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Abstract
Climate change will impact fluvial ecosystems through changes in the flow regime. Physical hab-

itat is an established measure of a river's ecological status when assessing changes to flow. Yet, it

requires extensive datasets, is site specific, and does not account for dynamic processes; short-

comings that the use of hydrological and hydraulic models may alleviate. Here, simulated flows

along a 600 m reach of the River Lambourn, Boxford, UK, were extracted from the 1D MIKE

11 hydraulic component of an integrated MIKE SHE model of the Centre for Ecology & Hydrol-

ogy River Lambourn Observatory. In‐channel seasonal macrophyte growth and management

through cutting alter water levels, represented in the hydraulic model by manipulating channel

bed roughness (Manning's n). Assessment of climate change used outputs from the UK Climate

Projections 2009 ensemble of global climate models for the 2080s. River discharge outputs were

disaggregated to provide velocity and depth profiles across 41 cross sections along the reach.

These were integrated with habitat suitability criteria for brown trout (Salmo trutta) to generate

a measure of available physical habitat. The influence of macrophyte growth caused the habi-

tat‐discharge relationship to be unusable in evaluating the sensitivity of brown trout to flow

changes. Instead, projected time series were used to show an overall reduction in habitat avail-

ability, more for adult than juvenile trout. Results highlighted the impact of weed cutting, and

its potential role in mitigating both flood risk and the ecological impacts of climate change. The

use of a hydraulic model to assess physical habitat availability has worldwide applicability.
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1 | INTRODUCTION

Unequivocal warming of the climate (IPCC, 2014) will impact the global

hydrological cycle (Arnell & Gosling, 2013), with implications for aquatic

ecosystems (Matthews&Quesne, 2009; Poff, Brinson, &Day, 2002) and

water resources (Gosling, Warren, Arnell, Good, & Caesar, 2011; Oki &

Kanae, 2006). Climate changewill alter themagnitude aswell as the tem-

poral and spatial distribution of precipitation and evapotranspiration,

which, in turn, will result in changes to runoff and river‐flow regimes.

The importance of flow regime in controlling processes of water quality,

sediment transport, dissolved oxygen concentrations, and the type and
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distribution of habitat (Bunn & Arthington, 2002; Poff et al., 1997; Rich-

ter, Baumgartner, Braun, & Powell, 1998; Warren, Dunbar, & Smith,

2015) means that climate change is likely to have major impacts on flu-

vial ecosystems, their biota, and the many services that they provide.

A direct relationship between physical habitat and flow enables

assessments of the ecological responses to changes in the flow regime

(Beecher, Johnson, & Carleton, 1993; Cavendish & Duncan, 1986). Flow

in this sense is used as a proxy for water depth and velocity, as these

provide physical habitat for plants, invertebrates, and fish through

interactions between the flow rate and channel morphology (Gallagher

& Gard, 1999; Gore, Crawford, & Addison, 1998; Jowett, 1992; Jowett,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Richardson, & Bonnett, 2005). Hydraulic changes due to climate change

may be linked to the depth and velocity requirements for different species

and provide a measure of available physical habitat as a function of flow.

The physical habitat simulation (PHABSIM) system was the first

modelling framework to quantify physical habitat for a specific dis-

charge as a combined function of depth, velocity, and substrate or

cover (Bovee, 1978; Bovee, 1982; Bovee, Lamb, Bartholow, Stalnaker,

& Taylor, 1998). The method is well suited to scenario analysis; the

slope of the physical habitat‐discharge relationship that is a key output

of PHABSIM defines habitat sensitivity to change in flow. The steeper

the curve the greater the sensitivity to flow. This approach is a legal

requirement for many impact studies in the USA (Reiser, Wesche, &

Estes, 1989) and has been standard use by the Environment Agency

of England and Wales for determining sensitivity of rivers to abstrac-

tion, a requirement for catchment abstraction management strategies

(Dunbar et al., 2002), and assessing ecological status for the European

Water Framework Directive (Acreman et al., 2006). Despite criticisms

of an insufficient link between habitat and biomass (Mathur, Bason,

Purdy, & Silver, 1985; Orth &Maughan, 1986), models built on a similar

concept have also been applied worldwide (Dunbar & Acreman, 2001),

including RHYbasiM in New Zealand (Jowett, 1989), RSS in Norway

(Killingtviet & Harby, 1994), EVHA in France (Ginot, 1995), HABIOSIM

in Canada (Dunbar et al., 1997b), and CASiMIR in Germany (Eisner,

Young, Schneider, & Kopecki, 2005; Jorde, 1996). However, in applica-

tion, physical habitat modelling is site specific and resource intensive

(Tharme, 2003). It requires extensive collection of field data at several

different flows (Bovee, 1982) to obtain a physical habitat‐discharge

relationship. Approaches based on defining habitat‐discharge relation-

ships from fewer and/or simpler measurements of catchment, hydraulic

or morphological characteristics (Booker & Acreman, 2007; Klaar et al.,

2014; Lamouroux & Capra, 2002; Lamouroux & Jowett, 2005; Souchon

& Capra, 2004), have had limited success and remain suited for broad‐

scale screening exercises only. Additionally, alterations to the river that

affect the parameters of depth and velocity are not accounted for.

