
 

  
 

 

 

Article (refereed) - postprint 
 

 

 

 

Nickel, Stefan; Schröder, Winfried; Wosniok, Werner; Harmens, Harry; 
Frontasyeva, Marina V.; Alber, Renate; Aleksiayenak, Julia; Barandovski, 
Lambe; Blum, Oleg; Danielsson, Helena; de Temmerman, Ludwig; Dunaev, 
Anatoly M.; Fagerli, Hilde; Godzik, Barbara; Ilyin, Ilia; Jonkers, Sander; 
Jeran, Zvonka; Karlsson, Gunilla Pihl; Lazo, Pranvera; Leblond, Sebastien; 
Liiv, Siiri; Magnússon, Sigurður H.; Mankovska, Blanka; Martínez-Abaigar, 
Javier; Piispanen, Juha; Poikolainen, Jarmo; Popescu, Ion V.; Qarri, Flora; 
Radnovic, Dragan; Santamaria, Jesus Miguel; Schaap, Martijn; Skudnik, 
Mitja; Špirić, Zdravko; Stafilov, Trajce; Steinnes, Eiliv; Stihi, Claudia; 
Suchara, Ivan; Thöni, Lotti; Uggerud, Hilde Thelle; Zechmeister, Harald G.. 
2017. Modelling and mapping heavy metal and nitrogen concentrations 
in moss in 2010 throughout Europe by applying Random Forests 
models. 

 
 

 
 

Contact CEH NORA team at  

noraceh@ceh.ac.uk 
 

 

© 2017 Elsevier Ltd. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 
 

This version available http://nora.nerc.ac.uk/516409/ 
 
 

NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material on 
this site are retained by the rights owners. Users should read the terms and 
conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access 

 
NOTICE: this is the author’s version of a work that was accepted for 
publication in Atmospheric Environment. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and 
other quality control mechanisms may not be reflected in this document. 
Changes may have been made to this work since it was submitted for 
publication. A definitive version was subsequently published in Atmospheric 
Environment (2017), 156. 146-159. 10.1016/j.atmosenv.2017.02.032 
 
www.elsevier.com/ 

mailto:nora@ceh.ac.uk
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://nora.nerc.ac.uk/516409/
http://nora.nerc.ac.uk/policies.html#access
http://dx.doi.org/10.1016/j.atmosenv.2017.02.032
http://www.elsevier.com/


The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 

Research paper 1 

 2 

Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout 3 

Europe by applying Random Forests models 4 

 5 

Stefan Nickel*, Winfried Schröder*, Werner Wosniok**, Harry Harmens***, Marina V. Frontasyeva****, 6 

Renate Alber, Julia Aleksiayenak, Lambe Barandovski, Oleg Blum, Helena Danielsson, Ludwig de 7 

Temmermann, Anatoly M. Dunaev, Hilde Fagerli, Barbara Godzik, Ilia Ilyin, Sander Jonkers, Zvonka 8 

Jeran, Gunilla Pihl Karlsson, Pranvera Lazo, Sebastien Leblond, Siiri Liiv, Blanka Mankovska, Javier 9 

Martínez-Abaigar, Juha Piispanen, Jarmo Poikolainen, Ion V. Popescu, Flora Qarri, Dragan Radnovic, 10 

Jesus Miguel Santamaria, Martijn Schaap, Mitja Skudnik, Zdravko Špirić, Trajce Stafilov, Eiliv Steinnes, 11 

Claudia Stihi, Ivan Suchara, Lotti Thöni, Hilde Thelle Uggerud, Harald G. Zechmeister 12 

 13 

*Chair of Landscape Ecology, University of Vechta, POB 15 53, 49377 Vechta, Germany, Tel.: +49(0) 14 

4441 15 420 (Secretary), Fax: +49(0) 4441 15 583, E-mail: stefan.nickel@uni-vechta.de, 15 

winfried.schroeder@uni-vechta.de 16 

** University of Bremen, POB 330 440, 28334 Bremen, Tel.: +49(0) 421 218 63780 (Secretary), Fax: 17 

+49(0) 421 218 63799, E-mail: wwosniok@math.uni-bremen.de 18 

*** ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, 19 

Gwynedd LL57 2UW, United Kingdom, Tel.: +44(0)1248 374512/374500, Fax: +44(0)1248 362133, E-20 

mail: hh@ceh.ac.uk, 21 

**** Moss Survey Coordination Centre, Frank Laboratory of Neutron Physics, Moscow Region, Russian 22 

Federation, Tel.: +7(49621)65609, Fax: +7(49621)65085, E-mail: mfrontasyeva@jinr.ru 23 

 24 

 25 

 26 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 2 
 

Abstract 27 

Objective. This study explores the statistical relations between the concentration of nine heavy metals 28 

(HM) (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), 29 

vanadium (V), zinc (Zn)), and nitrogen (N) in moss and potential explanatory variables (predictors) 30 

which were then used for mapping spatial patterns across Europe. Based on moss specimens collected 31 

in 2010 throughout Europe, the statistical relation between a set of potential predictors (such as the 32 

atmospheric deposition calculated by use of two chemical transport models (CTM), distance from 33 

emission sources, density of different land uses, population density, elevation, precipitation, clay content 34 

of soils) and concentrations of HMs and nitrogen (N) in moss (response variables) were evaluated by 35 

the use of Random Forests (RF) and Classification and Regression Trees (CART). Four spatial scales 36 

were regarded: Europe as a whole, ecological land classes covering Europe, single countries 37 

participating in the European Moss Survey (EMS), and moss species at sampling sites. Spatial patterns 38 

were estimated by applying a series of RF models on data on potential predictors covering Europe. 39 

Statistical values and resulting maps were used to investigate to what extent the models are specific for 40 

countries, units of the Ecological Land Classification of Europe (ELCE), and moss species. 41 

Results. Land use, atmospheric deposition and distance to technical emission sources mainly influence 42 

the element concentration in moss. The explanatory power of calculated RF models varies according to 43 

elements measured in moss specimens, country, ecological land class, and moss species. Measured 44 

and predicted medians of element concentrations agree fairly well while minima and maxima show 45 

considerable differences. The European maps derived from the RF models provide smoothed surfaces 46 

of element concentrations (As, Cd, Cr, Cu, N, Ni, Pb, Hg, V, Zn), each explained by a multivariate RF 47 

model and verified by CART, and thereby more information than the dot maps depicting the spatial 48 

patterns of measured values. 49 

Conclusions. RF is an eligible method identifying and ranking boundary conditions of element 50 

concentrations in moss and related mapping including the influence of the environmental factors. 51 
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Keywords. Atmospheric deposition, biomonitoring, Ecological Land Classification Europe, spatial 52 

reference systems1 Introduction 53 

 54 

Enhanced atmospheric deposition and correlated concentrations of HM and N may cause serious 55 

problems for human health and ecosystem integrity (Bobbink et al. 2010). The degree of pollution may 56 

be explored by determining element concentrations in the air, water, soil, or sediments. Alternatively, or 57 

complementarily, monitoring organisms (bioindicators, biomonitors) are used for monitoring and 58 

mapping spatial patterns of element concentrations (Markert at al. 2003) or further analysis, e.g. by use 59 

of multivariate analysis (Factor analysis (FA) and / or Principal component analysis (PCA)) (Špirić et al 60 

2013). Such organisms might accumulate many elements to measurable concentrations indicating an 61 

average degree of pollution over time. The concentration in the monitoring organisms reflects the 62 

element fraction available for uptake by organisms (Bjerregaard 2015). Mosses used for this study are 63 

ectohydric and absorb water over the plant surface. Mosses receive and accumulate elements directly 64 

from the atmosphere via wet, occult and dry atmospheric deposition (Glime 2006). Therefore, chemical 65 

analyses of moss specimens provide a surrogate, time-integrated measure of the spatial patterns of 66 

element deposition. Biomonitoring using mosses is easier and cheaper than deposition sampling with 67 

technical devices so that a much higher spatial sampling density can be achieved. Especially for HM, 68 

experimental data for occult and dry deposition are hardly available, and also data for dry deposition of 69 

N are very limited. Concentrations of various key metals in moss have been successfully calibrated 70 

versus atmospheric deposition levels of the same metals (Berg and Steinnes 1997). Although the moss 71 

concentration data provide no direct quantitative measurement of total deposition, this information can 72 

be derived by statistical approaches relating element concentrations in mosses to measured element 73 

concentrations in atmospheric deposition (Harmens et al. 2010, 2011, 2015). This way, the spatial 74 

resolution of atmospheric HM and N deposition maps can be enhanced (Schröder et al. 2011 a, 2011 b, 75 

2012, 2014). Since 1990, every five years the European Moss Surveys (EMS) have been providing data 76 

on concentrations of HM, and since 2005 concentrations of N in moss (Harmens et al. 2015). Sampling, 77 
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chemical analyses and quality control of data were performed according to a standardized protocol 78 

