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ABSTRACT 

 

Excessive delivery of fine sediments to waterbodies has a detrimental impact on the biotic elements 

used for waterbody status classification. Although diatoms are typically used to assess stress from 

eutrophication, as fine sediment has the potential to impact diatoms in many ways, it is not surprising 

that an index based on benthic diatom assemblages has been proposed: the relative abundance of 

motile species. This measure is based on the fact that many raphid diatom species are capable of 

migrating through deposited sediment to avoid negative impacts. However, the use of such an index 

has yet to be fully tested.  

Various data analysis techniques were used to explore how indices based on diatom assemblages 

(related to eutrophication and siltation), diatom species, and the traits motility and nutrient affinity 

responded to a gradient of percentage cover of fine sediment. Although diatom species showed 

marked variation in their affinity for percentage cover of fine sediment, the relationship between 

motility (both percent motile and the trait motility) and deposited fine sediment is not sufficiently strong 

to be used as a reliable indicator of fine sediment stress. We present an approach which could 

potentially be used to develop a new index (DISCO - Diatom Indictor of Sediment COnditions) based 

on the response of diatoms to fine sediment, but caution that this index requires further development 

before use. Despite hydromorphology having considerable potential to affect benthic diatoms, existing 

indices designed to assess eutrophication were robust to hydromorphological modification, reducing 

the possibility of false diagnosis of impacts.  
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INTRODUCTION 

Diatom assemblages, as either phytobenthos or phytoplankton, are typically used to assess the 

extent of stress from eutrophication (nutrient pollution as dissolved inorganic phosphorus or to a 

lesser extent dissolved inorganic nitrogen (e.g. Kelly et al., 2001; Kelly & Whitton, 1995). However, it 

has been suggested that benthic algae, in addition to sensitivity to nutrients, are also particularly 

prone to the impacts of increased fine sediment loads (Jones et al., 2014). As benthic algae are 

photosynthetic, they are dependent upon light; any increase in the turbidity of the water column 

caused by suspended fine sediment will reduce light availability and, hence, reduce photosynthesis 

and biomass of benthic algae. Nevertheless, increased delivery of fine sediment to rivers has the 

potential to impact diatom assemblages in many ways, both direct (e.g. scouring by saltating particles: 

Okada, 2009) and indirect (e.g. through changes to herbivorous invertebrates: Jones et al., 2012b). 

One of the most profound effects of fine sediment occurs as a consequence of deposited material 

smothering benthic algae and the substrata to which they attach (Jones et al., 2014). Hence, it is not 

surprising that an index of sediment pressure based on benthic diatom assemblage structure has 

been proposed. This index comprises simply the relative abundance of motile species (Bahls, 1993). 

This measure is based on the fact that many species of raphid diatoms are capable of migrating 

through deposited sediment and, thus, avoid the negative effects of burial. There is clear utility of 

such an index for assessing the impact of hydromorphological modifications to rivers, particularly 

those that alter the rate of delivery and retention of fine sediment. Hence, this index (relative 

abundance of motile species) has been variously adopted by regulatory authorities worldwide to 

interpret the impact of siltation on diatom communities.  

Negative effects of hydromorphological modification could be expected through both direct and 

indirect impacts on the substrate on which benthic algae grow. For example, direct modification of in-

stream and marginal habitat will alter substrate composition, whereas reductions in flow velocity, 

caused by impoundments, tend to increase the deposition of fine sediment altering both bed substrate 

and the potential for planktonic algae to thrive. There is also the potential for hydromorphological 

modifications to affect diatom assemblages in ways other than through changes of the substrate, for 

example through modification of near-bed flow velocity which is known to influence boundary layers 

and, hence, growth and photosynthesis of primary producers (Finlay et al., 1999; Schneck et al., 

2011).  
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As with all attempts to link ecology to hydromorphological alterations, there is a potential issue of 

scale (Larsen et al., 2009). It is typical for hydromorpholgical assessments to be undertaken at the 

reach scale, whilst biota are frequently sampled at a patch scale: the degree to which biological 

communities are nested between these two scales will influence how community composition reflects 

pressures (Larsen and Ormerod, 2010), as will the mechanism by which hydromorphological stress 

impacts upon the community (Jones et al., 2012b). Diatoms are affected by fine sediment in various 

direct and indirect ways (Jones et al., 2014), and it cannot be assumed that by sampling patches of 

hard substrate any impact of fine sediment will be avoided other than immediate patch-scale effects 

(e.g. abrasion, burial, loss of substrate for attachment). At a community level, species (and traits) are 

lost as the proportion of “good” patches diminishes (Larsen and Ormerod, 2010), and colonizer effects 

occur as the community in the surrounding habitat changes. Sediment-induced changes to the 

macrophyte flora influence flow, shade and water chemistry (Jones et al., 1996; Jones et al., 2012a), 

and will affect the diatom assemblage where sampled directly from macrophytes (Jones et al., 2000). 

