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Summary

1. Simulating spatially explicit population models to predict population spread allows environmental managers

to make better-informed decisions. Accurate simulation requires high spatial resolution, which, using existing

techniques, can require prohibitively large amounts of computational resources (RAM,CPU, etc).

2. We developed and implemented a novel algorithm for the simulation of integro-difference equations (IDEs)

modelling population spread, including stage structure, which uses adaptive mesh refinement.

3. Wemeasured the accuracy of the adaptive algorithm by comparing the results of simulations using the adap-

tive and a standard non-adaptive algorithm. The relative error of the population’s spatial extent was low (<0�05)
for a range of parameter values. Comparing efficiency, we found that our algorithm used up to 10 times less CPU

time andRAM than the non-adaptive algorithm.

4. Our approach provides large improvements in efficiency without significant loss of accuracy, so it enables fas-

ter simulation of IDEs and simulation at scales and at resolutions that have not been previously feasible. As an

example, we simulate the spread of a hypothetical species over the UK at a resolution of 25 m. We provide our

implementation of the algorithm as a user-friendly executable application.
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Introduction

Modelling changes in species’ distributions enable environ-

mental managers to make better-informed habitat manage-

ment (Hulme 2006) and conservation (Guisan, Tingley &

Baumgartner 2013) decisions. Predicting spread has twomajor

applications: to the problem of invasive species (Shigesada &

Kawasaki 1997;Williamson 1999) and to understanding popu-

lation responses to the shifting of habitat under climate change

(Zhou & Kot 2011; Bullock et al. 2012; Bennie et al. 2013),

habitat loss (Fahrig 1997) and habitat fragmentation (Fahrig

2002). This provides motivation for spatially explicit popula-

tion models which represent the relevant biological processes

mathematically and enable the prediction of population

dynamics. As population spread happens over large (Conti-

nental/National) spatial scales, large-scalemodels are required.

One way of doing this is via species distribution models (e.g.

Elith & Leathwick 2009), but these are static and predict only

potential ranges which may not be realised (Zhu, Woodall &

Clark 2012). They do not generally include the biological

mechanisms of demography or dispersal which are likely to

influence the rate and extent of spread (Schurr, Pagel & Cabral

2012) and have a comparatively weak underpinning in ecologi-

cal theory (Thuiller et al. 2013). SDMs are trained only on

data from locations within the range of the species. Predictions

outside of these ranges may be unrealistic as they are beyond

the scope of the data, making predictions at range limits or

scenario testing (e.g. adding another species or biological con-

trol) unreasonable. These problems can be overcome by using

mechanistic models that explicitly include demography and

dispersal. Mechanistic models take several forms, including

partial differential equations (PDEs), integro-difference equa-

tions (IDEs), individual-based models (IBMs) and some

metapopulation models, with the choice of model depending on

the temporal and spatial scales underpinning the system and

the form of the biological processes (e.g. whether dispersal can

be characterised by diffusion or is more complex). Another

option is hybrid models that use components of SDMs and

mechanistic models, but these are vulnerable to over-fitting,

caused by needing to estimate or assume large numbers of

parameter values (Wisz, Pottier &Kissling 2013).

In many mechanistic population models, landscapes are

assumed to be homogeneous, with the demographic and dis-

persal parameters spatially constant. This is because homo-

geneity (i) reduces the number of independent parameters in

the model, making model specification easier and (ii) reduces

the amount of computational resources required to determine

the spread rate. In homogeneous landscapes, population

growth can be characterised by a single scalar growth rate.

Similarly, in spreading populations, one can calculate the

spreading speed (the annual increment in the population’s

range) and how sensitive this is to life-history and dispersal

parameters (Shigesada, Kawasaki & Teramoto 1986; Kot,

Lewis & den Driessche 1996; Neubert & Caswell 2000). For

landscapes where spatial variation is very slight (Gilbert et al.

2014a) or highly localised (Dewhirst & Lutscher 2009), the*Correspondence author. E-mail: gilbert@maths.ox.ac.uk
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results for homogeneous landscapes can be used as an approxi-

mation, with analogous results extending to some periodic

(e.g. regular, repeating) landscapes (Gilbert et al. 2014b).