(Moss Manual ICP Vegetation for EMS 2010).  79 

 80 

The EMS 2010 provided data on concentrations of aluminium (Al), arsenic (As), cadmium (Cd), 81 

chromium (Cr), copper (Cu), iron (Fe), lead (Pb), mercury (Hg), nickel (Ni), antimony (Sb), vanadium 82 

(V), zinc (Zn) and nitrogen (N) in moss, collected at up to 4499 sample sites across 24 European 83 

countries. In the present study data, on As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn, and N concentrations were 84 

used (Harmens et al. 2015) because modelled atmospheric deposition data were available for these 85 

compounds. As holds true for the EMS, the Co-operative Programme for Monitoring and Evaluation of 86 

Long-range Transmission of Air Pollutants in Europe (EMEP) is a part of the United Nations Economic 87 

Commission for Europe (UNECE) in the framework of the Convention on Long-range Transboundary Air 88 

Pollution. EMEP uses emission data from the European countries to model atmospheric transport and 89 

deposition of Cd, Hg, N, and Pb with a grid size of 50 km by 50 km. The modelling results are validated 90 

against measurements of Cd, Hg, Pb, and N concentrations in atmospheric particulate matter and wet 91 

deposition collected with technical devices at up to 70 sites across Europe (Tørseth et al. 2012).  92 

The aim of this study was to analyze the multivariate statistical relations between concentrations of As, 93 

Cd, Cr, Cu, Hg, Ni, Pb, Zn and N in moss and potential explanatory variables. To reach this aim, 94 

following objectives were investigated by: 95 

- identifying and ranking the selected explanatory variables which are most important in explaining the 96 

spatial variation of element concentration in mosses using RF; 97 

- comparing the results of between RF and CART and, by this, derive conclusions on how the method 98 

may influence the results (this is a matter of quality control); 99 

- preparing and evaluating the maps using regression prediction based on RF results; 100 

- exploring by use of RF models and the resulting maps, to what extent the statistical relations between 101 

element concentration in moss and selected explanatory variables are specific for elements, moss 102 

species, countries and ecological land classes. 103 
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Using the above mentioned data from Europe, the statistical relations of potential predictors such as 104 

modelled atmospheric deposition, distance from respective emission sources, elevation, density of 105 

various land uses, population density, precipitation, and clay content of soils with response variables 106 

(HM and N concentration in moss, respectively) were evaluated using Random Forests (Breiman 2001; 107 

Liaw and Wiener 2002). Areas of RF application are, amongst others, astronomy, autopsy, transport 108 

planning, medicine, and environmental sciences (Fawagreh et al. 2014). Examples for the latter 109 

category were given by Cianci et al. (2015), Evans and Cushman (2009), Howard et al. (2014) and 110 

Magness et al. (2008) predicting species, Deloncle et al. (2007) predicting weather regimes, Pal (2005) 111 

classifying forests and Thums et al. (2008) marine species, Rothwell et al. (2008) evaluating the key 112 

environmental drivers controlling N leaching from European forests, Spekkers et al. (2015) predicting 113 

flood damage, and Mascaro et al. (2014) mapping forest carbon. Based on the data obtained across 114 

Norway, Meyer et al. (2015 a) have shown the predictive relevance for a similar set of regional factors 115 

for Cd, Hg, and Pb concentrations in moss by using CART (Breiman et al. 1984). Contrary to CART, RF 116 

in conjunction with the Geographic Information System (GIS) used here were additionally applied for 117 

regression mapping, i.e. transforming spatial information of the independent variables to continuous 118 

surfaces and respective maps of HM and N concentration in mosses. RF models explain the spatial 119 

patterns of HM concentrations in moss and, together with the maps, were used to investigate to what 120 

extent the statistical relations between element concentration in moss and selected explanatory 121 

variables are specific for elements, moss species, countries and ecological land classes of Europe 122 

(ELCE, Figure S1 and Table S1 in the supplement). The latter describes the spatial pattern of 40 land 123 

classes, defined by characteristic values of 48 ecological attributes (Hornsmann et al. 2008; Schröder 124 

and Pesch 2007). 125 

 126 

2 Material and Methods 127 

 128 

2.1 Data 129 
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 130 

Statistical relations between atmospheric deposition of HM and N derived from the numeric chemical 131 

transport models (CTMs) LOTOS-EUROS (LE; Builtjes et al. 2016; Schaap et al. 2008) and EMEP 132 

(Simpson et al. 2012, Travnikov and Ilyin 2005) and respective data on element concentrations in moss 133 

were examined by use of RF with data compiled in Table 1. The EMEP CTM provides Europe-wide 134 

atmospheric deposition data of Pb, Cd, Hg and N calculated on a grid of 50 km by 50 km. Following 135 

Harmens et al. (2012) we used the three year sum of HM deposition modelled by EMEP as a 136 

corresponding parameter to the HM concentration in the sampled 3-year old shoots of the mosses (here 137 

the period of 2008-10 represents the base year of 2010). Furthermore, the three year sum of modelled 138 

deposition rates for NH4+and NO3− were used as total atmospheric deposition. Also 3-year sums of 139 

deposition from the CTM LOTOS-EUROS were used, only available for the time period 2009-11. LE 140 

provides deposition rates for As, Cd, Cr, Cu, Ni, Pb, V, and Zn on a 25 km by 25 km grid covering 141 

Europe. Additional information about the CTM is given in the supplement (Table S2). For examining 142 

further influences of spatial relations between emission sources and EMS sites, distances were 143 

calculated by means of Geographic Information System (GIS) based on element-specific data from the 144 

European Pollutant Release and Transfer Register (E-PRTR; EEA 2016 a). With regard to influences of 145 

different land uses pattern around the moss sampling sites, percentages of agricultural, forestry and 146 

urban land uses within a radius of 1, 5, 10, 25, 50, 75, and 100 km, derived from CORINE Land Cover 147 

2006 (EEA 2016 b) and Global Land Cover (EEA 2016 c), were calculated. Population density was 148 

integrated using grid data at a resolution of 100 km by 100 m (SEDAC 2016). Elevation was included 149 

from the Digital Elevation Model (DEM, 90 m by 90 m) of the Shuttle Radar Topography Mission (SRTM 150 

2016) and, respectively, precipitation from New et al. (2002) with a grid size of 20 km by 20 km. Besides 151 

that clay content (FAO 2009) was added due to its significance for HM binding capacity of soil. 152 

 153 

Table 1. Potential predictors for HM and N concentration in moss in 2010 154 

 155 
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2.2 Modelling and mapping 156 

 157 

The statistical relations between element concentrations in moss and potential explanatory variables 158 

were modelled by the use of RF (Breiman 2001) from which, then, surface maps of element 159 

concentrations were derived. These maps were compared to the site-specific measurements of element 160 

concentrations in moss. The RF regarded four spatial scales: Europe as a whole, ecological land 161 

classes covering Europe, single countries participating in the EMS, and moss species at sampling sites.  162 

RF are used to construct a prediction rule and to assess and rank variables with respect to their ability 163 

to predict the response variable. If the RF minimizes a squared error, normal distribution is not an 164 

essential requirement. But extremely asymmetric error distributions reduce the quality of predictions and 165 

make e.g. the difference between mean and median prediction important.The ranking is done by 166 

considering variable importance measures computed for each predictor. These relative measures as 167 

pure numbers without unit identify and rank predictors. After validation, the resulting prediction rule can 168 

then be applied, e.g. for mapping element concentrations in environmental compartments such as soil 169 

or moss. RF can cope with high dimensional data and can even be applied to highly correlated 170 

predictors, is not based on a particular stochastic model and can also capture nonlinear association 171 

patterns between predictors and the response. RF is a classification and regression technique 172 

aggregating a large number of decision trees. Several trees constructed from a training data set yield a 173 

prediction of the response. Variants of RF are characterized by the procedure used to generate the 174 

modified data sets on which each individual tree is constructed, and the way the predictions of each 175 

individual tree are aggregated to produce a unique consensus prediction. In the original RF method 176 

(Breiman 2001), each tree is a standard classification or regression tree (CART) (Breiman et al. 1984) 177 

using the decrease of Gini impurity, i.e. the degree of heterogeneity of a variable measured by the Gini 178 

index as a splitting criterion and selecting the splitting predictor from a randomly selected subset of 179 

predictors. Each tree is constructed using a bootstrap sample from the original data set, and the 180 

predictions of all trees are finally aggregated. This version of RF is implemented in most of the available 181 
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software. Boulesteix et al. (2012) and Fawagreh et al. (2014) compiled and reviewed RF 182 

implementations and their features. Internal validation is calculated in terms of the out-of-bag (OOB) 183 

error: Each observation is an OOB observation for some of the trees, i.e., it was not used to construct 184 

them. The OOB error is the average error frequency obtained when the observations from the data set 185 

are predicted using the trees for which they are OOB. Thus, Random Forests are ensembles of multiple 186 

decision trees combined into a single model. Compared with single decision trees, like CART, RF tends 187 

to be more robust to outliers and overfitting (Williams 2011; Ziegler and König 2014). Verikas et al. 188 

