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 38 

Abstract 39 

 40 

The forest – steppe ecotone in southern Siberia is highly sensitive to climate change; 41 

global warming is expected to push the ecotone northwards, at the same time resulting in 42 

degradation of the underlying permafrost. To gain a deeper understanding of long-term 43 

forest – steppe carbon dynamics, we use a highly-resolved, multiproxy, 44 

palaeolimnological approach, based on sediment records from Lake Baikal. We 45 

reconstruct proxies that are relevant to understanding carbon dynamics including carbon 46 

mass accumulation rates (CMAR; g C m-2 yr-1) and isotope composition of organic matter 47 

(δ13CTOC). Forest – steppe dynamics were reconstructed using pollen, and diatom records 48 

provided measures of primary production from near- and off-shore communities. We 49 

used a Generalized Additive Model (GAM) to identify significant change points in 50 

temporal series, and by applying generalised linear least-squares regression modelling to 51 

components of the multiproxy data, we address: (1) what factors influence carbon 52 

dynamics during early Holocene warming and late Holocene cooling?; (2) how did 53 

carbon dynamics respond to abrupt sub-Milankovitch scale events?; and (3) what is the 54 

Holocene carbon storage budget for Lake Baikal. 55 

 56 

CMAR values range between 2.8 – 12.5 g C m-2 yr-1. Peak burial rates (and greatest 57 

variability) occurred during the early Holocene, associated with melting permafrost and 58 

retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant 59 

shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr BP, provide compelling evidence for 60 
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the sensitivity of the region to sub-Milankovitch drivers of climate change. We estimate 61 

that 1.03 Pg C were buried in Lake Baikal sediments during the Holocene, almost one 62 

quarter of which was buried during the early Holocene alone. Combined, our results 63 

highlight the importance of understanding the close linkages between carbon cycling and 64 

hydrological processes, not just temperatures, in southern Siberian environments.   65 

   66 

  67 
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Introduction 68 

 69 

Permafrost is highly vulnerable to global warming, and in recent decades has experienced 70 

temperature increases of up to 3ºC, with multiple, complex impacts on vegetation, 71 

hydrology and the biogeochemical cycling of carbon (Vaughan et al., 2013). Sporadic – 72 

isolated permafrost regions are especially at risk, including those in southern Siberia – 73 

northern Mongolia, from degradation through warming, human impact and increased 74 

wildfires (Sharkuu, 1998; Romanovsky et al., 2010; Zhao et al., 2010; Törnqvist et al., 75 

2014). Globally, permafrost contains one of the largest pools of organic carbon, and 76 

warming ultimately results in the release of this carbon pool to the atmosphere via 77 

microbial degradation (Schuur et al., 2008). Old organic carbon liberated from melting 78 

permafrost may also be exported to headwater streams and rivers as dissolved organic 79 

carbon (DOC) (Spencer et al., 2015). In central Siberia, large amounts of DOC are 80 

transported from catchments into lakes, especially via rivers at more southerly latitudes 81 

where sporadic and isolated permafrost is extensive (Prokushkin et al., 2011).  82 

 83 

Over long timescales, the nature of carbon release from permafrost soils is rather 84 

uncertain (Schuur et al., 2008), but one potential, under-utilised tool for understanding 85 

how climate change has influenced carbon dynamics is by lacustrine sediment records of 86 

organic geochemistry. These records reflect long-term interactions between lakes and 87 

their catchments (Anderson, 2014), especially regions underlain by permafrost (Vonk et 88 

al., 2012). Lakes in general act as an important control on the global carbon cycle, despite 89 

occupying only a small percentage of the surface of the earth. Carbon burial to the bottom 90 
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of lakes is substantial, especially considering the quantities of sediment that have 91 

accumulated since the end of the last glaciation, which likely represents more than two-92 

fifths (42 Tg C yr-1) of the amount of organic carbon buried in ocean sediments (c. 100 93 

Tg C yr-1) (Dean and Gorham 1998).  94 

 95 

Within lake sediments, a number of different indicators can be used to record the 96 

responses of carbon cycling to extrinsic drivers such as climate. For example, 97 

sedimentary total organic carbon (TOC) provides a first order estimate of the amount of 98 

bulk organic matter that escapes remineralization during sedimentation (Meyers & 99 

Lallier-Verges, 1999). However, TOC is sensitive to changes in sediment accumulation 100 

rates, and so arguably a better estimate of organic carbon burial is achieved through the 101 

calculation of carbon burial (or mass accumulation) rates (CMAR; g C m-2 yr-1) (Meyers 102 

& Teranes, 2001) which are closely associated with the delivery of allochthonous carbon 103 

to lakes (e.g. Watanabe et al., 2009; Hyodo & Longstaffe, 2011; Moy et al., 2011). 104 

Sources of organic carbon sequestered into lake sediments may be further discriminated 105 

through their carbon isotope composition (δ13CTOC) and TOC/total nitrogen (C/N) ratios 106 

(Leng & Marshall, 2004). Lake sediment records can also reveal major vegetation 107 

changes in the forest - steppe ecotone (through pollen analysis, e.g. Bezrukova et al., 108 

2010; Iglesias et al., 2014), as well as shifts between primary producers (e.g. diatoms), 109 

linked to climate variability (Weckström et al., 2014).  Multiproxy palaeolimnology is a 110 

powerful approach to gain deep insight into ecosystem dynamics in permafrost regions 111 

over long timescales.   112 

 113 
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One of the most important ecosystems in southern Siberia is Lake Baikal and its 114 

catchment. It is the world’s largest lake by volume, but it is also the deepest and oldest 115 

lake, with sedimentary records spanning at least 20 million years. Its catchment spans 116 

almost 450,000 km2, from the southern limit of the boreal forest into the steppe regions of 117 

northern Mongolia. About 80% of Baikal’s catchment belongs to its largest tributary, the 118 

Selenga River, which alone accounts for over half of all river input into the lake. 119 

Catchment permafrost is extensive - continuous and discontinuous permafrost dominate 120 

the east and west portions of the basin (ca. 30%), while sporadic and isolated permafrost 121 

dominate the south (Sharku, 1998; Törnqvist et al., 2014). Annual air temperature trend 122 

maps for the past 50 years show southern Siberia to be experiencing some of the largest 123 

increases globally (Jones et al. 2012), threatening vulnerable carbon pools including 124 

permafrost (Schuur et al., 2008; Romanovsky et al., 2010) and the hemi-boreal forests 125 

(Wu et al., 2012; DeLuca & Boisvenue, 2012). Lake Baikal itself is also responding to 126 

regional warming; surface water temperatures and summer stratification have increased 127 

in recent decades (Hampton et al. 2014) while ice cover duration and thickness have 128 

declined (Todd and Mackay 2003). Its long sedimentary record contains an estimated 129 

4,500 Pg of organic carbon, more than 400 times that contained in its catchment soils 130 

(Alin & Johnson 2007), which is essentially locked away permanently. More relevant for 131 

understanding contemporary lake-catchment interactions is the amount of organic carbon 132 

sequestered since the last deglaciation, which is currently unknown, and the role that 133 

climate may have played in this process. Understanding how climate change influenced 134 

carbon dynamics in the past has the potential to provide important insights for 135 
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understanding how global warming may influence lake-catchment carbon dynamics into 136 

the future.  137 

 138 

Here, we apply a palaeolimnological, multiproxy approach to understand Holocene 139 

carbon dynamics in the Baikal-Selenga catchment at a multidecadal resolution. Global 140 

temperatures during the early Holocene were at least as warm as today (Marcott et al. 141 

2013), and rates of permafrost warming during the early Holocene were also comparable 142 

to rates estimated for present day (Anisimov et al., 2002). Therefore, comparisons 143 

between early and late Holocene periods may provide useful insights into understanding 144 

long-term carbon dynamics at the forest – steppe ecotone. The Holocene also experienced 145 

several centennial-scale abrupt events (Mayewski et al., 2004; Wanner et al., 2014), such 146 

as the 8.2 kyr cold event (Kleiven et al., 2008) and the 4.1 kyr arid event (Cullen et al., 147 