However, landscape homogeneity is often a poor assumption

and inmany landscapes the dispersal and demographic param-

eters exhibit strong variation across large spatial scales, render-

ing this approximation inaccurate (Miller & Tenhumberg

2010; Svenning, Gravel &Holt 2014). Instead, to make predic-

tions on complex landscapes, numerical simulations of the

models are required. For these predictions to be accurate, both

accurate ecological data and accurate simulation of the model

are required. Accurate simulations require a large number of

calculations (Scheffer et al. 1995). This means that intense

computational power is needed to simulate spread in large

two-dimensional landscapes. This is a particular problem for

IBMs, such as RangeShifter (Bocedi et al. 2014), where a large

number of individual mechanisms can be modelled, but where

each organism must be explicitly represented in the numerical

framework.

As predictions of species spread rely on computationally

expensive simulations, the ability to predict spread is often lim-

ited by the model’s scale and the available computational

resources. This limitation inhibits the types of scientific ques-

tions and problems that can be investigated. For example, fit-

ting spreadmodels to data requires numerousmodel runs, so if

each model run is computationally intensive, then the time to

fit themodel to data will be prohibitively long.

To be simulated numerically, most mechanistic population

models must be discretised, with space and time represented as

a mesh of points. The simulation’s accuracy depends on the

number of points, with the accuracy increasing with the num-

ber of points (Bocedi et al. 2012). Simulating spatially explicit

models involves a large number of calculations at each time

step. The computational complexity and computational

resources (RAM, CPU time, etc) required to compute these

calculations increase linearly or faster with the total number of

points or individuals (Cooley & Tukey 1965; Solodovnikov

1985). If simulations over large landscapes are to be accurate,

they need a high density of points and a very large total num-

ber of points. In addition, most models will require numerous

iterations if the model is simulated over a long time, making

simulations extremely computationally expensive. Large num-

bers of runs are also often required for parameter estimation

and sensitivity studies, thus furthermotivating the need for effi-

cient solvers (Csill�ery et al. 2010). One way to improve effi-

ciency has been developed for PDEs, using adaptive mesh

refinement to allow the density of points (the resolution) to

change in time and space (e.g. Davis & Flaherty 1982; Berger

& Oliger 1984). The density of points is usually highest where

the most accuracy is required (e.g. where the relative popula-

tion change is greatest, such as in the wave-front). With only

small reductions in accuracy (i.e. the accuracy of the simula-

tions compared to the mathematical model), this approach

allows limited computational resources to be focused on the

spatial locations which have the greatest effect on the distribu-

tion as it changes. Adaptive mesh refinement has so far been

restricted to PDEs. However, in cases where long distance

dispersal or annual cycles play an important role in the model,

IDEs may be a more appropriate choice of modelling frame-

work than PDEs, as they can incorporate these processes (Kot,

Lewis & denDriessche 1996) and are relatively easy to parame-

terise, e.g. by using data from the COMPADREdatabase (Sal-

guero-G�omez, Jones & Archer 2015) or population spread

data (e.g. Gilbert et al. 2005), and thus, IDEs are extensively

used in species modelling (Neubert & Parker 2004; Le Corff &

Horvitz 2005; Bullock, Pywell & Coulson-Phillips 2008; Miller

&Tenhumberg 2010; Zhou&Kot 2011; Bullock et al. 2012).

In this study we provide a solution to large-scale spread

problems by developing an adaptive mesh refinement algo-

rithm to simulate IDEs. At each iteration, the algorithm

divides the landscape up into square regions of equal area that

are either high resolution (containing a large number of mesh

points) or low resolution (containing only one mesh point). We

present the algorithm for stage-structured populations with

homogeneous dispersal and heterogeneous demography in

Section ‘Materials and methods’. In Section ‘Results’, we

demonstrate that the algorithm is both highly accurate and

uses fewer computational resources (RAM, CPU time) than

non-adaptive algorithms for a given problem, as well as

enabling us to tackle problems that were previously impossible

due to insufficient computational resources. Finally, we discuss

extending the algorithm to landscapes with heterogeneous dis-

persal in the Discussion (Section ‘Discussion’). We provide an

executable application with a worked example via GitHub

(Gilbert et al. 2016) so that others may use this algorithm to

simulate the spread of species under a variety of scenarios.