(2011) surveyed respective literature and presented comparatively several tests. CART models are 189 

prone to overfitting data, which can lead to predictive errors. RF models reduce the over-fitting problem. 190 

Instead of building a single predictive tree model from all available data, RF builds typically 500 to 2000 191 

trees (Prasad et al. 2006), using randomized subsets of data and explanatory variables to build each 192 

tree. The number of predictors used to find the best split at each node is a randomly chosen subset of 193 

the total number of predictors. The RF trees are grown to maximum size without pruning, and 194 

aggregation is performed by averaging the trees. Out-of-bag samples can be used to calculate an 195 

unbiased error rate and variable importance. Because a large number of trees are grown, there is 196 

limited generalization error (i.e., the true error of the population opposed to the training error only). The 197 

impossibility of overfitting is a very useful feature for prediction. By growing each tree to maximum size 198 

without pruning and selecting only the best split among a random subset at each node, RF tries to 199 

maintain some prediction strength while inducing diversity among trees (Breiman 2001). Random 200 

predictor selection diminishes correlation among unpruned trees and keeps the bias low. By taking an 201 

ensemble of unpruned trees, variance is also reduced. Another advantage of RF is that the predicted 202 

output depends only on one user-selected parameter, with the number of predictors to be chosen 203 

randomly at each node. This process of internal cross-validation prevents from over-fitting inherent to a 204 

single CART model (Breiman 2001).In this investigation RF for the first time was used to explain and 205 

map the geographical distribution of atmospheric deposition accumulated in moss throughout Europe. 206 

 207 
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2.3 Workflow 208 

 209 

All statistical analysis and modelling were implemented in R (R Core Team 2013, Williams 2011). 210 

Analyses with HM and N concentrations in moss as response variable were based on a reasonably 211 

large sample size of at least 2154 and at maximum 3664 out of 4499 sampling points. Observations 212 

were partitioned into training datasets (90%), which were used to build the RF models, and independent 213 

test datasets (10 %) for measuring the quality of the RF models. Some observations from the training 214 

datasets had to be excluded from the analyses due to missing information on predictor variables. Based 215 

on the null hypothesis principle, the Shapiro-Wilk-test (Shapiro and Wilk 1965)  was used to assess 216 

whether concentrations of HM and N in moss as response variables were normally or lognormally 217 

distributed. In all cases, target variables were log-transformed due to a non-normal distribution. For 218 

deciding the number of trees to build, plots of error rates progressively calculated against the number of 219 

trees were used. Observations with missing values were removed from the dataset. The number of 220 

variables to consider at each split was defined as one-third of the number of predictors (Williams 2011, p. 221 

263). Models were then optimized using measures for relative variable importance as Increased Node 222 

Purity and model accuracy as Pseudo R Squared. Increased Node Purity represents the total increase 223 

of decision treenode's purity when splitting the dataset. It is measured for a specific variable as the 224 

mean increase of the Gini index over all trees according to Equation 1 (Louppe et al. 2013). 225 

 226 

     Equation 1 227 

with:  Xm = predictor variable; where Xm is used; i(t) = impurity measure (here: Gini index); 228 
t = nodes, NT = trees in the forest; v(st) = variable used in the split; st = split; 229 
T = Tree; p(t) = proportion No. of NT / No. of samples reaching t 230 

 231 

Pseudo R2 were calculated as the square of the correlation between the predicted and observed values 232 

(Equation 2), thus, measuring the quality of the model (Liaw and Wiener 2002). 233 
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  234 

       Equation 2 235 

with:  x = observed values; y = predicted values; Sxy = Covariance of x and y; 236 
Sx = Standard deviation of x; Sy = Standard deviation of y 237 

 238 

Non-significant predictors were stepwise eliminated from the models using a top-down approach. The 239 

statistical measures were used for comparison of the full and reduced models to find the optimum model 240 

including only those independent variables which explained a higher proportion of the variance in the 241 

data. Predicted Versus Observed plots including Pseudo R2  (R Core Team 2013) were inspected for 242 

deciding which model yields the best fit to the data. To minimize limitations of the use of Pseudo R 2 243 

(Equation 2) for comparing different models measure was preferably compared for the same outcome 244 

variables (specifically for elements) and number of observations in the test datasets were set to a 245 

minimum of N = 30. Following Liu et al. (2014), the goodness of fit of the predictions modelled to the test 246 

data were evaluated by use of mean and standard deviation of Pseudo R2 based on multiple (in this 247 

investigation 10) runs. Since a Pseudo R² does not rely on linear relationships between predictors and 248 

the response, it could not be tested for significance similar to R², for which the p-value is usually 249 

calculated by means of F-statistics testing whether the null hypothesis R²=0 (Wood 1990). 250 

 251 

Finally, optimized RF models were applied on available spatial information yielding regression maps as 252 

results. All geographic information on the predictor variables such as HM and N deposition, emission, 253 

climate, altitude, population and land use features available with blanket coverage of participating 254 

countries or regions, respectively, were combined by means of classical GIS functions (overlay, spatial 255 

join) as implemented in ESRI’s ArcGIS 10.2. Based on this, RF predictive models were applied to 256 

calculate a corresponding number of predictive maps, which result from reasonable combinations of HM 257 

and N concentration in moss as dependent variable with relevant predictor variables (Table 2) covering 258 

Europe at a spatial resolution of 10 km by 10 km for the year 2010. For some regions, element 259 
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concentrations in moss could not be calculated due to missing data on predictor variables (e.g. Russia, 260 

Iceland, and Belarus). 261 

 262 

3 Results and discussion 263 

 264 

Since for the atmospheric deposition different data sources were used, i.e. EMEP and LOTOS-EUROS 265 

modelling results, the R2 values of the respectively different RF models were compared for Pb and Cd 266 

for which both deposition models produce data. The comparison yielded higher R² values for RF models 267 

based on EMEP deposition values than those RF models relying on LE results (PbEMEP: R² = 0.68; PbLE: 268 

R² = 0.63; CdEMEP: R² = 0.61; CdLE: R² = 0.58). This corresponds to higher correlation coefficients 269 

(Spearman) between HM deposition and respective HM concentration in moss (PbEMEP: r = 0.70; PbLE: r 270 

= 0.64; CdEMEP: r = 0.66; CdLE: r = 0.65, p < 0.01). Thus, Table 2 and 3 provide only information on 271 

modelled deposition as predictor in RF models with the highest R² for Cd and Pb. The lower rank of LE 272 

fields could be explained partly the lower quality of the emission data for this group of elements. Since 273 

both models have used different emission data (Builtjes et al. 2016), the comparison does not provide 274 

an indication for model quality. 275 

 276 

Table 2. Relative importance of predictors for measured element concentrations in moss sampled 277 

across Europe as quantified by Increased Node Purity 278 

 279 

The highest importance for concentrations of HM and N at the European level, measured as Increased 280 

Node Purity, could be found for land use within a 100 km radius around the sample sites, atmospheric 281 

deposition, distance from emission sources and precipitation (Table 2, Figure 1). Land use influences 282 

the regional emission and the site-specific atmospheric deposition which, according to the respective 283 

vegetation cover, may further be influenced by canopy drip. This regional spatial trend is in agreement 284 

with the auto-correlation range detected by use of variogram analysis and suggests that the large-scale 285 
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variation (100 km) exceeds the small-scale variation (1 km), regardless of site-specific considerations 286 

(Meyer et al. 2015 b). For this reason, predictors with lower radii have been excluded from further 287 

modelling specified for different spatial levels (Tables 4-6). As shown in the maps for the whole Europe, 288 

variation of observed HM and N concentrations in moss are generally wider than the ranges of the 289 

predicted values (Figures 2-5, Figures S2-S7), i.e., the RF models cause a smoothing effect on the 290 

respective response variable. The models for the European level (Table 3) correspond to and explain 291 

the maps for Cd, Hg, Pb and N depicted in Figures 2-5 and for As, Cr, Cu, Ni, V, and Zn in Figures S2-292 

S7 (supplementary materials). Reasonable numbers of trees were between 200 and 300. Further 293 

increases had no significant influence on the results. From Tables 2-3 it is obvious that land use and 294 

atmospheric deposition are the most meaningful predictors for the element concentrations measured in 295 

moss. Adding Increased Node Purity for all elements, highest values can be found for atmospheric 296 

deposition derived from EMEP for Cd, Pb and N, density of agricultural land use within a 75 (Cr) and 297 

