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Abstract The majority of presently exploitable marine methane hydrate reservoirs are likely to host
hydrate in disseminated form in coarse grain sediments. For hydrate concentrations below 25–40%,
disseminated or pore-filling hydrate does not increase elastic framemoduli, thus making impotent traditional
seismic velocity-based methods. Here, we present a theoretical model to calculate frequency-dependent
P and S wave velocity and attenuation of an effective porous medium composed of solid mineral grains,
methane hydrate, methane gas, and water. The model considers elastic wave energy losses caused by
local viscous flow both (i) between fluid inclusions in hydrate and pores and (ii) between different aspect
ratio pores (created when hydrate grows); the inertial motion of the frame with respect to the pore fluid
(Biot’s type fluid flow); and gas bubble damping. The sole presence of pore-filling hydrate in the sediment
reduces the available porosity and intrinsic permeability of the sediment affecting Biot’s type attenuation at
high frequencies. Our model shows that attenuation maxima due to fluid inclusions in hydrate are possible
over the entire frequency range of interest to exploration seismology (1–106 Hz), depending on the aspect
ratio of the inclusions, whereas maxima due to different aspect ratio pores occur only at sonic to ultrasound
frequencies (104–106 Hz). This frequency response imposes further constraints on possible hydrate
saturations able to reproduce broadband elastic measurements of velocity and attenuation. Our results
provide a physical basis for detecting the presence and amount of pore-filling hydrate in seafloor sediments
using conventional seismic surveys.

1. Introduction

Methane stored in seafloor hydrate is a relatively clean fossil fuel resource that has the potential to ease the
transition to renewable energy in future. Methane stored in hydrate-bearing sands presently forms the most
commercially attractive hydrate reservoirs [Boswell and Collett, 2011], whether on the seafloor or in terrestrial
permafrost regions. Natural hydrates hosted in sediments commonly exist in several forms: (i) disseminated
hydrate grows freely in the pore space away from grain contacts and is known as pore-filling hydrate; (ii)
hydrate contacting neighboring mineral grains, known as load-bearing hydrate, is common for pore-filling
hydrate saturations exceeding 25–40%; and (iii) hydrate forming cement between mineral grains, known
as cementing hydrate (Figure 1; Waite et al. [2009]). In coarse grain deposits, hydrates are prone to exhibit
a disseminated pore-filling habit [Zhao et al., 2015] for hydrate saturations below 40% when formed from
dissolved methane [Spangenberg and Kulenkampff, 2006]. Pore-filling hydrates have been directly observed
and/or inferred from geophysical surveys in fine to coarse sands in locations such as Mallik, Mackenzie
Delta [Uchida et al., 2000], the eastern Nankai Trough [Konno et al., 2015; Priest et al., 2015; Santamarina
et al., 2015], the Ulleung Basin, East Sea of Korea [Lee et al., 2013], the Okushiri Ridge, Japan Sea [Tamaki
et al., 1990], Alaminos Canyon, Gulf of Mexico [Boswell et al., 2009], and Mount Elbert, Alaska North Slope
[Stern et al., 2011;Winters et al., 2011]. As such, pore-filling hydrate could account for a significant proportion
of global seafloor- and permafrost-hosted methane hydrates.