2000) but the extent to which these can influence Holocene carbon dynamics in 148 

permafrost regions remains unknown. The multi-decadal, multi-proxy dataset offered in 149 

this study has potential to provide several key insights into carbon dynamics in a climate-150 

sensitive, permafrost region. To analyse these data, we use a Generalised Additive 151 

Modelling version of a SiZer analysis (Chaudhuri & Marron, 1999; Korhola et al. 2000) 152 

for pinpointing significant points of change in the different temporal series, and use 153 

generalised least squares regression to investigate how key components of carbon cycling 154 

in the lake respond to long-term changes in climate variability. The dataset and methods 155 

we have developed and applied in this study presents a unique opportunity to address 156 

three principal questions:  157 

 158 
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(1) what are the factors influencing carbon dynamics during early Holocene warming, 159 

and how do they compare to the late- Holocene? 160 

(2) how did carbon dynamics respond to abrupt sub-Milankovitch scale (e.g. 8.2 and 161 

4.1 kyr) events? 162 

(3) what is the carbon storage budget for Lake Baikal during the Holocene, and how 163 

does this compare with other lakes? 164 

 165 

 166 

Materials and methods 167 

 168 

Study site 169 

 170 

The Lake Baikal basin is situated in one of the world’s most continental regions; 171 

summers are short, warm and wet while winters are long, dry and cold. Summer rainfall 172 

stems from the progression of cyclones moving in from west Siberia. In autumn, cold 173 

Arctic air intrudes from the Kara Sea to central Asia, which leads to the growth of the 174 

Siberian High, a high pressure cell which intensifies during winter, and leads to cold air 175 

passing into Asia (Gong & Ho, 2002) influencing the intensity of the East Asian Winter 176 

Monsoon (EAWM) (Wu & Wang, 2002).  177 

 178 

The Vydrino Shoulder (51.58°N, 104.85°E) is an isolated high in the south basin of Lake 179 

Baikal (Fig. 1). It forms an upper- to mid-slope, underwater terrace of mostly fine-180 

grained sediments, free from turbidites and unaffected by bottom-water currents which 181 
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can cause sediment focussing (Charlet et al. 2005). The Shoulder sits off-shore from 182 

several major south basins tributaries (including the Snezhnaya and Vydrinaya rivers, 183 

which have their source in the neighbouring Khamar-Daban mountain range) and is 184 

approximately 130 km from where the Selenga River enters Lake Baikal. Sidescan sonar 185 

mosaics and seismic data (Charlet et al., 2005) show the upper terrace sediments to be 186 

relatively undisturbed by tectonic activity and reworking and are therefore suitable for 187 

Holocene reconstructions. In the summer of 2001, a suite of cores was extracted from an 188 

off-shore ridge crest location of continuous sedimentation (>600 m water depth) 189 

including a box core (CON01-605-5) and a piston core (CON01-605-3). During retrieval, 190 

the upper 12.5 cm of surface sediment were lost from the box core, representing the past 191 

c. 800 years. To provide context for carbon dynamics related to recent regional warming, 192 

carbon mass accumulation rates were calculated for the past 50 years from a UWITEC 193 

gravity core (BAIK13-7) taken in 2013 to the west of CON01-605 cores. Full details of 194 

the various core codes, their locations and relevant analyses are given in Table 1.  195 

 196 

Dating 197 

 198 

Radiocarbon dates were obtained by accelerated mass spectrometry (AMS) from pollen 199 

and spore concentrates from twelve box core (CON01-605-5) samples (Piotrowska et al., 200 

2004) (Table S1). All radiocarbon dates were calibrated using IntCal13 radiocarbon 201 

calibration curve (Reimer et al., 2013). Age-depth modelling was done using ‘Bacon2.2’, 202 

allowing for variable sediment accumulation rates (Blaauw & Christen, 2011; see Fig. 2). 203 

The core was divided in 38 five-cm sections, and prior parameters used for calculations 204 
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were: 50 years per cm for accumulation rate with gamma distribution shape 1.5, and 205 

default settings for memory (see Fig. 2). The results of Markov Chain Monte Carlo 206 

iterations plotted in the upper left corner of Fig. 2 indicate good performance of the 207 

model. Sediment samples from BAIK13-7 were dated using 210Pb analyses by non-208 

destructive gamma spectrometry. Chronologies were calculated using the CRS (constant 209 

rate of 210Pb supply) dating model, after corrections were made for the effect of self-210 

absorption of low energy gamma rays within samples (Appleby, 2001). 211 

 212 

Palaeoecology 213 

 214 

Pollen and diatom analyses were undertaken on two different cores extracted from the 215 

Vydrino Shoulder (Table 1). Pollen data were analysed at 10 mm intervals from the box 216 

core CON01-605-5 and were used to represent long-term vegetation changes in the 217 

surrounding landscape. Pollen were counted at magnifications of 400 to 600x, with 218 

critical identifications made at 1000x (see Demske et al., 2005 for full details). Here we 219 

report on total arboreal pollen (AP) and Pinus sylvestris pollen (PynSylv) (Scots Pine) as 220 

indicators of forest dynamics. A steppe – boreal forest index was also calculated: 221 

[(Artemisia+chenopods+Ephedra)/AP]*100 (Traverse, 1998 in Bezrukova et al., 2005).  222 

 223 

We used a principal components analysis (PCA) on the pollen data to summarise long-224 

term vegetation trends in around the lake (Fig SI). The pollen percentage data were 225 

Hellinger transformed prior to analysis. For all subsequent analyses, we multiplied PC1 226 

by -1 so that increases in the values of PC1 reflect expansion of boreal forest. 227 

Page 11 of 71 Global Change Biology



12  

 228 

Diatoms were analysed at 5 mm resolution from the piston core (CON01-605-3) and 229 

represent a proxy for the main contributions of primary productivity within the lake. For 230 

each sample at least 300 valves were counted using oil immersion phase-contrast light 231 

microscopy at x1000 magnification. Diatom cell fluxes (total and benthic) (cm-2 yr-1 232 

x106) were estimated by the addition of divinylbenzene microspheres (Battarbee & 233 

Kneen, 1982), together with calculated sedimentation rates (cm yr-1).  234 

 235 

Isotope geochemistry 236 

 237 

Isotope geochemistry was undertaken on the box core (CON01-605-5) on contiguous 5 238 

mm samples and was used to understand different components of carbon cycling (Leng & 239 

Marshall, 2004). Sediments were placed in 5% HCl to remove any CaCO3 (assumed 240 

negligible), then washed over Whatman 41 filter papers with deionised water and dried at 241 

40°C in a drying cabinet. When dry, samples were ground to a fine powder and stored in 242 

glass vials. Carbon isotope ratios (δ13CTOC), percentage total organic carbon (%TOC) and 243 

percentage total nitrogen (%TN) (used to calculate C/N) were analysed during 244 

combustion in a Carlo Erba 1500 on-line to a VG Triple Trap and dual-inlet mass 245 

spectrometer. δ13CTOC values were converted to the V-PDB scale using a within-run 246 

laboratory standard calibrated against NBS-19 and NBS-22, with C/N ratios calibrated 247 

against an Acetanilide standard. Replicate analysis of sample material indicated a 248 

precision of ±0.1‰ for δ13CTOC  and ±0.1 for C/N. %TOC was also calculated for the past 249 

50 years on BAIK13-7 sediments, using the methods outlined above. 250 
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 251 

Carbon mass accumulation rates 252 

 253 

Only sediment samples from the piston core (CON01-605-3) were routinely analysed for 254 

wet densities and % dry weight at 105 °C, from which dry bulk density (DBD) values 255 

could be calculated (Table 1). Therefore, mean piston-core DBD values for 100-year 256 

intervals during the Holocene were calculated for the piston core. These were used 257 

alongside mean %TOC values for 100-year intervals of the Holocene box core (CON01-258 