100 km (all elements except Cr) radius, density of forestry land use within a 100 km radius (all 298 

elements) and distance between sampling site and the nearest HM or N emission source followed by 299 

atmospheric deposition that is derived from LOTOS-EUROS for other metals, density of agricultural land 300 

use within a 50 km radius, density of forestry land use within a 75 km radius, density of urban land use 301 

within a 100 km radius, elevation and precipitation. Accordingly, their relevance for mapping element 302 

concentrations for unsampled locations (Figures 2-5 and S2-S7) is particularly high. Contrary to surface 303 

maps derived by interpolation techniques such as Kriging, Figures 2-5 and S2-S7 do not rely on 304 

statistical modelling of the autocorrelation of measured values disregarding the relations between 305 

measured element concentrations in moss and predictors. The RF models calculated for Europe as a 306 

whole explain up to 68 % (for Pb) of the variance of the element concentration in moss (Table 3). The 307 

lowest variance was explained for Hg and Zn, which both showed a rather homogenous spatial 308 

distribution of concentrations in moss across Europe and thus were less explained by the spatial 309 

distributed predictors. The respective RF models for single countries participating in the EMS reach 78 310 

% for Ni in Iceland (Table 4), for ecological land classes 83 % for Cr (class D_17) (Table 5) and for 311 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13 
 

moss species at sampling sites 73 % for N (Hylocomium splendens) (Table 6). Thus, the ecological 312 

landscape classification seems to integrate characteristics which are meaningful for the complex 313 

deposition / bio-accumulation phenomenon monitored. Tables 3-6 show that the R2, measuring the 314 

quality of the respective RF model, differ element- and scale-specifically. Element-specific mean values 315 

for country-specific RF models with R2 higher than 0.25 were calculated for Pb (0.34) followed by Cu 316 

(0.30) and Cd (0.28) (Table 4). The highest country-specific accuracies of RF models were found for 317 

Iceland, Sweden, Norway and Finland with R squareds between 0.40 and 0.49 averaged over all 318 

elements. RF models with the highest R2 could be built for Iceland (Ni: R2 = 0,78, Pb: R2 = 0,70) and 319 

Norway (Pb: R2 = 0,74). However, the standard deviation of R2 in Iceland appears to be relative high. 320 

Table 5 shows that R² of RF models are significantly landscape-specific. Again RF models reveal 321 

highest R² for Pb (0.40) averaged over all ELCE classes. R2 came out to be the highest for ELCE 322 

classes C_0 (The Alps, Iceland, western and northern Scandinavia, Kola Peninsula, northwest Russia, 323 

Caucasus), D_17 (Scandinavia, western Russia) and  F4_2 (Western/central and southern Europe, 324 

including southern Great Britain, eastern France, southern Belgium, Luxembourg, the Alps, Italy, 325 

eastern and southeast Europe, including the Carpathian Mountains, and the Balkans. This is 326 

approximately in line with the findings for the country-specific RF models, whereas quality are 327 

predominantly higher compared to the country-specific models. Table 6 suggests that element 328 

concentrations in Pleurozium schreberi, Hylocomium splendens and Hypnum cupressiforme could be 329 

best explained by calculated RF models, with R2 between 0.40 and 0.56 averaged over all elements. 330 

Hence, these moss species indicate best the environmental conditions modelled by use of RF. For 331 

comparison of R2 values it should be noted that the training datasets used for series of predictions 332 

contained different sample sizes (Bergtold et al. 2011, UCLA 2011). R2 are related to the sample size 333 

with correlation coefficients (Pearson) of r = 0.46 (country-specific models), r = 0.17 (ELCE-specific 334 

models) and r = 0.75 (moss-specific models). To enhance the explicative power of such models, there is 335 

a need to include more information on potential predictors at the regional scale derived from maps and 336 

data bases and, as integral part of the EMS, site-specific information. Such a design was realized in 337 
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Slovenia (Skudnik et al. 2015) and in the German contribution to the EMS 2000 and 2005 and will be 338 

part of the German moss survey to be conducted in 2016. 339 

 340 

Table 3. Characteristics of optimized RF models calculated for Europe 341 

 342 

Figure 1. Predictive importance of land use within a 1, 5, 10, 25, 50 75 and 100 km radius around the 343 

sites where moss was sampled in 2010, calculated by RF for Europe as a whole [Increased Node 344 

Purity] (Table 2) 345 

 346 

Table 4. Pseudo R2 of country-specific RF models 347 

Table 5. Pseudo R2 of landscape-specific RF models 348 

Table 6. Pseudo R2 of moss-specific RF models 349 

 350 

The maps (Figures 2-5, S2-S7) show lowest element values in Fennoscandia. Thereby, the 351 

concentrations of Cu, Hg, and Zn in moss are spatially rather homogeneous, while other HM such as 352 

Cd, Pb and V vary across space. Cd and Pb concentrations in Eastern and Southeastern Europe and V 353 

in Southeastern Europe are elevated compared to Western and Northern Europe. Astonishingly, in the 354 

North of Fennoscandia a Ni hot spot was detected, differing noticeably from the respective LOTOS-355 

EUROS model calculation. At the Kola Peninsula, at a close distance from the Norwegian and the 356 

Finnish border, one of the largest metallurgic smelters of the world is located near the town Nikel. The 357 

Nikel smelters were constructed for the processing of locally mined Nickel ores and have been in 358 

operation since 1932. Since 1971, the smelters have also processed copper and nickel ores from 359 

Norilsk, Central Siberia (Dauvalter 1994; Kashulin et al. 2001). Out-of-date equipment and technology 360 

for metal smelting make this enterprise a serious pollution source in the region (Lukin et al. 2003). 361 

Unfortunately, the location and size of the emission of these smelters have not been incorporated 362 

correctly in several emission inventories (Prank et al. 2011). Other studies in biotic and a-biotic 363 
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environments confirm this hotspot in northern Fennoscandia (Amundsen et al. 2011; Kashulin et al. 364 

2001). Regarding the spatial pattern of N it should be noted that neither Denmark, Germany, Great 365 

Britain and the Netherlands participated in the EMS 2010, because high values can be expected in (part 366 

of) these countries. 367 

 368 

Figure 2. Maps of Cd concentration in moss 2010 (left = observed, right = predicted by RF)  369 

Figure 3. Maps of Pb concentration in moss 2010 (left = observed, right = predicted by RF)  370 

Figure 4. Maps of Hg concentration in moss 2010 (left = observed, right = predicted by RF) 371 

Figure 5. Maps of N concentration in moss 2010 (left = observed, right = predicted by RF) 372 

The results yielded by this study were based on a combination of geostatistics and multivariate tree-373 

based models applied to areas of different spatial extent. The CART and RF models help explaining 374 

spatial patterns of HM and N concentrations in moss by identifying and ranking (inter)correlated 375 

boundary conditions such as land use and atmospheric deposition. Furthermore, the CART and RF 376 

models verify the outcomes of the geostatistical analyses in terms of spatial autocorrelation. Using both 377 

CART and RF models provide cross-validated insights into the complex interrelations between 378 

atmospheric deposition of HM and N and related accumulation in moss on different spatial scales.  379 

Unlike classical regression techniques for which the relationship between the response and predictors is 380 

pre-specified, e.g. linear, quadratic, CART does not assume such a relationship. It constructs decision 381 

rules on the predictor variables by partitioning the data into successively smaller groups with binary 382 

splits based on a single predictor. Splits for all of the predictors are examined and the best split is 383 

chosen. For regression trees, the selected split is the one that maximizes the homogeneity in each of 384 

the two resulting groups with respect to the response variable. The output is a tree diagram with the 385 

branches determined by the splitting rules and a series of terminal nodes containing the response 386 

(Breiman et al. 1984, Nisbet et al 2009).  387 

 388 
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One of the strengths of a single CART is that it is simple to interpret: The relevant predictors are 389 

included in the tree and the earlier a variable appears in a tree, the more important it is (Loh 2011). With 390 

RF, this simplicity is lost because many trees (here: 200 - 300 trees) have to be considered 391 

simultaneously (Ziegler and König 2014). Even if Random Forests are not so easy to understand 392 

compared to CART because individual trees cannot be examined separately, it provides several metrics 393 

supporting the interpretation of results (Williams 2011). Variable importance is evaluated based on how 394 

much worse the prediction would be if the data for that predictor were permuted randomly. The resulting 395 

tables can be used to compare relative importance among predictors. Ferree and Anderson (2013) and 396 

Grossman et al. (2010) applied based models for mapping ecoregions as done by Hornsmann et al. 397 

(2008) mapping Ecological Land Classes of Europe (Hornsmann et al. 2008) which were used in this 398 

investigation for spatially stratifying the RF models and, based on this, mapping and explaining spatial 399 

patterns of atmospheric deposition accumulated in moss specimens sampled across Europe.  400 

 401 

Some of the explanatory variables have been examined earlier for 3 metals (Cd, Hg, Pb) based on data 402 

from Norway (Meyer et al. 2015 a, Nickel et al. 2015). The set of potential predictors has been enlarged 403 