While the stability field of natural hydrates is readily determined, the saturation of hydrate within it is not.
Estimates come from direct sampling, well log data, or remote geophysical data [e.g., Ecker et al., 1998;
Ecker et al., 2000; Guerin and Goldberg, 2002;Matsushima, 2006;Weitemeyer et al., 2006;Westbrook et al., 2008;
Lee et al., 2013; Goswami et al., 2015; Konno et al., 2015]. Good indirect estimates rely entirely in our conceptual
understandingof howPand Swave velocity and attenuation [Lee, 2002;Yun et al., 2005;Chandet al., 2006;Priest
et al., 2006; Waite et al., 2009; Dai et al., 2012; Best et al., 2013], and electrical resistivity [Spangenberg, 2001;
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Spangenberg and Kulenkampff, 2006] relate to hydrate saturation and habit and in the associated effectiveness
of our models. The P and Swave velocities of sediments hosting cementing hydrate, both when hydrate coats
andcementsgrain contactsorwhenhydrate formsonly atgrain contacts, arehigher than thoseof the sediment
without hydrate because the hydrate contributes to support any pressure loading. This is reflected in an
increase of the composite’s bulk and shear moduli [Ecker et al., 1998] even for low hydrate saturations below
approximately 40% [Priest et al., 2009;Waite et al., 2009; Dai et al., 2012]. In contrast, sediments hosting pore-
filling hydrate with saturations below approximately 25–40% do not show significant changes in P and S
wave velocities [Priest et al., 2009;Waite et al., 2009; Dai et al., 2012] because the hydrate is suspended within
the water and hence only increases the bulk modulus of the effective pore fluid [Ecker et al., 1998]. For pore-
filling hydrate saturations above 25–40%, hydrate starts bridging sediment grains, and the elastic frame
moduli and associated P and Swave velocities progressively increase [Waite et al., 2009; Dai et al., 2012].

P and S wave attenuation may be used as an alternative indirect geophysical parameter to estimate hydrate
saturation [Guerin and Goldberg, 2002; Priest et al., 2006; Best et al., 2013], and it is indeed an attractive alter-
native especially in pore-filling hydrate-bearing reservoirs where traditional P and S wave velocity methods
are not effective. However, current economically exploitable hydrate-bearing sand reservoirs are likely to
have hydrate saturations above 40% and thus unlikely to present, initially, a pore-filling hydrate habit.
Even in this case, though, sediment shearing occurs during hydrate production [Hyodo et al., 2013] and when
hydrate saturations start to be less than approximately 40%, it is sensible to think that pore-filling hydrate
may become an important habit. Also, laboratory experiments on cementing and load-bearing hydrate show
that repeated cycles of hydrate dissociation and formation tend to create a pore-filling distribution in an
excess water environment [Choi et al., 2014]. This behavior is also likely to occur during production because
of hydrate re-formation.

In situ measurements of elastic wave energy losses caused exclusively by the presence of hydrate in sedi-
ments are challenging because (i) it is difficult to isolate elastic wave energy losses within the sediment from
elastic wave scattering in spatially heterogeneous media [Huang et al., 2009] and (ii) our understanding of the
multiple energy loss mechanisms coexisting in hydrate-bearing sediments is still limited [Priest et al., 2006;
Best et al., 2013]. Here, to overcome the above limitations, we work with attenuation differences between
the hydrate-bearing sediment and the host sediment without hydrate and present a novel approach, the
Hydrate-Bearing Effective Sediment (HBES) model, to integrate state-of-the-art understanding and models

Figure 1. Idealized conceptual illustration of the microstructure of hydrate-bearing sediments (not to scale).
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of attenuation mechanisms occurring in hydrate-bearing sands (Figure 2). Our method calculates frequency-
dependent P and Swave velocity and attenuation and includes elastic wave energy losses caused by (i) squirt
flow between fluid inclusions in hydrate and the pores, (ii) squirt flow between different aspect ratio pores,
(iii) inertial motion of the frame with respect to the pore fluid (Biot’s type attenuation), and (iv) gas bubble
damping (Figure 2). Other energy loss mechanisms possibly acting in gas hydrate systems but not
implemented in our model may include wave-induced fluid flow at the mesoscale [White, 1975] and wave-
induced gas exsolution-dissolution [Tisato et al., 2015]. The HBES model also considers how different
hydrate habits affect both velocity and attenuation and allows representing cases where methane gas
coexists with hydrate under hydrate stability conditions [Milkov et al., 2004; Lee and Collett, 2006; Paganoni
et al., 2016]. First, we validate our model with published experimental P and S wave velocities and
attenuations of hydrate-bearing sediments, and then we illustrate the sensitivity of P and S wave velocities
and attenuations to input parameters in sediments with pore-filling hydrate. We show that different
hydrate-related attenuation mechanisms may act at different elastic wave frequency ranges.

