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Abstract A new method for modeling heat flux shows that the upper crust contributes up to 70% of the
Antarctic Peninsula’s subglacial heat flux and that heat flux values are more variable at smaller spatial
resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south
of the Peninsula (mean 81 mW m�2) where silicic rocks predominate, than on the west and north (mean
67 mW m�2) where volcanic arc and quartzose sediments are dominant. While the data supports the
contribution of heat-producing element-enriched granitic rocks to high heat flux values, sedimentary rocks
can be of comparative importance dependent on their provenance and petrography. Models of subglacial
heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are
to accurately predict basal conditions of the ice sheet. Our newmethodology and data set facilitate improved
numerical model simulations of ice sheet dynamics.

Plain Language Summary As the climate changes, the Antarctic ice sheet represents the single
largest potential source of sea level rise. However, one key parameter controlling how the ice sheet flows
remains poorly constrained: the effect of heat derived from the Earth’s geology on the base of the ice sheet
(known as subglacial heat flux). Although this may not seem like a lot of heat, under slow-flowing ice, this
“heat flux” can control howwell the ice sheet can flow over the rocks and even lead to melting of the ice at
its base. Current models for Antarctica’s heat flux use geophysics to determine how thin the crust is and
consequently howeasily heat from the Earth’smantle canwarm the surface.We showhere that heat produced
by radioactive decaywithin the Earth’s crust can have an even greater andmuchmore variable contribution to
the subglacial heat flux than estimated by these previous models. We present a newmethodology allowing
this crustal heatproduction tobecalculatedandcombinedwith thegeophysicalmodels, producinganewmap
of heat flux on the Antarctic Peninsula highlighting the variations in heat flux caused by different rock types.

1. Introduction

Following the identification of anthropogenic global climate change and the risks posed by a consequent rise
in global sea level, increased attention has been drawn to understanding the dynamics of the world’s largest
potential driver of sea level rise: the Antarctic ice sheet [Fox, 2010].

Modeling ice sheet dynamics requires understanding the ice-bed interface, but measuring these basal
conditions is inherently difficult. Subglacial geothermal heat flux is one of the least constrained basal
parameters [Llubes et al., 2006; Larour et al., 2012] but affects (1) ice temperature and rheology, (2) basal melt-
ing and consequent mechanical decoupling at the ice-bed interface, and (3) the development of unconsoli-
dated water-saturated sediments, all of which can promote ice flow [Greve and Hutter, 1995; Siegert, 2000;
Winsborrow et al., 2010; Larour et al., 2012].

1.1. Existing Methods

Subglacial heat flux is the sum of mantle-generated heat conducted through the lithosphere and radiogenic
heat from the lithosphere conducted to the surface of the crust. Heat flux is typically measured directly from
boreholes drilled directly into bedrock [Pollack et al., 1993], but this is logistically challenging in Antarctica
due to the remoteness and inaccessibility of exposed bedrock and by the ice sheet covering 99.8% of the sur-
face [Burton-Johnson et al., 2016]. Only very sparse heat fluxmeasurements have beenmeasured in boreholes
into subglacial lake sediments [e.g., Fisher et al., 2015] and seafloor sedimentary strata [e.g., Schröder et al.,
2011] or derived from basal temperature gradients in deep ice boreholes [e.g., Engelhardt, 2004].

BURTON-JOHNSON ET AL. ANTARCTIC PENINSULA HEAT FLUX MODEL 5436

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL073596

Key Points:
• As a direct result of lithological
heterogeneities in the upper crust,
subglacial heat flux is much more
variable than can be resolved by
geophysical methods

• Upper crustal heat production on the
Antarctic Peninsula contributes 6–70%
of the total subglacial heat flux

• Sedimentary basins can produce
comparably high heat fluxes to
granitic intrusions; coupled with their
erodible nature, these basins may
impart a greater control on ice sheet
dynamics than previously recognized

Supporting Information:
• Supporting Information S1
• Data Set S1
• Data Set S2
• Data Set S3

Correspondence to:
A. Burton-Johnson,
alerto@b-j.org.uk

Citation:
Burton-Johnson, A., J. A. Halpin,
J. M. Whittaker, F. S. Graham, and
S. J. Watson (2017), A new heat flux
model for the Antarctic Peninsula
incorporating spatially variable upper
crustal radiogenic heat production,
Geophys. Res. Lett., 44, 5436–5446,
doi:10.1002/2017GL073596.