These may include instream macrophyte growth, groundwater

exchange, or morphological adjustment that are key features of many

dynamic systems. Indeed, the influence of macrophytes on physical

habitat was a key research priority of the UK PHABSIM user forum

20 years ago (Elliot & Dunbar, 1996), yet never actioned.

Hydrological impacts of climate change are commonly evaluated by

using climatic projections, derived from forcing general circulation

models with alternative emissions scenarios, to drive hydrological

models. Examples of this approach cover hydrological systems at various

scales from global assessments (Arnell, 2003; Arnell & Gosling, 2013;

Gosling, Bretherton, Haines, & Arnell, 2010; Nohara, Kitoh, Hosaka, &

Oki, 2006), through regional (Arnell, 1999) and national scales

(Andréasson, Bergström, Carlsson, Graham, & Lindström, 2004), major

river basins (Conway, 1996; Nijssen, O'Donnell, Hamlet, & Lettenmaier,

2001; Thompson, Green, Kingston, & Gosling, 2013), medium and small

catchments (Chun, Wheater, & Onof, 2009; Thompson, 2012), down to

individual sites within catchments (Thompson, Gavin, Refsgaard,

Sorenson, & Gowing, 2009). The hydraulic components so often a fea-

ture of such models have the potential to be applied to assess the

impacts on physical habitat assessment using standard outputs of flow,

depth, and velocity. These can enable the calculation of velocity and
depth profiles at each time step, and thus represent the flow character-

istic throughout an extended simulated period, rather than the few iso-

lated measurements afforded by field surveys. A physical habitat‐

discharge relationshipmay thus be produced that is more representative

of the range of flows and can incorporate dynamic processes modelled

within a river, such as macrophyte growth. This use of hydraulic models

in assessing physical habitat availability demands fewer resources, espe-

cially within the field, and may be readily applied to rivers through a

range of scales and conditions. The idea of using existing hydraulic

models for physical habitat assessment has existed for 20 years (Dunbar,

1997a), yet, to our knowledge, never been operationalised. There is a

worldwide need to develop approaches for evaluating the impacts of

environmental alterations, such as climate change, on fluvial ecosystems.

The aim of this study is to assess the effects of climate change on

physical habitat for brown trout (Salmo trutta) in a reach of a lowland

chalk river. The objectives are to (a) project changes in the inputs to

a distributed hydrological or hydraulic model of the river under scenar-

ios of different climate sensitivities to incorporate the uncertainty

associated with climate change, (b) use the hydraulic model component

to assess how climate change scenarios affect the hydraulic character-

istics of the river, and (c) compare simulated hydraulic characteristics

under each climate change scenario to the physical habitat require-

ments of brown trout. In this way, the study provides an assessment

of potential ecohydrological impacts of climate change on the river

and the subsequent management implications of these impacts.
2 | STUDY AREA

The Centre for Ecology & Hydrology (CEH) River Lambourn Observa-

tory is located in Berkshire, UK (51.445o N, 1.384o W). The site con-

tains a 600 m stretch of the River Lambourn bordered to the west by

c. 10 ha of riparian wetland (Figure 1). The catchment area of the

Lambourn at the CEHObservatory is approximately 162 km2. The river

drains the Chalk of the Berkshire Downs and is characterised by a large

baseflow component. At Shaw, the nearest gauging station 5 km

downstream of the observatory, the baseflow index and mean

discharge of the Lambourn are 0.96 and 1.73 m3 s−1, respectively

(Marsh & Hannaford, 2008).

The River Lambourn and its associated riparian wetland owe their

designation as a site of special scientific interest and special area of

conservation to the presence of brook lamprey (Lampetra planeri), bull-

head (Cottus gobio) and Desmoulin's whorl snail (Vertigo moulinsiana).

The river also holds a designation under the EU habitat directive for

water courses of plain to montane levels with Ranunculion fluitantis

and Callitricho‐Batrachion vegetation.

In addition to brook lamprey and bullhead, there are four species

of fish present at the site: brown trout (S. trutta), grayling (Thymallus

thymallus), 10‐spinned stickleback (Pungitius pungitius), and 3‐spinned

stickleback (Gasterosteus acluleatus). The macrophyte community is

dominated by water crowfoot (Ranunculus spp. pseudofluitans mixed

with smaller quantities of Ranunculus penicillatus spp. pseudofluitans ×

Ranunculus peltatus hybrid). Frequent assemblages of water starwort

(Callitriche spp.), water parsnip (Berula erecta), and watercress (Rorippa

nasturtium‐aquaticum) also occur. Periodic cutting of instream



FIGURE 1 The Centre for Ecology &
Hydrology River Lambourn observatory,
showing the locations of cross sections for the
MIKE 11 model and physical habitat
assessment, instrumentation network, and
MIKE SHE model domain
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macrophyte growth is carried out to maintain flood conveyance, lower

water levels, and maintain viable fisheries (Old et al., 2014).

