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Abstract  

 

Measuring functional connectivity, the ability of species to move between resource patches, 

is essential for conservation in fragmented landscapes. However, current methods are highly 

time consuming and expensive. Population synchrony- the correlation in time series of counts 

between two long-term population monitoring sites, has been suggested as a possible proxy 

measure of functional connectivity. To date, population synchrony has been shown to 

correlate with proxies for movement frequency such as the coverage of suitable habitat types 

in intervening landscapes, and also least cost distances around hostile land cover types. This 

provides tentative evidence that synchrony is directly driven by movements of the focal 

species, but an alternative explanation is that these land cover types affect the movement of 

interacting species (e.g. natural enemies of the focal species) which can also drive 

synchronous population dynamics. Therefore, what is needed is a test directly relating 

population synchrony to movement frequencies of a focal species. Here we use data from a 

21 year mark-release-recapture study and show that population synchrony does indeed 

predict movements of a focal butterfly species Boloria eunomia (Esper). There is growing 

evidence that population synchrony can be a useful conservation tool to measure functional 

connectivity. 
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Introduction  

Understanding how the movement of organisms is affected by landscape change is central to 

the preservation and restoration of threatened populations in fragmented ecosystems. 

Maintaining functional connectivity, the ability of a focal species to move between resource 

patches, is generally regarded as an essential goal of environmental conservation (Bennett, 

1999; Crooks & Sanjayan, 2006). For example, functional connectivity is needed for 

recolonization of habitat patches and meta-population persistence (Hanski, 1999), and also 

allows species to shift ranges in response to climate change (Warren et al., 2001; Mair et al., 

2014). Similarly some ecosystem services delivered by biodiversity (e.g. pollination and pest 

control) require an understanding of how species move across different landscapes.  

      Despite the clear importance of functional connectivity for managing species, ecosystem 

services and landscapes, current assessment methods are very limited. These include mark-

release-recapture studies, which are time consuming and expensive and thus limited in their 

maximum spatial extent, and landscape genetics, which provides promise but is also currently 

expensive and has issues in that genetic divergence is determined by temporal as well as 

spatial separation (Storfer et al., 2010).  

       Population synchrony, the correlations in time series of counts between long-term 

population monitoring sites, has been advanced as an alternative method which can exploit 

spatially widespread, long-term monitoring data of the kind available from volunteer 

recording schemes (e.g. the UK Butterfly Monitoring Scheme www.ukbms.org; Powney et 

al., 2011; Powney et al., 2012). Population synchrony is driven by spatial autocorrelation in 

climate variables and biotic interactions that affect the focal species, and also by movement 

of the focal species between populations (Moran, 1953; Hanski & Woiwod, 1993; Sutcliffe et 

al., 1996; Bjørnstad et al., 1999; Cattadori et al., 2005; Vogwill et al., 2009). Hence, using 

population synchrony as a proxy for species movements requires accounting for other factors.  



       Paradis et al (2000) and Powney et al (2011) used a method called ‘pre-whitening’ to 

reduce the effects of shared climate on synchrony across all populations. In contrast, the 

effects of biotic interactions are harder to account for, as putative landscape factors that may 

affect focal species movement may also affect movement of interacting species (e.g. natural 

enemies or mutualists). 

     To date, demonstrations of the potential of population synchrony to measure movement of 

focal species have shown correlations between population synchrony and the coverage of key 

habitat types in intervening landscapes (Powney et al., 2011) and least cost distances around 

hostile land cover types (Roland & Matter, 2007; Powney et al., 2012). These are promising 

but do not exclude the hypothesis that synchrony may be a proxy for the movement of 

interacting species rather than the focal species. Additional supporting evidence that 

synchrony may be a useful proxy for movement of focal species comes from studies showing 

higher average population synchrony scores for species that are more dispersive, measured by 

direct mark-recapture data (Paradis et al., 1999), or using dispersal-related morphological 

traits as proxies (e.g. wing span and body size for birds, Tittler et al., 2009; body size and 

hydrodynamic profile traits for fish, Chevalier et al., 2014). However, the best test for a 

single focal species would be to compare observed movements of individuals between 

patches with the synchrony in total abundance counts between patches. 

      Here, we do this for a 21 year butterfly mark-release-recapture (MRR) study from Prés de 

La Lienne, Belgium. Our hypothesis is that patches showing higher population synchrony 

will have a greater movement frequency of butterflies between them. 

 

Methods 

We used data from a long-term study site at Prés de La Lienne, Belgium, where Boloria 

eunomia (Esper) butterflies were marked, released and recaptured from eight discrete habitat 



patches each summer for 21 years. For full details of the sampling methodology see 

Schtickzelle & Baguette (2004).  To assess butterfly movement frequency between patches, 

we created a matrix of between-patch movements summed from all capture-recapture data 

between 1992 and 2012. This provides an average estimate of inter-patch movement, 

smoothing out yearly variations due to factors such as weather (Schtickzelle et al., 2012).  