(LOTOS-EUROS modelling besides Cd and Pb also for As, Cr, Cu, Ni, V and Zn, wider ranges for land 404 

use, distance to emission sources) and statistical relations were examined based on European data. 405 

Contrary to site related maps (Figures 2-5) and CART (Meyer et al. 2015 a), RF in conjunction with the 406 

Geographic Information System (GIS) allows transforming spatial information of the independent 407 

variables with blanket coverage to continuous surfaces and respective maps of HM and N concentration 408 

in moss explained by the RF models. Europe-wide predictions by use of RF is new and can be 409 

compared with predictions by use of kriging (Johnston et al. 2003, Schröder et al. 2012). Contrary to 410 

linear regression modelling used in previous studies (Nickel et al. 2015), the residuals of RF models 411 

presented did not show any spatial autocorrelation, i.e. must be characterized as spatially 412 

discontinuous. Thus, mapping by use of Regression Kriging with interpolations of continuous surfaces 413 

that represents the residuals was not recommended. This is in line with similar results for residuals in 414 
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linear models for N and δ15N concentrations in moss in Slovenia (Skudnik et al. 2015). Model accuracy 415 

could be improved through an inclusion of categorical variables (e.g. country, ELCE, moss species, and 416 

analysis method), but lead to maps with less continuous surfaces (e.g. at borders of countries). 417 

Therefore, in this investigation, predictors were limited to those with continuous data. However, several 418 

models including categorical variables were tested with different combinations of predictors included. 419 

They were tested based on independent samples, compared regarding the Pseudo R², applied to 420 

surface covering maps of predictors and compared to the spatial patterns of measured element values. 421 

The explanatory power of these models including categorical predictors such as country, analytical 422 

technique, moss species or ecological land class slightly enhanced the explanatory power of the models 423 

compared to those given in Table 3. When interpreting the results, inaccuracies of the predictor data 424 

have to be generally taken into account. Due to missing quality assessment, we have considered values 425 

of influencing factors as correct without relevant error. EMEP and LE deposition models were both used 426 

to investigate whether both show high or low correlation and whether the strength of correlation varies 427 

across the concentration of elements. Strictly, the model quality cannot be measured by this design 428 

since we do not know whether the models used the same emission data. Further analyses should aim at 429 

clarifying why some RF models are significant for some countries but not for others. The same should 430 

be done with regard to the results of the moss-specific RF modelling. 431 

 432 

In variogram analysis, the major range describes the distance in between point measurements showing 433 

high spatial auto-correlation. It could be assumed, that land use patterns observed within these ranges 434 

should be more relevant compared to other ranges, when taking the land use as a split criterion for 435 

generating homogenous subsets in a RF model. In the current study the density of different land use 436 

were examined in a range of between 1 and 100 km. The high importance of the 100 km radius (Figure 437 

1, Table 2) may indicate that the spatial trends on such distances obscure those on smaller ones. Moss 438 

data from the EMS 2005 revealed ranges of 59.3 km for Cd, 255.0 km for Pb, and 209.0 km for N 439 

(Schröder et al. 2012). In Table 2 the slightly raised value of 90.66 for the relative importance for Cd in a 440 
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50 km radius and agricultural land use could be interpreted as an obvious relation between the radius 441 

and the geostatistical range of 59.3 km.  442 

 443 

Since RF was used for the first time for mapping geographical patterns of pollutants in terrestrial 444 

ecosystems, the results of the regionalizing at hand cannot be compared with results of other RF 445 

studies Meyer et al. (2015 a) found, based on data obtained across Norway, comparable predictive 446 

relevance for a similar set of regional factors for Cd, Hg, and Pb concentrations in moss by using CART. 447 

In addition, Meyer (2015 b) investigated by application of RF the relevance of site and regional factors 448 

for HM and N concentrations in moss sampled across Germany in 2005, 2012, and 2013. The results 449 

support the findings of the current study. Highest R2 values of RF models were observed for central and 450 

northern European countries. It should further be examined whether this phenomenon is due to low 451 

element concentrations, small variability of explanatory variables or due to sampling density (Harmens 452 

et al. 2010, Ilyin et al. 2011). Country-specific correlations between modelled EMEP deposition and Cd, 453 

Hg and Pb concentrations in moss for previous EMS were reported by Harmens et al. (2012). In this 454 

context it should be further investigated why the explanatory power of RF models is generally higher for 455 

ELCE classes than for countries. Is this due to a coincidence that RF models can be best explained for 456 

moss species that are sampled the most? Further, it should be investigated in detailed studies, why the 457 

variance explained is low for elements such as Hg and Zn. Hg is a global pollution with low spatial 458 

variability (Schröder et al. 2013), Zn an essential nutrient for moss, so is metabolised (Harmens 2009). 459 

This might both contribute to a more homogenous spatial distribution of their concentration in moss 460 

(Harmens et al. 2015). However, one should not forget uncertainty in deposition modelling, contributing 461 

to variation. Highest variance explained was found for Pb, so moss seems to be very suitable as 462 

monitors of Pb deposition (Aboal et al. 2010). The variance explained for N is higher than expected, 463 

considering the N is a macronutrient and being metabolised in moss tissue (Harmens et al. 2011). 464 

 465 
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Regarding the predictor identification and ranking, this study indicates that the radius for examining the 466 

the influence of different spatial land use density around the sampling sites could be even more 467 

enlarged to find possible maxima (e.g. 150, 200 or 250 km). Precipitation at a higher spatial resolution 468 

and a time period corresponding to the 3-year sum of deposition (here: 2008–2010) should be included. 469 

Additional, population density could be examined in extended buffers around the sampling sites. The 470 

temporal heterogeneity of the deposition data (here: time lag of one year) could affect the significances 471 

of the importance metrics for the atmospheric deposition and, respectively, the model accuracy, 472 

measured by the Pseudo R². The extent, to which this helds true, should also be investigated in a 473 

further study.  474 

 475 

4 Conclusions 476 

 477 

This investigation yielded for four different spatial scales the identification and ranking of explanatory 478 

variables which are most important in explaining the spatial variation of element concentration in 479 

mosses. Thereby, the application of multivariate correlation modelling by use of RF and CART allowed 480 

deriving conclusions on how the methods might influence the results and subsequent mapping derived 481 

by regression prediction based on RF results. The multivariate models and the resulting maps allow 482 

defining the statistical relations between element concentration in moss and selected explanatory 483 

variables are specific for elements, moss species, countries and ecological land classes. To enhance 484 

the explicative power of such models we suggest to include more information on potential predictors at 485 

the regional scale derived from maps and data bases. This kind of site-specific and region-specific 486 

metadata should be collected along with the EMS and should be, together with the measurements of 487 

HM and N concentrations, analysed integratively by means of multivariate spatial statistics. Such a 488 

design was realized in the German part of the EMS 2000 and 2005 (Pesch and Schröder 2006; 489 

Schröder and Pesch 2005) and will be a part of the German moss survey to be conducted in 2016. 490 

 491 
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Table 1. Potential predictors for HM and N concentration in moss in 2010 

Variables Comment & Source Unit 

Total atmospheric deposition (HM, N) Modelled atmospheric deposition of As, Cd, Cr, Cu, Ni, 
Pb, V, Zn over three years (LOTOS-EUROS 2009-2011) 

µg / m² 

 Modelled atmospheric deposition of Cd, Hg, Pb, N over 
three years (EMEP 2008-2010) 1 

 

µg / m² 

Distance from emission sources (HM, N) Derived from European Pollutant Release and Transfer 
Register (E-PRTR 2008-2010) 

 

Km 

Density of agricultural land use within a 1, 5, 10, 
25,50, 75 and 100 km radius around the moss 
sampling sites 

Derived from CORINE Land Cover (CLC 2006) and Global 
Land Cover 2000 (GLC 2000) for Russia, Ukraine and 
Belarus 

 

% 

Density of forestry land use within 
a 1, 5, 10, 25,50, 75 and 100 km radius around 
the moss sampling sites 

 

Derived from CLC 2006 and GLC 2000 % 

Density of urban land use within a 1, 5, 10, 
25,50, 75 and 100 km radius around the moss 
sampling sites 

Derived from CLC 2006 and GLC 2000 % 

 

Population density  

 

Gridded Population of the World (GPW 2010)2 
 

Inhabitants / 
km² 

 

Elevation 

 

World digital elevation model (ETOPO5) 

 

m. a. s. l 

 

Precipitation  

 

1991-2002 (New et al. 2002) 

 

mm / month 

 

Clay content 

 

 

 

Proportion of grain size (FAO 2009) 

 

  

 

% 

 

 

 

                                                      
1 HM data provided by MSC-East (November 2013); N data downloaded from http://emep.int/mscw/index_mscw.html (ca 
July 2014) 
 
2 SEDAC 2016. Socioeconomic Data and Application Center. Gridded Population of the world. 
http://sedac.ciesin.columbia.edu/data/collection/gpw-v3 (09.02.2016) 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 2 
 

