around monitoring site centroids (Fig. S1). We selected

land-cover maps which coincided approximately with the end

of the monitoring periods, because we were interested in com-

parison of land cover among sites rather than change over

time, of which there has been relatively little in the study

period (see Results and Fig. S1). We assess ‘high-intensity’

land use in terms of the area of various combinations of

arable, urban, and improved grassland biotopes. These land

uses are managed intensively and heavily modified from

natural ecosystems in terms of their biophysical structure as

well as water and nutrient cycling and other chemical

inputs. Obviously, land-use intensity can be further quanti-

fied within these human-modified land-use types (e.g. loads

of fertilizer, herbicides, and pesticides applied to farmland),

but such detailed management information is often lacking.

Also, in comparison with other more natural land-use types,

such as calcareous grassland, broad management differences

are implicit in our categorization of land cover; that is,

management differences correlate strongly with the changes

in the biophysical structure of land related to agricultural

intensification, and thus, land-use/land-cover metrics

encompass a large majority of the variations that affect spe-

cies (Donald et al., 2001, 2006; Benton et al., 2002; Piha et al.,

2007; Firbank et al., 2008; Ekroos et al., 2010; Oliver et al.,

2010). Of our three high-intensity land-use types, the latter

biotope category of intensive grassland is less well delin-

eated by satellite remote sensing, and the two species

groups may respond differently to each other. To account

for this uncertainty, we fitted each combination of high-

intensity land use to the species data, using an information

theoretic approach to identify the most appropriate metric

and spatial scale for birds and butterflies. The metrics tested

were the following combinations shown in Table 1. We also

repeated analyses with all land-cover combinations includ-

ing sea in this grouping of potentially ‘hostile’ habitats. Cli-

mate data were obtained from the UK Met Office UKCP09

(2010) 5 km interpolated gridded monthly data set, and

mean annual temperatures were calculated for each moni-

toring site and year.

Analysis of community trends over time

For all the species recorded on the monitoring sites, species

temperature indices (STIs) were obtained from V. Devictor

(i.e. as used in the paper Devictor et al., 2012), who based them

on the average temperature occupied across their European

range. Butterfly STI scores are now also openly available from

Schweiger et al. (2014). Following the method in Devictor et al.

(2008, 2012)), we calculated a ‘community temperature index’

(CTI) as the average STI of all bird or butterfly species present

weighted by their relative abundance. Linear mixed-effects

models were used to test for temporal trends in CTI using

lme4 (Bates et al., 2013) in the program R (R Core Team, 2013).

Year was fitted as a continuous fixed-effect explanatory vari-

able with random intercept terms for Site and Year (categorical

variable), to account for the nonindependence of data within

sites across years and across sites within years. A random

slope term for the effect of Year at each site was also included

because model comparison using AIC suggested that the tem-

poral trend in CTI varied among sites (Appendix S1). Model

diagnostic plots were checked to confirm residuals did not

show patterning with respect to fitted values. Spatial autocor-

relation was detected by extracting Year slopes for each site

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 2272–2283
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and plotting spline correlograms using the ncf package (Bjørn-

stad, 2009). To account for this, the 50-km GB grid that each

site occurred within was also included as a random intercept,

effectively removing all spatial autocorrelation. Significance of

the overall Year effect (i.e. for the direction and magnitude of

the temporal trend in CTI) was assessed using a likelihood

ratio test.

Next, within each group, birds or butterflies, we ranked

species by their STI score and designated them based on quar-

tiles (based on the median and interquartiles) into ‘low-’,

‘medium–low-’, ‘medium–high-’, or ‘high-’ STI species, indi-

cating their association with either colder or warmer locations,

respectively (Tables S3–S6). For each monitoring site and for

each year, we calculated the total abundance and species rich-

ness in each of these four STI assemblages. Generalized linear

mixed-effects models were used to test for temporal trends in

either total abundance or species richness in each of the four

assemblages, with a Poisson error structure specified. Fixed

and random effect structures were the same as for the analysis

of the CTI response variable. We repeated all analyses for

birds and butterflies using the same time period for both data

sets (1976–2000) to assess whether there were qualitative dif-

ferences in the results. We also repeated analyses excluding

rare bird and butterfly species that may have higher sampling

errors (e.g. a number of aquatic birds; Table S1; and rare but-

terflies: Table S2).