Further, indirect impacts will occur as changes to the invertebrate and fish community cascade down 

to their food resources (Jones et al., 2012b). 

With such pronounced potential effects of hydromorphology on diatom assemblages it is possible that 

diatom-based indices (other than relative abundance of motile species) may be sensitive to 

hydromorphological impacts. As these indices were developed largely to assess eutrophication stress, 

it is critical to determine if any change in the benthic algal community associated with 

hydromorphological alteration influences the relationship between these indices and nutrient stress, 

otherwise a false diagnosis of the issues acting on a site could be returned. Nevertheless, a diatom-

based index capable of detecting stress from hydromorpological modification would be particularly 

useful as it would provide a measure of the impact at the base of the food web, and would add to the 

arsenal of tools available, further increasing the confidence of any assessments made (Johnson et al., 

2006).  

The primary objective of this work was to establish if the relative abundance of motile species is a 

valid measure of stress from fine sediment: despite being in use for over 20 years this index has yet to 

be fully tested. We were also interested to determine if hydromorphological alteration confounds 

interpretation of diatom-based indices. We worked from the hypothesis that hydromorphological 

alteration would influence diatoms traits, particularly motility, as this would confer an advantage to 
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species that could migrate to avoid the impact of increased deposition of fine sediment or thicker 

benthic boundary layers. In addition, we hypothesized that the traits of motility and nutrient affinity 

would not be linked to each other, which would confer independence to diatom-based indices for 

assessing eutrophication and hydromorphological stress. In order to achieve these objectives we 

used existing data to address three key questions, 

a)  Are diatom indices sensitive to hydromorphological alteration? 

b) Does percent motile taxa respond to variation in cover of fine sediment? 

c) Does the diatom assemblage vary with cover of fine substrate? 

 

METHODS 

Are diatom indices sensitive to hydromorphological alteration? 

Data from 1578 sites in Germany, Austria and the Netherlands, compiled from national monitoring 

agencies during the WISER project (Moe et al., 2013), were used to establish the impact of 

hydromorphological pressure on the relationships between indices based on phytobenthos and 

phosphorus concentration using ANCOVA. Standard Water Framework Directive protocols were used 

to collect and process samples of phytobenthos: samples were collected from stone scrapes or plant 

stems, digested using hydrogen peroxide or acid permanganate and mounted on a slide where 300 

valves were identified and counted (Kelly et al. 1998). Twelve indices of phytobenthos were 

calculated from the assemblage recorded at each site, namely Descy (Descy‟s pollution metric), 

Watanabe (Watanabe‟s Diatom community index), TDI (Trophic Diatom Index), % planktonic (centric) 

taxa, IPS (Indice de Polluo-Sensibilité), IDAP (Artois-Picardie Diatom Index), EPI-D (Diatom-based 

Eutrophication/Pollution Index), D-CH (Swiss Diatom Index), IDP (Biological Diatom Index), LOBO 

(Lobo‟s Biological Water Quality Index), TID (Trophic Index) and % motile taxa (all indices were 

calculated using Omnidia version 3, see Birk et al. (2010) for full details). Nutrient concentrations were 

derived from chemical monitoring data collected by the national agencies, where standard analytical 

techniques were used: annual mean orthophosphate concentration (derived colourimetrically using 

molybdenum blue) was used as a measure of nutrient availability. The influence of six 

hydromorphological alterations was investigated, namely channel modification, artificial embankment, 

impoundment, modification of instream habitat, modification of riparian vegetation and velocity 

increase. Based on observations at the time of sampling, each site was categorized according to the 
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extent of hydromorphological alteration, with 2 to 4 categories used for each modification type to 

describe increasing severity of alteration.  