605-5) to derive organic matter densities (g cm-3). Using the Box core calibrated age 259 

model (cm yr-1), organic carbon mass accumulation rates (CMAR; g C m-2 yr-1) were 260 

calculated on the centennial-scale averages of %TOC and DBDs. CMAR were also 261 

calculated for the past 50 years using %TOC, DBD and sediment accumulation rates 262 

calculated for BAIK13-7. 263 

 264 

Statistical modelling of the Vydrino datasets 265 

 266 

Ecological dynamics are subject to modes of variability across a variety of temporal 267 

scales (Jackson & Overpeck, 2000), and so one curve may not be sufficient to capture the 268 

complete components of variability within a temporal series. Therefore, for a full 269 

appreciation of the long-term dynamics of carbon cycling in Lake Baikal over the 270 

Holocene approaches that can take multiple temporal dynamics into account are needed. 271 

SiZer analyses (e.g. Chaudhuri & Marron, 1999) can capture such dynamics, by 272 

identifying significant trends at different modes of variability. In this study we developed 273 
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our own version of a SiZer analysis and applied it to each of the variables using 274 

Generalized Additive Modelling (GAM) (Wood 2006). Our method allows temporal 275 

autocorrelation to be fitted within each model, which should result in more conservative 276 

tests when testing for significant trends (e.g. Park et al. 2004). 277 

 278 

To develop our GAM SiZer method, we used the following procedure combining 279 

functions within the package mgcv (Wood 2006), and a script developed by Simpson 280 

(2014) in R (R Development Core Team, 2016) on each of the variables:  281 

i) fix the smoothing parameter k to a given value using the option in the 282 

smoothing term ‘fx = TRUE’;  283 

ii) test for temporal autocorrelation in the residuals in the model assuming an 284 

exponential decay function (e.g. Seddon et al. 2014);  285 

iii) re-fit the GAM model with an appropriate variance-covariance matrix 286 

reflected by the temporal autocorrelation using the stable multiple smoothing 287 

parameter estimation method (Wood 2004);  288 

iv) test for the significance of the slope of the GAM spline using a simultaneous 289 

confidence interval method described by Simpson (2014);  290 

v) identify which periods contain significantly increasing/ decreasing trends; 291 

vi)  repeat for different values of k (k = 5, 10, …, kmax);  292 

vii) map the time periods of significantly increasing or decreasing trends in a 293 

SiZer plot, with positive trends identified in red and negative trends identified 294 

in blue. 295 

  296 
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The value kmax is dependent on sample size, and the different sample resolution and 297 

temporal structures of our datasets mean that overfitting may be an issue at higher values 298 

of k. Therefore, to estimate the maximum value of k we used the ‘gam.check()’ 299 

function in the mcgv package to test whether the smoothing basis dimension for a GAM 300 

spline was too high. This command employs a test to compare the residual variance of a 301 

model fit with the difference of residuals between neighbours, and then randomly 302 

reshuffles the residuals 1000 times to find a null distribution of variance differences (see 303 

help file for gam.check() function in mgcv, Wood 2006). For each dataset, our value 304 

kmax was selected according to when the variance differences moved above p = 0.05 from 305 

the null distribution.  Information on the data transformations used (to enable our models 306 

to be run using Gaussian error distributions, the kmax values and the mean and median 307 

sample resolutions for the different datasets) are provided in Table S2. 308 

 309 

The GAM SiZer methodology presented here is useful for identifying periods of major 310 

change within individual temporal series, but our multiproxy study design also means that 311 

we were able to use statistical modelling to investigate whether longer term changes in 312 

organic geochemistry were linked to changes in climate. A piecewise linear regression 313 

revealed a breakpoint in PC1 axis representing long-term forest-climate responses at c. 314 

6051 ± 241 cal yr BP (Fig S2). Therefore, we split the data into early Holocene (EH, 11.6 315 

– 6.1 kyr) and late Holocene (LH, 6.1  - 0.8 kyr) periods, and ran linear regressions to 316 

check for relationships between long-term landscape/ climate changes and organic 317 

geochemistry. Since the CMAR dataset had a different age model to the pollen data, the 318 

pollen data were linearly interpolated to the sample ages of the CMAR dataset. We then 319 
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used a generalised-least squares regression to test for relationships between climate and 320 

the different within-lake proxies for the two time periods. We checked for the presence of 321 

temporal autocorrelation in the residuals, and then fitted a new model assuming 322 

exponential decay function to describe the degree of association between samples if 323 

required (e.g. Seddon et al. 2014). The models including autocorrelation were compared 324 

using the Akaike Information Criterion (AIC) and the best model (lowest AIC) was used 325 

to interpret drivers of the changes of carbon cycling over time.  326 

 327 

 328 

Results  329 

 330 

Sediment sample ages calculated on modelled weighted means shows that the box core 331 

sediments were deposited between c. 11.6 – 0.8 cal kyr BP (Fig. 2). Sediment 332 

accumulation rates (SAR) range between 30.9 – 9.8 cm kyr-1 (mean 16.3 cm kyr-1), with 333 

peak values calculated at 9.8 kyr BP. Thereafter, SAR decline to a low between 4.5 – 4.4 334 

kyr BP.  335 

 336 

The stratigraphic data are presented in Fig. 3 and the individual SiZer plots in Fig. 4. 337 

Assessment of the SiZer plots help to identify key events and trends in the different proxy 338 

profiles. Steppe communities were prevalent in the watershed of Lake Baikal during the 339 

early Holocene but declined abruptly at c. 10 kyr BP, before gradually declining to very 340 

low values at c. 6.1 kyr BP (Fig. 3d). Pollen from steppe vegetation remained a small but 341 

persistent feature of the record for the remainder of the Holocene. Pinus sylvestris (Scots 342 
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pine) was virtually absent, but became dominant (i.e. over 50% total land pollen; TLP) by 343 

7.0 kyr BP (Fig. 3b). For the remainder of the record tree pollen was above 80% TLP. 344 

The first principal component (PC1) of the pollen data explained 73.3 % of the total 345 

variance of the dataset (significant by comparison to the broken stick model, Line & 346 

Birks 1996) and was dominated by a gradient between cold-adapted species such as 347 

dwarf birch and the eurythermic Scots Pine (Fig. S1). In general, there was a significant 348 

long term increasing trend in PC1 from the start of the Holocene to become more stable 349 

during the late Holocene at lower values of k (Fig. 3c, 4g).  350 

 351 

Total diatom cell fluxes (DCF) ranged from c. 0.04 to 2.03 million cells cm-2 yr-1 (Fig. 352 

3i). Fluxes were especially significant before 10 kyr BP (Fig. 4e). A final significant 353 

decline in DCF was observed at 7.5 kyr BP (Fig. 4e), with no further significant 354 

variability for the remainder of the Holocene. In contrast, the fluxes of benthic diatom 355 

cells showed more significant variability, particularly at higher frequencies (i.e. higher 356 

values of k) for much of the Holocene (Fig. 4f). For example, whilst there were large 357 

oscillations in benthic diatom fluxes before c. 10 kyr BP, we also observed significant 358 

flux declines at c. 7.5 and 5.5 kyr BP (Fig. 3j, 4f). Mean benthic flux rates for the 359 

complete Holocene was 56,000 cells cm-2 yr-1, or c. 10% of mean diatom cell fluxes, 360 

highlighting the overall dominance of the planktonic contribution to diatom productivity 361 

in this core.  362 

 363 

TOC values were very low during the initial stages of the early Holocene (11.6 – 10.1 kyr 364 

BP; mean 1.2%), followed by a significant increase in %TOC values at 10.0 kyr (Fig. 3e; 365 
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Fig. 4a), reflecting a step-like shift into increasingly higher Holocene values. In general, 366 

three other major periods of change were identified by SiZer analysis: an increase in 367 

%TOC at 6.8 kyr BP, and declines in %TOC at 4.1 kyr BP and 2.8 kyr BP (Fig. 4a), 368 

reflecting local minima (Fig 3e).  In BAIK13-7, TOC in the uppermost sediments 369 

deposited during the past 50 years reached 2.5% (Roberts 2016), the highest values since 370 

4.7 kyr BP, and some of highest values for the whole Holocene. Sedimentary δ13CTOC and 371 