Finally, we also analysed abundance trends in each individ-

ual species to determine their contribution to the total abun-

dance trend of low- or high-STI species assemblages. For each

species, we fitted a generalized linear mixed-effects model

with annual abundance as the response variable, Year (a con-

tinuous variable) as a fixed effect, and with a random intercept

term for each Site and a Poisson error structure. The z value of

this relationship (i.e. the change in number of individuals per

year, weighted by standard error of this trend) approximately

reflects a species contribution to the STI assemblage abun-

dance trend.

Analysis of spatial patterns in CTI with respect to local
land use

We assessed whether the CTI of bird and butterfly communi-

ties varied spatially in relation to the composition of land

cover on monitoring sites (defined using the smallest land-

scape radius of 0.5 km from monitoring route centroid). We

fitted linear mixed-effects models with CTI as the response

variable and the extent of five land-use types (% cover in the

0.5 km radius) as continuous fixed-effect explanatory vari-

ables. Site northing and easting were also included as fixed

effects, and Site, Year, and 50-km GB grid (all categorical vari-

ables) were fitted as random intercepts to account for repeated

measures and variation in spatiotemporal CTI caused by other

factors such as climate. Land-use types investigated were the

three high-intensity land uses defined earlier (arable,

improved grassland, urban/suburban) and two seminatural

habitat types: broadleaved woodland and low-intensity grass-

land, chosen because they are quite widespread seminatural

habitat types. We repeated analyses using two alternative

ways of defining improved and low-intensity grassland (see

Data Sources). Where significant associations were found, we

used the estimated coefficients to calculate what extent of

land-use change over time would be needed to fully explain

the average national observed changes in CTI over time.

Analysis of how land use mediates community changes
over time

We next investigated how temporal trends in cold and warm

species assemblages can be mediated by the extent of high-

intensity land use. For simplicity, we focussed here on

changes in total abundance for the two species assemblages

representing the most cold-associated (i.e. low-STI) or warm-

associated (i.e. high-STI) species. We extended the generalized

linear mixed-effects statistical models from the first analysis

(analysis of community trends over time) by adding

Table 1 Combinations of land-use categories used to define

high-intensity land use. Analyses were also repeated with all

combinations below including sea as an additional potentially

‘hostile’ habitat. All combinations were assessed at four spatial

scales of 0.5, 2, 5, and 10 km radius around monitoring site

centroids. Results of statistical models testing the goodness of

fit of these different characterizations for predicting changes

in bird and butterfly species assemblages are shown in Tables

S9 and S10.

Combination

High-intensity land use

categorization Abbreviation

1 Area of arable/horticultural

land cover (A) from CEH

Land Cover Map 2000

(LCM 2000)

A

2a Arable area, A, from above

plus improved grassland

defined by the total grassland

area from LCM2000 minus the

area of calcareous grassland

from field survey (IG1)

A + IG1

2b Arable area, A, from above

from above plus improved

grassland defined by total

grassland area from LCM2000

minus the area of calcareous

grassland and lowland

meadows from field survey

(IG2)

A + IG2

3 Arable area, A, from above

plus area of urban/suburban

land use from LCM 2000

A + U

4a Arable area, A, and urban area,

U, from above, plus improved

grassland defined as IG 1 above

A + U + IG1

4b Arable area, A, and urban area,

U, from above, plus improved

grassland defined as IG 2 above

A + U + IG2
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interaction effects between Year and extent of high-intensity

land use. We also included interactions between Year and

mean annual temperature to account for that fact that the local

climate of a site may affect community changes. Hence, our

response variable was the total abundance of low- or high-STI

species, and the fixed effects were Year (a continuous vari-

able), total area of high-intensity land use, local mean annual

temperature, an interaction term between Year and total area

of high-intensity land use, and an interaction term between

Year and local mean annual temperature. As before, random

intercept terms were included for Site, Year and 50-km GB Grid

(categorical variables), to account for the nonindependence of

data within sites across years and across sites within years.

We repeated these statistical models for each of the alternative

definitions of high-intensity land use (see Data sources)

assessed at four spatial scales of 0.5, 2, 5, and 10 km radius

around monitoring sites. We assessed model fit using the AIC

criterion, allowing species data to inform on the most relevant

categorization of high-intensity land use and the appropriate

spatial scale for each group. We also calculated conditional R2

for each model in line with the method presented by Naka-

gawa and Schielzeth (Nakagawa & Schielzeth, 2013) and

implemented in the MuMIn R package (Barton, 2015).