      To calculate population synchrony between patches, for each habitat patch, we calculated 

the total number of captures and recaptures per year. Within a habitat patch, we only counted 

individuals once even if they were captured several times in the same patch the same day, but 

individuals could be included in the daily count of several different habitat patches. With 

these data, we tested five metrics of population synchrony, involving increasing levels of 

‘data cleaning’ to improve sensitivity to any signal from species movements. Initially, we 

simply considered the Pearson’s correlation in total yearly counts between 1992 and 2012, 

which were first standardised to unity (referred to hereafter as ‘standardised counts’). This 

metric was calculated for each pairwise combination of habitat patches (n = 36). Next, we 

used two approaches for detrending the time series from each habitat patch. In the first 

approach we fitted a linear regression of count against year and used the residuals of this 

model to calculate the Pearson’s correlation coefficients between patches (Paradis et al., 

2000; Powney et al., 2011; referred to hereafter as ‘detrended standardised count’).  For the 

second approach we converted the population counts to growth rates using the following 

equation logNt – logNt-1, where Nt is the count in year t (Powney et al., 2010).  We added 1 to 

all counts to avoid the problem of logging a zero count (referred to hereafter as ‘growth 

rates’). These detrending steps remove long term trends in population counts.  Finally, after 

the detrending step, we additionally investigated the effect of ‘pre-whitening’ the data. This 

process takes differences between local patch time series and a ‘global index’ (here, the total 

annual population counts across the whole Prés de La Lienne system), in order to increase 



sensitivity to differences in dynamics between local time series. We used the formula in 

Powney et al (2011; adapted from Paradis et al., 2000; see Appendix 1), and tested a range 

values for the scaling factor which modifies the extent to which local counts reflect the global 

index (Table S1). This pre-whitening step was tested for both the detrended- and the growth 

rate- time series (respectively, referred to hereafter as ‘pre-whitened detrended standardised 

counts’ and ‘pre-whitened growth rates’). 

     We then related these five measures of population synchrony to the observed butterfly 

movement frequency between patches using Mantel regressions, which account for non-

independence of data from individual sites. We fitted observed frequency of inter-patch 

movements as the explanatory variable and population synchrony as the response. We used 

R2 scores as a measure of model goodness of fit, to assess the relative predictive ability of the 

different models and various scaling parameters, which gives the same result irrespective of 

axes order.  

     

Results and Discussion 

We found a positive correlation between the frequency of movement of butterflies between 

habitat patches in the Prés de La Lienne system and the degree of synchrony in the long-term 

population time series (Table 1; Fig. 1). This provides good evidence that local population 

synchrony does reflect butterfly movements, rather than being solely driven by shared 

climatic influences or the functional connectivity of interacting species.  

     All three methods used to assess population synchrony gave qualitatively similar results, 

but the best method was through detrending population time series with a prewhitening step 

(Table 1; Fig 1). Calculating population synchrony on count data that were standardised to 

unity, we obtained an R2 value for the relationship between population synchrony and 

butterfly movement frequency of 0.09, using the de-trending method without pre-whitening 



the R2 increased to 0.13, and with an additional pre-whitening step this increased substantially 

further to 0.29 (Fig 1; Table 1). This goodness of fit is stronger than found in previous 

butterfly studies relating synchrony to other proxies for movement (landscape suitability: 

Powney et al. 2011, least cost distances: Powney et al. 2012), perhaps because those latter 

variables are themselves only proxies of movement frequency. Although the goodness of fit 

of relationship does not lend itself to high confidence in the rates of movement between any 

two population monitoring sites based on the specific synchrony score, if data from multiple 

monitoring sites are available then population synchrony may still be very useful measure in 

identifying salient landscape characteristics that promote or hinder functional connectivity 

between sites. This could be achieved through the analysis of synchrony between each 

pairwise combination of population monitoring points and then relating these synchrony 

scores to landscape characteristics (i.e. area and configuration of different land cover types, 

through Mantel tests or associated approaches; e.g. see Storfer et al., 2010). Attention of 

course would need to be paid to whether landscape structure, and species’ functional 

connectivity itself changes over the time period of study.  

      Evidence is accumulating that synchrony may be a feasible way to measure functional 

connectivity, at both small (e.g. below 10km; Roland & Matter, 2007; Powney et al., 2012) 

and large spatial scales (Powney et al., 2011). Therefore, long-term population monitoring 

data provide essential information not only on the status of species (Gregory et al., 2005; 

Brereton et al., 2011), but also on functional connectivity between monitoring sites. 

Notwithstanding this, detailed MRR studies such may still be necessary for high temporal 

resolution estimates of dispersal (Schtickzelle et al., 2012) and to calibrate (e.g. identifying 

the best pre-whitening scaling factor) and validate proxy measures.  
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Tables 

 

Table 1, Relationship between population synchrony and frequency of B. eunomia butterfly 

movement between patches in the Prés de La Lienne system, using alternative metrics to 

calculate population synchrony. For each metric, the scaling factor used here was identified 

as that which gave the highest goodness of fit from a sensitivity analysis (See Table S1 for 

full results). 

Synchrony measured upon: 

Scaling 

factor 

Slope 

coefficient s.e. F 

Mantel 

P df R2 

Standardised count none 0.047 0.023 4.25 0.047 34 0.09 

Detrended standardised count none 0.085 0.034 6.11 0.003 34 0.13 

Pre-whitened detrended standardised count 3.5 0.058 0.015 15.46 <0.001 34 0.29 

Growth rates none 0.091 0.026 12.44 <0.001 34 0.25 

Pre-whitened growth rate 0.5 0.089 0.025 12.11 <0.001 34 0.24 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure Legends 

Fig. 1, The relationship between frequency of B. eunomia inter-patch movements and a) 

population synchrony calculated using detrended population counts standardised to unity, b) 

the previous metric with an additional step of ‘pre-whitening’ (see methods for explanations), 

and c) population synchrony calculated as growth rates. The R2 scores are 0.13, 0.29 and 0.25 

respectively.   
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Fig. 1, The relationship between frequency of B. eunomia inter-patch movements and a) 

population synchrony calculated using detrended population counts standardised to unity, b) 



the previous metric with an additional step of ‘pre-whitening’ (see methods for explanations), 

and c) population synchrony calculated as growth rates. The R2 scores are 0.13, 0.29 and 0.25 

respectively.   
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