C/N ratios were also highly variable and show similar patterns to %TOC. For example, 372 

sedimentary δ13CTOC ranges between –30.7 to –27.0‰ (mean –29.03 ‰), with high 373 

frequency oscillations found throughout the record (Fig. 3g), and significant periods of 374 

change around 9.4, 7.4, 4.1, 3.6, 2.8 and 2.4 kyr BP (Fig. 4c). C/N ratios fluctuate 375 

between 9.9 and 13.8 (mean = 11.6) (Fig. 3f). Abrupt and significant declines are 376 

observed at 7.8, 4.1 and 2.8 kyr BP (Figs. 3f, 4b).  377 

 378 

Organic carbon mass accumulation rates were highest during the early Holocene (11.6 – 379 

9.0 kyr BP) (Fig. 3h). The SiZer analysis revealed this was also a major period of 380 

variability, particularly at higher frequencies (Fig. 4d). For example, peak values of 12.5 381 

g C m-2 yr-1 were observed at 10.4 kyr BP before they declined rapidly to c. 4.8 g C m-2 382 

yr-1 at 10.1 kyr BP. A further significant decline was observed between 9.5 – 9.3 kyr BP. 383 

Between c.  4.5 – 4.0 kyr CMAR exhibited a significant decline from 7.9 g C m-2 yr-1 to 384 

3.1 g C m-2 yr-1. For much of the late Holocene, CMAR remained low < 5 g m-2 yr-1 with 385 

a distinct minimum at 2.8 kyr BP. Mean Holocene CMAR was 5.9 g C m-2 yr-1. During 386 

the past 5 decades, mean CMAR in BAIK13-7 were only c. 3 g C m-2 yr-1 (Fig. 3h).  387 

 388 
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Modelled PC1 (i.e. the cold-adapted/ eurythermic gradient in the pollen data) 389 

relationships with organic geochemistry highlight stronger responses during the early 390 

Holocene (Fig. 5a-d) than late- Holocene (Fig. 5e-h). Although the most significant 391 

(positive) relationship was between %TOC and PC1 during the early Holocene (Fig. 5b), 392 

when expressed as burial rates, the strength of the relationship between PC1 and C 393 

declined and was negative (Fig. 5d). A significant negative relationship between PC1 and 394 

δ13CTOC was also observed (Fig. 5a), although these relationships were not significant 395 

following a sequential Bonferroni correction.  In contrast, the only significant relationship 396 

found during the late Holocene was between PC1 and C/N values which was also 397 

removed once a a sequential Bonferroni correction was applied (Fig. 5g). Given that the 398 

sequential Bonferroni corrections can be overly conservative and make it difficult to 399 

observe multiple significant relationships in noisy (e.g. ecological) data (Moran 2003), 400 

we attempt to ascribe a physical basis to patterns of variability related to uncorrected 401 

significant models in the discussion where possible.  402 

 403 

 404 

Discussion 405 
 406 

Overall concentrations of sedimentary organic carbon in Lake Baikal are low due to high 407 

remineralisation rates in the water column (Müller et al., 2005) and poor burial efficiency 408 

(Maerki et al., 2006; Sobek et al., 2009, 2014). Burial efficiency is as poor in Lake 409 

Baikal as it is in the oceans because of low sediment accumulation rates leading to very 410 

high oxygen exposure times (between 10 to over 1000 years, Sobek et al. 2009). 411 

Moreover, organic carbon is dominated by autochthonous production (phytoplankton 412 
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contribute approximately 90% of organic matter in Lake Baikal, with less than 10% 413 

delivered from the catchment (Votintsev et al., 1975)) which makes it less resistant to 414 

oxidation (Sobek et al. 2009). Recently buried organic carbon is also subject to 415 

substantial post-depositional degradation, and while this may impact the very recent 416 

measurements from BAIK13-7 (discussed below) the impact on our older sediments of > 417 

800 years will likely be very minor (Sobek et al. 2014). Previous multiple-lake studies 418 

are usually based on single cores taken from central, deep locations, regions that are also 419 

subject to sediment focussing, which can result in carbon burial rates higher than 420 

expected. While some studies have made corrections for sediment focussing (e.g. 421 

Anderson et al. 2014; Heathcote et al. 2015) others have not (e.g. Dong et al. 2012). Crest 422 

environments on isolated and inter-basin highs (i.e. the Vydrino Shoulder and the 423 

Academician Ridge), are not subject to sediment focussing, so no corrections were 424 

needed in this study. 425 

 426 

What are the factors influencing carbon dynamics during early Holocene warming and 427 

how do they compare to the late Holocene? 428 

 429 

Early Holocene 430 

Orbital configurations during the early Holocene resulted in very strong seasonality in 431 

central Asia (Bush 2005); summers were warm and wet, while intensely cold winters 432 

contributed to low mean northern hemisphere temperatures (Marcott et al., 2013; Wanner 433 

et al., 2014) (Fig. 3m). High early Holocene summer insolation (Fig. 3n) led to rapid 434 

melting of mountain glaciers and permafrost in southern Siberia (Groisman et al., 2013), 435 
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and increased river flow into Lake Baikal (Mackay et al., 2011), resulting in lake levels 436 

rising by approximately 15 m (Urabe et al., 2004). High CMAR during the early 437 

Holocene (Fig. 3h) most likely represents allochthonous sources from melting 438 

permafrost, during summer months of high fluvial input (Fig 6g); higher than average 439 

C/N (Fig. 6d) and δ13C (Fig. 6e) values at this time are also indicative of increased 440 

allochthonous carbon to Lake Baikal sediments (Table 2).  441 

 442 

PC1 generally reflects vegetation responses to insolation driven changes in climate over 443 

the Holocene (Tarasov et al. 2007) (Fig. 3m). Forest expansion mirrors the early 444 

Holocene decline in global CO2 concentrations (Fig. 3k) and an increase in ice core δ13C 445 

(Fig. 3l) is indicative of the contribution made by expanding boreal forests to the global 446 

increase in terrestrial biomass (Elsig et al., 2009). Forest expansion will have led to 447 

stabilization of catchment soils which likely accounts for the significant negative 448 

relationship between PC1 and carbon burial rates after 9.6 kyr BP.  Lower CMAR values 449 

may also be linked to lower Selenga River discharge at this time (Fig. 6g) (Prokushkin et 450 

al. 2011).  451 

 452 

Late Holocene 453 

 454 

Scots Pine is a eurythermic and drought resistant conifer, and its maximum expansion 455 

between 7 – 4 kyr BP (Fig 3b) is linked to regional summer temperature maxima and 456 

gradually increasing aridity in southern Siberia (Bush 2005; Tarasov et al., 2007) caused 457 

by surface albedo feedbacks amplifying the climate system (Ganopolski et al., (1998). 458 
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δ13CTOC values are lowest during this period, probably because pelagic diatoms dominate 459 

primary production at this time, as well as a potential contribution of respired carbon 460 

delivered to the lake from mature forest soils (Table 2). Increased CMAR at c. 5 – 4.5 kyr 461 

BP is coincident with a small peak in modelled summer relative humidity (Bush, 2005), 462 

and may be related to organic carbon from melting permafrost being delivered to the lake.  463 

 464 

Declining late Holocene annual average air temperatures (Fig. 3m) are implicated in a 465 

renewed phase of Siberian permafrost formation on previously thawed surfaces, leading 466 

to characteristic two-layered frozen structures (Anisimov et al., 2002). Renewed 467 

permafrost formation was likely responsible for persistent low carbon burial rates after 4 468 

kyr BP (Fig. 6f). Persistent low CMAR observed here is in contrast to (i) mean CMAR 469 

for lakes in SW Greenland, which showed no difference between mid and late Holocene 470 

periods (Anderson et al., 2009), and (ii) to mean CMAR for Chinese lakes which peaked 471 

between 3 – 1 kyr BP, linked to intensified human impact (Wang et al. 2015). These 472 

comparisons highlight the importance of regional activities when trying to understand 473 

delivery of allochthonous matter to lakes, although the potential influence of sediment 474 

focussing was not considered in either study.  475 

 476 

How do carbon dynamics respond to abrupt, sub-Milankovitch scale events? 477 

 478 

(i) Early Holocene abrupt events 479 

When ice sheets were still an important feature of North American and Eurasian 480 

landmasses, early Holocene climate was punctuated by pervasive millennial-scale 481 
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variability (e.g. Bond et al., 1997, 2001; Fisher et al., 2002; Mayewski et al., 2004; 482 