The statistical model fitted to all monitoring site data which

included an interaction term between Year and total area of

high-intensity land use was the most rigorous approach to test

our hypotheses; however, to illustrate our results, we fitted

individual statistical models for each monitoring site to char-

acterize temporal trends in the total abundance of low- and

high-STI species. We fitted a separate generalized linear

model for each site, with the total abundance of low- or high-

STI species as the response and Year as the explanatory vari-

able. A quasipoisson error structure was specified to account

for overdispersion. We then plotted all the regression coeffi-

cients for these site-specific temporal trends against the area

of high-intensity land use around each site. For this proce-

dure, we omitted sites with fewer than six years’ data because,

analysed individually in this manner, these sites are unlikely

to provide reliable trend estimates.

Results

Bird and butterfly community trends over time

We found that between 1964 and 2000 the CTI of Eng-

lish birds increased (CTI-year coefficient = 0.0046 �
0.0007, Χ2 = 489.8, P = <0.001; Fig. 2a). This is consis-

tent, but more rapid, than equivalent changes in CTI

observed at a European scale (Devictor et al., 2012).

Importantly, disaggregation of bird communities into

the most warm- and cold-associated species (Tables S3–
S4) showed that this change in CTI has been driven by

a more rapid decline in the total abundance and species

richness of low-STI species, than that of high-STI spe-

cies, which also actually declined (Fig. 2). These assem-

blage declines were caused by a combination of both

changes in the abundance of individual species (Tables

S3 and S4) and the extinction of species from individual

sites (Table 2; Figs 2 and S3). Warm-associated birds in

the third quartile of STI rankings (‘medium–high-’ STI
species) increased in abundance, albeit at a slower rate

(by half) than the decline in low-STI species (Table 1).

Therefore, it appears that the observed increases in bird

CTI have been driven primarily by the loss of cold-

associated species.

Between 1976 and 2009, the CTI of English butterflies

showed no significant change (CTI-year coeffi-

cient = �0.0008 � 0.0014, Χ2 = 0.30, P = 0.58; Fig. 2f).

This is in contrast to Devictor et al. (2012) who found a

significant increase and arises because in our case it

was more appropriate to fit a statistical model with a

random intercept for Year, in the light of the large inter-

annual variability in CTI (e.g. Fig. 2f). Analysis of the

data without this random effect and using all UK sites

resulted in a significant increasing CTI trend

(Appendix S1) as found by Devictor et al. (2012). Disag-

gregating the CTI of butterfly communities into warm-

and cold-associated species (Tables S5–S6) showed that,

in contrast to birds, high-STI butterflies have increased

in total abundance and species richness, with no signifi-

cant change in colder-associated (low-, medium–low-,

medium–high-STI) species assemblages (Fig. 2;

Table 2).

Repeating our analyses for birds and butterflies using

same time period for both data sets (1976–2000), we

found qualitatively similar results as for the full data

set analysis (bird CTI-year coefficient = 0.006 � 0.0007,

Χ2 = 51.4, P < 0.001; butterfly CTI-year coeffi-

cient = �0.0027 � 0.0025, Χ2 = 1.17, P = 0.28). Repeat-

ing our analyses excluding rare bird and butterfly

species that may have higher sampling errors (e.g. a

number of aquatic birds; Table S1; and rare butterflies:

Table S2), the results were generally similar, except that

the estimated rate of decline in high-STI bird species

over time was greater (Table S7). Again, the overall

increase in bird CTI was due to the combined effects

of a decline in low-STI species and increase in

‘medium–high-’ (i.e. upper third quartile) STI species,

outweighing the high-STI species declines. The trends

for individual species that contribute to overall changes

in the total abundance of STI assemblages can be found

in Tables S3–S6.

Spatial patterns in CTI with respect to land use

In testing whether the CTI of bird and butterfly commu-

nities varied spatially in relation to the composition of

land cover around monitoring sites, we found that bird

CTIs were higher on sites with more broadleaved

woodland and urban areas, whilst butterfly CTIs were

lower in woodland and grassland areas (Table S8). The

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 2272–2283
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Table 2 Trends over time in the total abundance and species richness of bird and butterfly assemblages. Assemblages are defined

through species ranked into quartiles by their species temperature indices (STI) from 1 (low STI) to 4 (high STI). Significant trends

(at P < 0.05) are highlighted in bold.