Figure 2. Workflow of the Hydrate-Bearing Effective Sediment (HBES) model. The idealized conceptual illustrations on the
right show the different individual attenuation mechanisms (not to scale). The total energy loss in the sediment with
hydrate is given by the contribution of each of the attenuation mechanisms. The text in italics at the end of each box
indicates the section in the supporting information with the detailed description of each procedure and its mathematical
formulation.
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2. The Hydrate-Bearing Effective Sediment Model

The Hydrate-Bearing Effective Sediment model calculates frequency-dependent P and S wave velocity and
attenuation of hydrate-bearing sediments (Figure 2). Here we describe the main theoretical concepts in
which the HBESmodel is based, but the detailed description and completemathematical formulation is given
in the supporting information.

Experiments on natural and synthetic hydrates show a microporous structure [Kuhs et al., 2004; Zhao et al.,
2015], and hence hydrates can be understood as a compliant material, due to inclusions of water and/or
gas, and with a behavior resembling that of clay minerals [Best and McCann, 1995; Leurer, 1997]. Moreover,
elevated P and S wave attenuations have been detected on hydrate-bearing sands [Guerin and Goldberg,
2002; Matsushima, 2006; Priest et al., 2006]. Based on the above experiments and ideas, Priest et al. [2006]
hypothesized that these elevated attenuations could be explained by (i) local viscous fluid flow (squirt flow)
between low aspect ratio pore layers of water, bound to mineral grain surfaces when cementing hydrate
forms, and the pores, and (ii) viscous squirt flow between connected low aspect ratio micropores inside
the hydrate grains and the sediment pores. Best et al. [2013] considered the attenuation due to the latter type
of squirt flow in their hydrate effective grain model. They calculated the complex shear and bulk moduli of
hydrate applying the formulation from Johnston et al. [1979] which was later adapted by Leurer [1997] and
Leurer and Brown [2008] to represent squirt flow between the structural water of clay minerals one-side
connected to water in the pores. Best et al. [2013] adopted this formulation for fluid inclusions in hydrate
and substituted the clay mineral bulk and shear moduli for those of the hydrate; for simplicity, they assumed
single aspect ratio fluid inclusions in hydrate completely filled with either methane or water. The new HBES
model employs Best et al.’s [2013] model framework and introduces the following: (i) pressure-temperature
dependent density, bulk compressibility, and viscosity of methane and water; (ii) the possible coexistence
of one-side connected ellipsoidal water and gas inclusions in hydrate, in which each phase can occupy micro-
pores with different aspect ratios; (iii) local viscous squirt flow between two-side connected ellipsoidal pores
generated when hydrate forms (defined as type 2 pores in the formulation; see supporting information) and
the initial pores, in which each hydrate habit can create a different aspect ratio pore; and (iv) wave-induced
frequency-dependent oscillating gas bubbles in a dilute gas-liquid mixture considering viscous, thermal, and
Biot’s type damping [Smeulders and van Dongen, 1997].