Table 2. Relative importance of predictors for measured element concentrations in moss sampled 

across Europe as quantified by Increased Node Purity 

Predictor As_ Cd Cr Cu Hg Ni Pb V Zn N Rank 

LE_dep 55.02 --- 126.88 44.84 26.81 71.04 --- 58.85 30.71 --- 3 

EMEP_dep --- 258.69 --- --- --- --- 238.35 --- --- 15.38 1 

den_agr_01 25.15 18.43 25.25 6.72 10.25 23.65 14.62 19.00 14.50 2.45 26 

den_agr_05 28.52 25.23 44.70 8.31 13.03 31.76 19.70 26.17 14.29 3.23 24 

den_agr_10 33.09 26.39 55.46 10.21 13.72 36.17 22.72 31.35 14.89 4.35 21 

den_agr_25 55.15 46.96 78.19 13.23 16.01 46.26 24.76 60.64 16.43 5.85 13 

den_agr_50 59.37 90.66 91.35 16.83 19.56 58.94 54.93 59.13 19.40 9.03 10 

den_agr_75 77.02 87.08 134.15 16.60 23.07 59.49 81.74 60.88 20.30 9.92 6 

den_agr_100 126.04 100.76 119.94 23.98 26.5 78.13 90.94 72.73 25.4 14.48 2 

den_for_01 46.67 16.7 63.26 6.24 9.48 56.95 13.07 51.96 13.35 3.04 22 

den_for_05 47.08 25.11 65.41 9.33 13.03 67.65 16.77 45.36 15.79 3.53 18 

den_for_10 46.66 32.01 54.71 9.94 15.92 65.82 20.2 37.35 17.18 4.33 19 

den_for_25 46.83 33.27 58.1 10.92 17.01 51.17 25.44 34.23 21.57 4.69 17 

den_for_50 42.47 39.36 62.69 11.90 22.03 84.6 28.91 40.06 21.19 5.07 13 

den_for_75 49.10 48.23 87.12 14.58 23.20 99.45 32.84 48.26 22.17 5.00 11 

den_for_100 70.72 50.07 107.91 17.12 26.19 120.63 36.75 71.16 26.74 6.00 5 

den_urb_01 21.45 7.68 24.94 4.78 4.88 15.56 6.94 16.14 8.82 1.04 27 

den_urb_05 30.28 16.36 39.86 8.23 9.39 25.62 15.73 24.19 13.02 2.36 25 

den_urb_10 28.45 22.97 44.76 11.86 12.59 32.86 25.11 26.28 15.92 3.10 23 

den_urb_25 39.69 35.10 49.68 16.48 14.21 38.47 30.49 32.82 18.48 4.13 20 

den_urb_50 51.49 45.83 56.64 24.16 14.90 58.52 47.83 35.65 20.32 4.33 15 

den_urb_75 54.41 51.77 64.08 26.66 17.83 55.56 56.66 40.9 24.71 6.43 12 

den_urb_100 65.64 69.77 81.54 23.99 21.90 67.10 66.86 43.20 24.85 5.81 8 

Distance 72.34 52.92 141.77 51.44 19.57 160.36 51.02 --- 34.34 5.1 4 

Clay content 24.46 6.57 34.22 2.57 5.73 13.34 5.13 14.31 5.95 0.87 28 

Elevation 83.32 37.33 77.84 15.6 22.82 67.2 28.37 69.73 25.31 11.53 9 

Population dens. 39.95 45.09 60.58 17.66 14.97 43.52 56.57 42.99 19.25 8.86 15 

Precipitation 65.11 47.08 65.81 18.24 31.02 68.78 28.93 61.38 24.73 15.49 7 

Explanation: LE_dep = Total atmospheric deposition (LOTOS-EUROS); EMEP_dep = Total atmospheric deposition (EMEP); den_agr = Density of 
agricultural land use within a 1, 5, 10, 25,50, 75 and 100 km radius; den_for = Density of forestry land use within a 1, 5, 10, 25,50, 75 and 100 km radius; 
den_urb = Density of urban land use within a 1, 5, 10, 25,50, 75 and 100 km radius; distance = Distance from HM and N emission sources; Rank = Rank of 
Mean of Ranks of relative importance measure; Predictors with relative high importance for building the RF models are in bold print 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3 
 

Table 3. Characteristics of optimized RF models calculated for Europe 

Variable As Cd Cr Cu Hg Ni Pb V Zn N 

Predictor           
LE_dep 149.97 --- 276.54 75.11 --- 166.44 --- 142.41 77.33 --- 
EMEP_dep --- 373.67 --- --- 72.10 --- 363.32 --- --- 53.30 
den_agr_100 285.11 223.34 348.70 58.74 73.64 208.29 207.90 242.37 72.23 51.25 
den_for_100 254.19 140.22 339.59 39.30 89.18 345.69 105.88 298.07 77.87 22.10 
den_urb_100 191.45 194.20 249.04 75.39 66.08 --- 162.57 176.81 78.47 --- 
Distance 157.80 141.57 156.51 68.47 57.69 282.57 137.61 --- 75.52 --- 
Elevation 151.11 85.56 162.24 31.91 60.26 151.62 --- 162.97 65.20 --- 
Population dens. --- 134.06 179.64 43.07 --- 135.52 --- 127.49 --- 27.01 
Precipitation 160.89 103.50 133.40 35.30 68.39 166.34 74.70 160.21 65.29 15.13 
Parameter           
No. of observations 3010 3499 3526 3192 3057 3524 3397 3538 3664 2154 
No. of variables  2 2 2 2 2 2 2 2 2 2 
No. of trees 200 200 200 200 300 200 200 200 200 200 
Var. explained [%] 53.54 60.38 63.22 55.35 39.36 57.98 67.14 59.04 27.56 60.11 
MSE  0.3685 0.2644 0.3324 0.1057 0.1766 0.3099 0.1976 0.2656 0.1908 0.0538 

Pseudo R2 
0.55 

(0.05) 
0.61 

(0.04) 
0.64 

(0.04) 
0.54 

(0.03) 
0.39 

(0.03) 
0.61 

(0.03) 
0.68 

(0.03) 
0.61 

(0.04) 
0.32 

(0.04) 
0.55 

(0.05) 

Explanation: Predictor: e.g. 149.97 = Relative predictor importance (dimensionless number), the highest relative predictor importance, measured as 
Increased Node Purity, is depicted in bold; MSE = Mean of squared residuals; Var. explained [%]: Percent variance explained based on training dataset; 
Pseudo R2 based on test dataset; For example: 0.55 = Arithmetic mean of Pseudo R2, (0.0x) = Standard deviation of Pseudo R2; the workflow for model 
optimization is described in section 2.3 
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Table 4. Pseudo R2 of country-specific RF models 

Country n As Cd Cr Cu Hg Ni Pb V Zn N Mean 

Albania 31 0.19 
(0.15) 

0.06 
(0.06) 

0.23 
(0.12) 

0.22 
(0.07) 

0.27 
(0.10) 

0.12 
(0.09) 

0.05 
(0.06) 

0.03 
(0.04) 

0.32 
(0.06) 

--- 0.17 
[0.19] 

Austria 191 0.16 
(0.05) 

0.28 
(0.17) 

0.08 
(0.06) 

0.11 
(0.15) 

0.11 
(0.11) 

0.10 
(0.06) 

0.29 
(0.11) 

0.09 
(0.12) 

0.19 
(0.12) 

0.13 
(0.08) 

0.16 
[0.12] 

Belarus 46 0.05 
(0.07) 

--- 0.20 
(0.15) 

--- --- 0.24 
(0.17) 

--- 0.13 
(0.08) 

0.60 
(0.14) 

--- 0.24 
[0.20] 

Bulgaria 99 0.11 
(0.10) 

0.08 
(0.07) 

0.04 
(0.04) 

0.25 
(0.12) 

--- 0.03 
(0.05) 

0.22 
(0.10) 

0.09 
(0.07) 

0.11 
(0.10) 

0.07 
(0.05) 

0.11 
[0.09] 

Croatia 91 0.07 
(0.07) 

0.09 
(0.06) 

0.16 
(0.11) 

0.17 
(0.11) 

0.03 
(0.04) 

0.21 
(0.09) 

0.19 
(0.10) 

0.34 
(0.08) 

0.10 
(0.09) 

0.47 
(0.11) 

0.18 
[0.17] 

Czech Republic 242 0.46 
(0.10) 

0.51 
(0.10) 

0.38 
(0.21) 

0.45 
(0.11) 

0.18 
(0.13) 

0.23 
(0.12) 

0.53 
(0.12) 

0.45 
(0.14) 

0.35 
(0.16) 

0.21 
(0.14) 

0.37 
[0.42] 

Estonia 69 0.00 
(0.00) 

0.02 
(0.03) 

0.03 
(0.02) 

0.14 
(0.07) 