Materials andmethods

In this section, we introduce single species stage-structured IDEs with

constant dispersal and show how to simulate them with adaptive

meshes and achieve improvements in computational efficiency com-

pared to non-adaptive meshes. We restrict ourselves to IDEs on two-

dimensional landscapes, with themethod easily restricted to one spatial

dimension. The technical details of the algorithm are presented in full

in Appendix S2.

Integro-difference equations are discrete time, spatially continuous

populationmodels that have been used tomodel many different organ-

isms including annual (Bullock, Pywell & Coulson-Phillips 2008) and

perennial herbs (Le Corff & Horvitz 2005), shrubs (Neubert & Parker

2004), trees (Bullock et al. 2012), weevils (Miller & Tenhumberg 2010)

and butterflies (Zhou & Kot 2011). Their strength lies in the trade-off

between simplicity, flexibility and ease of use in terms of parametrisa-

tion and implementation; they can incorporate a range of dispersal

mechanisms and demographic structures, including stage-structured

populations which represent each life-history stage explicitly (Neubert

&Caswell 2000), but with few parameters. The general stage-structured

two-dimensional IDE on a landscape Ω relates the stage-structured

vector population density utþ1ðxÞ at each location x for generation

t + 1with the population for generation t via

utþ1ðxÞ ¼
Z
X
Kðx� y; yÞ � B utðyÞ; y� �� �

utðyÞdy; eqn 1

where � denotes theHadamard (element-wise) product of twomatrices.

Here, the population undergoes two consecutive phases, growth and

dispersal. The growth phase incorporates the processes of birth,
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maturation and death that occur during a generation. Growth is local

and depends only on the location x and on the population utðxÞ at x at

time t. Locations may differ in terms of habitat, meteorological condi-

tions, soil quality, etc., impacting growth rates and carrying capacities.

The current population may affect demographic rates through

intraspecific competition or via Allee effects. Population growth is

determined by the population projection matrix BðutðyÞ; yÞ, where the
(i,j)-th element is the ratio of the number of individuals in stage j after

the growth phase and the number of individuals in stage i at time t (at

location y), e.g. the survival probability between juveniles and adults.

The dispersal phase is the process by which individuals (or propagules)

move between locations. In stage-structured IDEs, it is characterised

by thematrix of dispersal kernelsK(x � y,y), where the (i,j)-th element

Ki;jðx � y; yÞ gives the density of population that has transitioned

from stage i to j and has transferred between locations y and x, e.g. dis-

persal of seeds from adult plants. Each pair of demographic stages is

considered separately as individuals’ dispersal depends on both their

current stage and their stage prior to the growth phase.

In general, the dispersal kernel depends on the disperser’s starting

location y and the displacement x � y (as in Fig. 1e). However, in this

study, we consider only models where the dispersal kernel is spatially

constant and has no explicit y dependence (see Fig. 1d), which is a use-

ful simplifying assumption. Prospects for relaxing this assumption are

reviewed in theDiscussion.

With the exception of homogeneous landscapes (see section ‘Analyti-

cal Results’ in Appendix S1, Supporting Information), quantifying

spread requires numerical simulation, with the landscape typically dis-

cretised into a squaremesh (Powell,White&McMillen 1998). If disper-

sal is homogeneous, then the integral in (1) can be computed efficiently

using fast Fourier transforms (FFTs) (Andersen 1991). If dispersal var-

ies spatially, then the discretised spatial distributions at t and t + 1 are

related by a matrix multiplication. Considering either case, the compu-

tational resources required increase linearly or faster with the number

ofmesh points, leading to very large computational costs for simulating

the model accurately over large and complex landscapes (see

Appendix S1). To reduce these computational requirements, we pro-

pose a simulation algorithmwith adaptivemesh refinement.