Wanner et al., 2008; Wanner & Bütikofer, 2008). Variability was associated with strong 483 

meltwater pulses flowing into the north Atlantic from melting Northern Hemisphere ice 484 

sheets (e.g. Bond et al., 1997; Carlson et al., 2008). These pulses resulted in atmospheric 485 

cooling (Rasmussen et al., 2006) which influenced terrestrial, freshwater and marine 486 

ecosystems worldwide through teleconnection processes (Björck et al., 1997; Mayewski 487 

et al., 2004; Berner et al., 2010; Smith et al. 2016). Modelling studies show that 488 

reductions in Atlantic Meridional Overturning Circulation (AMOC) lead to northern 489 

surface wind anomalies in central Asia (Zhang & Delworth, 2005). The potassium (K+) 490 

record from the GISP2 ice core is a proxy for the strength of the Siberian High (SH). K+ 491 

records show that the SH was exceptionally intense at c. 10.8, 10.3, 9.2 and 8.2 kyr BP 492 

(Fig. 6b) (Mayewski et al., 1997), periods coincident with reductions in AMOC. In east 493 

Asia, these events (together with changes in solar variability and ENSO) have been 494 

implicated in periods of weak Asian summer monsoon, (e.g. D’Arrigo et al., 2005; 495 

Dykoski et al., 2005; Wang et al., 2005; Cai et al., 2008; Chen et al., 2015), and 496 

widespread aridity e.g. on the Tibetan Plateau (Thompson et al., 1997). Very little is 497 

known as to how these events impacted ecosystems in southern Siberia. During such 498 

events, a cooler northern hemisphere led to a strengthening of the Asian winter monsoon 499 

(Sun et al. 2012). We hypothesize that a more intense Siberian High resulted in a halt to 500 

the expansion of taiga forest and a reduction in active permafrost layers, and caused a 501 

decline in pelagic productivity in the lake itself, linked to extended periods of ice and 502 

snow cover (Mackay et al. 2005). 503 

 504 
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Our data show that although significant changes in vegetation were occurring along the 505 

forest – steppe transition zone during the early Holocene (Fig. 4g), the direction of 506 

change (i.e. expansion of taiga forest) was unaltered, despite abrupt climate change 507 

events (Fig. 3a, c; Fig. 6d). However, a small increase in steppe – forest index at 10.3 kyr 508 

BP (Fig. 3d), is concurrent with increases in steppe vegetation in the eastern Sayan 509 

Mountain range to the west of Lake Baikal (Mackay et al., 2012), and to the east of 510 

Baikal from Lake Kotokel (Bezrukova et al., 2010). We conclude therefore that 511 

insolation-driven changes driving taiga forest expansion were stronger than sub-512 

Milankovitch forcings, although the latter did appear to result in temporary increases in 513 

steppe vegetation. The K+ peak at 10.3 kyr BP (Fig. 6b) was coincident with a significant 514 

decline in CMAR (Fig. 3h; 4d) likely linked to both less permafrost melting and reduced 515 

river flow (less glacier melt) into the lake because of increased cold and aridity (Mackay 516 

et al., 2011; Fig. 6g). At this time total diatom fluxes were highly variable (DCF) (Fig. 3i, 517 

Fig. 4e) with a significant increase in benthic diatom flux (Fig. 3j; Fig. 4f), in line with 518 

impacts expected from changes in ice cover associated with a more intense Siberian 519 

High. These simultaneous, significant changes in both Lake Baikal and its catchment 520 

(Fig. 4, 6) highlights the importance of our analyses in unambiguously identifying the 521 

impacts of sub-Milankovitch forcings on ecosystems remote from oceanic influences.   522 

 523 

Although the 8.2 kyr event is one of most studied cold events linked to freshening of the 524 

North Atlantic, few, if any, high resolution records exist for its impact anywhere in 525 

Siberia (see Fig. 1 in Morrill et al. 2013). In general, temperatures around the Europe and 526 

the North Atlantic cooled by approximately 1 °C, especially during wintertime (Alley & 527 
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Ágústsdóttir 2005; Rohling & Pälike 2005), while there is strong evidence of increased 528 

aridity, especially in regions affected by the Asian monsoon (Morrill et al. 2013). A fall 529 

in Vydrino δ18Odiatom values are indicative of reduced Selenga River flow (Fig. 6g), in 530 

line with increased aridity caused by a stronger Siberian High (Mackay et al., 2011), 531 

albeit a Siberian High not as strong as that which developed at 10.3 kyr BP (Fig. 6b). 532 

Even though we are able to reconstruct carbon dynamics at a resolution comparable to 533 

that required by Morrill et al. (2013) of under 50 years, any impact of increased cooling / 534 

aridity on regional ecosystems was minimal (Fig. 4). There is a small increase in the flux 535 

of benthic diatoms (Fig. 3j) but this is unlikely to be significant (Fig. 4f). Tentatively, 536 

therefore, our proxy data suggest that the 8.2 kyr event resulted in a small, temporary 537 

shift in the composition of primary producers in Lake Baikal, although overall carbon 538 

burial to the bottom sediments remained largely unchanged. Changes in vegetation 539 

composition in the southern Siberian catchment did not change either. That we observed 540 

no significant change in any of our analyses, suggests that climatic impacts in southern 541 

Siberia were not as strong as experienced in regions around the e.g. North Atlantic. 542 

Perhaps this is due to greater wintertime than summertime impacts (Alley & Ágústsdóttir 543 

2005), promoting aridity through a more prolonged Siberian High, but little change to 544 

summertime impacts such diatom growth and permafrost melting.   545 

 546 

(ii) Mid- to late- Holocene abrupt events  547 

Unlike early and late Holocene periods, it is not clear what caused mid Holocene cold 548 

events (Wanner et al., 2014). Nevertheless, the most striking change in all our 549 

geochemical indicators since the demise of northern hemisphere ice-sheets, occurs 550 
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between 4.4 – 4.0 kyr BP (Fig. 3, 6). After this event, none of these indicators return to 551 

earlier Holocene values (Fig. 3), suggesting that a step-change occurred with respect to 552 

carbon dynamics at the forest-steppe ecotone in southern Siberia.  553 

 554 

The shift in carbon dynamics is coeval with abrupt hydrological changes reconstructed 555 

elsewhere in the world, linked to major shifts in large-scale ocean-atmosphere tropical 556 

dynamics, including a weakening of the El Niño Southern Oscillation (ENSO) 557 

(McGregor et al., 2013; Dixit et al., 2014), and a weakening of the Asian summer 558 

monsoon (Dykoski et al., 2005; Wang et al., 2005; Berkelhammer et al. 2012). Increased 559 

aridity has also been reconstructed in Western Europe (Smith et al. 2016), the Middle 560 

East (e.g. Cullen et al. 2000; Arz et al. 2006; continental North America (Booth et al., 561 

2005; Newby et al., 2014), and in northern Africa (Gasse, 2000). Kilimanjaro ice cover 562 

also declined at this time, and a 3cm thick dust layer at c. 4 kyr BP is indicative of 563 

extremely dry conditions (Thompson et al., 2002; Fig. 6j). Dust records from ice cores on 564 

the Tibetan Plateau (Thompson et al., 1997) and tropical South America (Thompson et 565 

al. 2000) provide further evidence of widespread aridity at this time, (Fig. 6i, k). It is 566 

likely therefore, that the 4.1 kyr BP event in the Lake Baikal watershed may be due to a 567 

complex set of interactions between atmosphere and tropical ocean dynamics causing 568 

aridity in southern Siberia. In contrast, changes in diatom fluxes (Fig. 3i, j) were well 569 

within existing variability. Indeed, there were no significant changes observed in total 570 

diatom cell fluxes for the past 6 kyr in Lake Baikal (Fig. 4e), which suggests that factors 571 

that caused major fluxes in diatoms during the early Holocene had little influence during 572 

the second half of the interglacial.  573 
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 574 