Received 24 MAR 2017
Accepted 10 MAY 2017
Accepted article online 15 MAY 2017
Published online 12 JUN 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0003-2208-0075
http://orcid.org/0000-0002-4992-8681
http://orcid.org/0000-0002-3170-3935
http://orcid.org/0000-0002-2324-2120
http://orcid.org/0000-0002-3666-5034
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
http://dx.doi.org/10.1002/2017GL073596
mailto:alerto@b-j.org.uk


Because of this paucity of direct measurements, heat flux has instead been estimated using magnetic and
seismic geophysical data. Fox Maule et al. [2005] estimated the subglacial heat flux (Figure 1a) from
satellite-derived geomagnetic data by determining the depth of the Curie isotherm. The Curie isotherm
is a temperature surface of ~580°C at which rocks switch from higher ferrimagnetic or ferromagnetic
susceptibility to much lower paramagnetic susceptibility [Blakely, 1988]. Increasing the geothermal gradi-
ent, either through increasing radiogenic heat production or thinning the lithosphere, reduces the Curie
isotherm depth.

However, the magnetically derived map of subglacial heat flux is limited by resolution of a few hundred kilo-
meters (resulting from the satellite altitude), methodological uncertainties with combined errors, and the use
of a laterally constant crustal heat production. Additionally, in regions where mantle rocks are shallower than
580°C, the calculated Curie isotherm will appear shallower due to a lack of magnetic rocks [Frost and Shive,
1986; Wasilewski and Mayhew, 1992].

Alternatively, heat flux has been determined from seismic data [Shapiro and Ritzwoller, 2004; An et al., 2015].
Mantle heat flux can be determined from seismic data as temperature is the dominant control on seismic
velocity in the upper mantle. Seismic data also identify the density discontinuity marking the base of the crust
and allow the determination of the isotherm (1330°C) marking the base of the lithosphere. The calculated
mantle heat flux can be combined with an estimate of lithospheric heat production to produce a map of sub-
glacial heat flux (Figure 1b). However, this model is also limited to a lateral resolution of>120 km and is insen-
sitive to the lithospheric geotherm.

Both models treat the lithosphere as internally laterally uniform in its structure (only varying in thickness) and
possessing low and constant radiogenic heat production (maximum of 2.5 μWm�3 exponentially decreasing
with depth for the magnetic method and 1.0, 0.4, and 0.1 μW m�3 in the seismic method for the upper,
middle, and lower crust, respectively). Consequently, subglacial heat flux inversely correlates with crustal
thickness with highest values overlying the thinnest lithosphere. As we will show here, heterogeneity in
upper crustal heat production renders this an oversimplification.

1.2. Radiogenic Lithospheric Heat Production

The lithosphere produces heat from the radiogenic decay of heat-producing elements (HPEs). Although
numerous radioactive isotopes exist, U, Th, and K are responsible for ~98% of lithospheric heat production
[Beardsmore and Cull, 2001]. These elements are incompatible with mineral structures in the mantle and
lower crust, so concentrate in the upper crust during planetary differentiation with decreasing abundance
with depth [Roy et al., 1968; Rudnick and Fountain, 1995].

The upper crust itself is highly heterogeneous in composition. The distribution of minerals in the crust is
primarily determined by magma differentiation and HPE distribution by their compatibility in different
mineralogies, concentrating them in Si-rich silicic rocks (e.g., granite or rhyolite) relative to Fe-rich mafic rocks