Comprehensive hydrological monitoring at the CEH observatory

includes observations of wetland groundwater levels from an array of pie-

zometers, described in House, Thompson, Sorensen, Roberts, and

Acreman (2015b).Meteorological observations are logged at an automatic

weather station installed in the wetland. Observations from seven stage

boards are located along the River Lambourn (L1–L7) and three in the

Westbrook (W1–W3; Figure 1) are available at an approximately monthly

interval. River Lambourn stage is also recorded every 15 min at a stilling

well at L2 using a Druck PDCR 1830®. Monthly measurements of dis-

charge are taken at L1 using a Valeport® electromagnetic flow meter.
3 | METHODOLOGY

3.1 | Simulation of baseline conditions

A fully integrated hydrological model of the observatory was developed

using the MIKE SHE and MIKE 11 modelling system. The MIKE SHE
modelling system simulates the land‐based phase of the hydrological cycle

(Graham & Butts, 2005), while MIKE 11 provides the one‐dimensional

(1D) channel component. A detailed description of the full CEH Lambourn

Observatory MIKE SHE or MIKE 11 model is provided by House et al.

(2015b), whilst this study focusses on the results from theMIKE 11model.

Channel flow in MIKE 11 is described with the fully dynamic wave

formulation of the St. Venant equations, dynamically coupled to MIKE

SHE through segmentation of the river into links between adjacent

grid squares. Exchanges between MIKE SHE and MIKE 11 occur as

bi‐directional river‐aquifer exchange, overland flow, and flooding.

The MIKE SHE model domain was resolved at a grid size of 5 × 5 m,

producing 4,261 computational cells. The computational time for each

model run was approximately 30 min.

The river network was digitised in MIKE 11 from Ordnance Survey

MasterMap 1:1250 raster data. Channel cross‐section profiles applied

to the networkwere based ondifferential GPS (dGPS) surveys conducted

at 42 locations along the River Lambourn and 44 along the Westbrook.

Bank elevations were extracted from the 5 × 5 mMIKE SHE topographic

grid, based on a dGPS ground survey in combination with LiDAR.
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Inflows for the upstream channel boundary were specified as a

mean 15 min discharge (Figure 2). These were derived from a relation-

ship between the monthly measurements of discharge at L1 (the most

upstream stage board; Figure 1) and corresponding flow at the down-

stream Shaw gauging station. The downstream boundary was set to

follow monthly stage observations at L7.

MIKE 11 does not contain a method to explicitly represent

volumetric and temporal changes in instream vegetation. To account

for macrophyte growth and its removal by cutting within the Lambourn,

we adjusted the hydraulic resistance, fundamental to the depth‐dis-

charge relationship, as a proxy. Hydraulic resistance was expressed as

a 15 min time series of Manning's n coefficients (Figure 2). Values were

derived from measurements of cross‐section geometry and stage at L1

(Figure 1), energy slope between stage boards at L1 and L2, and the

derived 15min discharge at L1. The time serieswas applied to the entire

reach as a multiplication factor to a fixed channel roughness, with the

assumption that variations in macrophyte growth were uniform along

the reach. Manning's n values fluctuate between 0.045 and 0.353 in

response to the growing season (Figure 2). Increases in discharge from

storm events generally correspond to decreases in Manning's n. This

is assumed to be due to the flattening or removal of vegetation by

the high flows. However, weed cuts within the channel undertaken

on 1/5/2013, 16/7/2013, 21/5/2014, and 23/7/2014 caused rapid

drops in Manning's n with no equivalent change in discharge.

Calibration of the coupled MIKE SHE and MIKE 11 model was

based on groundwater head data from a network of peat and gravel

piezometers in the wetland plus comparison between simulated and

observed channel stage from 15 min continuous records at L2 and the

monthly stage board readings at L1, L3–L7, and W1–W3 (Figure 1).

The periods 1/2/2013–1/12/2013 and 1/12/2013–1/10/2014 were
used for split sample calibration and validation, respectively. Model

performance was based on the Pearson correlation coefficient (R),

the Nash‐Sutcliffe coefficient (R2, Nash & Sutcliffe, 1970), and the

root mean square error of the deviation between observed and simu-

lated groundwater and channel water levels. Performance was classed

as “very good” or “excellent” in most cases (Figure S1 and Table S1).
3.2 | Simulation of climate change

This current study employs the same climate change scenarios as

House, Thompson, and Acreman (2016). Climate change scenarios

were derived for the 2080s using datasets from the Future Flows

and Groundwater Levels project (Jackson, Meister, & Prudhomme,

2011; Prudhomme et al., 2012). These include 11‐member ensembles

of 1 km gridded time series projections (1950–2098) of precipitation,

PET (Potential Evapotranspiration), and groundwater levels for Great

Britain based on the UKCP09 Hadley Centre's Regional Climate Model

HadRM3 run under the medium emissions (SRES A1B) scenario (Mur-

phy et al., 2009). Parameter uncertainty is represented through model

variants with different climate sensitivity, which are summarised in

Table 1 along with the scenario run id plus the RCM run id and descrip-

tive id used by the Met Office Hadley Centre.

Model inputs of precipitation, PET, groundwater elevation, and

river discharge were perturbed for each climate change scenario using

a delta factor approach (Thompson, 2012; Wilby & Harris, 2006).