Group Assemblage (STI quartile)

Total abundance trend Species richness trend

Coefficient SE z P Coefficient SE z P

Birds High STI �0.013 0.006 �2.23 0.026 �0.009 0.002 �5.09 <0.001

Birds Medium–high STI 0.010 0.003 3.11 0.002 0.004 0.001 4.35 <0.001

Birds Medium–low STI 0.006 0.004 1.69 0.091 �0.004 0.001 �4.42 <0.001

Birds Low STI �0.025 0.002 �11.27 <0.001 �0.007 0.001 �5.34 <0.001

Butterflies High STI 0.260 0.042 6.14 <0.001 0.003 0.001 2.39 0.017

Butterflies Medium–high STI �0.004 0.007 �0.61 0.544 0.003 0.002 1.61 0.108

Butterflies Medium–low STI �0.006 0.004 �1.70 0.089 �0.001 0.001 �0.64 0.520

Butterflies Low STI �0.003 0.007 �0.49 0.621 �0.002 0.001 �1.83 0.068

Cold-associated species 

Warm-associated species Birds

Cold-associated species 

Warm-associated species Bu�erflies

(a)

(f)

(b) (c)

(d) (e)

(g) (h)

(i) (j)

Fig. 2 Changes in the balance of warm- and cold-associated bird and butterfly species over time in England. Overall community

change is reflected as a change in community temperature index (CTI, panels a and f), but can also be partitioned into changes in cold-

associated (low-STI) or warm-associated (high-STI) species (panels b–e for birds and g-j for butterflies). Plots are for mean values with

error bars representing the spatial variation in community composition across all sites in any given year. Dashed lines indicate signifi-

cant relationships (at P < 0.05).
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slopes of these CTI–habitat area relationships suggest

that for bird CTI changes during 1964–2009 (0.166 CTI

units) to be solely driven by habitat would need a mini-

mum increase in woodland cover from zero to 81% or

in urban cover from zero to 85%, or some combination

thereof. Current woodland and urban cover around

sites already stand at 25% and 14%, respectively, and

national net increases during 1990–2007 (where data are

available) were 0.7% and 0.3%, respectively (Fig. S2).

How land use and climate mediate community changes
over time

We tested the effects of extent of high-intensity land use

and local climate on temporal trends in total abundance

of cold (low-STI)- and warm (high-STI)-butterfly and

bird assemblages. Here, results are presented for the

spatial scale and high-intensity land-use categorization

which had the best ability to predict community

changes. For high-STI birds, this was arable land use,

whilst for low-STI birds it was arable and urban, both

at 2 km radius. For low- and high-STI butterflies, it was

arable, urban, and improved grassland, both at 0.5 km

radius. The goodness of fit of alternative models is

detailed in Tables S9–S10, but results were qualitatively

similar whichever method or spatial scale was used,

and whether or not sea was included as a hostile habitat

(Table S11). In the best-fitting models, the conditional

R2 values were 0.90, 0.77 for low- and high-STI birds,

respectively, and 0.84 for both low- and high-STI butter-

flies. The marginal R2 values were 0.05, 0.06 for low-

and high-STI birds, respectively, and 0.03 for both

low- and high-STI butterflies. Thus, the majority of vari-

ation in abundance in both birds and butterflies is

explained by the random effects in our models, reflect-

ing the large interannual variation in abundance

around long-term trends (Fig. 2), plus the strong spatial

patterns in abundance between sites and 50-km

regions.

For butterfly populations, we found that extent of

high-intensity land use was associated with more rapid

declines in low-STI species, but had no significant effect

on high-STI butterflies (Table 3; Fig. 3). In contrast, for

birds, extent of high-intensity land use was associated

with declines in both low- and high-STI bird species.

With regard to mean annual temperature, for butter-

flies, we found a pattern whereby sites that were war-

mer over the recording period suffered more rapid

decline in low-STI species and were more likely to

increase in high-STI species, but this was not apparent

for birds (Table 2). Results were qualitatively similar

with rare species excluded from analyses (Table S12)

Discussion

Bird and butterfly community trends over time

Our results demonstrate that English bird and butterfly

communities show qualitatively different trends in

their cold- and warm-associated assemblages. This is

despite similar directions of trend being found in an

aggregate indicator of climate change impacts, the CTI

(Devictor et al., 2012; also see Appendix S1). Butterfly

communities appear to be responding adaptively to cli-

mate change through increases in warm-associated spe-

cies and relatively fewer declines across cold-associated

species. In contrast, birds have suffered declines in

cold-associated species but also declines in the most

warm-associated (high-STI) species. This contrasts with

results for two other countries, Sweden and North

America, where both increases in warm-associated spe-

cies and declines in cold-associated species were found

to be responsible for the overall increases in CTI (Lind-

str€om et al., 2013; Princ�e & Zuckerberg, 2015; Tayleur

et al., 2016).