For each index, the influence of hydromorphological alteration on the relationship with annual mean 

orthophosphate concentration was determined using general linear models in SAS, where extent of 

hydromorphological alteration was a fixed class variable and log10 orthophosphate concentration a 

continuous variable. Where significant effects of hydromorphological alteration on the relationship 

between the index and log10 orthophosphate concentration were found, relationships were checked to 

establish if the results were trivial, i.e. data from modified sites were all within the range of scatter of 

unmodified sites and relationships explained less than 5% of the variance. 

 

Does percent motile taxa respond to variation in cover of fine sediment? 

Data collected from 182 sites across Europe during the STAR project, which aimed to standardize 

biological assessment protocols (Furse et al., 2006), were used. At each site samples of 

phytobenthos were collected from stone scrapes or plant stems in spring, digested using hydrogen 

peroxide or acid permanganate and mounted on a slide where 300 valves were identified and counted 

(Kelly et al., 1998). The percent motile taxa was determined following Jones et al. (2014). Substrate 

composition, as percent cover of size classes of the international scale (ISO 14688-1:2002), was 

estimated visually at each site: deposited fine substrate was considered to be sand and silt, clay, and 

the sum of both these categories. Both percent motile and percent cover of fine substrate were 

transformed using arcsin to normalize the data. Annual mean orthophosphate and total phosphate 

concentrations were derived colourimetrically using molybdenum blue (after digestion using hot 

persulphate for total). Conductivity was determined using a dip probe. The relationship between % 

motile taxa, deposited fine substrate and water chemistry variables was investigated using linear 

regression using SAS. Where significant relationships with bed composition were detected, analysis 

was repeated where all sites with zero fine substrate were excluded to determine if the results were 

trivial, i.e. the influence of zero recorded fines was driving the relationship.  

 

Does the diatom assemblage vary with cover of fine substrate? 

Data were compiled from surveys undertaken on behalf of the Welsh Government to assess the 

effectiveness of agri-environment schemes in Wales (Agri-environment Monitoring and Services 
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Contract Lot 3 183/2007/08 (Anthony et al., 2012) and the Glastir Monitoring and Evaluation 

Programme (CEH, 2016)). Sites were scattered across Wales, covering a wide range of physico-

chemical conditions. In spring, samples of the diatom assemblage at each site were collected from 5 

replicate stones (or macrophytes where suitable stones were lacking) randomly selected from the 

benthos: attached algae were removed from the surface with a toothbrush, rinsed with stream water 

into clean HDPE bottles and preserved with Lugol‟s iodine. On return to the laboratory, samples were 

digested with hydrogen peroxide and mounted on microscope slides. The slides were examined 

under x 1000 magnification, with 300 diatom valves from random fields of view in each sample being 

identified to species level following Kelly and Yallop (2012). The method, a standard approach for 

diatom samples (Kelly et al., 2008), provides an estimate of relative abundance of taxa. Data on the 

trait of interest (i.e. mobility) were acquired from Jones et al. (2014) and on nutrient affinity (TDI score) 

from Kelly and Yallop (2012). The physical characteristics of each river reach from which diatom 

samples were collected was assessed either in the field or from maps, together with visual 

assessments of substrate composition as percentage cover within size classes of the international 

scale (ISO 14688-1:2002). Percentage cover of fine substrate was determined as the sum of sand, silt 

and clay. Conductivity and pH were determined in the field with dip probes. Nutrient concentrations 

were determined by standard analystical techniques on water samples collected at the time of 

sampling or modelled using frameworks capable of estimating pollutant loading from land use within 

each of the selected catchments (Gooday et al., 2014). 

Here the objective was to quantify the association between variation in the diatom assemblage and 

the gradient of percentage cover of fine-grained sediment having first factored out that portion of the 

biological variation correlated with natural background variation between streams. Data were 

analysed using partial ordination, which involved a two-step process. The first step was to determine 

the main drivers of assemblage composition, the second step was to establish the variation in 

assemblage composition that was attributable to the parameter of interest (i.e. percentage cover of 

fine-grained sediment) once the influence of the main drivers has been removed: In simple terms this 

analytical process is equivalent to establishing: “When all other things are equal, what is the response 

of diatoms to fine sediment?” The critical step in the process is establishing statistically robust and 

biologically relevant main drivers. The approach has been used previously to develop robust 

invertebrate-based biotic indices to determine the level of stress from acidification (Acid Waters 
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Indicator Community Index: Murphy et al., 2013) and fine sediment (Combined Fine Sediment Index: 

Murphy et al., 2015). The AWIC index thus developed has been shown to be as effective as 6 months 

of fortnightly pH measurement using conventional probes (Ormerod et al., 2006), and is now adopted 

by the UK environmental agencies for use in WFD assessments.  

