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Most coral reef organisms have a bipartite life-cycle; they are site attached to reefs

as adults but have pelagic larval stages that allow them to disperse to other reefs.

Connectivity among coral reef patches is critical to the survival of local populations of

reef organisms, and requires movement across gaps that are not suitable habitat for

recruitment. Knowledge of population connectivity among individual reef habitats within

a broader geographic region of coral reefs has been identified as key to developing

efficient spatial management strategies to protect marine ecosystems. The study of

larval connectivity of marine organisms is a complex multidisciplinary challenge that

is difficult to address by direct observation alone. An approach that couples ocean

circulation models with individual based models (IBMs) of larvae with different degrees

of life-history complexity has been previously used to assess connectivity patterns in

several coral reef regions [e.g., the Great Barrier Reef (GBR) and the Caribbean]. We

applied the IBM particle tracking approach to the Kenya-Tanzania region, which exhibits

strong seasonality in the alongshore currents due to the influence of the monsoon. A

3-dimensional (3D) ocean circulation model with 2 km horizontal resolution was coupled

to IBMs that track virtual larvae released from each of 661 reef habitats, associated

with 15 distinct regions. Given that reefs provide homes to numerous species, each

with distinctive, and in aggregate very diverse life-histories, several life-history scenarios

were modeled to examine the variety of dispersal and connectivity patterns possible. We

characterize virtual larvae of Acropora corals and Acanthurus surgeonfish, two coral reef

inhabitants with greatly differing pelagic life-histories, to examine the effects of short (<12

days) and long (>50 days) pelagic larval durations (PLD), differences in swimming abilities

(implemented as reef perception distances), and active depth keeping in reef connectivity.

Acropora virtual larvae were modeled as 3D passive particles with a precompetency

period of 4 days, a total PLD of 12 days and a perception distance of 10 m. Acanthurus

virtual larvae were characterized by 50 days precompetency period, a total PLD of 72

days and a perception distance of 4 km. Acanthurus virtual larvae were modeled in two

ways—as 3D passive particles and including an idealized ontogenetic vertical migration

behavior. A range of distances within which larvae were able to perceive reefs and

directionally swim to settle on them during the competency period were evaluated. The

influence of interannual environmental variations was assessed for 2 years (2000, 2005)

of contrasting physics. The spatial scale of connectivity is much smaller for the short
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FIGURE 8 | Top row, reefs color coded by the number of different destination reefs reached by virtual larvae originated from them, in both simulated

years, to identify the best source reefs for Acanthurus (A) and Acropora (B). Bottom row, reefs color coded by the number of different source reefs it received

virtual larvae from, in both simulated years, to identify the best sink reefs for Acanthurus (C) and Acropora (D).

circulation off Kenya and Tanzania down to 300m depth during
most of the year. Therefore, a vertical migration down to
50m depth would have little effect on transport pathways.
During the SE monsoon (Dec-Mar) the Somali Current flows
southward in the upper 100m north of 3◦S. During this
period, which encompasses part of the spawning period, staying
near the surface, instead of migrating to deeper waters, would
facilitate north to south connections and retention if the
duration of the pelagic phase includes the seasonal reversal
to northward flow. Only during the transition between NE to
SE monsoon conditions would a shallow migration result in

significantly shorter horizontal displacements for Acanthurus
larvae. Intraseasonal and interannual variability increased
when the simple ontogenetic vertical migration behavior was
implemented because the evolution of the vertical structure of
alongshore velocities was markedly different in the two modeled
years (Supplementary Figures 2, 4). The ontogenetic vertical
migration pattern modeled here is based on the increased
depth of the Acanthurus larvae during ontogeny observed by
Irisson et al. (2010). The depth of the migration is not well
defined and could be site dependent. For example, Irisson et al.
(2010) reported post-flexion Acanthurus larvae in the 25–60m
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depth range near reefs in French Polynesia, while Oxenford
et al. (2008) found aggregations of late Acanthurus larvae to
be more abundant at 120m in the eastern Caribbean Sea. No
observations for the East-African coast exist. Observations of
vertical distribution and abundance of pelagic larvae concurrent
with hydrographic conditions are needed to design more realistic
vertical migration experiments, and to assess larval fish responses
to temperature, light, or velocity. The implementation of vertical
migration in these numerical experiments was highly idealized,
shifting all particles to 50m depth 20 days after release, ignoring
their vertical position at that time. This meant that some larvae
that had passively advected deeper than the 50m fixed migration
depth were actually displaced upward with this vertical migrating
behavior. The number of particles that advected below 50m
depth was not an important fraction of the successful larvae since
most larvae stayed in the upper 5m when passively advected;
a small proportion, however, reached depths below 100 m.
Migrating only shallow particles downward would be a more
realistic scenario as well as distributing the particles within a
broader depth range rather than fixing them to a single specific
depth. Many other, perhaps more realistic scenarios are possible
next steps. However, in-situ data of larvae depth distributions
would be required to properly parameterize more realistic
scenarios. The aim of the simple scenario modeled here was to
illustrate the potential effects on connectivity of an ontogenetic
vertical migration to 50m (with depth keeping) in a rapidly
evolving water column with deep stratification and strong shear.