Monthly percentage differences between the ensemble reference

period (1961–1990) and the future period (2071–2098) were applied

to baseline values over the full simulation period 1/2/2013–1/10/

2014. Monthly delta factors for precipitation (%), PET (%), and ground-

water level (m) were extracted from the relevant 1 km grid square of the
FIGURE 2 Calculated Manning's n roughness
coefficient and discharge inputs for the MIKE
11 hydraulic model for the river Lambourn



TABLE 1 Climate sensitivities, run ID, and model variant name for the
HadRM3‐PPE ensemble of climate projections (after HCCPR, 2008)

Run ID Climate sensitivity RCM run ID RCM name

A 3.53485 Afgcx HadRM3Q0

B 2.58475 Afixa HadRM3Q3

C 2.81543 Afixc HadRM3Q4

D 3.43839 Afixh HadRM3Q6

E 4.39594 Afixi HadRM3Q9

F 3.89523 Afixj HadRM3Q8

G 4.44284 Afixk HadRM3Qk

H 4.88248 Afixl HadRM3Q14

I 4.54486 Afixm HadRM3Q11

J 4.79648 Afixo HadRM3Q13

K 7.11014 Afixq HadRM3Q16
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future flows dataset. Climate change delta factors for discharge were

not available from future flows and were instead obtained through

development of a lumped rainfall‐runoff model of the Lambourn catch-

ment at Shaw using MIKE NAM (DHI, 2009). Following model calibra-

tion, climate change delta factors for discharge were derived by

running the NAM model with catchment averaged precipitation and

PET under each of the 11 HadRM3 ensemble members. These factors,

expressed as a percentage, were subsequently applied to the original

stream inflows used within the MIKE SHE model.
3.3 | Physical habitat modelling

To assess physical habitat, we converted depth and velocity character-

istics of the River Lambourn to habitat availability metrics using habitat

suitability indices (HSI) following the PHABSIM methodology (Bovee,

1982; Waddle, 2001). HSI for juvenile (0–7 cm) and adult (8–20 cm)

brown trout (S. trutta) based on velocity and water depth were taken

from Dunbar et al. (2001; Figure 3). Bed substrate was not included

as a parameter as the river has a uniform gravel bed. The River

Lambourn channel morphology was derived from a total of 41 cross

sections with an average spacing of 14.9 m, providing a total bed area

6735.1 m2 and reach length 609 m (Figure 1). The distances between
FIGURE 3 Habitat suitability indices for brown trout (Salmo trutta; after D
cross sections provided the longitudinal lengths for a multi‐dimen-

sional matrix of cells with different bed areas and volumes, and, thus,

hydraulic parameters. Transverse lengths were derived from changes

in bed elevation from cross‐section points, resulting in 641 computa-

tional cells. Water depths for each cell were calculated from hydraulic

model outputs of channel stage. The 1D velocity outputs were disag-

gregated to each cell by the ratio of cell flow area to total flow area

for the cross section. Depth and velocity for each cell were evaluated

against the HSI and combined over the full range of discharges for

the baseline, individual scenarios, and scenario mean. These were

totalled for the reach to produce available physical habitat, expressed

as weighted usable area (WUA) in m2 1000 m−1 of river (Equation 1),

as a function of discharge for the baseline:

WUA ¼
∑
n

i¼1
aividi

l
; (1)

where ai is the surface area of cell i, vi is the suitability associated with

velocity for cell i, di is the suitability associated with depth in cell i, and l

is the reach length in 1000 m (0.609). The slope of the output curve

describes the physical habitat sensitivity to flow. WUA was also

expressed as a time series for the baseline, individual scenarios, and

the scenario mean.

To validate the model against observations, we took hydraulic

measurements from a field survey conducted betweenMarch and June

2015. Three distinct periods were identified to coincide with particular

flow and vegetation conditions: (a) winter high flows outside of the

growing season, with minimal vegetation (10/3/2015–31/3/2015),

(b) summer low flows before the weed cut with abundant vegetation

(7/5/2015–12/5/2015), and (c) summer low flows after the weed

cut with reduced vegetation (29/5/2015–8/6/2015). The weed cut

took place on 13/5/2015. Velocity profiles and stage measurements

were taken at each period for a total of 14 cross sections (Figure S2).

Velocity was measured using a Valeport Ltd. Model 802 electromag-

netic flow meter. The study reach comprised a total bed area

4956.4 m2 and length 488.3 m, reducing to 4514.1 m2 and 442.6 m

in period 2 because of high waters restricting accessibility. The same

HSI for juvenile trout as that used in the modelling study was applied
unbar et al., 2001)



TABLE 2 Flow duration summary for the river Lambourn baseline
simulated period (1/2/2013–1/10/2014)

Percentile Discharge (m3 s−1)