Late Holocene cold events were caused by several “overlapping” factors (such as 575 

volcanic eruptions and solar minima) against a backdrop of low NH summer insolation 576 

(e.g. Wanner et al., 2008; 2014) and amplified by centennial-scale oceanic variability 577 

(Renssen et al., 2006).  The event dated at c. 2.8 kyr BP is concurrent with a deep, abrupt 578 

reduction in solar activity (Fig. 6a) (Grand Solar Minimum) which led to a decline in 579 

surface water temperatures in the North Atlantic (Andersson et al., 2003) and weaker 580 

meridional overturning circulation (Hall et al., 2004). A small increase in GISP2 K+ 581 

concentrations (Fig. 6b) indicates a strengthened Siberian High, concomitant with glacier 582 

advances in central Asia (Mayewski et al., 2004), a weaker Asian summer monsoon 583 

(Dykoski et al., 2005) and dust-inferred aridity over the Tibetan plateau (Thompson et 584 

al., 1997) (Fig. 6i). In the Lake Baikal region, the low resolution of δ18Odiatom values at 585 

this time precludes robust interpretation of Selenga flow into Lake Baikal, except to say 586 

that it was likely low ((Fig. 6g). SiZer analyses reveals highly significant changes in 587 

carbon dynamics at this time (Fig. 4a-d), likely linked to a cooler, more arid climate. The 588 

increase in sedimentary δ13CTOC values (Fig. 3c) is concomitant with a small increase in 589 

benthic diatom fluxes, perhaps indicative of a relative shift in the balance between near 590 

and off-shore primary producers at this time.  591 

 592 

How much carbon is stored in Lake Baikal sediments deposited during the Holocene? 593 

 594 

Mean carbon burial rates for BAIK13-7 for the past 50 years are 2.70 g C m-2 yr-1, similar 595 

to previous estimated rates in the south basin of 2.62 g C m-2 yr-1 (Müller et al. 2005) and 596 
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2.7 g C m-2 yr-1 (Alin & Johnson 2007). Because of very high oxygen exposure times and 597 

the dominance of autochthonous sources (Sobek et al. 2009), these values are very much 598 

at the lower end of burial rates for lakes in general (Alin & Johnson, 2007) and northern, 599 

mid-latitude (Heathcote et al. 2015) and culturally eutrophic (Anderson et al. 2014) lakes 600 

in particular. Values are similar however, to long-term mean rates for European 601 

(Kortelainen et al., 2004; Kastowski et al., 2011), high latitude (Anderson et al., 2009, 602 

Chinese (Wang et al., 2015) and other large oligotrophic lakes (Dean & Gorham, 1998; 603 

Einsele et al., 2001). The surface area of Lake Baikal covers 31,722 km2 (de Batist et al. 604 

2006). Upscaling to the rate of organic carbon burial across the whole lake suggests that 605 

at least c. 8.56 x 10-5 Pg organic carbon are buried each year (similar to a previous 606 

estimate by Alin & Johnson (2007; 8.47 10-5 Pg C yr-1) but higher than that estimated by 607 

Einsele et al. (2001; 6.3 x 10-5 Pg C yr-1)). These rates suggest that 0.1% - 0.3% of 608 

estimated global annual storage of carbon into lake sediments (0.03 – 0.07 Pg C yr-1; Cole 609 

et al. 2007) occurs in Lake Baikal alone. In Europe, lakes are estimated to cover 240,000 610 

km2, and sequester 1.25 Mt C yr-1 (Kastowski et al. 2011). Lake Baikal sequesters only 611 

about 7% of this amount, despite its area alone approximating to 15% of the surface area 612 

of all European lakes. That carbon burial rates in Lake Baikal are less than might be 613 

expected, is almost certainly down to its low burial efficiency. 614 

 615 

Burial rates calculated for Lake Baikal were mainly obtained from the bottom sediments 616 

from the south basin. However, sedimentation is not continuous in these regions because 617 

large turbidite systems converge on the basin floors (Colman et al. 2003). The majority of 618 

palaeoenvironmental studies from Lake Baikal are undertaken in regions of continuous 619 
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sedimentation such as inter-basin or isolated highs, including the Academician Ridge and 620 

the Vydrino Shoulder (Fig. 1). It is from these two regions where the best resolved 621 

Holocene profiles, with available TOC data, can be found (e.g. Horiuchi et al. 2000; 622 

Watanabe et al. 2009) (Fig. S4). A compilation of Holocene %TOC and δ13CTOC records 623 

reveals similarities across the length of the lake (Fig. S3; Fig. S4 a,b). These temporally 624 

coherent observations indicate that regional-scale drivers influenced carbon dynamics 625 

throughout Lake Baikal (Table 2) (Fig. 5d). We therefore estimated organic carbon burial 626 

budgets during early (11.7 – 10 kyr BP, mid (10 – 4 kyr BP) and late (4 – 1 kyr BP) 627 

Holocene periods. Burial rates of organic carbon were consistently higher at Vydrino than 628 

on the Academician Ridge, and mean burial rates were substantially higher during the 629 

early Holocene than the middle or late periods in both regions (Table 3). Burial rates are 630 

likely higher on the Vydrino Shoulder because although autochthonous sources of 631 

organic carbon dominate both regions, burial efficiencies on the Academician Ridge are 632 

very low due to extraordinarily high oxygen exposure times of over 1000 years; on 633 

Vydrino oxygen exposure times are of the order of 10s of years (Sobek et al. 2009). 634 

There is considerable variation in burial rates between the two regions, but higher CMAR 635 

during the early Holocene highlights the importance of melting glaciers and permafrost 636 

on carbon budgets for the whole lake, not just coastal regions of the south basin. Using 637 

mean burial rates for early, mid and late Holocene periods, we estimate that 1.03 Pg 638 

organic carbon have been buried in Lake Baikal sediments since the start of the 639 

Holocene, and almost one quarter of this was deposited before 10 kyr BP. Interestingly if 640 

we had just used annual rate of carbon burial for at BAIK13-7 (2.7 g C m-2 yr-1), the 641 

estimated budget for buried carbon during the Holocene is similar at 1.00 Pg C. Global 642 
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carbon storage in lake sediments during the Holocene range from 428 Pg (Cole et al. 643 

2007) to 820 Pg (Einsele et al. 2001). Large lakes (area > 10,000 km2) account for only 644 

27 Pg C stored during the Holocene (Cole et al. 2007), so the Lake Baikal contribution to 645 

this figure is relatively minor (c. 4%). In comparison to Boreal lakes in general, Holocene 646 

carbon storage in Baikal sediments is still only between 4-5% (Kortelainen et al. 2004). 647 

Finally, we estimate that TOC buried in Lake Baikal sediments since its formation is 648 

likely to be substantially lower than the 4,500 Pg given by Alin & Johnson (2007). They 649 

assumed constant sedimentation rates based on 210Pb dated cores from Edgington et al. 650 

(1991) of 0.0595 cm yr-1. However, these rates are from upper-most sediments, and rates 651 

decline as sediments become more compacted. For the Holocene, we estimate average 652 

sedimentation rates of 0.0163 cm yr-1, while for other regions in the lake, sedimentation 653 

rates have been estimated to be about 0.030 cm yr-1 (Colman et al. 2003). Correcting for 654 

slower sedimentation rates in more compacted sediments, the total amount of organic 655 

carbon buried in Baikal sediments may well be in the order of only c. 2,200 Pg carbon. 656 

 657 

Although on a global perspective, Holocene carbon stored in Lake Baikal is relatively 658 

minor, that almost one quarter was deposited during the first few thousand years may 659 

have had major implications for biodiversity and ecosystem functioning of the lake. 660 

Large supplies of allochthonous carbon exported to lakes influences lake water properties 661 

including light and heat penetration because of the optical properties of dissolved organic 662 

matter (Solomon et al. 2015). For example, light extinction rates are faster, so resulting in 663 

a decline in primary production. These processes may account for the decline in diatom 664 

cell fluxes concomitant with rapid increases in CMAR (Fig. 3h, i). Work is on-going to 665 
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assess overall impact on diatom productivity – biodiversity relationships, and our 666 

unpublished results indicate a major decline in diatom palaeoproductivity at this time.  667 