In spreading populations, there is usually little change in the pop-

ulation density in the wave-back (or within range), where the popu-

lation has reached carrying capacity, or in the far-field, where the

population is very small (see Fig. 1a). Behaviour in these regions

has only a small effect on the wave-front’s behaviour, so computa-

tional resources can be focused on the wave-front (or leading edge)

with a loss of resolution in the wave-back and far-field. For our

novel algorithm, we subdivide the landscape into non-overlapping

square regions of equal width Dx, which are further divided into

an equal number of cells of width dx. Regions can be either High

Resolution (HR) or Low Resolution (LR). High-resolution regions

(a)

(b) (c)

(d) (e)

r r r

Fig. 1. (a) Schematic diagram of a travelling

wave showing the algorithm parameters: the

upper threshold TLR where the population

returns to low resolutionLR, the lower thresh-

old THR where the population becomes HR,

the distances between each cell dx and between

each region Dx in relation to the spreading

population (red online). (b, c) Heterogeneous

Landscape Scenarios used to test the accuracy

and efficiency of the model, with suitable habi-

tat shown in black and unsuitable habitat in

white. The suitable habitat in (b) is a regular

grid of unconnected square islands separated

by unsuitable habitat. The suitable habitat in

(c) is a connected linear habitat with islands of

unsuitable habitat. (d, e) One-dimensional dis-

persal kernels at select points with (d) constant

dispersal parameters, and (e) varying dispersal

parameters (for comparison).
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have a mesh point for each cell, but low-resolution regions are

represented by a single mesh point.

The algorithm requires the following inputs: maps (provided as ras-

ter, i.e. gridded data at the desired resolution) of the initial population

distribution, demographic parameters and corresponding growth func-

tions over the entire landscape and the (spatially homogeneous) disper-

sal kernel. Initially, any region in which any mesh point is in the wave-

front is high resolution (see Fig. 1a). The wave-front is any location

where the juvenile (or lowest) demographic stage, ut1ðxÞ, has population
density between the thresholdsTLR andTHR. The upper thresholdTLR

is taken as a proportion of the carrying capacity andTHR is set as small

as required to allow small populations to be resolved (e.g.

THR ¼ 10�13 in the examples in Sections ‘Materials andmethods’ and

‘Results’), with suitable values provided for these parameters in the

worked example.

In standard simulations of IDEs there are two sequential processes

during each generation: population growth and dispersal. However,

the adaptive algorithm also incorporates the additional process ofmesh

refinement.

1. Population Growth at each cell depends on the cell’s intrinsic demo-

graphic rates and carrying capacity, which are supplied by the user. For

high-resolution regions, population growth is calculated by applying

each cell’s population projection matrix B(�, y) to its stage-structured

population density utðyÞ. For low-resolution regions, each demo-

graphic stage’s population density is represented by a single scalar, so

the growth phase for the whole region is calculated using the mean of

the population projection matrix over the region (see Appendix S2,

equation (B2)).

2. Dispersal. The assumption of homogeneous dispersal reduces the

integral for each pair of demographic stages in (1) to a convolution and

allows dispersal within a regular square mesh to be calculated using

FFTs (Andersen 1991). The key idea with our method is to divide dis-

persal into two categories of dispersal resolution.

(a) High-resolution dispersal is used to denote the dispersal processes

which require more computational resources for simulations to be

accurate. High resolution is required for dispersal that (i) is relatively

short distance and (ii) has its destination in the wave-front. In practice,

this is dispersal to a high-resolution region (a region in the wave-front)

from any neighbouring region (short distance). For a region containing

high-resolution information, we take the pre-dispersal population den-

sity of each cell in the region and its neighbours (for low-resolution

neighbouring regions, all cells are assumed to have population density

equal to the region’s population density) and take the discrete convolu-

tion of this distribution with theHR dispersal kernel (a high-resolution

discretisation of the dispersal kernel) to get the post-dispersal popula-

tion density distribution.

(b) Low-resolution dispersal is used to denote the dispersal processes

which can be simulated with fewer computational resources without

significantly affecting the simulation’s accuracy. This is dispersal

between regions which are not both neighbours and in the wave-front.