Q2 6.81

Q5 5.96

Q10 4.15

Q25 3.39

Q50 1.69

Q75 0.95

Q90 0.79

Q95 0.75

Q98 0.72

Qmean = Q40.5 2.29
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to derive total WUA for the measured discharge. Results were

standardised to percentage area cover for comparison with results

from the 1D model based upon similar discharge and conditions.
4 | RESULTS

4.1 | Baseline flow and physical habitat
characteristics

The low gradient flow duration curve and percentage exceedance

flows indicate a non‐flashy regime (Table 2 and Figure 4a). Mean
FIGURE 4 Simulated relationships between (a) flow and physical habitat av
flow and velocity for the river Lambourn
discharge for the baseline simulation period was 2.29 m3 s−1

corresponding to 39.9% exceedance, whilst the magnitude of the

flow exceeded 50% of the time was 1.69 m3 s−1. The influence of the

regime on stage, velocity, and, thus, available physical

habitat is unclear, as there is no well‐defined curvilinear relationship

(Figure 4b‐d), although the relationship between velocity and

discharge does show a clear positive trend. The distribution of avail-

able physical habitat against discharge bears greater similarity to stage

than velocity, although it is not a precise match. Overall, several values

of stage, velocity, and physical habitat exist for distinct discharges. This

is most apparent below the 10% exceedance flow of 4.15 m3 s−1,

above which the flow duration curve steepens noticeably, and the

point distributions for physical habitat, stage, and velocity against dis-

charge converge to closer relationships.

The amount of available habitat appears greater for juvenile than

adult brown trout at flows below 3.5 m3 s−1. More habitats are avail-

able for adult trout when flows are between 3.5 and 5.0 m3 s−1, whilst

at discharges above 5.0 m3 s−1 habitat availability for juveniles and

adults is similar (Figure 4d). Adult trout exhibits a greater range of

habitat availability than juvenile trout from theWUA for the flows sim-

ulated. There is a greater difference between the minima than maxima

for each life stage. Availability of baseline physical habitat varies con-

siderably over the simulation period (Figure 5). Conspicuous peaks on

and around 28/4/2013, 22/6/2013, 20/5/2014, and 20/7/2014

occur shortly before dramatic reductions caused by the weed cuts.

The largest of these sudden drops on 1/5/2013 represents a decrease

in available habitat by 1690m2 1000m−1 (15.3%) for adult and 1790m2
ailability, (b) flow and percentage exceedance, (c) flow and stage, and (d)



FIGURE 5 Simulated baseline physical habitat availability for adult
(8–20 cm) and juvenile (0–7 cm) brown trout (Salmo trutta) and
validation values from field survey periods for the river Lambourn: (1)
winterhighflowsoutsideof thegrowingseason,withminimalvegetation
(10/3/2015–31/3/2015), (2) summer low flows pre‐weed cut with
abundant vegetation (7/5/2015–12/5/2015), and (3) summer low flows
post‐weed cut with reduced vegetation (29/5/2015–8/6/2015)
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1000 m−1 (16.2%) for juvenile trout. A prolonged period of declining

habitat extends from the weed cut on 22/6/2013 to 23/12/2013

and is associated with persistent low flows and relatively high

Manning's n (Figure 2). This precedes the largest sustained increase

in habitat, which culminates in the peak on 15/2/2014, and corre-

sponds to a period of high flow. Values of habitat availability and dis-

charge during and immediately after this high flow period display

much higher daily variability compared to any other time. Elevated

available habitat match periods of high stage (see Figure A1).

Habitat availability for adult trout generally falls below that for

juveniles. This difference is as much as 1148.5 m2 1000 m−1 (10.4%,

11/10/2013) during periods of low flow (e.g., July 2013 to February

2014 and August 2014 to October 2014). Contrasting periods of high

flow display greater similarity in habitat availability of juvenile and

adult trout, and they are equivalent through April 2013 and

January to March 2014. Available physical habitat is greater for adult

trout in two periods, February 2013 to April 2013 and March 2014,

although the differences are relatively small.

Comparison of values of WUA for juvenile trout from the field sur-

vey (Table 3) and modelled values indicates good agreement. For

period 1, outside of the growing season and with a discharge of

1.77 m3 s−1, the surveyed WUA was 69.2% of the area while the
TABLE 3 Validation conditions and physical habitat availability from the r

Period Dates
Growing
season

Pre/post
weed cut

1 10/3/2015–31/3/2015 N N/A

2 7/5/2015–12/5/2015 Y Pre

3 29/5/2015–8/6/2015 Y Post
corresponding modelled WUA was 68.0% (1/1/2014). Period 2

(discharge of 1.26 m3 s−1 prior to a weed cut in the growing season),

resulted in 81.1% of the area available as habitat for juvenile trout

compared to 86.9% modelled (8/7/2014). Period 3 (discharge of

1.34 m3 s−1 after a weed cut), resulted in 78.9% available habitat from

the field survey and 82.4% from the model (2/8/2013). The model

tends to over predict available habitat for similar discharges within

the growing season, and to under predict the value outside of the

growing season. However, differences, between 1.2% and 5.8%, are

very small.
4.2 | Climate change impacts on hydraulic
characteristics

As reported in House et al. (2016), monthly delta factors for the sce-

nario mean indicate a decrease in discharge from baseline values

throughout the year (Figure 6a). Declines are largest in October and

lowest in March. Only four individual scenarios project increased dis-

charge at any time of the year, while the remaining eight show declines

in discharge throughout the year. Application of change factors to the

baseline discharge data results in a decrease in mean discharge for all

but two of the scenarios (C and D; Figure 6b). For the scenario mean,

the mean discharge declines by 0.19 m3 s−1 (Table 4).