 668 

High-resolution, multiproxy, palaeolimnology has demonstrated that carbon dynamics at 669 

the forest – steppe ecotone were highly variable during the Holocene. Allochthonous 670 

delivery was highest during the early Holocene because high summer insolation and 671 

increasing northern hemisphere temperatures caused rapid glacier retreat and melting 672 

permafrost, releasing carbon with little forest to stabilize catchment soils. We estimate 673 

the approximately one quarter of the Holocene carbon budget was sequestered during this 674 

period, which may have had a profound effect on primary production and diversity of 675 

large-celled diatom species. Warm summers during the Early Holocene were vulnerable 676 

to extended winter cooling associated with periods of increased intensity of the Siberian 677 

High. These resulted in abrupt drops in organic carbon burial rates, concomitant with 678 

hydrological changes in the catchment. That these changes occurred almost 679 

simultaneously with changes elsewhere (e.g. decline in Asian summer monsoon (Dykoski 680 

et al., 2005) and increased aridity on the Tibetan Plateau (Thompson et al., 1997)) 681 

highlight that carbon dynamics in central Asia, far from oceanic influences, were highly 682 

responsive to changes in the global climate system during the early Holocene. Sustained 683 

low diatom productivity and carbon burial after c. 3 kyr BP is concurrent with the 684 

neoglacial, linked to pronounced cooling (Marcott et al., 2013) and aridity caused by 685 

vegetation and snow / ice albedo feedbacks in central Asia (e.g. Ganopolski et al., 1998; 686 

Renssen et al., 2006), leading to permafrost refreezing again.  687 

 688 
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Substantial warming over the past 50 years has led to permafrost degradation in southern 689 

Siberia (Törnqvist et al., 2014) and ecological changes in Lake Baikal (Hampton et al. 690 

2014). Yet if current rates of permafrost warming are comparable to those during the 691 

early Holocene (Anisimov et al., 2002, the influence on carbon dynamics to Lake Baikal 692 

have yet to be realised. One reason for the discrepancy may be related to river discharge, 693 

which increases DOC input into Boreal lakes Prokushkin et al., (2011). During the early 694 

Holocene, river discharge into Lake Baikal was much greater (Mackay et al. 2011) 695 

because glaciers were melting, causing lake levels to rise substantially (Urabe et al. 696 

2004), which in turn likely resulted in the very high carbon burial rates observed. In 697 

recent decades, average runoff from Selenga River basin has declined, leading to 698 

decreased sediment loads (Törnqvist et al., 2014). Low mean Baikal carbon burial rates 699 

during the past 50 years are in contrast to other studies where recent increases in CMAR 700 

have been attributed to increased agriculture, e.g. China (Dong et al., 2012) and Europe 701 

(Anderson et al., 2014) or global warming / increased deposition of reactive nitrogen e.g. 702 

northern lakes in North America (Heathcote et al. 2015). In the near future, it is doubtful 703 

whether nutrient enrichment or warming will result in increased carbon burial to Baikal 704 

sediments. There is increasing evidence that nutrient enrichment of coastal waters in Lake 705 

Baikal are starting to have an impact on nearshore communities (Timoshkin et al. 2016), 706 

but there is as yet no evidence of nutrient enrichment in pelagic Lake Baikal (Izmest’eva 707 

et al. 2016). And although regional warming and forest fires are predicted to increase in 708 

the near future, driving the forest-steppe ecotone northwards (Tchebakova et al. 2009), 709 

southern Siberia is predicted to become more arid (Törnqvist et al., 2014), leading to a 710 

decline in Selenga River discharge. So despite further permafrost degradation, large 711 
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quantities of released organic carbon may yet not find a route into Lake Baikal. Taken 712 

together, our data provide new and important insights into how abrupt climate change 713 

events can influence Holocene carbon dynamics in even very remote regions. However, 714 

understanding future changes to carbon dynamics must take account of hydrological 715 

variability as well as warming temperatures.  716 

 717 
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 1245 

Table 1: Location of sediment cores investigated in this study, and their analyses 1246 

undertaken. 1247 

 1248 

Core code Type Lat. Long. Water 

depth 

Core 

length 

Analyses 

CON01-
605-3 

piston 51.5849 104.8548 675 m 10.45 m DBD;  
diatoms  

CON01-
605-5 

box 51.5835 104.8518 665 m 2.50 m 14C; δ13CTOC; 
TOC; C/N;  
CMAR; pollen 

BAIK13-7 gravity 51.5683 104.5286 1080 m 0.47 m DBD; TOC; 
CMAR 

 1249 
  1250 
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Table 2: Factors likely to influence organic geochemistry in Lake Baikal sediments away 1251 
from Holocene mean values: %TOC = 1.8%; CN = 11.6; δ13C values = –29.03 ‰ 1252 
 1253 

Factor TOC C/N δ13CORG 

Increased planktonic 

diatoms  

Increase Decrease Decrease1 

Relative increase in 

pelagic productivity  

Increase Decrease No change2 

Relative increase in near-

shore productivity  

Decrease Unknown  Increase3 

Increased picoplankton  Increase Decrease Unknown4 

Increased terrestrial input 

from mature soils 

Increase Increase Decrease5 

 

Catchment DOM  No change Increase Increase6 

Increased C4 terrestrial 

input7 

NA NA NA 

Increased atmospheric 

pCO2
8 

No change No change No change 

Increased ice cover9 Decrease Unknown No change 

Gas hydrates10  No change No change No change 

 1254 

1: at present, approximately 90% of organic matter in Lake Baikal is derived from 1255 

phytoplankton, mainly diatoms during spring and autumn overturn; open water diatoms 1256 

range between –28‰ to –35‰ (mean –29‰);  2. In pelagic Baikal, the HCO3 pool is so 1257 

large, no isotopic discrimination takes place (Yoshii et al. 1999); 3: flora in littoral 1258 
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regions have higher δ13C values; aquatic macrophytes range between –5‰ to –18‰ and 1259 

benthic algae between –5‰ to –11‰ (mean –9‰) (Kiyashko et al., 1998; Yoshii, 1999; 1260 

Yoshii et al., 1999); 4: As far as we can ascertain, very little research has specifically 1261 

looked at C fractionation in picoplankton. However, Sakata et al., (1997) suggest values 1262 

of –22‰ to –30‰; 5: well-developed soils result in an increase in 13C-depleted respired 1263 

CO2 (Hammarlund, 1992; Reuss et al., 2010);  6: dissolved organic matter from 1264 

catchment rivers has δ13C value of –26‰ to –27‰ (Yoshioka et al., 2002); 7. molecular 1265 

isotopic stratigraphy of sedimentary long-chain n-alkanes did not detect any C4 plants 1266 

within its watershed during the late Quaternary (Brincat et al., 2000); 8: according to 1267 

Prokopenko et al., (1999) increased Holocene atmospheric CO2 concentrations resulted in 1268 

a decline in δ13CORG values, but there is no relationship between Holocene CO2 1269 

concentrations and δ13CORG values (Fig 3); 9: biogenic silica inferred productivity is 1270 

much lower during cold glacial periods with significantly extended ice cover (Mackay, 1271 

2007) but because of low overall primary production under the ice and higher CO2 1272 

solubility in colder water, isotopic discrimination is not thought to be important in Lake 1273 

Baikal (Watanabe et al., 2004); 10: A within-lake process unique to Lake Baikal is the 1274 

occurrence of sedimentary methane hydrates (Granin & Granina, 2002). Prokopenko & 1275 

Williams (2004) suggested that the relatively negative Holocene TOC δ13C values (in 1276 

comparison to values for the late glacial of c. –24‰) may have been caused by deglacial 1277 

methane emissions, with methane accumulating under winter ice (Prokopenko & 1278 

Williams, 2005). However, teragrams of methane would need to be emitted, but only 10s 1279 

of megagrams have actually been measured (Schmid et al., 2007), making it unlikely that 1280 