To distinguish between the two local viscous squirt flows considered in the HBES model, here we use the
term submicro squirt flow for that between fluid inclusions in hydrate and the pores and micro squirt flow
for that between hydrate-generated pores and the initial (e.g., pores of sand grain framework host) pores.
First, we calculate the complex bulk and shear moduli of the hydrate grain considering submicro squirt
flow, similar to Best et al. [2013], and introduce these into Ecker et al.’s [1998, 2000] formulation to obtain
the complex dry elastic moduli of cementing and pore-filling hydrate-bearing sediment. Second, we calcu-
late the nonisothermal frequency-dependent complex bulk modulus of the gas to consider energy losses
caused by gas bubble damping. Third, we calculate the effective complex moduli of the pore fluid and
solid phases. As assumed by Ecker et al. [1998], pore-filling hydrate is treated as part of the pore fluid
and does not modify the elastic moduli of the dry granular frame but modifies the pore fluid bulk modu-
lus. Therefore, the effective bulk modulus of the pore fluid can be complex and frequency dependent
because submicro squirt flow and gas bubble damping generate a hydrate and gas, respectively, complex
frequency-dependent bulk modulus. The effective bulk and shear moduli of the solid phase can also be
complex and frequency dependent due to submicro squirt flow in cementing hydrate. Fourth, we consider
micro squirt flow by applying the formulation from Leurer [1997] and Leurer and Brown [2008] and (i) sub-
stitute the bulk and shear moduli of the clay mineral by the real parts of the effective complex dry frame
moduli of hydrate-bearing sediment, (ii) use the real part of the effective complex bulk modulus of the
pore fluid, and (iii) assume two-side connected and hydrate-generated ellipsoidal pores. We calculate
the final effective complex dry elastic moduli of the hydrate-bearing sediment by assuming superposition
of squirt flow mechanisms. This means that the imaginary parts of the effective complex dry frame moduli
caused by submicro squirt flow are added to the imaginary parts caused by micro squirt flow. Finally, we
introduce the final effective complex dry frame moduli and the effective complex bulk modulus of the
pore fluid (water, gas, and pore-filling hydrate) and solid (sediment grains and cementing hydrate) phases
into the Biot-Stoll poroelastic model [Biot, 1956a, 1956b; Stoll and Bryan, 1970] to calculate P and S wave
velocity and attenuation.
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3. HBES Model Performance: Results
3.1. Comparison With Experimental Data

We used the experimental measurements of P and S wave velocity (VP, VS) and attenuation (QP
�1, QS

�1) pre-
sented by Priest et al. [2006] to evaluate and validate the performance of the HBES model. Priest et al. [2006]
formed hydrate under excess-gas conditions (methane saturated pore space) using a resonant-column appa-
ratus and measured peaks in attenuation at hydrate saturations between 3% and 5% at seismic frequencies.
They attributed these peaks to either squirt flow caused by monolayers of adsorbed water remaining at grain
contacts when cementing hydrate forms (this mechanism belongs to our more general concept of micro
squirt flow) or nanoporosity/inclusions of methane and/or water in hydrate (here named as submicro squirt
flow). Our model captures the location of the peak in both QP

�1 and QS
�1 at hydrate saturations below 5%

when considering (i) the presence of methane and water inclusions in hydrate and (ii) that a fraction of
hydrate grows at grain contacts and the initial fraction of pore-filling hydrate in the model decreases linearly
with hydrate saturation, and thus cementing hydrate in contact with the grains increases accordingly
(Figure 3). In these experiments, at 3% to 5% hydrate saturation, sand grains are cemented by hydrate
[Priest et al., 2005], consistent with our assumed hydrate habit distribution (see Figure 3, table). This habit dis-
tribution also captures the change in slope of P and S wave velocity observed at hydrate saturations below
5% and the magnitude of seismic velocity change with hydrate saturation (Figure 3a).

The model suggests that QP
�1 is more sensitive to the presence of hydrate than QS

�1, as also measured
experimentally. However, it gives smaller increments in attenuation than those measured, especially forQS

�1

(Figure 3b). Lower changes in QS
�1 than in QP

�1 due to submicro squirt flow caused by intercrystalline water
layers in clay minerals are also obtained by Leurer and Brown [2008]. Discrepancies between measured and
modeled attenuations may be explained by (i) other possible attenuation mechanisms acting at seismic fre-
quencies and not considered in our model, such as wave-induced fluid flow at the mesoscale [White, 1975]
and/or wave-induced gas exsolution-dissolution [Tisato et al., 2015], and (ii) the idealized nature of our ana-
lytical effective approach, including the geometries considered and their distributions. More notable, the
model is able to capture the trend in observed QP

�1 and QS
�1 changes with hydrate saturation in the range

between 0% to 35% (Figure 3b). We also tested if the observed changes in VP, VS, QP
�1, and QS

�1 could be
caused by micro squirt flow only, but we were not able to obtain any sensible match to the data.