Figure 1. (a) Magnetically derived [Fox Maule et al., 2005] and (b) seismically derived [An et al., 2015] maps of subglacial
heat flux. AP, Antarctic Peninsula; EAnt, East Antarctica; EV, Evans Ice Stream; and WAnt, West Antarctica. ETOPO1 surface
relief [Amante and Eakins, 2009].
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Figure 2. (a) Geological map of the Antarctic Peninsula [Burton-Johnson and Riley, 2015, and references therein]. TPG—Trinity Peninsula Group; LMG—LeMay Group;
and LG—Latady Group. (b) Geochemical data locations and the distance of calculated data from a data point. (c) Calculated median heat production values.
(d) Calculated total subglacial heat flux utilizing our heat production values (Figure 2c) and the data of An et al. [2015].
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(e.g., gabbro or basalt). Sediments largely inherit the HPE abundance of their eroded source rocks.
Consequently, crustal heat production is heterogeneous and the most significant control of HPE abundance
and consequent heat production in the crust is the distribution of its composite lithologies [Lachenbruch,
1968; McLennan et al., 2006; Sandiford and McLaren, 2002].

1.3. Geology of the Antarctic Peninsula

This study will investigate the influence of crustal heterogeneity in the Antarctic Peninsula on crustal heat
flux, for which an understanding of the region’s geology is fundamental. For a detailed description refer to
Burton-Johnson and Riley [2015].

The Antarctic Peninsula developed as a continental volcanic arc similar to the Andes and Patagonia. The
oldest units are metamorphosed 487–175 Ma sedimentary and igneous rocks forming the metamorphic
basement [Gledhill et al., 1982; Riley et al., 2012] exposed in Graham Land and northern Palmer Land
(Figure 2a). These units developed on the margin of the Gondwanan supercontinent. Thick turbidite
sequences developed along the edge of this continental margin [Bradshaw et al., 2012], depositing thick
sequences of sedimentary rocks in Graham Land (Figure 2a). In the Early Jurassic, Gondwana began to sepa-
rate. The Weddell Sea opened, separating South Africa from the Antarctic Peninsula. Rifting triggered volumi-
nous silicic volcanism along the Peninsula between 188 and 172 Ma [Pankhurst et al., 2000], and deep
sedimentary basins developed along the east coast of Palmer Land (Figure 2a). Following breakup (at
~162 Ma [Pankhurst et al., 2000]), the Peninsula returned to a continental volcanic arc setting [Leat and
Scarrow, 1994] with distinct periods of extensive intrusive magmatism [Pankhurst and Rowley, 1991] and thick
fore-arc and turbidite sedimentation forming Alexander Island (Figure 2a) [Tranter, 1986; Doubleday et al.,
1993]. Pacific subduction ceased progressively northward between ~60 and 6.5 Ma [Larter et al., 1997;
McCarron and Larter, 1998], andmagmatismwaned until the production of postsubduction alkaline intraplate
volcanism between 6.5 and 0.1 Ma [Rex, 1976; Ringe, 1991] (Figure 2a).

2. Methodology
2.1. Input Data

To predict upper crustal heat production, two data sets were used: (1) the geological map of Burton-Johnson
and Riley [2015] (Figure 2a), with subglacial geology interpreted from surrounding outcrops, surface and sub-
glacial topography, and aeromagnetism, and (2) a georeferenced HPE database (Figure 2b) compiled from
published geochemical analyses and unpublished data from the British Antarctic Survey’s archives, filtered
to include only bedrock geology and exclude minor outcrops (e.g., clasts, enclaves, and dykes).

2.2. Heat Production

Radiogenic heat production for each sample (H, μW m�3) for the present day (t = 0) was determined from
equation (1) [Turcotte and Schubert, 2014]:

H ¼ 0:9928CU
0H

U238 þ 0:0071CU
0H

U235 þ CTh
0 HTh232 þ 0:000119CK

0H
K40

� �
D (1)

where CU
0 , C

Th
0 , and CK

0 are the measured concentrations (ppm) of U, Th, and K, respectively, and HU238, HU235,
HTh232, and HK40 are the heat productivities of the respective isotopes 238U (9.37 × 10�5 W kg�1), 235U
(5.69 × 10�4 W kg�1), 232Th (2.69 × 10�5 W kg�1), and 40K (2.79 × 10�5 W kg�1). D is the assumed density
of the rock (2700 kg m�3). Problematically, most bedrock geochemical analyses in the British Antarctic
Survey database occurred prior to the development of methods to accurately quantify U contents (e.g.,
high-resolution XRF or inductively coupled plasma-mass spectrometry), leaving only 319 samples with
complete U, Th, and K data. However, using samples with data for all three HPE, we derive an empirical rela-
tionship (correlation coefficient, R2 = 0.9; Figure S1 in the supporting information) to calculate H from K and
Th heat production (HK , Th):