A general reduction in both stage and velocity is indicated by cli-

mate change projections, which is more apparent during periods of

low flow in July 2013–December 2013 and August 2014–October

2014 (Figures S3 and S4). Scenario mean projections show that the

largest decreases are in December 2013. Stage drops to near zero at

L1, L3, L4, and W3 in December 2013, while at no point does the sce-

nario mean show increases in velocity. At high flow periods, values for

both stage and velocity correspond very more closely to baseline

values, particularly in March 2013. Inter‐scenario variations in stage

are more pronounced than for velocity.

For the 11 scenarios, changes in mean simulated stage appear sim-

ilar at all locations, with the exception of W2 (Figure S3). Averaged

changes in simulated stage show that the Westbrook have a slightly

exaggerated response compared to the Lambourn (Table 4), although

this is likely due to the influence of the results for W2. At W2, stages

generally fall below baseline levels, except during periods of high flow,

while the December minimum is not as apparent as it is at other

locations.

Velocities in all scenarios for the simulation period rarely exceed

1 ms−1. Locations with relatively high initial velocity (L1, L3, L4, L5,

and L6) show greater variation in velocity through the simulation

period than those with lower initial velocity (L2, L7, W1, W2, and

W3). This is especially apparent when comparing the rapid changes

in velocity at times of weed cuts, which range from a 0.182 ms−1

rise under baseline conditions on 1/5/2013 at L5 to almost no
iver Lambourn field survey (March–June 2015)

Discharge
(m3 s−1)

WUA
(m2 per 1000 m)

Bed area
(m2)

Percentage
cover (%)

1.77 7020.1 4956.4 69.2

1.26 8273.7 4514.1 81.1

1.34 8005.8 4956.4 79.1



FIGURE 6 Projected climatic changes in river
Lambourn discharge for the 2080s by
individual scenario and scenario mean: (a)
monthly percentage change and (b) applied
absolute change

TABLE 4 Baseline mean river Lambourn discharge (m3 s−1), simulated baseline mean river Lambourn and Westbrook channel stage (m), and
velocity (ms−1), river Lambourn physical habitat availability (WUA, m2 1000 m−1) for adult (8–20 cm) and juvenile (0–7 cm) brown trout (Salmo
trutta) and changes for climate change scenarios and mean for the full simulation (1/2/2013–1/10/2014) period. Italicised values indicate negative
changes

Run ID Discharge

Stage Velocity WUA

Lambourn Westbrook Lambourn Westbrook Adult Juvenile

Baseline 2.37 0.44 0.47 0.360 0.159 8639.8 9071.8

A −0.16 −0.02 −0.03 −0.012 −0.006 −308.0 −204.7

B −0.44 −0.06 −0.08 −0.033 −0.021 −681.3 −468.8

C 0.19 0.02 0.03 0.012 0.008 141.8 116.4

D 0.42 0.04 0.05 0.023 0.016 308.8 260.0

E −0.06 −0.01 −0.01 −0.005 −0.002 −186.6 −116.2

F −0.31 −0.05 −0.06 −0.024 −0.014 −583.1 −392.4

G −0.27 −0.05 −0.06 −0.022 −0.013 −558.5 −372.0

H −0.39 −0.05 −0.07 −0.029 −0.018 −634.6 −436.8

I −0.48 −0.06 −0.08 −0.034 −0.022 −640.2 −445.5

J −0.21 −0.03 −0.04 −0.016 −0.009 −386.2 −258.3

K −0.40 −0.05 −0.06 −0.028 −0.018 −596.2 −410.7

Mean −0.19 −0.03 −0.04 −0.014 −0.008 −349.4 −232.9
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discernible change in the Westbrook locations. Averaged changes

show an exaggerated response in the Lambourn compared to the

Westbrook (Table 4).
4.3 | Climate change impacts on physical habitat
availability

The impacts of the climate change scenarios on physical habitat avail-

ability are greater for adult rather than juvenile trout, especially during
periods of low flow between July 2013–December 2013 and August

2014–October 2014 (Figure 7). Velocities are generally within the

optimal or near optimal HSI range for brown trout, falling outside dur-

ing periods of extreme low or high flow. Stage values largely fluctuate

through optimal and suboptimal HSI ranges.

Impacts are highlighted by the scenario mean decrease averaged

over the simulation period (Table 4). At no point over the full simula-

tion period does the scenario mean shows an increase in habitat avail-

ability for either life stage (Figure 7). The largest mean decreases occur



FIGURE 7 Simulated baseline, projected
scenarios, and mean physical habitat
availability for adult (8–20 cm) and juvenile
(0–7 cm) brown trout (Salmo trutta) in the river
Lambourn

HOUSE ET AL. 9 of 13
in October 2013, whilst closest correspondence with baseline values is

seen in March 2013.

Of the individual scenarios, four (A, C, D, and E) project increases

in available habitat from baseline values on at least 1 day. For scenario

A, this is only in April 2013 and 2014. In contrast, results for scenario D

only drop below baseline values in October and then by relatively little.