Figure 3. Comparison between measured values (dots) [Priest et al., 2006] and values calculated with the HBES model (lines) of P and S wave (a) water saturated
velocity and (b) methane saturated attenuation, in sediment with hydrate relative to the values without hydrate. Modeled attenuation caused by submicro squirt
flow and Biot’s type global fluid flow, but the relative contribution from the latter at 200 Hz is negligible. Measured results correspond to the excess gas method,
and the P and S wave velocities were converted to water saturated samples using Gassmann’s equation [Priest et al., 2006]. The input parameters listed in the table
and default input parameters are defined in Appendix A, Tables A1 and A2. The subscripts 0 and f in the table mean initial and final conditions.
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Submicro squirt flow due to methane and water inclusions could partly explain the attenuation behavior
observed in Priest et al. [2006] samples and, at seismic frequencies, may be the primary hydrate-related
attenuation mechanism.

3.2. Elastic Behavior of Sediments With Pore-Filling Hydrate

Here we presentmodel results for pore-filling hydrate-bearing sediments (see justification in sections 1 and 4)
and for P wave velocity and attenuation only. Similar to Leurer and Brown’s [2008] results for submicro squirt
flowcausedby intercrystallinewater layers in clayminerals,we found that frequency-related changes in Swave
velocity and attenuation caused by pore-filling hydrate-generated squirt flow are smaller than those from P
waves and are not discussed further here. To isolate intrinsic hydrate-related processes, we use the absolute
difference between the P wave velocity and attenuation of the sediment with pore-filling hydrate and those
from the host sediment only.

The sole presence of pore-filling hydrate in the sediment reduces the porosity and intrinsic permeability of
the sediment, and these produce two opposite effects in the maximum P wave attenuation at high frequen-
cies. If the available porosity reduces, the surface contact area between the fluid in the pores and the solids
increases. This results in higher attenuation values caused by higher viscous drag between the solids and glo-
bal fluid flow (Biot’s type attenuation mechanism) and a attenuation peak located at a frequency indepen-
dent of pore-filling hydrate saturation. If the intrinsic permeability reduces, so does Biot’s type attenuation
(less global fluid flow), and the attenuation peak moves to higher frequencies (see Figure 4, inset). The net
effect on attenuation depends on the rate at which intrinsic permeability decreases with porosity, and so with
pore-filling hydrate saturation, which in our formulation is controlled by the nkPF parameter, here assumed to
be 2 (Appendix A, Table A1, and Supporting Information Eq. S23). In Figure 4, the increase in attenuation
caused by the reduction in porosity dominates over the decrease caused by the reduction in intrinsic perme-
ability, and so the attenuation increases with pore-filling hydrate saturation.

From a phenomenological perspective, the Kramers-Kronig relations state that any change in attenuation
needs to be related with a change in velocity dispersion [e.g., Mavko et al., 2009]. That is, larger attenuations
are necessarily linked with larger velocity dispersions, and zero attenuation requires zero velocity dispersion.
OurHBESmodel predicts frequency-related changes in velocity at frequencieswhere attenuation changes also
occur (Figure 5). In Figure 5b, attenuation peaks shown at seismic frequencies are caused by fluid inclusions in
hydrate (submicro squirt flow)whereas at ultrasound frequencies they are caused by both the reduction in the
available porosity due to pore-filling hydrate and the presence of different aspect ratio pores. Attenuation
maxima due to submicro squirt flow generated by fluid inclusions in hydrate occur over the whole frequency
range, dependingonboth the aspect ratio and typeoffluid in the inclusions (Figures 6a and6b),whereaspeaks