H ¼ 1:4HK;Th þ 0:3 (2)

Equation (2) increased the heat production data set to 3070 georeferenced samples and applies for each
broad lithology with R2 values of 0.9 for sedimentary rocks, 0.9 for volcanic rocks, 0.9 for intrusive rocks,
and 0.7 for metamorphic rocks.
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To attribute heat production values to the geology, we experimented with interpolated variable surfaces
between the data points. However, although most locations are <100 km from a data point, the sample dis-
tribution is biased toward accessible outcrop (Figure 2b) creating false anomalies beneath the ice sheet and
misrepresenting the data. Instead, the spatial extent of each lithology (i.e., each geological polygon) was
assigned the median H value of the samples within it.

2.3. Heat Flux Calculation

To calculate a total subglacial heat flux, our heat production values were incorporated into the heat flux
model of An et al. [2015]. Their calculations combined a layered crust (upper, middle, and lower crustal layers
of equal thickness and constant heat productivities) with the lithospheric and asthenospheric mantle heat
flux determined by seismic analysis. By deriving the An et al. [2015] crustal model and replacing it with a
two-layer model (upper and lower crust) using our upper crustal heat production values, a new subglacial
heat flux model of the Antarctic Peninsula was calculated. By this method, only the heat flux of An et al.
[2015] is required for calculation and not the absolute temperatures.

A major limitation of any crustal heat production model is our understanding of deep crustal structure,
principally the relative thicknesses of the HPE-enriched upper crust and the HPE-depleted lower crust. HPE
abundance is often modeled as decreasing exponentially with depth, reflecting the decrease in HPE abun-
dance with increasing metamorphic grade [Lachenbruch, 1968; Sandiford and McLaren, 2002; Fox Maule
et al., 2005]. However, the lithological change from the largely silicic upper crust to the mafic lower crust
has a larger influence on HPE abundance [Bea and Montero, 1999; Bea, 2012]. Consequently, we adopt the
layered crustal approach of An et al. [2015] but with limited knowledge of the deep crustal structure employ
a simple two-layer crustal model. Total crustal thickness (equally divided between the upper and lower crust),
upper and lower crustal conductivities, and lower crustal heat production are those used in An et al. [2015].

3. Results

Heat production (Figure 2c) and resultant heat flux (Figure 2d) were calculated for almost all of the Antarctic
Peninsula with most locations being <70 km from a data point (Figure 2b). The number of samples used to
assign each polygon and the standard deviation of heat production values are shown in Figures S2 and S3.

3.1. Heat Productivity

The median calculated heat productivities are highly variable (0.2–9.1 μWm�3, Figure 2c). They are higher on
the east coast and far south of the Peninsula (mean 2.2 μWm�3), where silicic rocks predominate (clastic sedi-
mentary rocks, gneissose metamorphic basement, silicic volcanic rocks, and granitic intrusions), while the
west and northernmost coasts’ lower values (mean 1.1 μWm�3) are associated with mafic and intermediate
volcanic rocks and quartzose sedimentary rocks.

The highest calculated median heat production values are associated with intrusive rocks (mean 1.7, maxi-
mum 9.1 μW m�3), similar to localized regions of East Antarctica [Carson and Pittard, 2012; Carson et al.,
2014], but these intrusions on the Antarctic Peninsula are scattered and limited in their extent. More exten-
sive areas of high heat production are the metamorphic basement (mean 2.5 μW m�3) and silicic volcanic
rocks (mean 2.5 μW m�3; Figure 2). The sedimentary rocks of Palmer Land and Alexander Island show
elevated heat production (mean 2.0 and 1.5 μW m�3, respectively) relative to the constant upper crustal
value employed by An et al. [2015] (1.0 μW m�3). The lowest heat productivity values are from the mafic-
intermediate subduction and postsubduction-related volcanic rocks (mean 0.9 μW m�3).