The greatest increases are projected by scenario D on 15/2/2014,

with the largest inter‐scenario range also occurring at this time. Of

the other scenarios, which all display reductions in physical habitat,

the greatest single decrease is for scenario K on 3/11/2013. The

smallest inter‐scenario range occurs in mid May 2013 for adult trout,

and the beginning of June 2014 for juvenile trout.
5 | DISCUSSION

Output time series from a MIKE 11 1D hydraulic model of the River

Lambourn have allowed the effects of macrophyte growth and its man-

agement to be incorporated into an assessment of climate change

impacts on physical habitat availability. The effects of management

(weed cutting) are just as noticeable as those of climate change, with
overall reductions in habitat availability and consequent implications

for the aquatic ecology. Although this has been demonstrated for only

a single species, brown trout, the method may be applied to other spe-

cies for which HSIs are available, including other salmonids (Dunbar

et al., 2001) and macroinvertebrates (Gore et al., 1998). Rather than

using a single rating curve, the area of available physical habitat has been

calculated at each time step over the full simulation period for baseline

conditions along with each climate change scenario and the scenario

mean. This challenges the assumption, containedwithin physical habitat

modelling approaches such as PHABSIM, that relationships between

discharge andhydraulic characteristics are time invariant. Themore flex-

ible approach presented here is more in line with common hydrological

and hydraulic assessments of climate change (e.g., Chun et al., 2009;

Thompson, 2012; Thompson et al., 2009), and opens the way for similar

use of models that are able to represent dynamic systems.

The availability of habitat for adult brown trout is found to be

more susceptible to low flows than that for juvenile trout. Although

brown trout exhibit a habitat generalist strategy, with flexibility in pref-

erence across life stages, the spatial scale and pattern of hydraulic var-

iables are important for habitat selection (Ayllón, Almodóvar, Nicola, &

Elvira, 2010; Heggenes, 2002). Adult brown trout often depends on
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deep water for shelter, whilst fry may flourish in shallow riffle habitats

(Armstrong & Nislow, 2012; Nislow, Einum, & Folt, 2004). Here, stage

appears to be the dominant factor in controlling the baseline amount

of available habitat, expressed in the similarity of the stage‐discharge

relationship to the physical habitat‐discharge relationship (Figure 4).

Relatively, low velocities are indicative of the position of the reach in

a lowland catchment with a relatively slow runoff response and large

baseflow component (Marsh & Hannaford, 2008). With weed cuts

occur coincident sharp and relatively large reductions in stage and,

thus, habitat availability. These introduce a degree of stress that may

impact adult brown trout more than juvenile life stages.

Periods of low flow are also associated with an amplified response

of available physical habitat to climate change in most scenarios.

Whereas, at high flows, differences in habitat availability between

the two life stages become less apparent. Results further indicate that

climate induced changes in habitat availability for brown trout will be

depth limited by the hydraulic geometry. Decreases in water depth

at low flows may reduce the accessibility to preferred habitat for

feeding and increase fish density, particularly if unable to redistribute

(Armstrong & Griffiths, 2001). At higher densities, there is a greater

risk of hypoxia and predation, which may include cannibalism (Smith

& Reay, 1991). Temperature increases through low flow periods

occurring through the summer months, June to August, could exag-

gerate the negative impacts of low flows. During drought conditions,

increased temperature in pools has been linked to increased mortality

for salmonids (Elliott, 2000), and will exacerbate hypoxia (Milner et al.,

2003). During winter, low flows may increase the risk of freezing and

mortality rates (Huusko et al., 2007). However, as a chalk stream fed

predominantly by groundwater, the River Lambourn is thermally sta-

ble all year round (House et al., 2015a). Seasonal temperature fluctu-

ations are minimal and unlikely to be significant against the loss in

habitat. Thus, deeper sections of the river in which velocity is more

stable, such as pools, may provide refuge areas for brown trout during

periods of stress induced by reduced flow. Stretches with relatively

low stage and higher, more variable velocities (L1, L3–5), most likely

representing fast runs, are likely to be impacted the most by climate

change.

Although an overall reduction in habitat availability is projected,

the responses reflect some uncertainty in the hydrometeorological

drivers for discharge inputs to the MIKE 11 model. Inter‐scenario

member variations differ over time and exhibit seasonality in the

nature of these changes. An existing vulnerability of brown trout dur-

ing low summer flow periods is exaggerated in projections from nine

of the 11 scenarios, especially for the adult life stage. These nine mem-

bers project general reductions in habitat availability through the full

simulation period. In the other two scenarios (C and D), there is an

overall increase in habitat availability in all periods although it is close

to baseline values during periods of low flow. Nevertheless, without

modifications to current management practices, the available physical

habitat for brown trout would decline under the majority of climate

change scenarios.