Figure 4. Variation in P wave attenuation with frequency in sediment with pore-filling hydrate relative to the values with-
out hydrate. Results for partially water saturated pores (SW= 1� SH). Attenuation caused by Biot’s type global fluid flow,
without considering hydrate-related squirt flow mechanisms. The black dotted line joining the attenuation peaks shows
the translation of the peaks toward higher frequencies with the reduction in intrinsic permeability. The inset shows a
conceptual diagram of how changes in intrinsic permeability and porosity affect the maximum attenuation and the
frequency at which the maximum attenuation occurs. Input parameters are defined in Appendix A, Tables A1 and A2.
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due to micro squirt flow generated by different aspect ratio pores occur at sonic to ultrasound frequencies,
independent of the aspect ratio of pores (Figure 6c). In our formulation, micro squirt flow is related with the
composite’s dry effective moduli. This means that micro squirt flow contributes to the attenuation
generated by the global fluid flow in the pore network and hence is more significant at high frequencies.
This frequency distinction imposes further constraints on hydrate saturations that can reproduce
broadband elastic measurements. For a given frequency, maximum changes in P wave velocity and
attenuation are observed for a particular aspect ratio and type of fluid inclusion in hydrate (Figures 6a, 6b,
7a, and 7b). For a fixed aspect ratio, the magnitude of these changes depends on the fluid type and
concentration of inclusions (Figures 6b, 7c, and 7d). Essentially, the type of fluid inclusion in hydrate controls
both the magnitude of attenuation changes and the frequency at which the attenuation peak is located. In
contrast, the aspect ratio of fluid inclusions in hydrate controls only the frequency dependence of the
attenuation peak, and the concentration of inclusions controls only the magnitude of attenuation.

In the results described above, we have assumed that the sediment pores are only occupied by water and
hydrate to better understand and isolate pore-filling hydrate-related changes in elastic wave attenuation.
However, several gas hydrate fields have shown evidence of coexisting methane gas and hydrate in sedi-
ments within the gas hydrate stability zone [e.g., Lee and Collett, 2006]. The HBES model can also be used
to study frequency-dependent changes in attenuation caused by gas bubbles in the pores. At low frequen-
cies, the presence of methane gas bubbles in the pores reduces considerably the Pwave velocity, whereas at
high frequencies the P wave velocity is higher than that for the fully water saturated case (Figure 8a). At the
high frequency limit, the P wave velocity tends exactly to that of the fully water saturated case, as stated by
Smeulders and van Dongen [1997]. When hydrate is present in the pores, at low frequencies there is a smaller
decrease in P wave velocity due to gas bubbles (Figure 8a, solid red and black lines). Two distinctive peaks in
attenuation at ~5Hz and between 10 and 30 kHz are obtained with a gas bubble radius of 0.001m, and the
latter attenuation peak moves to higher frequencies when decreasing the bubble radius (Figure 8b). The
greater high frequency attenuation peak observed for a free methane gas saturation of 10% and pore-filling
hydrate, in comparison to that without hydrate (Figure 8b, solid red and black lines), is caused by hydrate-
driven reduction in porosity generating higher Biot’s type global fluid flow attenuation.

4. Discussion

There is general consensus in the literature on the physical mechanisms explaining the effects of different
hydrate habits on P and S wave velocities. Pore-filling hydrate-bearing sediments do not show significant
changes in P and S wave velocities with respect to the host sediment [Priest et al., 2009; Waite et al., 2009;
Dai et al., 2012], because hydrate floats in the pore fluid and thus only increases the bulk modulus of the pore
fluid [Ecker et al., 1998]. Load-bearing and cementing hydrate-bearing sediments show higher P and S wave
velocities than those of the host sediment [Priest et al., 2009;Waite et al., 2009;Dai et al., 2012] because hydrate