The declines in English high-STI bird species are

potentially a result of habitat degradation (Thaxter

et al., 2010; Eglington & Pearce-Higgins, 2012). High-

STI birds suffered declines in both abundance and spe-

cies richness (Fig. 2b and c). Although the coefficient

for the rate of high-STI bird abundance decline was

roughly half that of low-STI birds, the proportional loss

Table 3 Interaction effects between area of high-intensity land use and year, and mean annual temperature and year, on the total

abundance of low- or high-STI bird and butterfly species. Interaction effects are demonstrated by plotting abundance trends over

time vs. area of high-intensity land use (Fig. 2). Significant interactions (at P < 0.05) are highlighted in bold.

Species

group Response variable

Year: area

high-intensity

land use coefficient SE z P

Year: annual

temperature

coefficient SE z P

Birds Low-STI species total abundance �0.54 0.19 �2.82 <0.001 0.06 0.03 1.70 0.09

Birds High-STI species total abundance �0.94 0.26 �3.60 <0.001 �0.03 0.04 �0.72 0.47

Butterflies Low-STI species total abundance �0.28 0.09 �3.10 0.002 �0.15 0.01 �14.96 <0.001

Butterflies High-STI species total abundance �0.0002 0.08 0.00 0.998 0.16 0.01 28.56 <0.001
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is actually greater as initial starting abundances were

lower, and when excluding rare species, the decline in

abundance has been roughly equivalent between the

two groups. Table S3 shows that within the most influ-

ential species (with high t values) affecting the total

abundance trend of high-STI assemblage, there are two

main species types: species that are essentially ubiqui-

tous within the range measured by the CBC and species

that have expanded their range (Balmer et al., 2013).

The former group mainly comprises widespread farm-

land species that declined over the time period due to

factors linked to agricultural intensification (e.g. Cardu-

elis cannabina, Carduelis carduelis, Emberiza calandra, Pas-

ser montanus, Perdix perdix, Streptopelia turtur;

Chamberlain et al., 2000) that have been only partly bal-

anced out by species that have shown population

increases (e.g. Corvus monedula, Fulica atra, Streptopelia

decaocto, Strix aluco; Baillie et al., 2014). The latter group

includes species that have expanded their ranges north-

wards (e.g. Alcedo atthis, Saxicola rubicola, Sitta europaea,

Tachybaptus ruficollis), but occur at relatively low popu-

lation densities (Balmer et al., 2013). In addition to

agricultural intensification in England, migratory spe-

cies that overwinter elsewhere will be affected by habi-

tat and weather conditions in their overwintering

grounds (Finch et al., 2014; Ockendon et al., 2014b), and

particularly, during the study period, arid-zone African

migrants declined during the 1970s due to Sahel

drought, whilst humid-zone African migrants have

declined more recently (Thaxter et al., 2010).

The steeper declines of the low-STI bird species

appear to be related to climate-related contraction from

the south of their ranges of a number of more northerly

distributed species, such as Anthus pratensis, Carduelis

cabaret, Phylloscopus trochilus, Poecile montana. However,

there are also examples of such species showing decli-

nes that are most likely due to land-use change, as

found for the high-STI species, such as Prunella modu-

laris and Pyrrhula pyrrhula (Balmer et al., 2013; Baillie

et al., 2014).

For butterflies, the overall increases in high-STI spe-

cies are likely to have been driven by increases in abun-

dance of widespread warm-associated species such as

Pararge aegeria, with additional contributions from
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Fig. 3 Associations between area of high-intensity land use and change in abundance of low-STI or high-STI bird and butterfly species

in England. Plotted are coefficients from regressions of abundance over time for each monitoring site with at least six years’ data. In the

statistical analysis, however, all sites are analysed in a unified mixed model accounting for error in these temporal relationships, differ-

ences in site-level intercepts, and spatial autocorrelation. Dashed lines on panels a–c indicate significant relationships.
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habitat specialist species such as Polyommatus bellargus

and the migrant Colias croceus. There are also general

increases in the species richness of high-STI species on

monitoring sites over recent decades (Fig. 2). These

changes are all compatible with climate warming,

although improved management of protected areas

may have provided additional benefits for some spe-

cialist species (Fox et al., 2006; Thomas et al., 2012b).