3.2. Heat Flux

Calculated upper crustal heat flux contributes 6–70% of the total subglacial heat flux, resulting in the similar
spatial distributions of upper crustal heat production and subglacial heat flux variation (Figures 2c and 2d). In
central Graham Land and southeast Palmer Land, the superposition of low mantle heat flux anomalies
(Figure 1b) lowers the subglacial expression of high crustal heat production relative to other regions of the
Peninsula (compare the heat production and heat flux values for central Graham Land and eastern Palmer
Land, Figures 2c and 2d).
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4. Discussion
4.1. Influence of Upper Crustal Lithologies on Subglacial Heat Flux

Our analysis demonstrates that lithological controls on subglacial heat flux are imparted by the relative HPE
abundance of different lithologies.
4.1.1. Intrusive Rocks and the Metamorphic Basement
Granitic rocks are HPE enriched, and previous studies have highlighted their influence on heat flux [Roy et al.,
1968; Carson et al., 2014]. Our results associate the highest subglacial heat flux values with granitic intrusions
(Figure 2), but their extent is limited. Additionally, granitic intrusions are more laterally than vertically exten-
sive (i.e., disc shaped [McCaffrey and Petford, 1997]), so their thickness and contribution to total heat flux may
be overestimated in layered crustal models.

In older crust where intrusions have accumulated, the vertical and horizontal extent of intrusive rocks
increases. Felsic igneous rocks form the protoliths to the granitic gneisses dominating the Peninsula’s meta-
morphic basement, associating this basement with high heat flux (Figure 2). Similar regions of older felsic
metamorphosed continental crust, abundant in East Antarctica [Aitken et al., 2014], likely have larger effects
on subglacial heat flux than isolated HPE-enriched intrusions.
4.1.2. Volcanic Rocks
A range of volcanic lithologies occur on the Antarctic Peninsula. Silicic volcanic rocks chemically resemble
granitic rocks, producing regions of high heat flux in eastern Graham Land and southern Palmer Land
(Figure 2). In contrast, HPE-poor mafic volcanic rocks in Graham Land and western Palmer Land (Figure 2)
are produce areas of low heat flux. They are also associated with a high magnetic anomaly (the Pacific
Margin Anomaly [Ferraccioli et al., 2006]) indicating similar mafic rocks at depth.

Volcanic rocks are abundant in West Antarctica and the Transantarctic Mountains, although extensive silicic
volcanic rocks are restricted to the Peninsula [Bradshaw et al., 1985; LeMasurier and Thomson, 1990; Riley and
Knight, 2001]. Thus, on a continental scale, volcanic rocks will be associated with regions of lower heat flux.
4.1.3. Sedimentary Rocks
Three extensive sedimentary sequences occur on the Antarctic Peninsula (Figure 2a): the Trinity Peninsula
Group (TPG), the Latady Group (LG), and the LeMay Group (LMG). While low heat production is predicted
for the TPG (calculated median value of 0.8 μW m�3), higher heat production is predicted for the LMG
(1.6 μW m�3) and LG (2.0 μW m�3), higher than many LG-hosted intrusions (Figure 2c).

The in-heat productivity differences resemble observations from basin analysis [Rybach, 1986] and relate
to each sediment’s maturity and provenance. The LG’s relatively low maturity and consequently high lithic
content results in a high HPE content inherited from their silicic volcanic source rocks [Willan, 2003]. In con-
trast, the LMG is dominantly sourced from metasedimentary and more mafic volcanic rocks [Willan, 2003],
producing sedimentary detritus with a lower HPE content. The relatively low HPE content of the TPG results
from its higher maturity and quartz content.

All three sedimentary units form basins many kilometers thick, and similar basins are prevalent across
Antarctica [e.g., Barrett et al., 1986; Aitken et al., 2014; Frederick et al., 2016; Maritati et al., 2016].

Figure 3. Heat flux distributions for the three models discussed. Bins are 5 mW m2.
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Understanding their individual petrography and provenance is important in determining their contribution
to subglacial heat flux.