This is justified by the observation that all realistic dispersal kernels

eventually decay after sufficient distance from the origin. For each pair

of demographic stages, the dispersal between non-neighbouring regions

is calculated by taking the convolution of the array of mean pre-disper-

sal population densities for each region with the long-distance LR dis-

persal kernel, a low-resolution discretisation of the dispersal kernel

restricted to dispersal between non-neighbouring regions. For dispersal

to low-resolution regions from neighbouring regions, we take the mean

pre-dispersal population densities for the region and its neighbours and

take the discrete convolution of this distribution with the local LR dis-

persal kernel, a low-resolution discretisation of the dispersal kernel

restricted to dispersal between neighbouring regions. Finally, the con-

tributions of low-resolution dispersal are added to the post–high-reso-

lution dispersal population distribution. For low-resolution regions,

this involves the addition of two scalars (for each pair of demographic

stages). For high-resolution regions, the contribution of long distance

dispersal to a region is approximated as equal for all cells, so

the region’s global dispersal density is added to each cell’s population

density.

In summary, picking and choosingwhich level of dispersal resolution

to use, based on the change in population and distance between loca-

tions, allows gains in efficiency with little reduction in accuracy (See

Appendix S2 for full details).

1. Mesh refinement is where the resolution of each region is changed to

ensure that while the population distribution and the wave-front (the

area with population density between the lower THR and upper TLR

thresholds) change, the mesh always has high resolution where needed.

Individuals in the far field may drive population expansion (Lewis

2016), so the choice ofTHR will depend on the IDEmodel being studied

and is in general set as low as required to ensure no significant change

in model prediction. The mesh refinement phase enables regions which

enter the wave-front to become high resolution, and regions which

leave to return to low resolution. Regions in the far-field of the wave-

front where the juvenile stage’s minimum population density has

crossed the THR threshold become high resolution. Regions in the

wave-back which have either a juvenile population that has crossed the

TLR threshold, or densities which have changed less than a further

parameter TLR;2, become low resolution. As regions with only zero

intrinsic population growth rates will always have zero population,

they will always remain low resolution (making the algorithm very effi-

cient for sparse landscapes).

The algorithm was implemented in C++. An executable which runs

onWindows operating systems, is downloadable fromGitHub (Gilbert

et al. 2016); source code for non-Windows machines is available upon

request.

We measured the algorithm’s accuracy in simulating a non–stage-

structured spreading population compared to a non-adaptive simula-

tion algorithm (Section ‘Accuracy’), its efficiency in CPU time and

RAMusage (Section ‘Efficiency’) and tested it by simulating hypotheti-

cal biological invasions into coniferous woodland with (i) a single

demographic stage across Great Britain, and (ii) two demographic

stages into the New Forest (Hampshire, UK). In both cases, we used

fine-scale mapping data from the CEH Land Cover Map 2007

(LCM2007) in Section ‘Examples’. We also demonstrated the accuracy

of our algorithm for stage-structured populations inAppendix S5.

Throughout the following section, we simulate IDEs of the form (1)

with a single demographic stage and the commonly used 2D Laplace

(exponential) dispersal kernel (Carrasco et al. 2010) with spatially con-

stant dispersal parameter a, given by

kðx� y; yÞ ¼ 1

2pa2
exp

�kx� yk
a

� �
; eqn 2

where║x�y║ is the distance between y and x.We choose a piece-wise

linear scalar population growth function due to its simplicity. Other

stage-structured population projection matrices and single-stage

growth rates, including those with Allee effects, can also be used. We

have tested the algorithm for a growth functionwith anAllee effect and

found that the simulations were accurate for selected examples. For the

piece-wise linear growth function, the population growth rate is con-

stant below the carrying capacity C, with the population after the

growth phase at x given by

r utðxÞ;xð ÞutðxÞ ¼ min r0ðxÞutðxÞ;Cð Þ eqn 3
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where r0ðxÞ is the intrinsic population growth rate at x. Without loss of

generality, we take the carrying capacityC = 1 throughout this section.

In Sections ‘Accuracy’ and ‘Efficiency’ we take a = 1, but in Sec-

tion ‘Examples’ we simulate over a large real landscape, and take

a = 50 m to allowwider dispersal.

When measuring the algorithm’s accuracy (Section ‘Accuracy’) and

efficiency (Section ‘Efficiency’), we take the initial distribution to be

along one side of the square domain. For the example of spread of a

specialist into a fragmented coniferous habitat in the UK as given by

the LCM 2007 (Section ‘Examples’), we took the initial distribution to

be localised at a single cell.