0.03 
(0.03) 

0.04 
(0.05) 

0.03 
(0.03) 

0.02 
(0.02) 

0.04 
(0.04) 

0.06 
(0.05) 

0.05 
[0.03] 

Finland 396 0.21 
(0.22) 

0.57 
(0.06) 

0.32 
(0.15) 

0.67 
(0.10) 

0.08 
(0.08) 

0.64 
(0.20) 

0.60 
(0.10) 

0.27 
(0.12) 

0.10 
(0.11) 

0.51 
(0.11) 

0.40 
[0.42] 

France 412 0.08 
(0.06) 

0.31 
(0.12) 

0.13 
(0.13) 

0.25 
(0.13) 

0.15 
(0.08) 

0.23 
(0.10) 

0.35 
(0.19) 

0.38 
(0.13) 

0.22 
(0.18) 

0.29 
(0.15) 

0.24 
[0.24] 

Iceland 114 0.66 
(0.44) 

0.26 
(0.10) 

0.48 
(0.40) 

0.35 
(0.33) 

0.10 
(0.08) 

0.78 
(0.30) 

0.70 
(0.12) 

--- 0.61 
(0.37) 

--- 0.49 
[0.55] 

Macedonia 42 0.04 
(0.05) 

0.09 
(0.06) 

0.30 
(0.07) 

0.05 
(0.05) 

0.07 
(0.07) 

0.35 
(0.16) 

0.28 
(0.10) 

0.10 
(0.05) 

0.18 
(0.13) 

0.04 
(0.05) 

0.15 
[0.10] 

Norway 433 0.45 
(0.17) 

0.64 
(0.15) 

0.30 
(0.17) 

0.66 
(0.21) 

0.10 
(0.09) 

0.43 
(0.25) 

0.74 
(0.08) 

0.50 
(0.14) 

0.29 
(0.10) 

--- 0.45 
[0.45] 

Poland 290 --- 0.55 
(0.19) 

0.05 
(0.04) 

0.27 
(0.21) 

0.27 
(0.14) 

0.13 
(0.13) 

0.43 
(0.24) 

0.17 
(0.14) 

0.18 
(0.11) 

0.11 
(0.09) 

0.24 
[0.18] 

Romania 295 0.21 
(0.12) 

--- 0.13 
(0.12) 

--- --- 0.14 
(0.13) 

--- 0.18 
(0.09) 

0.12 
(0.13) 

--- 0.16 
[0.14] 

Russia 
(Ivanovo, Kostromskaya, 
Tikhvin-Leningradskaya)  

60 0.06 
(0.06) 

0.26 
(0.18) 

0.44 
(0.18) 

--- --- 0.07 
(0.08) 

--- 0.14 
(0.18) 

0.03 
(0.03) 

--- 0.17 
[0.11] 

Slovakia 37 --- 0.08 
(0.05) 

--- 0.04 
(0.04) 

--- --- 0.10 
(0.09) 

0.13 
(0.06) 

--- 0.05 
(0.04) 

0.08 
[0.08] 

Slovenia 72 0.06 
(0.05) 

0.14 
(0.09) 

0.25 
(0.07) 

0.36 
(0.12) 

0.19 
(0.13) 

0.12 
(0.12) 

0.23 
(0.09) 

0.19 
(0.14) 

0.21 
(0.1) 

0.30 
(0.09) 

0.20 
[0.20] 

Spain 
(Galicia, Navarra, Rioja) 

181 0.04 
(0.03) 

0.17 
(0.09) 

0.26 
(0.31) 

0.36 
(0.36) 

0.16 
(0.13) 

0.10 
(0.08) 

0.25 
(0.21) 

0.20 
(0.32) 

0.37 
(0.10) 

0.30 
(0.15) 

0.22 
[0.23] 

Sweden 572 0.20 
(0.20) 

0.57 
(0.11) 

0.51 
(0.11) 

0.58 
(0.14) 

0.28 
(0.15) 

0.31 
(0.14) 

0.65 
(0.11) 

0.66 
(0.12) 

0.28 
(0.16) 

--- 0.45 
[0.51] 

Switzerland 126 0.10 
(0.07) 

0.35 
(0.19) 

0.14 
(0.09) 

0.24 
(0.19) 

0.13 
(0.11) 

0.18 
(0.20) 

0.18 
(0.15) 

0.24 
(0.09) 

0.23 
(0.09) 

0.07 
(0.07) 

0.19 
[0.18] 

Mean   
0.19 

[0.11] 
0.28 

[0.26] 
0.23 

[0.23] 
0.30 

[0.25] 
0.14 

[0.13] 
0.23 

[0.18] 
0.34 

[0.28] 
0.23 

[0.18] 
0.24 

[0.21] 
0.20 

[0.13]  

Explanation: n = number of observations in training dataset; countries or regions with less than 30 observations in training or test dataset (Kosovo, 
Denmark(Faroe Islands), Belgium, Ukraine (Donetsk) and Italy (Bolzano) were excluded; Pseudo R2 >= 0.4 are depicted in bold; For example: 0.19 = 
Arithmetic mean of Pseudo R-Squareds; (0.15) = Standard deviation of Pseudo R2; Mean = Pseudo R2 averaged over all rows / columns (median is 
displayed in box brackets); --- = No Data. 
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Table 5. Pseudo R2 of landscape-specific RF models 

ELCE n As Cd Cr Cu Hg Ni Pb V Zn N Mean 

B_1 43 0.18 
(0.09) 

0.34 
(0.15) 

0.23 
(0.08) 

0.32 
(0.11) 

0.17 
(0.12) 

0.4 
(0.11) 

0.47 
(0.17) 

0.33 
(0.12) 

0.23 
(0.18) 

0.59 
(0.35) 

0.33 
[0.33] 

B_2 83 0.10 
(0.10) 

0.22 
(0.09) 

0.32 
(0.20) 

0.22 
(0.26) 

0.11 
(0.11) 

0.60 
(0.14) 

0.67 
(0.08) 

0.25 
(0.19) 

0.04 
(0.09) 

0.35 
(0.36) 

0.29 
[0.24] 

C_0 230 0.49 
(0.18) 

0.52 
(0.11) 

0.35 
(0.18) 

0.41 
(0.15) 

0.16 
(0.10) 

0.44 
(0.24) 

0.58 
(0.09) 

0.40 
(0.14) 

0.15 
(0.24) 

0.68 
(0.37) 

0.42 
[0.42] 

D_7 156 0.31 
(0.27) 

0.21 
(0.10) 

0.43 
(0.15) 

0.60 
(0.21) 

0.25 
(0.16) 

0.72 
(0.11) 

0.30 
(0.21) 

0.69 
(0.10) 

0.13 
(0.13) 

0.09 
(0.08) 

0.37 
[0.31] 

D_13 127 0.44 
(0.17) 

0.55 
(0.12) 

0.37 
(0.11) 

0.35 
(0.11) 

0.40 
(0.20) 

0.46 
(0.09) 

0.44 
(0.12) 

0.29 
(0.16) 

0.32 
(0.2) 

0.31 
(0.18) 

0.39 
[0.39] 

D_14 107 0.17 
(0.17) 

0.28 
(0.22) 

0.51 
(0.17) 

0.06 
(0.05) 

0.27 
(0.17) 

0.44 
(0.16) 

0.35 
(0.21) 

0.49 
(0.09) 

0.06 
(0.05) 

0.52 
(0.17) 

0.32 
[0.32] 

D_17 124 0.39 
(0.19) 

0.35 
(0.22) 

0.83 
(0.04) 

0.63 
(0.11) 

0.22 
(0.17) 

0.70 
(0.09) 

0.37 
(0.17) 

0.34 
(0.13) 

0.08 
(0.09) 

0.22 
(0.18) 

0.41 
[0.36] 

D_18 225 0.69 
(0.16) 

0.28 
(0.17) 

0.31 
(0.11) 

0.35 
(0.09) 

0.31 
(0.17) 

0.30 
(0.16) 

0.34 
(0.08) 

0.49 
(0.17) 

0.22 
(0.08) 

0.38 
(0.23) 

0.37 
[0.33] 

D_19 228 0.06 
(0.07) 

0.37 
(0.17) 

0.39 
(0.18) 

0.35 
(0.15) 

0.39 
(0.16) 

0.28 
(0.24) 

0.35 
(0.13) 

0.27 
(0.11) 

0.07 
(0.08) 

0.25 
(0.15) 

0.28 
[0.32] 

D_22 141 0.30 
(0.24) 

0.33 
(0.15) 

0.52 
(0.18) 

0.52 
(0.1) 

0.07 
(0.06) 

0.38 
(0.17) 

0.50 
(0.13) 

0.45 
(0.11) 

0.13 
(0.08) 

--- 0.37 
[0.31] 

F1_1 65 0.48 
(0.25) 

0.67 
(0.15) 

0.14 
(0.11) 