4.2. Comparison With Existing Models

The variable HPE content of rock outcrops across the Antarctic Peninsula controls upper crustal radiogenic
heat production, imparting significant influence on the subglacial heat flux. Consequently, upper crustal
lithological heterogeneity contributes to higher variability in subglacial heat flux than geophysical models
predict. Comparing the distribution of this study’s heat flux values with the seismic and magnetic models
(Figures 3 and 4) highlights this increased variability. Our range and average heat flux values (Figure 3) more
closely resemble the distribution of the magnetically derived model [Fox Maule et al., 2005] than the more
homogenous values of the seismic model [An et al., 2015].

Subglacial heat flux in the seismic-based model [An et al., 2015] is inversely related to crustal thickness.
As their calculated crustal thickness is relatively uniform beneath the Antarctic Peninsula (33 km with a stan-
dard deviation of 6 km), so too is their predicted heat flux (Figure 3). The magnetically derived model [Fox
Maule et al., 2005] is only slightly less uniform than the seismic model, reflecting its low resolution
(~200 km), but shows a broader range of values, similar to that predicted by our model (Figure 3).

Our model predicts higher heat flux on the east and south of the Peninsula than the west and north
(Figure 2d), at odds with both previous models (Figure 4). The seismic model [An et al., 2015] predicts thin-
ner crust and consequently higher heat flux on the west of the Peninsula than the east (particularly under
Alexander Island), with low heat flux in southeast Palmer Land due to thicker crust. The magnetic model
[Fox Maule et al., 2005] also predicts higher heat flux in Alexander Island than Palmer Land but indicates a
higher heat flux in central Palmer Land than western Palmer Land or Graham Land (Figure 1), similar to
our calculations. This may reflect an increase in the upper crustal geotherm and consequent reduction
of the Curie depth, indicating that the magnetic model is better able to resolve the effect of upper crustal
heat production. However, their resolution is too low for detailed interpretations.

4.3. Model Validation

Thorough validation of the subglacial heat flux models is not feasible due to the lack of direct borehole mea-
surements. Subglacial heat flux has been calculated from the temperature profiles of three glacial boreholes
(Figure 2d). A value of 50 mW m�2 from James Ross Island [Mulvaney et al., 2012] is lower than the model of
An et al. [2015] (65 mWm�2) and much lower than Fox Maule et al. [2005] (112 mWm�2), but is similar to our
model (60 mW m�2), reflecting the island’s HPE-poor volcanic rocks.

Figure 4. Differences in the heat flux values between the models of Fox Maule et al. [2005], An et al. [2015], and this
study. ETOPO1 surface relief [Amante and Eakins, 2009].
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The 88 mW m�2 was calculated in western Graham Land, much higher than the calculated values of this
study, An et al. [2015], or Fox Maule et al. [2005] (42, 47, and 53 mW m�2, respectively) as it is in an area of
low HPE volcanic rocks. The value compares to nearby intrusions in our model (81–103 mW m�2)
potentially indicating the presence of additional subglacial intrusions and highlighting the impact of local
geology, unresolvable by geophysical methods.

Our model’s extent does not cover a borehole from Dolleman Island in Palmer Land [Nicholls and Paren, 1993]
due to a lack of outcrop. The heat flux calculated (100 mW m�2) is higher than An et al. [2015] (66 mW m�2)
but comparable to Fox Maule et al. [2005] (91 mW m�2) and our value for the nearby metamorphic
basement (92 mW m�2).

4.4. Implications for Glaciological Research

Geothermal heat flux is an important control on ice sheet dynamic processes predominantly through the
modulation of basal ice temperatures, determining regions of basal ice at pressure melting point where
meltwater is produced.

Previous studies have investigated the sensitivity of simulated ice sheet dynamics to subglacial heat flux. The
largest impacts occur in slow-flowing areas of the ice sheet [Larour et al., 2012], where basal meltwater pro-
duction has the potential to substantially alter flow properties both upstream and downstream of localized
heat flux hot spots [Pittard et al., 2016a, 2016b]. Basal meltwater produced in regions of elevated geothermal
heat flux has also been linked to glacier surging [MacAyeal, 1992; Bell et al., 2007], impacting overall ice sheet
mass balance estimates [Rignot et al., 2011], and the development of subglacial hydrological systems, includ-
ing the evolution of subglacial lakes [Dowdeswell and Siegert, 2003; Siegert, 2005]. Where high heat flux values
are combined with a deformable till, the production of meltwater will lead to faster basal motion, modifying
the flow properties of the ice sheet [Rippin et al., 2003].