Results

ACCURACY

We tested the accuracy of the adaptive algorithm presented

in Section ‘Materials and methods’ by comparing its output

with a high-resolution non-adaptive algorithm across a range

of parameters and landscape types. We varied four user-

defined tolerance parameters to investigate the trade-off

between accuracy and speed, as well as two model parame-

ters to determine how the demography and landscape pat-

tern affect the algorithm’s accuracy. For a spatially

homogeneous landscape and the spatially periodic linear and

island landscapes presented in Fig. 1b,c, we simulated both

algorithms while varying six different parameters to explore

the relationship among the parameter value, the landscape

type and the algorithm’s accuracy. We varied: the density

threshold at which a region returns to low resolution once in

the wave-back TLR, the density threshold at which a region

in the wave-front becomes high resolution THR, the cell size

dx, the region size Dx, the growth rate in suitable habitat r

and the landscape period p (the spatial distance taken for

landscape features to repeat).

We measured the accuracy using the area occupied

(Appendix S3) and the furthest distance reached by the popula-

tion (Appendix S4), and found similar responses to the differ-

ent parameters in both cases. For standard and default

parameter values, the algorithm gave accurate results for the

scenarios considered. For all three landscape types, simulation

errors were minimised for smaller values of dx, larger values of

TLR and r and intermediate values of Dx. The relationship

between THR and error differed between landscape scenarios

and there was no straightforward relationship between p and

simulation error. To show that our algorithm gives accurate

results for stage-structured populations, we tested it against a

stage-structured example and present our results in

Appendix S5.

EFFIC IENCY

The adaptive algorithm was tested for efficiency against a non-

adaptive algorithm. We varied the parameters that have the

greatest effect on the algorithm’s computational complexity as

these demonstrated the differences in performance between the

adaptive and non-adaptive algorithms. Different values to the

ones used to test the accuracy were used as performance gains

are only possible for larger simulations (see Table 1).We varied

the landscape/domain length,L, the number of generations, T,

and the ratio M of the region width Dx to the cell width dx,

M = Dx/dx (Fig. 2).

For each of the three parameters varied, 24 values were

investigated under the three landscape scenarios introduced in

Section ‘Accuracy’. For each parameter value and landscape

scenario, the average of 10 runs was taken. The following per-

formancemeasures were used:

1. CPU time.The total time used by the processor on the simu-

lation. This ignores any interruptions from other tasks, so is

generally less than the actual time taken for the simulation,

andwasmeasured via theUNIX command time().

2. Maximum RAM is measured by the maximum resident set

size over the programme’s run that is the amount of main

memory (RAM) occupied by the process.

In Fig. 2, we plot the adaptive algorithm’s performance

against the performance of the non-adaptive algorithm for

the three different landscape scenarios and for the three dif-

ferent parameters. In all cases, the adaptive algorithm was

generally faster than the non-adaptive algorithm, particu-

larly as the domain length L, total number of generations,

T, and the width in cells of each region M increased, with

the adaptive algorithm using up to 10 times fewer resources

than the non-adaptive algorithm (Fig. 2a,c,e). The adaptive

algorithm also achieved a lower maximum RAM usage than

the non-adaptive algorithm, especially as the domain length

L and the ratio of region width to cell width M = Dx/dx

increased.

EXAMPLES

To run the algorithm, the landscape map must be saved in

the same directory as the executable, and the model and

algorithm parameters (which determine the speed and

Table 1. Table of default parameter values (used when the parameter

is not being varied)

Parameter Description

Default value

(Accuracy)

Default value

(Efficiency)

TLR HR toLRdensity

threshold

0�5 0�5

TLR;2 HR toLRdensity

change threshold

10�10 10�10

THR LR toHRdensity

threshold

10�13 10�13

dx cell size 0�1 0�4
Dx Region size 10 40

r Growth rate

(suitable habitat)

3 3

p Landscape period 3 3

L1 Habitat length 160 800

L2 Habitat width 80 400

a Dispersal parameter 1 2

T Number of

generations

40 40
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accuracy of the algorithm) must be set in the parameter text

file. The parameter file includes the option of specifying the

location of a point release for the spreading population, or

of defining an initial population through another map file.

The executable and user guide are available from GitHub

(Gilbert et al. 2016).