δ13C-depleted methane drives lower sedimentary δ13C values. 1281 
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 1282 

 1283 

Table 3: Organic carbon burial rates determined for early, middle and late Holocene 1284 

periods, based on 5 Holocene studies (see text for details and Fig 1 for locations). 1285 

 1286 

 Early Holocene 

CMAR (g C m-2 yr-1) 

Middle Holocene 

CMAR (g C m-2 yr-1) 

Late Holocene OC 

CMAR (g C m-2 yr-1) 

CON01-605-5  8.97 6.21 3.84 

Ver94.St16 (AR) 2.90 1.66 2.97 

5GC (AR) 5.45 1.97 1.17 

StPC (AR) 1.19 0.44 1.21 

6GC  (AR) 5.01 2.77 1.81 

Mean (s.d.) 
4.71 (2.94) 2.61 (2.18) 2.20 (2.17) 

 1287 

  1288 
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Figure Legends 1289 

Figure 1. Map of Lake Baikal and its catchment, with locations of the different cores 1290 

mentioned or utilized in this study highlighted.  1291 

  1292 

Figure 2. ‘Bacon’ Age-depth model (Blaauw & Christen, 2011) for Vydrino box core 1293 

(CON01-605-05) of radiocarbon AMS dates calibrated using IntCal13 radiocarbon 1294 

calibration curve (Reimer et al., 2013).  1295 

 1296 

Figure 3. Multiproxy data determined for Holocene sediments from the Vydrino 1297 

Shoulder, Lake Baikal. Vegetation (3a-d) and organic geochemistry data (3e-h) are from 1298 

Vydrino Shoulder core CON01-605-5. Diatom data (3i-j) are from Vydrino Shoulder core 1299 

CON01-605-3. (a): % Arboreal Pollen; (b): Pinus sylvestris pollen (%PinSylv); (c): 1300 

Pollen PC1 scores; (d): steppe – forest index; (e): total organic carbon (%TOC); (f): total 1301 

organic carbon / total organic nitrogen ratios (C/N); (g): δ13CTOC (‰); (h): carbon mass 1302 

accumulation rates (CMAR; g C m-2 yr-1) in 100-yr bins; (i): diatom cell fluxes (DCF cm-1303 

2 yr-1 x106) from CON01-605-3; (j): benthic diatom fluxes (filled silhouette) with x5 1304 

exaggeration to see fluxes in detail (empty silhouette); (k): CO2 data (p.p.m.v.) from 1305 

Dome C ice core (Flückiger et al., 2002); (l): δ13C ice core records Dome C ice core 1306 

(Elsig et al., 2009); (m): mean northern hemisphere temperature stack records for 60° 1307 

latitude bands (30° N – 90° N) (Marcott et al., 2013); (n): July insolation 50° N (W m-2) 1308 

(Berger & Loutre, 1991). The horizontal dotted line at 6.1 kyr BP marks significant 1309 

change in PC1 identified by breakpoint analysis. Light blue zones denote abrupt reversal 1310 

events at c. 10.3, 8.2, 4.1 and 2.8 kyr BP.  1311 
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 1312 

Figure 4. Individual SiZer plots from our GAM SiZer analyses. Grey areas are periods of 1313 

non-significant change, while blue and red periods show periods of significant decreasing 1314 

/ increasing change, respectively.  1315 

 1316 

Figure 5. Modelled relationships between PC1 scores and organic geochemistry for early 1317 

(5a-d) and late (5e-h) periods. Solid line indicates a significant relationship, p=0.05. 1318 

 1319 

Figure 6. Multi-archive data plotted alongside ‘deviations from mean’ values of organic 1320 

geochemical records (6c-f) from Vydrino Shoulder core CON01-605-5. (a): Sunspot 1321 

numbers (Solanki et al., 2004); (b): K+ ion concentrations (ppb) from GISP2 D core 1322 

(Mayewski et al., 1997); (c): total organic carbon (%TOC); (d): total organic carbon / 1323 

total organic nitrogen ratios (C/N); (e): δ13CTOC (‰); (f): carbon mass accumulation rates 1324 

(CMAR; g C m-2 yr-1) in 100-yr bins; (g): δ18Odiatom record from Vydrino Shoulder piston 1325 

core CON01-605-05 (Mackay et al., 2011); (h): four stacked records of relative 1326 

abundance of haematite- stained grains (%HSG) in North Atlantic sediments (Bond et al., 1327 

2001); (i): dust concentrations (x103 ml-1) from Qinghai-Tibetan Guliya ice core 1328 

(Thompson et al., 1997); (j): 50-yr mean dust concentrations (ml-1) from Mount 1329 

Kilimanjaro ice core NIF3 (Thompson et al., 2002) plotted on a log scale; (k): 50-yr 1330 

mean dust concentrations (ml-1) from Huascarán ice core, Peru (Thompson et al., 2000) 1331 

plotted on a log scale; (l): XRF Mn element density (cps) from Shaban Deep basin, 1332 

northern Red Sea core GeoB 5836-2 (Arz et al., 2006); (m): δ18O (‰) of shallow-water 1333 

foraminifera Globigerinoides ruber from Shaban Deep basin, northern Red Sea core 1334 
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GeoB 5836-2  (Arz et al., 2006); (n): Dolomite (% wt) from Gulf of Oman sediment core 1335 

M5-422 (Cullen et al., 2000); (o): δ18O (‰) of ostracod Melanoides tuberculata from 1336 

palaeolake Kotla Dahar, NW India (Dixit et al., 2014); (p): δ18O (‰) record from 1337 

Mawmluh Cave speleothem, NE India (Berkelhammer et al., 2012); (q): δ18O (‰) record 1338 

from Dongge Cave speleothem, SE China (Dykoski et al., 2005). Light blue zones denote 1339 

cold reversal events at c. 10.8, 10.3, 8.2, 4.1 and 2.8 kyr BP. 1340 

 1341 

  1342 
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Supplementary Figure Legends 1343 

 1344 

Figure S1. PCA biplot of pollen data. Codes used include Cyp = Cyperaceae; AlnFrut = 1345 

Alnus fruticosa type; Tubul = Compositae Asteroideae; PinSylv = Pinus sylvestris type; 1346 

PinSib = Pinus sibirica type; Betnana = Betula nana type; Betun  = Betula 1347 

undifferentiated. Full details given in (Demske et al., 2005).  1348 

 1349 

Figure S2. Breakpoint analysis of pollen PCA axis 1 data. 1350 

 1351 

Figure S3. Compiled δ13C data from Lake Baikal. A: Vydrino, this study; B: St.5GC 1352 

from the Academician Ridge (Watanabe et al., 2009); C: St.5PC from the Academician 1353 

Ridge (Watanabe et al., 2009); D: St.6GC from the Academician Ridge (Watanabe et al., 1354 

2009); E: Ver94/St16 from the Academician Ridge (Horiuchi et al. 2000). 1355 

 1356 

Figure S4A. Compiled TOC data from Lake Baikal plotted against a radiocarbon age 1357 

scale. A: Vydrino, this study; B: St.5GC from the Academician Ridge (Watanabe et al., 1358 

2009); C: St.5PC from the Academician Ridge (Watanabe et al., 2009); D: St.6GC from 1359 

the Academician Ridge (Watanabe et al., 2009). E: Core Ver94.St.16 from the 1360 

Academician Ridge (Horiuchi et al., 2000); 1361 

 1362 

Figure S4B. Compiled Holocene TOC data from Lake Baikal plotted against a depth 1363 

scale. A: Core Ver93/2-GC24 from the Buguldieka Saddle, opposite the shallow waters 1364 

of the Selenga Delta (Karabanov et al. 2004); B: Core BDP-93-2 from the Buguldieka 1365 
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Saddle, opposite the shallow waters of the Selenga Delta (Prokopenko et al. 1999). 1366 

Approximate date horizons are derived from the revised chronology presented by 1367 

Prokopenko et al. (2007), but no suitable age-depth model is available from which to plot 1368 

these up on an age scale. 1369 
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