This study highlights the potential for high heat fluxes in Antarctic sedimentary basins. Being more
easily eroded than crystalline rocks and conducive to subglacial till production (decoupling the ice and
bedrock), sedimentary rocks can preferentially focus ice streams [Tulaczyk et al., 1998; Winsborrow et al.,
2010]. Permeable sedimentary strata are vulnerable to advected heat via circulating groundwater [Gooch
et al., 2016]. High heat flux has the greatest effect on slow-flowing ice. Consequently, the elevated heat
flux of some sedimentary rocks (coupled with their erodible nature) may have encouraged the develop-
ment of upper tributaries to paleo-ice streams. For example, the high heat flux predicted for southeast
Palmer Land may have aided development of the upper tributaries of the Evans Ice Stream (Figure 1),
increasing ice flow through these tributaries despite the reduced direct impact of heat flux on ice flow
downstream.

Our results encourage investigation into upper crustal heat production in basins elsewhere in Antarctica and
their impact on ice sheet dynamics. This is of particular relevance in regions undergoing rapid retreat, such as
the Totten Glacier in the Sabrina Subglacial Basin [Li et al., 2015; Aitken et al., 2016], where improved heat flux
models will help constrain future mass balance changes. Additionally, elevated heat flux encourages basal
melting in areas of thick ice, rendering the current search for Antarctica’s oldest ice sensitive to the effect
of subglacial heat flux and requiring accurate high-resolution determination of this parameter to successfully
retrieve these key climate records [Fischer et al., 2013].

4.5. Limitations and Future Directions

The principal limitations of our methodology are the accuracy and coverage of its input data: surface geolo-
gical mapping, distribution of HPE abundance data, and constraints on 3-D crustal structure. Crustal structure
introduces the greatest uncertainty as extrapolation of surface outcrops to half crustal thickness will
overrepresent thin sedimentary basins and isolated plutons. Crustal structure may be resolvable through
geophysical interpretation, as it has been in determining sedimentary thicknesses in the Weddell Sea region
[Golynsky and Aleshkova, 2000; Jordan et al., 2017].

To develop the technique further and to apply it across the Antarctic continent, the following key parameters
must be constrained: (1) improved continent-wide mapping of Antarctica’s subglacial geology [e.g., Cox,
2015]; (2) collation of a continent-wide geochemical database; (3) determination of the surficial geology
thickness and the structure of the deep crust though geophysical modeling; (4) glaciological modeling
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using the alternative heat flux models, to investigate the sensitivities and implications for ice sheet dynamics;
and (5) direct heat flux measurements for validation.

5. Conclusions

1. Existing models for Antarctic subglacial heat flux underestimate its scale and variability due to their use of
constant values for upper crustal heat production [Shapiro and Ritzwoller, 2004; Fox Maule et al., 2005; An
et al., 2015].

2. Subglacial heat flux on the Antarctic Peninsula varies from 43 to 133 mW m�2, with upper crustal heat
production contributing 6–70% of the total. Variability is higher and occurs at a wider range of spatial
resolutions than is currently resolved by geophysical techniques.

3. Subglacial heat flux on the Antarctic Peninsula is higher on the eastern and southern coasts (mean
81 mWm�2) than the western and northern coasts (mean 67 mWm�2) due to the predominance of silicic
intrusive and volcanic rocks and more lithic-rich sedimentary rocks to the east compared to the more
mafic volcanic rocks and quartzose sedimentary rocks to the west.

4. Sedimentary rocks can produce comparatively high radiogenic heat depending on their provenance and
maturity and thus may impart a greater control on ice sheet dynamics than previously recognized. To
understand the influence of Antarctica’s extensive sedimentary basins on subglacial heat flux, their
provenance, petrography, and chemistry must be constrained.
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