The numerical experiments presented here are deterministic
and represent a population where all larvae develop and behave
identically, without actively responding to its environment.
Real larvae are complex organisms, with strong inter-specific
and potentially intra-individual variability in physiology and
behavior, constantly reacting to their environment. Complex
models with behavior cueing on the environmental conditions
experienced by the virtual larvae have been developed (e.g.,
Armsworth, 2001; Staaterman et al., 2012; Wolanski and
Kingsford, 2014). Assuming that larvae are well adapted
to the pelagic phase, larval behavior, particularly sensing,
orientation and swimming abilities would enhance their
probability of finding suitable settlement habitat, which might
reduce interannual variability in settlement success. However,
when challenged by increased environmental variability due to
climate change effects, their strategies may not be guaranteed
to work. The numerical experiments presented here, although
idealized, serve as an initial effort to develop hypotheses that
might be examined using more complex models and empirical
studies. Monitoring recruitment of coral reef organisms is basic
to assessing the effects of environmental variability on settlement
success. Having long term time series of recruitment of coral
reef dependent species in the Kenya-Tanzania region would be
valuable for “tuning” models, as has been done for other coral
reef regions (i.e., Sponaugle et al., 2012).

The fraction of released larvae that settle on suitable habitat
is highly sensitive to the individual’s habitat perception and
swimming abilities; further knowledge regarding the capabilities
of coral reef larvae to perceive, navigate and settle on suitable
habitat is a very important and a challenging piece of information
to obtain. Both in-situ and laboratory observations of larval

development and behavior are needed to further increase the
realism of modeling experiments. The dependence of PLD on
temperature is well established for aquatic organisms (O’Connor
et al., 2007) but observations for the studied genera are
insufficient to adequately parameterize the functional response
between temperature and PLD. The inclusion of temperature
dependent PLD in bio-physical models is essential for examining
climate change effects on connectivity and settlement success
of marine larvae (Lett et al., 2010; Figueiredo et al., 2014).
Changes in ocean circulation will alter connectivity patterns,
but physiological effects due to the increased temperature will
also have an important effect (Munday et al., 2009; Lett et al.,
2010; Kendall et al., 2016). Reduced pelagic larval durations are
expected under faster developmental rates, which could lead
to a reduction in dispersal distances and the spatial scale of
connectivity (Munday et al., 2009; Lett et al., 2010). Bio-physical
modeling connectivity studies including temperature dependent
PLD report increased local retention (Figueiredo et al., 2014;
Andrello et al., 2015) and significant changes inMarine Protected
Area network interconnectivity (Andrello et al., 2015) under
climate change scenarios. Well-informed idealized experiments
that include temperature dependent PLD of virtual larvae are
a future direction for assessing the effects of climate change
scenarios on connectivity and recruitment of coral reef organisms
in the East-African coast.

Larvae in the ocean are subject to mixing at scales smaller
than those represented in the ocean circulation model. In
particle tracking models these unresolved motions are often
implemented as a random walk scaled by the model diffusivity.
Simulations that implement a random walk to mimic diffusion
are considered more realistic but computationally expensive.
We conducted a few sensitivity experiments that included (3D)
variable vertical diffusion. Simulations that included vertical
diffusion (not shown) reproduced the main connectivity patterns
produced by the 3D advective only experiments, but with smaller
connectivities—mostly due to greater vertical dispersion that
subjected larvae to greater horizontal flow variation. These results
are probably more realistic for early or weakly swimming larvae
(e.g., coral species) that are unable to maintain their vertical
position in the water column in the presence of vigorous vertical
mixing.

While reef-to-reef connectivity is important in
metapopulation ecology, regional connectivity is expected
to be more robust to the uncertainty introduced by the
oceanographic and biological assumptions made in these
models. Region to region connectivity matrices synthesize the
information of reef to reef connectivity matrices, making it
more manageable and easier to interpret. The regional summary
could assist managers, policy makers and the general public to
understand the interconnections among coral reef regions due
to pelagic larval dispersion of their local populations. Previous
bio-physical connectivity studies highlight the importance of
considering larval connectivity at regional levels when trying
to prioritize the implementation of management strategies for
both conservation and fisheries enhancement goals. One of the
insights of examining connectivity at a regional scale is that the
importance of international connections becomes obvious, as
has been shown by Kough et al. (2013) for the Mesoamerican
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reefs and by Rossi et al. (2014) for the Mediterranean Sea. In
all numerical experiments Tanzanian reefs were an important
source of settlers to Kenyan reefs; this provides insight and
guidance on the spatial scale at which management strategies
are required and points to the need for regional international
collaborations in order to provide enduring conservation
measures and protection to the east African coral reef ecosystem.

This modeling study is a first approach to understanding
the connectivity among coral reef populations in a data poor
region. The information provided, even though preliminary,
presents a general pattern of the potential regional connectivity
and identifies particularly resilient and vulnerable areas as well
as the hydrodynamic features driving the connections. Spatial
scales of connectivity and settlement success rates are within
the ranges reported by other bio-physical modeling studies for
similar genera in other coral reef regions (Paris et al., 2007;
Dorman et al., 2015). However, the robustness of the connectivity
patterns presented needs to be further evaluated by performing
experiments for more years and longer spawning seasons, and
carrying out more extensive sensitivity analysis to the model
assumptions. After gaining more confidence in the modeled
connectivity patterns, the information provided by this modeling
study could be carefully and critically evaluated, in order to
be applied to optimize the effectiveness of marine protected
area management and other marine protection efforts. Further

modeling experiments similar to those presented here, but better

informed by empirical data, and including the capability of larvae
to respond to the ocean conditions will provide greater detail on
the complex biophysical interactions that occur in the sea, and
will provide a more realistic, and less uncertain, representation
of connectivity patterns. These results will aid in understanding
how a range of species specific individual responses influence

the distribution and connectivity patterns and should enable

more specific guidelines for spatial management that provide
better resource resiliency and protection throughout the Kenya-
Tanzania coastal region.
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