All taxa that were found in less than 3 % of samples were excluded from analyses. Canonical 

Correspondence Analysis (CCA) was used to establish the relationship between diatom assemblage 

composition and a number of candidate environmental variables characterising river condition and 

type. The environmental variables offered to the analysis included physical (e.g. distance from source, 

altitude, slope, cross-sectional area) and chemical (nutrient concentrations, pH, alkalinity) parameters, 

and the percentage cover of fine sediment (sand, silt and clay). These variables were chosen as they 

are likely to include the main drivers of diatom assemblage compostion. Variables were selected from 

this suite sequentially for inclusion in the model after testing the significance of their influence using 

Monte Carlo simulation tests. CCA was undertaken with Hill‟s scaling of ordination scores, with focus 

on inter-species distances, and manual forward selection (n = 999 permutations, P < 0.05 as the 

significance threshold for inclusion in the model) to determine the optimal subset of variables that 

accounted for the gradients in the diatom assemblage. The next step in the analysis was to remove 

the influence of the environmental variables that described river type, leaving only the relationship 

between fine sediment and diatom taxa. This was done by partial CCA, using the physical and 

chemical variables associated with river type, which had been identified as significant above, as 

covariables. The variation in diatom taxa that remained was that which was explained by the amount 

of deposited fine sediment. All ordinations were undertaken using CANOCO 4.5 software (ter Braak 

and Šmilauer, 2002). The output of the analysis was a single ranking of sensitivity of taxa to fine 

sediment irrespective of river type. Logistic regression was used in SAS to determine the probability of 

occurence of the traits of interest, mobility and nutrient affinity, relative to the distribution of the 

species scores on pCCA axis 1, defined by the gradient of deposited fine sediment cover. 

 

RESULTS 

Are diatom indices sensitive to hydromorphological alteration? 

There was a significant relationship with log10 orthophosphate for almost all indices tested (Table I). 

However, hydromorphological alteration had no effect on this relationship (Table I and Figure 1): the 
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only significant interaction effects detected, suggesting an effect of hydromorphology on the 

relationship with log10 orthophosphate, were trivial (i.e. the relationships explained little of the variation 

and the scatter of points was within that of the unmodified sites: see Figure 1). It should be noted that 

percent motile showed a significant relationship with log10 orthophosphate for three out of the six 

tests. 

 

Does percent motile taxa respond to variation in cover of fine sediment? 

In the STAR data, weak relationships were found between the percent motile taxa and the percent 

cover of clay and of total fine sediment in the substrate. However, these relationships appeared to be 

trivial, driven by sites where zero fines had been recorded, which encompassed the full range of 

values for all other sites. No relationship between percent motile taxa and any measure of percent 

cover of fine sediment in the substrate was found when the sites with zero fines were excluded 

(Figure 2 a-c). On the other hand, percent motile taxa showed a strong response to conductivity, 

orthophosphate and total phosphate concentration (Figure 2 d-f). 

 

Does the diatom assemblage vary with cover of fine substrate? 

The initial CCA on the Welsh data indicated that alkalinity, percentage fine sediment cover, 

orthophsophate concentration and river slope at the site were best at describing the variation in the 

diatom taxa. Whilst these results do not necessarily imply that these are the drivers of change in the 

diatom assemblages, simply that they were the best statistically at describing the observed variation 

in the assemblages, it is highly likely that these environmental parameters are the main determinants 

of diatom assemblage composition, i.e. water chemistry, nutrients and river type (i.e. background 

expected sediment/flow conditions). The response of diatoms to nutrients, particularly orthophosphate 

concentrations, is well known and the basis for the TDI index (Kelly and Whitton, 1995). Similarly, the 

influence of alkalinity (or the related variables pH and conductivity) on diatom assemblages is well 

documented and, indeed, is used to predict reference condition when interpreting TDI (Kelly et al., 

2001). River slope, describes background flow conditions and, hence, retention of sediment (Naden et 

al., 2016). The amount of deposited fine sediment at a site is determined by both the sediment load 

(amount of sediment entering the river) and retention (proportion of load that is deposited). Sediment 

load is highly influenced by human activities in the catchment (e.g. agricultural practices), which 
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influences the amount of deposited sediment in the river. The likelihood of further underlying master 

variables influencing the results is negligible. It should be noted that all samples were collected in 

spring so any influence of seasonal variation was obviated. Hence, alkalinity, orthophsophate 

concentration and river slope at the site were used as covariables in the partial ordination, leaving 

only the influence of percentage fine sediment cover.  