UK land covermap

To assess our algorithm’s performance on high-resolution

maps of large landscapes, we simulated an invasion of a hypo-

thetical specialist non–stage-structured species that can only

inhabit coniferous woodland habitat using data from the 25-m

resolution CEH Land Cover Map, LCM2007, covering the

whole of Britain (Morton et al. 2011). LCM2007 has

1�456 � 109 individual cells and our ability to simulate the

model over this scale demonstrates the usefulness of the algo-

rithm (the maximum RAM used by the adaptive algorithm is

seven times less than the non-adaptive).

We present the results of this simulation in Fig. 3, with the

parameter values: growth rate r� ¼ 200 in coniferous habitat

and zero elsewhere (non-coniferous terrain and sea/ocean), dis-

persal parameter a = 50 m, region size Dx = 2�5 km, land-

scape length L1 ¼ 1300 km and landscape width

L2 ¼ 700 km. All other model parameters took the values

tabulated under default accuracy values in Table 1.

Fig. 2. Effect of varying parameters on the average CPU time (a, c, e) and the maximum RAM (b, d, f) used by 10 simulations. We vary (a, b) the

domain length L, (c, d) the number of generations T and (e, f) the width of each region in cellsM = Dx/dx. For each parameter varied, we show the

results for all three landscape scenarios for both the adaptive and non-adaptive algorithms.

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,

Methods in Ecology and Evolution, 8, 501–510

506 M. A. Gilbert et al.



Stage-structured example

To demonstrate the opportunities our algorithm offers for

modelling stage-structured spread that our algorithm

offers, we simulated the spread of a population with two

demographic stages (juvenile and adult) across part of the

New Forest (Hampshire, UK). The hypothetical species

has the same demographic and dispersal parameters as the

example in Appendix S5, except its population projection

matrix is given by

(a) (b) (c)

(d) (e) (f)

Fig. 3. Spread of a hypothetical invasive species (black online) into UK coniferous woodland (green online) shown at (a) $t=0$, (b) $t=8$,

(c) $t=16$, (d) $t=24$, (e) $t=32$, (f) $t=40$. The population growth rate in the coniferous habitat r = 200 and the dispersal parameter a = 2.

The blue region represents salt water (oceans and seas) which together with terrestrial non-habitat has a zero population growth rate.
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A ¼ 0�2 30
0�7 0�5

� 	
eqn 4

in coniferous habitat, and zero elsewhere. The other (algo-

rithm) parameters are given by the default values in Table 1.

We present the results of this simulation in Fig. 4, which show

the areas occupied by juveniles (Fig. 4a) and adults (Fig. 4b) at

each time step.

Discussion

Spatially explicit, mechanistic population models facilitate a

quantitative understanding of changing population distribu-

tions that incorporate dispersal and demographic behaviour.

These models enable predictions of population spread for any

species and landscape fitting the assumptions of the model.

Under a limiting set of assumptions, spread rates of spatial

models can be calculated analytically (Shigesada, Kawasaki &

Teramoto 1986; Kot, Lewis & den Driessche 1996; Neubert &

Caswell 2000), but in general, numerical simulation must be

used to predict the dynamics of changing population distribu-

tions in realistic scenarios, particularly when landscapes are

either inhomogeneous or aperiodic. For all spatially explicit

models, the accuracy of results obtained through simulation

depends on the quality of the data used as input to the model

and on the resolution of the discretisation of the landscape,

with more grid points providing greater accuracy, but requir-

ingmore computational resources.

In this study we have developed an adaptive mesh method

which facilitates the simulation of IDE models of spatial

spread efficiently and without significant losses in accuracy.

This method allows ecologists to simulate spatial dynamics for

cases that have previously been too computationally demand-

ing even on computer clusters, and thus permits previously

unachievable research questions to be addressed, and allows

researchers to getmore out of limited computational resources.

In particular, we show that it is possible to simulate spread

straightforwardly over very large areas with appropriate reso-

lution. This adaptive algorithm has the additional cost of a

mesh refinement phase, but this is significantly smaller than the

savings in computational resources in the growth and dispersal

phases.We implemented this algorithm in C++ and have made

an executable available onGitHub (Gilbert et al. 2016).