However, it should be noted that some high-STI spe-

cies, such as Lasiommata megera, are exceptions to this

trend and are suffering unexplained declines in occur-

rence and local abundance in England and wider Eur-

ope (Klop et al., 2015; Van Dyck et al., 2015).

For low-STI butterflies, there was an overall lack of

change in abundance or species richness, possibly

because butterflies are thermophilic insects and there

are relatively few species in high-latitude countries

such as England for which the climate is yet too warm

(Settele et al., 2008; Oliver et al., 2014). However, that

may well change in the future with climate warming, in

particular with an increased frequency of extreme

events such as droughts (Oliver et al., 2015).

Spatial patterns in CTI with respect to land use

An issue previously raised with aggregate climate indi-

cators such as CTI is that, if there are correlations

between species’ STI and habitat associations, then

changes in CTI may be driven by changes in habitat

extent (Clavero et al., 2011; Barnagaud et al., 2012;

Kampichler et al., 2012; Nieto-S�anchez et al., 2015). If

this is the case, then one would expect there to be

strong spatial patterns in CTI with respect to the habitat

composition of monitoring sites. We tested for such

relationships but only found limited evidence. There

were associations between CTI scores and the extent of

some habitat types (woodland and urban for birds, and

woodland and grassland for butterflies). The positive

association of bird CTI and woodland extent was oppo-

site to that hypothesized for Central Europe (i.e. where

lower-STI species were more likely to be woodland-

associated species, meaning an increase in woodland

should decrease CTI scores; Clavero et al., 2011). The

change in the CTI along spatial gradients of habitat

extent that we observed was relatively small. For exam-

ple, to explain fully the national average increase in

bird CTI during 1964–2009 would require increases in

woodland or urban extent of up to approximately 80%

cover. Recent rates of land-cover change in England

have been much lower (e.g. there has been <1% total

cover change in these habitats over 18 years between

land-cover maps of 1990 and 2007). Therefore, changes

in habitat extents on monitoring sites themselves are

unlikely to be the main driver of community changes

observed in our analyses (note, this does not preclude

changes in habitat quality strongly affecting community

composition).

Interactions between extent of high-intensity land use and
local climate

A more complete understanding of community changes

should help inform upon ways to reverse detrimental

trends as well as simply documenting them. Land-use

and climate changes are well known to interact in their

effects on species (Oliver & Morecroft, 2014). At the

community level, we investigated the combined out-

come of these species effects by considering how the

area of high-intensity-use land cover mediates commu-

nity changes over time. For butterfly populations, we

found that extent of high-intensity land use was associ-

ated with more rapid declines in low-STI species

(Table 3; Fig. 3). This supported our hypothesis that

large extents of intensively managed land reduce the

resilience of cold-associated species, potentially medi-

ated through a reduction in the availability and diver-

sity of resources and suitable microclimates, and

further exacerbated by reduced metapopulation size

and increased risk of stochastic extinctions (Hanski &

Ovaskainen, 2000; Oliver et al., 2010, 2013, 2015; Law-

son et al., 2012; Gillingham et al., 2015). In contrast, the

extent of high-intensity land use had no significant

effect on high-STI butterflies (Table 3; Fig. 3), and thus,

there was no support for our hypothesis that larger

extents of high-intensity land use limit immigration

success and consequent population growth of warm-

associated butterflies. For birds, extent of high-intensity

land use was associated with declines in both low- and

high-STI bird species, perhaps indicating a strong main

effect of habitat degradation rather than an interaction

with species’ thermal tolerances. Overall, our results

suggest that land use can influence adaptive commu-

nity responses to climate change but that different spe-

cies groups respond differently.