The first axis of the pCCA was correlated with percentage fine sediment cover. The distribution of the 

taxa along the first axis, an gradient of increasing percentage cover of fine sediment, was used to 

rank the diatom taxa from most to least sensitive to fine sediment (Figure 3). The taxa most strongly 

correlated with a low percentage cover of fine sediment were Brachysira, Frustulia krammeri, 

Nitzschia tubicola, Diadesmis contenta, Nitzschia gracilis, and Surirella crumena, whilst those most 

strongly associated with a high cover of fine sediment were Cocconeis, Luticola mutica, small 

Navicula species, Navicula capitatoradiata and Gyrosigma acuminatum. 

Despite there being a strong influence of percentage cover of fine sediment on diatom assemblage 

composition, the prevalence of motility appeared to be distributed across the gradient of fine sediment 

(Figure 4a): there was no significant relationship between occurence of motility and the species pCCA 

axis 1 scores. Both motile and non-motile taxa were found throughout the gradient of percentage 

cover of fine sediment. In contrast, nutrient affinity had a significant realtionship with the gradient of 

percentage cover of fine sediment, with higher scoring taxa (higher affinity to nutrients) tending to 

have an association with a high percentage cover of fine sediment (Figure 4b). 

 

DISCUSSION 

Are diatom indices sensitive to hydromorphological alteration? 

It was not possible to detect any effect of the hydromorphological modifications tested on indices of 

phytobenthos, despite alterations that influence flow velocity, the rate of sedimentation and in-stream 

habitat being included in the analysis. Although this result may be perceived as negative in the search 

for a diatom-based indicator of hydromorphology, it is an encouraging result: indices developed to 

assess the impact of nutrient pollution on phytobenthos should be robust to hydromorphological 

alteration, otherwise false diagnoses could result. Nevertheless, it was assumed that general 

descriptors of phytobenthos, such as percent planktonic taxa and percent motile taxa, would respond 

to hydromorphological alterations. Retention time is thought to be one of the main constraints on how 
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rivers respond to eutrophication (Hilton et al., 2006), and it was assumed that any modifications that 

influence this (e.g. impoundment) would have an effect on the algal community and how it would 

respond to nutrient availability. Furthermore, it was assumed that any hydromorphological 

modification that influenced substrate would affect phytobenthos: substrate is thought to have a 

substantial influence on benthic algal community composition (Biggs et al., 1998; Schneck et al., 

2011). Percent motile taxa has been proposed as an index of deposited fine sediment (Bahls, 1993) 

and, due to the effect of fine sediment on the response of diatoms to nutrients, it is recommended that 

percent motile taxa is used when interpreting indices such as TDI (Kelly et al., 2001). In these data 

nutrients (log10 orthophosphate) had a more pronounced effect on percent motile taxa than did any of 

the hydromorphological modifications investigated. 

 

Does percent motile taxa respond to variation in cover of fine sediment? 

It is possible that the categorizations of hydromorphological modification used in the WISER data did 

not adequately describe the extent of change imposed upon the river sites, thus obscuring any 

relationships. However, the STAR data indicated that percent motile taxa was not related to visual 

estimates of the percentage cover of fine sediment in the bed substrate. Rather, percent motile taxa 

appeared to be related to nutrient conditions, as was found in the WISER data. Although motile taxa 

do thrive in fine substrates (Dickman et al., 2005) there may be competitive advantage to this trait 

under other conditions. The relationship between percent motile and nutrients could be a 

consequence of competition for light between algal species favouring those taxa that can migrate to 

the top of the layer of benthic algae when nutrients are abundant, or simply that many species with 

these characteristics (small, rapidly growing, motile) are indicative of high nutrient conditions (Kelly et 

al., 2001).  

 

Does the diatom assemblage vary with cover of fine substrate? 

Despite the lack of a relationship between percent motile and substrate composition, the Welsh data 

indicated that percentage cover of fine sediment had a strong influence on diatom assemblages. This 

pCCA took into account variation due to natural gradients in river type and nutrient concentrations, 

leaving only that variation attributable to differences in cover of fine sediment, and it was possible to 

rank the taxa according to their affinity to this gradient. Despite a clear taxonomic response to 
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sediment, motility did not show any association with the gradient of precentage cover of fine 

sediment. It appears that motility is a trait characteristic of taxa associated with a wide range of fine 

sediment conditions and cannot be reliably attributed to any part of the gradient of sediment pressure. 