0.29 
(0.13) 

0.33 
(0.11) 

0.31 
(0.10) 

0.55 
(0.10) 

0.25 
(0.11) 

0.24 
(0.10) 

0.10 
(0.10) 

0.34 
[0.30] 

F1_2 278 0.27 
(0.18) 

0.19 
(0.14) 

0.21 
(0.16) 

0.34 
(0.19) 

0.34 
(0.13) 

0.22 
(0.13) 

0.32 
(0.16) 

0.23 
(0.23) 

0.18 
(0.15) 

0.22 
(0.20) 

0.25 
[0.23] 

F2_5 48 0.52 
(0.32) 

0.64 
(0.12) 

0.09 
(0.08) 

0.03 
(0.04) 

0.06 
(0.09) 

0.08 
(0.07) 

0.33 
(0.21) 

0.22 
(0.08) 

0.05 
(0.05) 

0.04 
(0.04) 

0.21 
[0.09] 

F2_6 283 0.48 
(0.17) 

0.28 
(0.12) 

0.51 
(0.11) 

0.31 
(0.15) 

0.33 
(0.13) 

0.45 
(0.16) 

0.49 
(0.14) 

0.50 
(0.17) 

0.18 
(0.15) 

0.21 
(0.16) 

0.38 
[0.39] 

F3_1 174 0.27 
(0.14) 

0.17 
(0.16) 

0.19 
(0.14) 

0.06 
(0.06) 

0.36 
(0.1) 

0.24 
(0.12) 

0.23 
(0.15) 

0.47 
(0.18) 

0.10 
(0.11) 

0.05 
(0.07) 

0.21 
[0.21] 

F3_2 85 0.13 
(0.09) 

0.40 
(0.11) 

0.08 
(0.09) 

0.22 
(0.09) 

0.15 
(0.08) 

0.03 
(0.02) 

0.24 
(0.12) 

0.09 
(0.07) 

0.21 
(0.14) 

0.22 
(0.13) 

0.18 
[0.18] 

F4_2 551 0.45 
(0.11) 

0.44 
(0.16) 

0.59 
(0.10) 

0.37 
(0.21) 

0.47 
(0.17) 

0.34 
(0.13) 

0.49 
(0.13) 

0.48 
(0.18) 

0.21 
(0.16) 

0.22 
(0.11) 

0.41 
[0.45] 

G1_0 164 0.18 
(0.13) 

0.07 
(0.05) 

0.31 
(0.13) 

0.31 
(0.16) 

0.13 
(0.13) 

0.23 
(0.13) 

0.32 
(0.18) 

0.27 
(0.16) 

0.26 
(0.19) 

0.08 
(0.06) 

0.22 
[0.25] 

G2_0 159 0.20 
(0.12) 

0.29 
(0.08) 

0.51 
(0.10) 

0.25 
(0.14) 

0.50 
(0.20) 

0.61 
(0.12) 

0.39 
(0.15) 

0.47 
(0.14) 

0.49 
(0.12) 

0.24 
(0.20) 

0.39 
[0.43] 

J_2 30 0.05 
(0.07) 

0.20 
(0.10) 

0.29 
(0.10) 

0.25 
(0.10) 

0.62 
(0.07) 

0.44 
(0.09) 

0.43 
(0.09) 

0.31 
(0.12) 

0.15 
(0.08) 

0.05 
(0.08) 

0.28 
[0.27] 

S_0 32 0.13 
(0.09) 

0.53 
(0.08) 

0.21 
(0.16) 

0.38 
(0.17) 

0.02 
(0.02) 

0.29 
(0.19) 

0.42 
(0.09) 

0.15 
(0.16) 

0.11 
(0.07) 

0.57 
(0.19) 

0.28 
[0.25] 

U_2 75 0.13 
(0.11) 

0.20 
(0.14) 

0.26 
(0.13) 

0.19 
(0.13) 

0.18 
(0.07) 

0.29 
(0.12) 

0.11 
(0.10) 

0.30 
(0.10) 

0.06 
(0.09) 

0.22 
(0.09) 

0.19 
[0.20] 

Mean  
0.29 

[0.27] 
0.34 
[0.31] 

0.35 
[0.32] 

0.31 
[0.32] 

0.27 
[0.26] 

0.38 
[0.36] 

0.40 
[0.38] 

0.35 
[0.32] 

0.17 
[0.15] 

0.27 
[0.22] 

 

Explanation: ELCE = Ecological Landscape Classes of Europe (Hornsmann et al. 2008); n = number of observations in training dataset; ELCE with less 
than 30 observations in training or test dataset (L2, M5, D_10, U_1, D_8) were excluded; Pseudo R2 > 0.4 are depicted in bold; For example: 0.18 = 
Arithmetic mean of Pseudo R2 (0.09) = Standard deviation of Pseudo R2; Mean = Pseudo R2  averaged over all rows / columns (median is displayed in box 
brackets); --- = No Data. 
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Table 6. Pseudo R2 of moss-specific RF models 

Moss species n As Cd Cr Cu Hg Ni Pb V Zn N Mean 

Homalothecium 
lutescens 

34 0.07 
(0.06) 

0.10 
(0.08) 

0.25 
(0.11) 

0.16 
(0.11) 

0.22 
(0.07) 

0.24 
(0.14) 

0.16 
(0.08) 

0.05 
(0.07) 

0.05 
(0.03) 

0.04 
(0.06) 

0.13 
[0.13] 

Hylocomium 
splendens 

1027 0.55 
(0.21) 

0.65 
(0.13) 

0.62 
(0.16) 

0.50 
(0.22) 

0.34 
(0.14) 

0.65 
(0.17) 

0.72 
(0.08) 

0.41 
(0.21) 

0.27 
(0.19) 

0.73 
(0.16) 

0.54 
[0.59] 

Hypnum 
cupressiforme 

850 0.34 
(0.16) 

0.34 
(0.19) 

0.42 
(0.16) 

0.42 
(0.21) 

0.55 
(0.17) 

0.27 
(0.16) 

0.46 
(0.20) 

0.53 
(0.15) 

0.43 
(0.17) 

0.28 
(0.12) 

0.40 
[0.42] 

Pleurozium 
schreberi 

1861 0.63 
(0.19) 

0.69 
(0.11) 

0.57 
(0.17) 

0.65 
(0.08) 

0.47 
(0.15) 

0.47 
(0.19) 

0.68 
(0.18) 

0.58 
(0.14) 

0.25 
(0.16) 

0.63 
(0.12) 

0.56 
[0.61] 

Pseudosclero-
podium purum 

318 0.32 
(0.12) 

0.16 
(0.10) 

0.17 
(0.09) 

0.46 
(0.16) 

0.27 
(0.15) 

0.19 
(0.13) 

0.44 
(0.13) 

0.36 
(0.17) 

0.28 
(0.16) 

0.45 
(0.19) 

0.31 
[0.30] 

Thuidium 
tamariscinum 

32 0.14 
(0.10) 

0.35 
(0.08) 

0.21 
(0.12) 

0.07 
(0.06) 

0.18 
(0.10) 

0.08 
(0.09) 

0.47 
(0.07) 

0.15 
(0.08) 

0.22 
(0.12) 

0.09 
(0.09) 

0.20 
[0.17] 

Mean  0.34 
[0.33] 

0.38 
[0.35] 

0.37 
[0.34] 

0.38 
[0.44] 

0.34 
[0.31] 

0.32 
[0.26] 

0.49 
[0.47] 

0.35 
[0.39] 

0.25 
[0.26] 

0.37 
[0.37] 

 

Explanation: n = number of observations in training dataset; moss species with less than 30 observations in training or test dataset were excluded; Pseudo 
R2 >= 0.4 are depicted in bold; For example: 0.07 = Arithmetic mean of Pseudo R2; (0.06) = Standard deviation of Pseudo R2; Mean = Pseudo R2  averaged 
over all rows / columns (median is displayed in box brackets); --- = No Data 
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Figure 1. Predictive importance of land use within a 1, 5, 10, 25, 50 75 and 100 km radius around the 

sites where moss was sampled in 2010, calculated by RF for Europe as a whole [Increased Node 

Purity] (Table 2) 

 

 

Figure 2. Maps of Cd concentration in moss 2010 (left = observed, right = predicted by RF) 
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Figure 3. Maps of Pb concentration in moss 2010 (left = observed, right = predicted by RF) 

 

Figure 4. Maps of Hg concentration in moss 2010 (left = observed, right = predicted by RF) 
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Figure 5. Maps of N concentration in moss 2010 (left = observed, right = predicted by RF) 
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Highlights 

- Comprehensive analysis of relations between atmospheric deposition and accumulation 

- Random Forests (RF) allows for multiple regression analysis 

- Atmospheric deposition, land use and distance to emission sources are relevant factors 

- Measured elements, countries and ecological land classes determine the models accuracy 

- RF enables predictive mapping of element concentrations in moss 
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