Periods of high flow and abundant macrophyte coverage are asso-

ciated with large areas of available physical habitat; while at low flows

following weed cuts, the habitat availability is at its lowest. Manage-

ment of macrophytes through weed cutting is generally undertaken
to achieve various target functions (Baattrup‐Pedersen & Riis, 2004),

including flood water conveyance (Baattrup‐Pedersen, Skriver, &

Wiberg‐Larsen, 2000), water level control, and viable fisheries (Old

et al., 2014). Submerged plants within watercourses, aside from their

hydraulic significance, are generally seen as beneficial for fish because

of the provision of habitat for invertebrate prey, shelter and protec-

tion, and oxygen production (Bursche, 1971; Garner, Bass, & Collett,

1996). Fish distribution in uncut and partially cut channels has been

shown to be strongly associated with weed cover (Swales, 1982),

whilst macrophyte growth has been advocated for maintenance of

habitat (Hearne & Armitage, 1993). Without weed cuts, it is debatable

whether flow responses to climate change would have had as large

effects on habitat availability.

In the River Lambourn, weed cuts are primarily for flood

risk reduction (Old et al., 2014), as the reduced flow resistance and vol-

ume decrease from vegetation removal increases the conveyance

capacity of the river and reduces stage. This has important social and

economic implications for the surrounding community, which previous

events (e.g., Morris & Brewin, 2014; Pitt, 2008) have shown to be

politically charged. There is the potential to rethink the management

regime for macrophytes in order to reduce the negative environmental

effects whilst maintaining flood resilience and at the same time miti-

gating the impacts of climate change. Other studies have posited spa-

tially varied configurations for weed cutting (Baattrup‐Pedersen & Riis,

2004; Garner et al., 1996), and regulating the timing of cuts in relation

to plant growth (Westlake & Dawson, 1982) to limit impacts on macro-

phyte diversity and fish habitat. The MIKE SHE and MIKE 11 and phys-

ical habitat modelling system employed in this study could be used to

this effect through the simulation of alternative weed cutting strate-

gies encompassing different degrees of removal, spatially varying cuts,

and alternative timings. The use of hydraulic models in this way to

assess the impacts of environmental change upon physical habitat

has enormous potential for application to rivers where stage‐discharge

relationships are unclear due to factors including seasonal macrophyte

growth.

Validation values for available physical habitat, although close to

those modelled, are indicative only. The field survey was undertaken

the year after the simulation period, and encompasses a section of

the reach with a different area and fewer cross sections. An extension

of the model simulation period to incorporate the field survey period

was not possible because of availability constraints on meteorological

and groundwater level data. Nevertheless, both sets of results exhibit

the rise and fall in habitat availability due to the macrophyte growth

season and its management. When compared at times with similar

conditions and identical flows, the values are reassuringly close.

Discretised spatial differences in vegetation are not included in

this study. Assumption of a universal Manning's n value over the

reach, plus disaggregation of velocity profiles across cross sections,

does not allow for local small‐scale variations (microhabitat) and ren-

ders such a spatial evaluation inappropriate. An assessment of this

order would require a field survey before and after a defined change

in conditions, such as a weed cut. On the reach scale, however,

where these variations average out, and validation to stage is excel-

lent, the method provides a useful means of assessing the impacts of

climate change.
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6 | CONCLUSION

Assessment of physical habitat availability for brown trout over the

model simulation period revealed the projected impacts of an ensem-

ble of climate change scenarios. An overall reduction in habitat avail-

ability was larger for adult rather than juvenile brown trout. Impacts

were most pronounced during summer months, accentuating periods

of low flows and reduced habitat. Model results also highlighted the

impact of weed cutting on flow depth, velocity, and, adversely, on hab-

itat availability. However, adjustments to the management regime

have potential for simultaneously mitigating both flood risk and the

ecological impacts of climate change.

The influence of macrophyte growth and its management on stage

and velocity caused the physical habitat‐discharge relationship itself to

be unusable in evaluating the sensitivity of brown trout to changes in

flow. As macrophytes are a feature of many lowland river systems, this

raises concerns over the suitability of standard physical habitat model-

ling methods to regulatory and research applications. Indeed, any pro-

cess that causes different velocities and depths for a particular flow

renders the physical habitat‐discharge relationship potentially irrele-

vant. Such processes, which also include sediment transport and depo-

sition, groundwater or overbank exchange, ice cover, morphological

change, and river management practices, are common features of flu-

vial systems and are integral to the unique character of many rivers.

This shortcoming could be overlooked in a field survey, where profile

measurements are taken for a few specific flow rates. Application of

the MIKE 11 hydraulic component of the MIKE SHE model has eluci-

dated the variability in flow conditions and, thus, habitat availability

for a macrophyte dominated river.

Although results from a distinct field survey in the same reach are

supportive of modelled values of physical habitat availability, the study

would benefit from further validation. In addition, direct effects of cli-

mate change on instream vegetation through increases in temperature

and carbon dioxide have not been accounted for. The disaggregation

approach of one‐dimensional values to profiles across cross sections

does not allow for local variations and spatial analysis. However, it is

considered robust when projecting impacts for the reach as a whole.

The effect of weed growth on the vertical velocity profile is not

accounted for, as it would require resource intensive 3D hydraulic

modelling, which is beyond the scope of this study. The use of outputs

from hydraulic models in assessing impacts of environmental change

on physical habitat availability is cost‐effective, efficient, and has inter-

national applicability.
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