Hence, it is recommended that percent motile taxa is not used as an index of fine sediment. On the 

other hand, the other trait investigated, nutrient affinity, did show a significant relationship with the 

gradient of precentage cover of fine sediment. As the partial analysis took into account that portion of 

the variation that was due to river type when ranking the taxa against the gradient of fine sediment, 

this response was not due to rivers with fine substrate tending to have higher nutrient concentrations. 

Specifically, orthophsophate concentration in the water was one of the covariables used in the 

analysis. As finer substrates are more strongly associated with anoxic conditions within the substrate 

and nutrient recycling (Pretty et al., 2006), it is possible that within-river sources of nutrients 

encourage those taxa with high nutrient affinity where fine sediment dominates the substrate.  

Despite the failure to confirm percent motile as a diatom-based index of fine sediment, the strong 

influence of percentage cover of fine sediment on diatom assemblages suggests that there is 

potential to develop a robust metric relating diatoms to fine sediment pressure using the approach 

outlined here. Excess fine sediment has a variety of both direct and indirect impacts on diatoms 

(Jones et al., 2014) which may influence the ranking of taxa along the axis of percentage cover of fine 

sediment. Whilst motility may confer an advantage with respect to burial, taxa with small stature, 

robust frustules and/or strong adherance structures are more resitant to the scouring associated with 

excess fine sediment. Nevertheless, the analysis undertaken here does not seek to attribute causal 

mechanisms, which may be various and involve multiple traits, rather to establish a statistically robust 

ranking of the relative abundance of taxa along the gradient of fine sediment pressure. In Table II we 

have made the provisional next step in the development of such an index by assigning tolerance 

scores to the taxa based on their relative position along pCCA axis 1, with the most fine sediment-

tolerant taxon (Cocconeis sp.) being scored 1 and taxa in successively more distant 10 percentile 

bands (percent of the axis 1 distance between the highest and lowest scoring taxa) along pCCA axis 

1 being assigned scores of 2, 3, 4, etc.  We suggest that this index (DISCO – Diatom Indictor of 

Sediment COnditions) should be calculated as an average weighted by percent occurence similar to 

TDI. However, we would caution that this should be considered a provisional diatom index to fine 

sediment stress for the following reasons. A) Visual assessments of percent cover of fine sediment 



 

 

This article is protected by copyright. All rights reserved. 

are not a good estimate of the pressure from excess fines (Naden et al., 2015), particularly as they 

exclude any fine sediment entrained within the river bed (Duerdoth et al., 2015), which can have 

pronounced ecological impacts (Jones et al., 2014; Murphy et al., 2015): when considering the 

pressure from excess fine sediment, it is preferable to include some measure of the rate of retention 

relative to the expected retention if the site were in reference condition. B) A more extensive dataset 

would be preferable so that more species could be included and scores based on responses over a 

wider range of conditions, and include any influence of seasonal variation. C) Any new index should 

be tested against an independent dataset to confirm its performance. Hence, we suggest that the 

index is not used until more rigorous testing has been undertaken with an independent test dataset, in 

particular to determine any influence of seasonal changes in diatom assemblage composition.  

 

CONCLUSIONS 

Although benthic diatoms have been used primarily as indicators of eutrophication, deposition of 

excess fine sediment has the potential to cause a significant impact on benthic diatoms (Jones et al., 

2014). Here we have tested the suggestion that the relative proportion of motile taxa can be used as 

an index of stress from fine sediment. Although diatoms did show a distinct response to percent cover 

of fine sediment, we found that percent motile taxa and the trait motility were not correlated with 

percentage cover of fine sediment. Rather, the percent motile index appears to be correlated with 

nutrient concentration. Hence, we recommmend that percent motile taxa is not used as an index of 

fine sediment, and suggest that a new index should be developed. We suggest that the approach 

described here has the potential to be developed into an index of sediment conditions, and present a 

provisional version of such an index (DISCO - Diatom Indictor of Sediment COnditions) based on the 

response of diatoms to fine sediment. However, we caution that this index requires considerable 

further development and testing before use.  