Figure 5. Variation in P wave (a) velocity and (b) attenuation with frequency in sediment with pore-filling hydrate relative to the values without hydrate. Results for
partially water saturated pores (SW= 1� SH). Attenuation caused by Biot’s type global fluid flow and submicro andmicro squirt flows. Input parameters are defined in
Appendix A, Tables A1 and A2.
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increases the composite’s bulk and
shearmoduli [Ecker etal., 1998]. Incon-
trast, the way in which different
hydrate habits affect attenuation is
an open scientific question. Some stu-
dies suggest that the presence of
hydrate in the sediments reduces
attenuation [Dvorkin et al., 2003;
Westbrook et al., 2008; Dewangan
et al., 2014], while others suggest it
increases attenuation [Dvorkin and
Uden, 2004; Guerin and Goldberg,
2002; Pratt et al., 2005; Matsushima,
2006; Priest et al., 2006; Sun et al.,
2016]. Also, part of the enhanced
attenuations measured in hydrate-
bearing sediments may be due to a
source-coupling effect [Lee, 2006].
When the hydrate grains are larger
than the sediment grains, hydrate
forms nodules or veins, and this can
cause either a negligible effect on
attenuation, such as in the Blake
Ridge [Wood et al., 2000], or a reduc-
tion, such as offshore west of
Svalbard [Westbrook et al., 2008] and
in the KG Basin [Dewangan et al.,
2014]. Our results are consistent with
the experimental [e.g., Priest et al.,
2006] andfield studieswhereattenua-
tion increased and hydrate was in
pore-filling morphology within sand
dominated sediments [e.g., Mallik
well, Pratt et al., 2005].

Several studies have speculated [e.g.,
Milkov et al., 2004; Miyakawa et al.,
2014; Goswami et al., 2015], proposed
[Darnell and Flemings, 2015], and
demonstrated experimentally [Sahoo
et al., n.d, submitted] that gas can
coexist with hydrate within the
hydrate stability zone (HSZ). This gas
can (i) fill inclusions in hydrate allow-
ing local viscous flow between those

and the pores (submicro squirt flow), (ii) stay in the pores allowing local viscous flow due to different aspect
ratio pores generated when hydrate grows (micro squirt flow), and (iii) stay in the pores allowing gas bubble
damping effects. Priest et al. [2006] present a mechanism in which local viscous fluid flow occurs between
monolayers of water remaining at grain contacts (when cementing hydrate forms) and the pores. This idea
can be extended to the formation of pore-filling hydrate as, in principle, the formation of pore-filling hydrate
can also generate micro squirt flow (Figure 2). However, the mechanism presented by Priest et al. [2006] is
likely to produce higher attenuations, as the monolayers of adsorbed water are likely to have lower aspect
ratios (Figure 6c). It is sensible to expect that both submicro and micro squirt flows can occur in sediments
with hydrate independent of hydrate habit.

Figure 6. Variation in P wave attenuation with frequency in sediment with
pore-filling hydrate relative to the values without hydrate. Results for par-
tially water saturated pores (SW= 1� SH) and for a hydrate saturation (SH) of
0.25. (a and b) Attenuation caused by Biot’s type global fluid flow and sub-
micro squirt flow and (c) Biot’s type global fluid flow and micro squirt flow.
Input parameters are defined in Appendix A, Tables A1 and A2.
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Figure 7. Variation in P wave (a and c) velocity and (b and c) attenuation with pore-filling hydrate saturation in sediment
relative to the values without hydrate. Results are shown for partially water saturated pores (SW= 1� SH) and fully water
saturated inclusions in hydrate (fiW = 1), and for a frequency (f) of 100 Hz. Attenuation caused by submicro squirt flow
and Biot’s type global fluid flow, but the relative contribution from the latter at 100 Hz is negligible. Input parameters are
defined in Appendix A, Tables A1 and A2. Note that in Figure 7d the dashed line is not visible, is overlapping the x axis,
because the concentration of fluid inclusions in hydrate (ci) is zero and hence no variation in attenuation occurs due to
submicro squirt flow.