For a range of parameter values and landscape types, we

found that the adaptive algorithm was accurate and that for

IDEs on large and/or high-resolution domains, in the tests

(Section ‘Accuracy’ and ‘Efficiency’), the adaptive algorithm

used up to 10 times less CPU time and maximum RAM than

the non-adaptive algorithm. The algorithmwas also applied to

stage-structured IDE (Appendix S5), and was found to be

highly accurate.

The loss of resolution in the far-field and wave-back of the

invading population introduces some error. In particular, if

TLR is too low, the errors in the wave-back may affect the

spreading behaviour and if THR is too high, large errors will

appear in the wave-front that may significantly affect spread.

These effects are further exacerbated by landscape heterogene-

ity, which affects the spreading population. As with most

numerical solvers (Berger & Oliger 1984), there is a trade-off

between model accuracy and efficiency, and the simulation

parameters must be chosen to reduce both computational

resources and the errors added by the numerical scheme. The

acceptable level of error will depend on the application, but

when calculating wave speeds an error of a few per cent will

usually be acceptable. We suggest that users use the parameter

values used in our examples (Table 1), and then lower the error

tolerance and see if the solution significantly changes. If a sig-

nificant change occurs, then a lower error tolerance is probably

required.

To further demonstrate the algorithm’s efficiency, we simu-

lated a hypothetical invasive species’ spread across coniferous

woodland in Great Britain using the CEH LCM2007 habitat

map of the UK. Using a non-adaptive algorithm to simulate

over the whole of Great Britain at a resolution of 25 9 25 m2

would require around 300 GB of RAM, which is not presently

(a) (b)

Fig. 4. Spread of a hypothetical stage-structured invasive species into an area of the New Forest (green online) with the areas occupied by (a) the

juvenile and (b) the adult stage shown at 1-year intervals (black boundary).
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possible on a regular desktop computer. For the same prob-

lem, the adaptive algorithm used a maximum of 40 GB RAM

and therefore enables the running of simulations that would

have been impossible with non-adaptive algorithms.

In particular, the adaptive algorithm enables the simulation

of the spread of species over large landscapes with variation in

demographic parameters or complex fragmentation patterns.

Spatial variation in demography is commonly observed

(Oostermeijer et al. 1996), with environmental variation hav-

ing a strong relationship to parameter variation (Bullock, Sil-

vertown & Hill 1996). Fine-scale variation has been identified

as a strong determinant of spread and persistence (Carrasco

et al. 2010; Bennie et al. 2013). Therefore, incorporating high-

resolution spatial variation into large-scale models will enable

more accurate predictions as well as greater insight into the

effectiveness of fine-scale ecological interventions such as land-

scape buffers and wildlife corridors in preventing and facilitat-

ing spread. Indeed, models of spread along corridors, stepping

stones, etc. in realistic landscapes have, to date, been limited

with simplifying assumptions about spatial extent, structure

and dynamics (Moilanen 2011; Fennell et al. 2012; Hodgson

et al. 2012). Our method will facilitate more complex mod-

elling over scales and resolutions appropriate for conservation

policy and planning.

A natural extension to the method presented in this study is

the inclusion of dispersal heterogeneity (Fig. 1e) and density-

dependent dispersal, which is required to simulate organisms

which settle based on habitat quality or population density as

well as distance (e.g. Bonte, VanDyck&Bullock 2012). This is

more computationally intensive to simulate, and simulating

these IDEs adaptively would provide even greater relative

improvements in speed and efficiency than for homogeneous

IDEs. Without dispersal homogeneity, the integral in (1) can-

not be calculated using FFTs. Instead dispersal is normally

computed by multiplying the vector of discretised population

densities by anN 9 Nmatrix, whereN is the number of points

in the discretisation, requiring OðN2Þ floating point opera-

tions. An adaptive algorithm for simulating IDEs with hetero-

geneous dispersal would reduce the size of the matrix to N̂2,

where N̂ is the number of cells in regions with high-resolution

added to the number of regions with low-resolution informa-

tion, leading to even larger reductions in computational

resources than for the homogeneous cases presented in this

study. Extending the algorithm to heterogeneous and density-

dependent dispersal would vastly extend the types of models

that could be simulated, and is for future development.
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