Despite hydromorphology having considerable potential to affect benthic diatoms, the existing indices 

tested, which have been designed to assess stress from eutrophication, were robust to 

hydromorphological modification, thus reducing the possibility of false diagnosis of impacts.  
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Table I. Results of ANCOVA investigating the influence of hydromorphological alteration on the relationship between phytobenthos indices and log10 

orthophosphate concentration using WISER data. P values of the relationship between indices and log10 orthophosphate and the interaction with modification. 

Significant values shown in bold, trivial results (i.e. data from modified sites were all within the range of scatter of unmodified sites and relationships identified 

explained less than 5% of the variance) shown in square brackets 

 Impoundment  
Channel 

modification  
Modification of 

instream habitat  Embankment  Riparian vegetation  
Velocity 

modification 

Levels of 
modification 2  4  3  4  4  2 

 PO4 
PO4 * 

Impoundment  PO4 
PO4 

*Channel  PO4 
PO4 * 

Instream  PO4 
PO4 * 

embankment  PO4 

PO4 * 
Riparian 

Vegetation  PO4 
PO4 * 

Velocity 

Descy 0.543 0.959  0.005 0.511  0.721 0.506  0.193 0.215  0.003 0.962  0.709 [0.017] 

Watanabe 0.002 0.497  <.001 0.242  <.001 0.515  <.001 0.408  <.001 0.136  0.172 0.769 

TDI <.001 0.157  <.001 0.250  <.001 0.861  0.023 0.679  <.001 [0.003]  <.001 0.806 

% planktonic 0.001 0.607  0.010 [0.038]  <.001 [0.014]  0.016 0.362  <.001 0.133  <.001 0.859 

IPS <.001 0.097  0.430 0.086  <.001 [0.033]  <.001 0.756  0.186 0.108  0.002 0.268 

IDAP <.001 [0.059]  <.001 0.319  <.001 0.545  <.001 0.816  <.001 0.569  0.006 0.766 

EPI-D <.001 [0.035]  <.001 [0.004]  <.001 0.391  <.001 0.782  <.001 0.211  <.001 0.962 

D-CH <.001 0.361  0.004 [0.022]  <.001 0.673  0.011 0.062  0.014 0.772  <.001 0.558 

IDP 0.028 0.350  <.001 0.219  0.002 0.775  0.002 0.742  <.001 0.163  0.001 0.366 

LOBO <.001 [0.008]  <.001 [0.006]  <.001 0.961  <.001 0.300  <.001 [0.008]  0.392 0.114 

TID <.001 0.917  0.071 0.128  <.001 [0.063]  <.001 0.654  0.036 0.121  <.001 0.631 

% motile  0.107 0.261  <.001 0.477  0.071 0.119  0.589 0.660  <.001 [0.011]  <.001 0.842 
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Table II. The assignment of provisional DISCO (Diatom Indicator of Sediment COnditions) scores for 

for diatom taxa based on pCCA axis 1 of the Welsh agri-environment monitoring data (see Figure 3). 