Figure 8. Variation in P wave (a) velocity and (b) attenuation with frequency in sediment with gas bubbles and pore-filling hydrate relative to the values with fully
water saturated pores. Results for two methane bubble sizes (a of 0.001m and 0.0001m) and different combinations of water, free methane gas, and hydrate
saturations. Attenuation caused by gas bubble damping and Biot’s type global fluid flow. Hydrate-related squirt flow attenuation is not considered in the model run
with pore-filling hydrate (red lines). Input parameters are defined in Appendix A, Tables A1 and A2.
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Themain drawback to the use of P and Swave attenuation as a parameter for estimating hydrate saturation is
that, traditionally, attenuation models have treated wave velocity and attenuation independently [Lee, 2006]
which potentially contravenes the Kramers-Kronig relations of causality [e.g., Mavko et al., 2009]. Our pro-
posed HBES model is causal and includes several important hydrate systems-related features affecting P
and S wave velocity and attenuation such as the following: derivation of fluid properties from equations of
state, coexistence of gas and hydrate within the HSZ, submicro and micro squirt flows of gas and/or water,
gas bubble damping, possible coexistence of different hydrate habits, and the ability to alter global fluid flow
energy losses due to porosity and intrinsic permeability changes. The HBES model adds valuable insights to
those already learned from the limited number of published causal attenuation models [e.g., Guerin and
Goldberg, 2005; Best et al., 2013].

5. Conclusions

The sole presence of pore-filling hydrate affects both the porosity and intrinsic permeability of the sediment,
and hence the attenuation caused by the inertial motion of the grains with respect to the fluid in the pores at
high frequencies above 104 Hz. Moreover, local submicro and micro squirt flows can also explain enhanced
attenuations in pore-filling hydrate-bearing sediments at frequencies from 1 to 106 Hz that span the entire
frequency range of interest to exploration seismology. In methane-rich systems within the HSZ, the absence
of a distinctive increase in seismic wave velocity from that expected of the host sediment only suggests that
cementing or load-bearing hydrates are unlikely to be present in the system. However, this does not exclude
the possible presence of pore-filling hydrate. From a conventional seismic exploration point of view,
enhanced attenuation caused by fluid inclusions in hydrate may be the only hydrate-related loss mechanism
able to produce the seismic signal contrasts needed to detect whether a reservoir sand is likely to have pore-
filling hydrate, or not. If no distinctive peak in attenuation is observed, this can also mean that pore-filling
hydrate still exists but it does not contain sufficient and/or adequate inclusions to create a detectable change
in attenuation at seismic frequencies. Overall, our results provide a physical basis for interpreting seismic
attenuation observations in sediments with pore-filling methane hydrate.

Appendix A: Input Parameters

Table A1. Fixed Input Parameters Used in the Model Runs (Except in Figure 3; for More Detail, Refer to the
Supporting Information)

Parameter Symbol Value Unit Reference

Test conditionsa

Confining pressure Pc 2.5 × 107 Pa
Pore fluid pressure Pp 2.0 × 107 Pa
Temperature T 13 °C

Components properties
Hydrate bulk modulus KH 7.9 × 109 Pa [Best et al., 2013]
Hydrate shear modulus GH 3.3 × 109 Pa [Best et al., 2013]
Hydrate Poisson’s ratio νH 0.32
Hydrate density ρH 925 kgm�3 [Helgerud et al., 2009]
Methane bulk modulus KCH4 KCH4 (Pp, T) Pa [Millero et al., 1980]
Methane density ρCH4 ρCH4 (Pp, T) kgm�3 [Millero et al., 1980]
Methane viscosity μCH4 μCH4 (Pp, T) Pa s [Millero et al., 1980]
Methane irreducible saturation SrCH4 0.02 [Reagan and Moridis, 2008]
Sand/quartz grain bulk modulus KS 36 × 109 Pa [Ecker et al., 2000]
Sand/quartz grain shear modulus GS 45 × 109 Pa [Ecker et al., 2000]
Sand/quartz grain Poisson’s ratio νS 0.062
Sand/quartz grain density ρS 2650 kgm�3 [Ecker et al., 2000]
Sand/quartz grain diameter dS 1 × 10�4 m [Best et al., 2013]
Sand/quartz grain coordination number n 8.5 [Ecker et al., 2000]
Water bulk modulus KW KW (Pp, T) Pa [Setzmann and Wagner, 1991]
Water density ρW ρW (Pp, T) kgm�3 [Setzmann and Wagner, 1991]
Water viscosity μW μW (Pp, T) Pa s [Setzmann and Wagner, 1991]
Water salinity s 3.5 % wt
Water irreducible saturation SrW 0.2 [Reagan and Moridis, 2008]
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