In terms of the most appropriate scale to target adap-

tation measures, our results suggest that bird communi-

ties will respond to landscape management at larger

spatial scales (i.e. 2 km radius around monitoring sites),

whereas butterfly communities will respond more to

local land-use changes (i.e. at a 0.5 km radius). Arable/

horticultural and urban/suburban land cover both had

negative effects on butterflies and cold-associated (low-

STI) birds, whilst urban land cover was not included as

a ‘hostile’ land use for high-STI birds. For butterflies,

intensive grassland was also included in the most appro-

priate grouping of ‘hostile’ land use, probably reflecting

the lack of resources and even negative impacts of this

land-use type (Wallisdevries & Van Swaay, 2006).
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With regard to how the local climate for each site

affected changes in low and high STI in assemblages,

for butterflies, we found a pattern whereby sites that

were warmer over the recording period suffered more

rapid decline in low-STI species and were more likely

to increase in high-STI species (Table 2), further sup-

porting climate, in addition to habitat quality, as impor-

tant factor mediating these community changes. This

was not apparent for birds perhaps indicating a greater

influence of habitat degradation for these communities

(Eglington & Pearce-Higgins, 2012).

In summary, when assessing the effects of land-use

and climate changes on communities, it seems it is

important to look beyond generic indicators such as

CTI, which can mask qualitatively different patterns

between species groups. Our results suggest that bird

communities are reorganizing less successfully in

response to climate change than butterflies, because

increases in bird CTI are driven by greater loss of cold-

than gain in warm-associated species. Thus, the CTI

actually can give false assurance for some communities

‘tracking’ climate change (Devictor et al., 2008; Ga€uz�ere

et al., 2016), as appears to be the case for birds in Eng-

land. Many bird species (including high-STI birds) have

probably declined due to declines in habitat quality,

although the relatively greater loss of low-STI species

than high-STI species is supportive of an additional cli-

mate change element to these community changes. In

contrast, for butterflies, high-STI species have

increased, with little overall changes to the cold-asso-

ciated components of communities. These patterns are

mostly consistent with climate warming impacts, and

our analysis supports the assertion that criticisms of the

CTI indicator based on responsiveness to habitat

change are unlikely to fully explain the national

changes in CTI (Ga€uz�ere et al., 2015). However, degra-

dation of habitat quality may certainly contribute to

community changes and can cause unexpected patterns

in species assemblages (e.g. high-STI bird declines) that

are masked by the use of an aggregate indicator. In

addition, we show that the extent of high-intensity land

use may also interact with climate change to limit

autonomous community reorganization. Hostile land

use appears to exacerbate declines in cold-adapted spe-

cies, with an additional effect of preventing increases in

warm-associated birds. These results potentially

account for recent evidence that protected areas can

enhance species’ persistence and colonization under cli-

mate warming (Thomas et al., 2012a; Gillingham et al.,

2015; Oliver et al., 2015). Further research considering

rates of community change in the light of climatic vari-

ability and whether interactions with land use are

mediated by ecological traits (e.g. De Palma et al., 2016)

and regional species pools would provide additional

valuable insights into changing biological communities

under global change drivers.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Proportion of broad land use types around monitoring sites.
Figure S2. Duration of recording at each monitoring site.
Figure S3. Changes in total abundance and species richness of all bird and butterfly species over time.
Table S1. Full list of bird species found across the 159 Common Bird Census monitoring sites.
Table S2. Full list of butterfly species found across the 454 Butterfly Monitoring Scheme sites.
Table S3. Warm-associated (high STI) bird species.
Table S4. Cold-associated (low STI) bird species.
Table S5. Warm-associated (high STI) butterfly species.
Table S6. Cold-associated (low STI) butterfly species.
Table S7. Sensitivity analysis of trends over time in the total abundance and species richness of bird and butterfly assemblages
excluding rare species.
Tables S8. Relationships between bird and butterfly CTI scores and habitat extent around monitoring sites.
Table S9. Comparison of model goodness of fit for different land cover characterisations.
Table S10. Comparison of model goodness of fit for different land cover characterisations including the area of sea as hostile habi-
tat.
Table S11. Model results using alternative classification of high-intensity land cover or at different spatial scales.
Table S12. Sensitivity analysis of interactions of bird and butterfly assemblages with land use and climate excluding rare species.
Appendix S1. Comparison of butterfly community temperature index (CTI) trends with Devictor et al.(2012).
Table S13. Models with varying random effect structures for assessing temporal trends in butterfly community temperature index
(CTI) across the UK.
Table S14. Models assessing temporal trends in butterfly community temperature index (CTI) in three UK countries.
Table S15. Models with varying random effect structures for assessing temporal trends in butterfly community temperature index
(CTI) in England.
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