Taxon Score Taxon Score 

Brachysira sp. 10 Achnanthidium sp. 6 

Frustulia krammeri 10 Nitzschia paleacea 6 

Nitzschia tubicola 9 Navicula angusta 6 

Diadesmis contenta 9 Diploneis sp. 6 

Nitzschia gracilis 9 Nitzschia dissipata subsp. media 6 

Surirella crumena 9 Stauroneis sp. 6 

Fragilariforma sp. 8 Diatoma mesodon 6 

Navicula claytonii 8 Nitzschia perminuta 6 

Nitzschia hantzschiana 8 Eucocconeis laevis 6 

Gomphonema olivaceoides 8 Encyonema ‘ventricosum’ agg. 6 

Achnanthidium pyrenaicum 8 Nitzschia sigma 6 

Encyonopsis sp. 8 Melosira varians 6 

Eunotia sp. 8 Navicula lanceolata 6 

Bacillaria paradoxa 8 Frustulia sp. 6 

Nitzschia pusilla 8 Encyonema gracile 6 

Nitzschia capitellata 8 Navicula tripunctata 5 

Achnanthes oblongella 7 Navicula capitata 5 

Meridion circulare var. constrictum 7 Diploneis petersenii 5 

Tabellaria sp. 7 Surirella angusta 5 

Peronia fibula 7 Cocconeis pediculus 5 

Frustulia vulgaris 7 Nitzschia archibaldii 5 

Nitzschia fonticola 7 Amphora sp. 5 

Gomphonema clavatum 7 Navicula cryptotenella 5 

Fragilaria capucina 7 Navicula tenelloides 5 

Stauroneis anceps 7 Diploneis oblongella 5 

Sellaphora pupula 7 Psammothidium sp. 5 

Surirella roba 7 Navicula sp. 5 

Neidium sp. 7 Geissleria acceptata 5 

Nitzschia palea 7 Surirella sp. 5 

Planothidium frequentissimum 7 Tryblionella sp. 5 

Fragilaria sp. 7 Psammothidium lauenburgianum 5 

Gomphonema parvulum 7 Psammothidium grishunun fo. daonensis 5 

Denticula tenuis 7 Caloneis sp. 5 

Gomphonema ‘intricatum’ type 7 Amphora pediculus agg. 5 

Pinnularia sp. 7 Nitzschia recta 5 

Eolimna minima 7 Surirella brebissonii 5 

Gomphonema truncatum 7 Gomphonema olivaceum 5 

Nitzschia linearis 7 Luticola sp. 5 

Fragilaria vaucheriae 7 Rhoicosphenia abbreviata 5 

Gomphonema clevei 7 Cyclotella sp. 5 

Pseudostaurosira/Staurosira agg. 7 Planothidium lanceolatum 5 

Planothidium rostratum 7 Nitzschia sp. 5 

Fistulifera/Mayamaea spp. 7 Encyonema sp. 4 

Brachysira vitrea /neoexilis 7 Navicula radiosa 4 

Nitzschia dissipata 7 Synedra ulna 4 

Pennate undif. 7 Navicula menisculus 4 

Nitzschia sociabilis 6 Reimeria sp. 4 

Adlafia suchlandtii 6 Stephanodiscus sp. 4 

Gomphonema sp. 6 Psammothidium helveticum 4 

Meridion circulare 6 Navicula cincta 4 

Adlafia bryophila 6 Nitzschia amphibia 4 

Chamaepinnularia 6 Sellaphora seminulum 4 

Synedra sp. 6 Navicula viridula 4 

Craticula molestiformis 6 Stauroforma exiguiformis 4 

Navicula veneta 6 Cocconeis placentula 3 

Psammothidium subatomoides 6 Gomphonema angustatum 3 

Diatoma sp. 6 Surirella minuta 3 

Achnanthes sp. 6 Caloneis silicula 3 

Hannaea arcus 6 Hantzschia amphioxys 3 

Navicula cryptocephala 6 Gyrosigma acuminatum 3 

Navicula gregaria 6 Navicula capitatoradiata 2 

Navicula rhynchocephala 6 Navicula [small species] 2 

Stauroneis kriegeri 6 Luticola mutica 1 

Gomphonema acuminatum 6 Cocconeis sp. 1 
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Figure 1. The influence of impoundments (a, b, c), channel modification (d, e, f), and in-stream habitat 

modification (g, h, i) on the relationship between log10 orthophosphate concentration and three indices 

of phytobenthos, TDI (a, d, g), % planktonic taxa (b, e, h), and % motile taxa (c, f, i). Influence of 

hydromorphological modification assessed by ANCOVA, see Table 1 for statistical significance of 

relationships. 
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Figure 2. Relationships between the relative abundance of motile diatom taxa and measures of 

deposited fine sediment and water chemistry. a) % sand and silt (6 µm - 2 mm), b) % clay (< 6 µm), c) 

% fine sediment (sand, silt and clay), d) conductivity (µS), e) orthophosphate (µg l
-1

), and f) total 

phosphate (µg l
-1

). R
2
 and p shown, zero values for % clay and % fine sediment bed composition  

have been excluded as trivial results were returned (see text). 
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Figure 3. Optimum (point) and amplitude (line) of diatom taxa along the first canonical axis of pCCA, 

correlated with increasing % fine sediment cover. Taxa are ranked from least sensitive to most 

sensitive to fine sediment (top to bottom). Inset shows contour gradients of percentage fine sediment 

cover with respect to axis 1 of the pCCA ordination space.  
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Figure 4. Distribution of two diatom traits, a) motility and b) nutrient affinity (as TDI score) along the 

first canonical axis of a pCCA, correlated with increasing % fine sediment cover (see Figure 3). The 

optima of taxa, and their corresponding trait characteristic, are plotted by their pCCA axis 1 scores. 

Significance of relationships determined by logistic regression.  
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